Concept:

Concept:

7.3 Introduction to coupling and cohesion 205

Introduction to coupling and cohesion

If we are to justify our assertion that some designs are better than others, then we need to define
some terms that will allow us to discuss the issues that we consider to be important in class
design. Two terms are central when talking about the quality of a class design: coupling
and cohesion.

The term coupling refers to the interconnectedness of classes. We have already discussed in
earlier chapters that we aim to design our applications as a set of cooperating classes that
communicate via well-defined interfaces. The degree of coupling indicates how tightly these
classes are connected. We strive for a low degree of coupling, or loose coupling.

The degree of coupling determines how hard it is to make changes in an application. In a
tightly coupled class structure, a change in one class can make it necessary to change several
other classes as well. This is what we try to avoid, because the effect of making one
small change can quickly ripple through a complete application. In addition, finding all the
places where changes are necessary and actually making the changes can be difficult and
time consuming.

In a loosely coupled system, on the other hand, we can often change one class without making
any changes to other classes, and the application will still work. We shall discuss particular
examples of tight and loose coupling in this chapter.

The term cohesion relates to the number and diversity of tasks for which a single unit of an
application is responsible. Cohesion is relevant for units of a single class and an individual
method.!

Ideally, one unit of code should be responsible for one cohesive task (that is, one task that can be
seen as a logical unit). A method should implement one logical operation, and a class should
represent one type of entity. The main reason behind the principle of cohesion is reuse: if a
method or a class is responsible for only one well-defined thing, then it is much more likely that
it can be used again in a different context. A complementary advantage of following this
principle is that, when change is required to some aspect of an application, we are likely to find
all the relevant pieces located in the same unit.

We shall discuss how cohesion influences quality of class design with examples below.

! We sometimes also use the term module (or package in Java) to refer to a multi-class unit. Cohesion is
relevant at this level, too.



denis
Zone de texte 




