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Soutenance prévue le 7 octobre 2015 devant le jury composé de:
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Directeur Venceslas BIRI Université Marne la Vallée





Abstract
Real-world data has a large geometric component, exhibiting significant geometric patterns.

Therefore exploiting the geometric nature of data to design efficient methods has became a

very important topic in several scientific fields, e.g., computational geometry, discrete geometry,

computer graphics, computer vision. In this thesis we use geometric structures to design efficient

algorithms for problems in two domains, computer graphics and combinatorial optimization.

Part I focuses on a geometric data structure called well-separated pair decomposition and its

usage for one of the most challenging problems in computer graphics, namely efficient photo-

realistic rendering. One solution is the family of many-lights methods that approximate global

illumination by individually computing illumination from a large number of virtual point lights

(VPLs) placed on surfaces. Considering each VPL individually results in a vast number of cal-

culations. One successful strategy to reduce computations is to group the VPLs into a small

number of clusters that are treated as individual lights with respect to each point to be shaded.

We use the well-separated pair decomposition of points as a basis for a data structure for pre-

computing and compactly storing a set of view independent candidate VPL clusterings showing

that a suitable clustering of the VPLs can be efficiently extracted from this data structure. We

show that instead of clustering points and/or VPLs independently, what is required is to cluster

the product-space of the set of points to be shaded and the set of VPLs based on the induced

pairwise illumination. Additionally we propose an adaptive sampling technique to reduce the

number of visibility queries for each product-space cluster. Our method handles any light source

that can be approximated with virtual point lights (VPLs), highly glossy materials and outper-

forms previous state-of-the-art methods.

Part II focuses on developing new approximation algorithms for a fundamental NP-complete

problem in computational geometry. It focuses on the minimum hitting set problem, particularly

on the case where given a set of points and a set of disks, we wish to compute the minimum-

sized subset of the points that hits all disks. It turns out that efficient algorithms for geometric

hitting set rely on a key geometric structure, called ε-net. We give an algorithm that uses only

Delaunay triangulations to construct ε-nets of size 13.4/ε and we provide a practical implemen-

tation of a technique to calculate hitting sets in near-linear time using small sized ε-nets. Our

results yield a 13.4 approximation for the hitting set problem with an algorithm that runs effi-

ciently even on large data sets. For smaller datasets, we present an implementation of the local

search technique along with tight approximation bounds for its approximation factor, yielding

an (8+ε)-approximation algorithm with running time Õ(n2.34). Our work related to fundamen-

tal computational geometry problems also includes a novel dynamic convex hull algorithm for

simple polygonal chains handling insertion or deletion of a point in amortized constant time.





Resumé
Les données du monde réel ont une composante géométrique importante et représentent souvent

des motifs géométriques. Les méthodes qui utilisent la nature géométrique des données sont ac-

tivement développées dans plusieurs domaines scientifiques, comme, par exemple, la géométrie

algorithmique, la géométrie discrète, la synthèse d’images, la vision par ordinateur. Dans le

travail présent, nous utilisons les structures géométriques afin de modéliser des algorithmes ef-

ficaces pour deux domaines, celui de synthèse d’images et de l’optimisation combinatoire.

La première partie porter sur une structure de données géométriques, appelée well-separated

pair decomposition, et son application pour un des problèmes les plus difficiles dans la synthèse

d’images, le rendu photo réaliste efficace. Une solution consiste à appliquer toute une famille

de méthodes de many-lights qui fait une approximation d’illumination globale par calcule in-

dividuelle d’illumination avec un grand nombre de VPLs (virtual point light) répartis sur les

surfaces. L’application individuelle de chacun VPL résulte dans un grand nombre de calculs.

