7.7 Responsibility-driven design 219

Our goal to reduce coupling demands that, as far as possible, changes to the Room class do not
require changes to the Game class. We can still improve this.

Currently, we have still encoded in the Game class the knowledge that the information we want
from a room consists of a description string and the exit string:

System.out.println("You are " + currentRoom.getDescription());
System.out.println(currentRoom.getExitString());

What if we add items to rooms in our game? Or monsters? Or other players?

When we describe what we see, the list of items, monsters, and other players should be
included in the description of the room. We would need not only to make changes to the Room
class to add these things, but also to change the code segment above where the description is
printed out.

This is again a breach of the responsibility-driven design rule. Since the Room class holds infor-
mation about a room, it should also produce a description for a room. We can improve this by
adding to the Room class the following method:

J{*t

* Return a long description of this room, of the form:
* You are in the kitchen.

* Exits: north west

* @return A description of the room, including exits.
)

public String getLongDescription()

{

}

return "You are " + description + ".\n" + getExitString();


denis
Rectangle 


220

Chapter 7 B Designing classes

In the Game class we then write
System.out.println(currentRoom.getLongDescription());

The ‘long description’ of a room now includes the description string, information about the exits, and
may in the future include anything else there is to say about a room. When we make these future
extensions, we will have to make changes to only a single class: the Room class.



denis
Zone de texte 




