F iy

Designing cla?ggeé/

Main concepts discussed in this chapter:

B responsibility-driven design B cohesion
B coupling m refactoring

Java constructs discussed in this chapter:

static (for methods), Math, enumerated types

In this chapter we look at some of the factors that influence the design of a class. What makes a
class design either good or bad? Writing good classes can take more effort in the short term than
writing bad classes, but in the long term that extra effort will often be justified. To help us write
good classes there are some principles that we can follow. In particular, we introduce the view
that class design should be responsibility-driven, and that classes should encapsulate their data.

This chapter is, like many of the chapters before, structured around a project. It can be studied
by just reading it and following our line of argument, or it can be studied in much more depth by
doing the project exercises in parallel with working through the chapter.

The project work is divided into three parts. In the first part, we discuss the necessary changes to the
source code and develop and show complete solutions to the exercises. The solution for this part is
also available in a project accompanying this book. The second part suggests more changes and
extensions, and we discuss possible solutions at a high level (the class design level) but leave it to
readers to do the lower-level work and to complete the implementation.

The third part suggests even more improvements in the form of exercises. We do not give
solutions — the exercises apply the material discussed throughout the chapter.

Implementing all parts makes a good programming project over several weeks. It can also be
done very well as a group project.

Introduction

It is possible to implement an application and to get it to perform its task with badly designed
classes. Just executing a finished application does not usually indicate whether it is structured
well internally or not.

202 Chapter 7 B Designing classes

The problems typically surface when a maintenance programmer wants to make some changes
to an existing application. If, for example, a programmer attempts to fix a bug, or wants to
add new functionality to an existing program, a task that might be easy and obvious with
well-designed classes may well be very hard and involve a great deal of work if the classes are
badly designed.

In larger applications, this effect already occurs during the original implementation. If the
implementation starts with a bad structure, then finishing it might later become overly complex,
and the complete program may either not be finished, or contain bugs, or take a lot longer to
build than necessary. In reality, companies often maintain, extend, and sell an application over
many years. It is not uncommon that an implementation for software that we can buy ina
software store today was started more than 10 years ago. In this situation, a software company
cannot afford to have badly structured code.

Since many of the effects of bad class design become most obvious when trying to adapt or
extend an application, we shall do exactly that. In this chapter we will use an example called
world-of-zuul, which is a simple, rudimentary implementation of a text-based adventure game,
In its original state the game is not actually very ambitious: for one thing, it is incomplete.
By the end of this chapter, however, you will be in a position to exercise your imagination and
design and implement your own game and make it really fun and interesting.

world-of-zuul Our world-of-zuul game is modeled on the original Adventure game that was
developed in the early 1970s by Will Crowther, and expanded by Don Woods. The original
game is also sometimes known as the Colossal Cave Adventure. This was a wonderfully
imaginative and sophisticated game for its time, involving finding your way through a complex
cave system, locating hidden treasure, using secret words, and other mysteries, all in an
effort to score the maximum number of points. You can read more about it at places such

as http://jerz.setonhill.edu/if/canon/Adventure.htmand
http://www.rickadams.org/adventure/, or try doing a web search

for ‘Colossal Cave Adventure.’

While we work on extending the original application, we will take the opportunity to discuss
aspects of its existing class design. We will see that the implementation we start with has exam-
ples of bad design decisions in it, and we will see how this impacts on our tasks and how we can
fix them.

In the project examples for this book you will find two versions of the zuul project: zuul-bad and
zuul-better. Both implement exactly the same functionality, but some of the class structure is
different, representing bad design in one project and better design in the other. The fact that we
can implement the same functionality in either a good way or a bad way illustrates the fact that
bad design is not usually a consequence of having a difficult problem to solve. Bad design has
more to do with the decisions that we make when solving a particular problem. We cannot use
the argument that there was no other way to solve the problem as an excuse for bad design.

So, we will use the project with the bad design so that we can explore why it is bad, and then
improve it. The better version is an implementation of the changes we discuss here.

uul class diagram

7.2 The world-of-zuul game example | 203

The world-of-zuul game example

From Exercise 7.1, you have seen that the zuu/ game is not yet very adventurous. It is, in fact,
quite boring in its current state. But it provides a good basis for us to design and implement our
own game, which will hopefully be more interesting.

We start by analyzing the classes that are already there in our first version, and trying to find out
what they do. The class diagram is shown in Figure 7.1.

Parser
T e R S >
Game | i
N
e i< B i
: ‘Room I
e > I

denis
Zone de texte

204 Chapter 7 M Designing classes

The project shows five classes. They are Parser, CommandWords, Command, Room, and Game.
An investigation of the source code shows, fortunately, that these classes are quite well
documented, and we can get an initial overview of what they do by just reading the class
comment at the top of each class. (This fact also serves to illustrate that bad design involves
something deeper than simply the way that a class looks, or how good its documentation is.) Our
understanding of the game will be assisted by having a look at the source code to see what
methods each class has, and what some of the methods appear to do. Here, we summarize the
purpose of each class: '

B CommandWords The CommandWords class defines all valid commands in the game. It does
this by holding an array of String objects representing the command words.

®m Parser The parser reads lines of input from the terminal and tries to interpret them as
commands. It creates objects of class Command that represent the command that was entered.

® Command A Command object represents a command that was entered by the user. It has
methods that make it easy for us to check whether this was a valid command, and to get the
first and second words of the command as separate strings.

B Room A Room object represents a location in a game. Rooms can have exits that lead to other
rooms.

m Game The Game class is the main class of the game. It sets the game up, and then enters a
loop to read and execute commands. It also contains the code that implements each user
command.

denis
Zone de texte

	00-01_7en.pdf
	01-03_7en.pdf