Une des stratégies pour réduire les calculs est de faire les clusters qui sont considères comme un

seul émetteur. Nous utilisons la well-separated pair decomposition de points comme le fonde-

ment de la structure des données susceptible de procéder à un calcul préliminaire et de conserver

d’une façon compacte un grand nombre des clusterisations individuels potentiels ce qui mon-

tre que la clusterisation des VPL plus correspondante peut être extraite de cette structure de

données d’une manière efficace. Nous montrons qu’au lieu de regrouper les points et/ou VPL

indépendamment il vaut mieux produire les clusters sur l’espace de produit du nombre des points

à nuancer et un groupe de VPL à la base de l’illumination des paires induite. En plus, nous pro-

posons une technique adaptative afin d’échantillonner pour réduire le nombre des demandes de

vérifications de visibilité pour chaque cluster de l’espace de produit. Notre méthode consiste à

détenir chaque émetteur qui peut être rapproché par VPL, matériaux spéculaire et à effectuer les

méthodes précédentes reconnus les meilleurs jusqu’au présent.

La deuxième partie est consacrée au développement de nouveaux algorithmes d’approximation

pour un problème fondamental de NP complet dans la géométrie algorithmique, précisément le

problème du hitting set, en s’intéressant au cas d’un groupe de points et d’un groupe de disques,

nous souhaitons calculer le plus petit nombre de points qui touche tous les disques. Il arrive

que les algorithmes efficaces à détecter le hitting set repose sur une structure géométrique clé,

appelée ε-net. Nous donnons un algorithme utilisant uniquement la triangulation de Delaunay

pour construire les ε-nets de taille 13.4/ε. Nous donnons une implémentation pratique de la

technique à calculer les hitting sets dans le temps quasi-linéaire en utilisant des ε-nets de petites

tailles. Nos résultats aboutissent à une approximation de 13.4 pour le problème de hitting set par

un algorithme qui fonctionne même pour les grands ensembles de données. Pour les ensembles

de taille plus petite, nous proposons une implémentation de la technique de recherche locale

avec une approximation bornes supérieures, avec le résultat obtenu d’approximation de (8 +



ε) dans le temps Õ(n2.34). Notre travail lié à des problèmes fondamentaux de la géométrie

algorithmique comprend également un nouvel algorithme déterminant l’enveloppe convexe de

manière dynamique pour les chaı̂nes polygonales simples traitant l’insertion ou la suppression

d’un point en temps amorti constant.
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A Detailed Overview: Problems,
Techniques and Results

This chapter aims to provide a compact introduction to the research conducted during the thesis.

It describes:

• the problems studied during this thesis,

• the development of the relevant scientific areas,

• the proposed algorithms and data structures,

• and the obtained results.

Detailed technical descriptions of our results follow in the subsequent chapters of the thesis.

Designing efficient algorithms for solving various problems is one of the most important re-

search directions in many scientific fields. The enormous amount of data that algorithms have

to deal with requires both fast methods (in the sense of theoretical complexity) and efficient

implementations of them. There is frequently a big difference between the best algorithms that

achieve good theoretical performance and the best algorithms that run efficiently on real prob-

lem instances. One of the most famous examples might be the extremely successful simplex

method proposed by Dantzig in 1947. Although its worst case behavior is exponential [KM72],

still many linear program solvers use this instead of the provably polynomial methods (e.g., in-

terior point methods [Kar84]) due to its simplicity and efficiency on practical problems. One of

the main goals of this thesis is to provide methods that try to guarantee good theoretical results

and at the same time their implementation is efficient and robust. Most of our algorithms have

been implemented and published on-line, available at the author’s website.

Developing efficient methods requires studying the structure and unique properties of the prob-

lems. Real-world data has a large geometric component, showing significant geometric patterns.

Exploring the geometric nature of data to design efficient methods has became very important

in several scientific fields, e.g., computational geometry, discrete geometry, computer graphics,

computer vision. For example finite element methods are one of the fundamental tools for a

wide range of engineering problems (ranging from design to analysis) and mesh generation lies

in the core of these finite element methods [She98]. In this work we aim to investigate how

1

http://perso.esiee.fr/~busn


2 A Detailed Overview: Problems, Techniques and Results

geometric structures can be used to design efficient algorithms for problems in specifically two

domains, computer graphics and combinatorial optimization. Although at first sight the two

problems seem to be very far from each other, they share geometrical components and there are

many problems in computer graphics that have a discrete formulation where combinatorial op-

timization algorithms could be potentially used. Ultimately, fast enough hitting set algorithms

could be utilized to improve various computer graphics problems that rely on selecting a subset

of points.

