220 | Chapter 7 B Designing classes

7.8

One of the main
goals of a good
class design is
that of localizing
change: making
changes to one
class should have
‘minimal effects on

7.9

Localizing change

Another aspect of the decoupling and responsibility principles is that of localizing change. We
aim to create a class design that makes later changes easy by localizing the effects of a change.

Ideally, only a single class needs to be changed to make a modification. Sometimes several
classes need change, but then we aim at this being as few classes as possible. In addition, the
changes needed in other classes should be obvious, easy to detect, and easy to carry out.

To a large extent we can achieve this by following good design rules such as using responsi-
bility-driven design and aiming for loose coupling and high cohesion. In addition, however,
we should have modification and extension in mind when we create our applications. It is
important to anticipate that an aspect of our program might change, in order to make this
change easy.

Implicit coupling

We have seen that the use of public fields is one practice that is likely to create an unnecessarily
tight form of coupling between classes. With this tight coupling, it may be necessary to make
changes to more than one class for what should have been a simple modification. Therefore
public fields should be avoided. However, there is an even worse form of coupling: implicit
coupling.

Implicit coupling is a situation where one class depends on internal information of another,
but this dependence is not immediately obvious. The tight coupling in the case of the public
fields was not good, but at least it was obvious. If we change the public fields in one class,
and forget about the other, the application will not compile any more and the compiler will
point out the problem. In cases of implicit coupling, omitting a necessary change can go
undetected.

We can see the problem arising if we try to add further command words to the game.



denis
Zone de texte 


7.9 Implicit coupling 221

Suppose that we want to add the command /look to the set of legal commands. The purpose of
look is merely to print out the description of the room and the exits again (we ‘look around the
room’) — this could be helpful if we have entered a sequence of commands in a room so that
the description has scrolled out of view, and we cannot remember where the exits of the current
room are.

We can introduce a new command word by simply adding it to the array of known words in the
validCommands array in the CommandWords class:

// a constant array that holds all valid command words
private static final String validCommands[] = {

IigOII, llquitll’ Iihelpll’ illookli
b

This, by the way, shows an example of good cohesion: instead of defining the command words in
the parser, which would have been one obvious possibility, the author created a separate class just to
define the command words. This makes it now very easy for us to find the place where command
words are defined, and it is easy to add one. The author was obviously thinking ahead, assuming that
more commands might be added later, and created a structure that makes this very easy.

We can test this already. However, after making this change, when we execute the game and type
the command look, nothing happens. This contrasts with the behavior of an unknown command
word: if we type any unknown word, we see the reply

I don’t know what you mean...

Thus the fact that we do not see this reply indicates that the word was recognized, but nothing
happens because we have not yet implemented an action for this command.

We can fix this by adding a method for the look command to the Game class:

private void look()

{
}

After this, we only need to add a case for the look command in the processCommand method,
which will invoke the 1ook method when the look command is recognized:

System.out.println(currentRoom.getLongDescription());

if (commandWord.equals("help")) {
printHelp();

}

else if(commandWord.equals("go")) {
goRoom(command) ;

}

else if(commandWord.equals("look")) {
look();

}

else if(commandWord.equals("quit")) {
wantToQuit = quit(command);

}

Try this out, and you will see that it works.