Computer Graphics: Rendering Photo-Realistic Images

One of the main problems in computer graphics is creating synthetic images of digital models,

a challenging problem since the 1960’s. It became a key component of many modern applica-

tions e.g., simulators, industrial design programs, virtual effect creation for the film industry and

video games. The ever increasing need for creating the most realistic images of virtual scenes

in the least amount of time has triggered many techniques to achieve this goal. The techniques

used for rendering can be classified into two big categories based on the speed they require to

produce a rendered image. Real-time rendering algorithms produce images that are less realistic

and physically incorrect but apply techniques that appear visually pleasing while enabling fast

calculations. Such algorithms are usually running on graphics cards that are specialized hard-

ware to facilitate fast rendering of images. They achieve interactive frame rates therefore they

are suitable for interactive applications such as games and virtual reality applications. This field

is developing extremely fast, see e.g., the SIGGRAPH course notes [Tat09] on the topic held

every year since 2006. Algorithms that do not achieve real-time performance, called off-line

rendering algorithms, provide much higher fidelity to real photographs through more demand-

ing algorithms. Most of them use ray tracing techniques that try to simulate the propagation of

light (photons) as in real world scenes. These algorithms excel in solving the hard problem of

calculating global illumination i.e., illumination not coming directly from a light source. These

techniques lie at the heart of many CGI applications for movies. Current algorithms are able to

render images of very good quality but with large computation times. The ultimate goal of the

field is to create a real-time implementation of these techniques on commodity hardware. Our

work targets speeding up high fidelity off-line rendering systems although we are not directly

aiming for real-time performance.

The rendering equation. Photo-realistic rendering algorithms aim to solve the rendering

equation, proposed by Kajiya in 1986 [Kaj86]. Here we provide a simple version of it not

accounting for certain phenomena e.g., different wavelengths of light.

Lo(p, ωo) = Le(p, ωo) +

∫
Ω
fr(p, ωi, ωo)Lo(p, ωi)(ωi · n) dωi (1)
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This fundamental equation describes the radiance leaving a point in a stationary state. The

equation states that the radiance Lo(p, ωo) leaving a point p ∈ R3 located on a surface of the

scene, in direction ωo ∈ S2 is the sum of the radiance Le(p, ωo) emitted in this direction and

the reflected light. The reflected light can be calculated by an integral over the hemisphere Ω

aligned to the surface normal n at p. This integral accounts for all possible directions of received

light, integrating the incoming radiance at the point modified by the bidirectional reflectance

distribution function (BRDF) and the area of a surface patch perpendicular to the light direction

projected over the surface at p. The latter is simply the dot product of ωi and the surface normal

n. The BRDF is a function that represents the material properties of the surface, namely that

given the direction of incoming radiance what portion of the it is reflected in a certain outgoing

direction.

The most robust algorithms for solving the rendering equation are pure unbiased Monte Carlo

algorithms such as path tracing [Kaj86], Metropolis light transport [VG97] or simple bidirec-

tional path tracing [LW93]. These methods are considered to be gold standards for reference

solutions. Unfortunately they produce noisy results that are slow to converge in the case of

complex scenes. This is due to the stochastic integration methods applied to solve the ren-

dering equation numerically. The noise is visually disturbing and the need to avoid it lead to

other developments in the field. Biased algorithms like Photon Mapping [Jen01], point-based

global illumination [Chr08] or the many-lights methods, such as Instant Radiosity [Kel97], are

less robust solutions but they provide good performance in many practical applications without

noise.

Many-lights methods. The last method and its improvements have proven to be very useful

for approximating global illumination. By tracing light paths from light sources, they create vir-

tual point lights (VPLs) at the intersections of the surface of the scene and these light paths. For

details we refer the reader to [Kel97]. Global illumination is estimated by computing the direct

illumination from all of the VPLs. The resulting equation is a discretization of the rendering

equation:

Lo(x, ωo) ≈
∑
s∈S

fr(x, ωs, ωo)Ls(p, ωs)(ωs · n) (2)

where the summation is over the set of VPLs S and ωs is the direction towards s. Ls(p, ωs)

denotes the radiance caused by s. Note that this equation isn’t recursive anymore and has a

discrete form which is beneficial for the application of combinatorial techniques to increase the

efficiency of solutions. Since the work of Keller in 1997 [Kel97] there has been steady interest

in improving and generalizing the method due to its simplicity and noise free images. Among

many results it has been extended to handle highly glossy materials [HKW+09; DKH+10], spec-

ular light transfer with Rich-VPLs [SHD15] and participating media with virtual ray and beam

lights [NND+12b; NND+12a]. In 2012 there has been a SIGGRAPH course [KHA+12] on the
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many-lights methods and next year a state-of-the-art report was published at EUROGRAPH-

ICS [DKH+13]. Despite some limitations, they provide a unified and scalable approach to the

problem of computing global illumination. However, as the number of VPLs needed for a good-

fidelity approximation is very large, computing the illumination for each point by exhaustively

summing up the contribution of each individual VPL can become prohibitively expensive. Over-

coming this problem has lead to a series of work improving the efficiency of the many-lights

methods.

Clustering VPLs. One of the earliest improvements of the method is the work of Paquette

et al. from 1998 [PPD98], introducing the idea of clustering the VPLs and treating a cluster

as a single VPL. The algorithm first builds a hierarchical clustering structure of the VPLs and

then for each shaded point it extracts a clustering of the VPLs. Their method has significantly

improved the running time of VPL algorithms but it was not robust. The criteria to extract

the clustering was not able to adapt to different shaded points often resulting in inadequate

clusterings. Since then there has been a long history of adaptive and efficient VPL clustering

algorithms. The two most successful approaches for clustering the VPLs are matrix based and

tree based methods. The former is based on the study of the light transport matrix [HPB07;

HVAP+08; OP11; FBD15]. The rows of the light transport matrix correspond to pixels and

columns correspond to VPLs, each cell encoding the contribution of a particular VPL to a pixel.

These methods sample the rows of the light transport matrix and calculate the contribution of

each VPL to these sample points. Based on this information they cluster the columns of the

matrix (VPLs) by using a suitable metric to compare columns. The resulting clustering is used

to shade all the points. See Figure 1. Clearly, one global clustering is not adapted to every
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FIGURE 1: Clustering based on the light transport matrix

point. The state-of-the-art method in this family is LightSlice [OP11] that first creates clusters

of points that are treated separately and a clustering is constructed for each of these clusters.

The main drawback of these methods is that they lack a rigorous error bound for the clustering

and due to the sampling they might miss important features in the matrix (especially high fre-

quency details). The second line of work continues the tree based approach of [PPD98]. The

most significant algorithm is Lightcuts [WFA+05] published in 2005 that solved the problem

of not adapted clusterings by developing a clustering criteria that was able to adapt to complex

lighting situations. The method guarantees low error at each shaded point. Lightcuts also builds
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FIGURE 2: Iterative refinement of the clustering in tree based methods.

a hierarchical clustering structure for the VPLs called a lighttree. The leafs of the lighttree cor-

respond to a single VPL and any clustering in the structure is represented by a cut in the tree.

For each point to be shaded the algorithm progressively descends in the lighttree starting with

the root in order to extract a clustering. This descend is carried out by replacing a cluster by

its children, therefore refining the clustering. See Figure 2. This process is continued as long

as the clustering does not have a low enough error. Ensuring that the error is small is achieved

by the following technique. While descending in the tree the algorithm maintains an estimation

of radiation caused by the current clustering. Each cluster is tested if the upper bound on the

possible error caused by it is less than e.g., 1% of the estimation. If the criteria is not met the

cluster with highest possible error is refined and the estimation is updated.

Lightcuts has triggered new interest in the many-light methods as the rendering time became

tractable even for millions of VPLs while the error was controlled. Several extensions of the

method have been published, some generalizing the effects that are possible to render e.g., Mul-

tidimensional Lightcuts [WAB+06] and Bidirectional Lightcuts [WKB12], while some of them

aiming to further improve the efficiency of Lightcuts [BD08; WXW11]. Both of our proposed

algorithms fall in to the latter category i.e., aiming to improve the efficiency of tree based algo-

rithms. Since the Lightcuts technique is fundamental for the efficiency of many-lights methods,

any improvement of it has the potential of improving all methods that are built on it. Let us now

describe our contributions along with some motivation.

Global Illumination Using Well-Separated Pair Decomposition. Clustering the VPLs is a

successful idea but invokes a problem: how to efficiently determine a clustering for each shaded

point, since creating a clustering for each point from scratch is prohibitively costly. In the tree

based methods this problem was solved by a hierarchical clustering structure since the structure

is created only once prior to rendering and extracting a clustering from this structure for a point

can be carried out fairly efficiently. But the question is whether this process can be further

improved. Our proposed method makes the next logical step in the direction of improving the

extraction of clusterings: rather than pre-computing a set of individual candidate clusters that

form a hierarchy, from which clusterings are computed during rendering, we pre-compute a

number of clusterings. Then, during the rendering phase, the clustering for a point can simply

taken to be one of these pre-computed clusterings, together with some minor modification. Our

data structure stores the clusterings compactly, it is view-independent and it is computed prior
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to rendering. This results in a very efficient rendering phase allowing for changing the camera

position without the necessity to repeat the preprocessing steps.

FIGURE 3: The well-separated pair decomposition where the sets correspond to nodes in an
octree. Pairs shown in blue with a clustering shown in red for a shaded point whose closest

VPL is the rightmost one.

We give a short informal description of the proposed method and data structures. Let us denote

the set of VPLs by S. Our approach has two main components: first we propose a method to

pre-compute and compactly store several clusterings of the VPLs. Then during rendering, we

show how to quickly extract a clustering for each point to be shaded using this pre-computed

structure.

The naive algorithm, namely to explicitly store all the clusterings, would have prohibitively high

memory requirements. We succeeded to overcome this limitation by encoding them compactly

in a geometric structure. Our data structure is based on the well-separated pair decomposition,

hereafter WSPD, that has been developed for the N-body simulation problems [CK95]. The

WSPD is a set of pairs of subsets {{R1, Q1}, {R2, Q2}, . . . } where Ri, Qi ⊆ P such that

i) for every pair of points p, q ∈ P , there is a unique index i such that p ∈ Ri and q ∈ Qi
ii) for all pairs, the subsets Ri and Qi are well-separated from each other.

Two subsets Ri, Qi are well-separated if their distance from each other is much bigger than

the radius of their enclosing spheres. Informally this means, that from the point of view of Ri
the cluster Qi can be considered as one point. Note that i) results in the fact that a WSPD

implicitly stores for any point p ∈ P a well-separated clustering of P/{p}. To extract such a

clustering one only needs to list the pairs that contain p and list the subsets in these pairs that

do not contain the point. The well-separated pair decomposition theorem [CK95] states that

for any set of points P ⊂ R3 there exists a WSPD of size linear in |P |. These facts enable

the storage of all clusterings without excessive memory requirements. One way to construct

a WSPD is to build an octree for the point set and search for well-separated pairs consisting

of subsets of points that correspond to nodes in the tree. Therefore, instead of storing a list of

pairs, a WSPD is represented by links between nodes of the tree. This way, due to the octree

structure, for any point p ∈ P extracting a clustering becomes very simple: it suffices to list the

pairs of the nodes that are on the path from p to the root. These properties make the WSPD

very useful for our problem. Our algorithm builds a WSPD of the VPLs based on their position.
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See Figure 3 for the octree based representation of a WSPD and a clustering for the rightmost

VPL. It is clear that the pairs of the nodes on the path to the root form a clustering. We show

that the well-separated condition under certain circumstances ensures low shading error i.e., if

Ri was a set of points to be shaded then for any point in Ri the difference between calculating

the radiance from each VPL in Qi or treating them as a single cluster is low. This enables us to

use the clusterings of the WSPD as VPL clusterings. Well-separated clusters approximate the

geometric terms of the rendering equation, but ignore visibility and directional properties. To

adjust for this, we further compute two additional structures in the pre-processing phase. First,

we further group the lights in each cluster into a small number of subgroups by similar light

normals. This additional grouping will be used to evaluate the illumination from the cluster

more precisely. Second, we introduce representative lights that approximate local visibility for

each cluster.

Given the WSPD built on the VPLs the rendering becomes very efficient. For an arbitrary point

p to be shaded, find the closest point in S to p (an approximate nearest-neighbor is sufficient

and will be used), and start with its (pre-computed) clusters as the clustering for p. Furthermore,

refine each cluster by subdividing it into new clusters until they are well-separated from {p}.
We show that refinement can only add a constant number of new clusters for any point p. This

constant is provably independent of the number of lights in S or points to be shaded.

The method achieves good performance compared to Lightcuts. Depending on the complexity

of the scene and implementation of the system it shows around 2-3 times speed-up of the ren-

dering phase with equal quality, but with a rather long preprocessing time. The drawback of the

method is that in the presence of glossy materials its performance degrades. Chapter 2 describes

the technical details of this work and is based on the following paper.

Norbert Bus, Nabil H. Mustafa, and Venceslas Biri. “Global Illumination Using Well-

Separated Pair Decomposition.” In: Computer Graphics Forum 34 (8), 2015

IlluminationCut. The drawbacks of our WSPD based method which relied mainly on geomet-

ric structures inspired us to further study the problem. Our second algorithm approaches the

problem of speeding up clustering methods from a more combinatorial side. It handles highly

glossy material and provides a tight error bound for the error resulting from the clustering. On

the other hand, it is not view independent making it unsuitable for fast rendering with changing

camera positions. The method is motivated by the study of the structure of all the clusterings that

an algorithm produces during rendering an image. To give a clear explanation let us first present

the structure of these clusterings for the state-of-the-art methods Lightcuts and Lightslice. We

will illustrate them on the light transport matrix.

The main observation is that instead of clustering points or VPLs independently the key structure

to study is the clustering of their product-space, namely the clustering of all point-VPL pairs.
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FIGURE 4: Partial light transport matrices, with rectangles denoting product-space clusters.
Red stripes denote parts that could be improved. (a) Lightcuts creates clusters that could be
merged; (b) LightSlice creates clusters that should be merged or refined; (c) Multidimensional
Lightcuts only merges and refines clusters limited to points originating from the same pixel;

(d) IlluminationCut merges and refines clusters for any set of points and VPLs.

Each cluster in this product-space consists of a subset of points (to be shaded) paired with a

subset of VPLs.

In fact, both Lightcuts and LightSlice can be seen as constructing constrained product-space

clusterings. Lightcuts recomputes a clustering for every point therefore in the product space

each cluster created by Lightcuts consists of a single point paired with a set of VPLs. This

constraint is wasteful as two points which are very similar could have been grouped together and

therefore the expensive operation to extract this cluster could have been spared. See Figure 4

(a). LightSlice first groups all points to be shaded into a small number of roughly equal-sized

clusters, called point-clusters, based on their geometric proximity then creates a clustering of the

VPLs for each of these point-clusters. This means that it constructs a product-space clustering

where the same set of points are grouped together in any cluster. For efficiency reasons each

point-cluster is large, which severely limits how well the VPL-clusters paired to them can be

adapted to each individual point in the point-cluster. See Figure 4 (b). The wasteful computation

of Lightcuts has been long noticed and there have been a few attempts to resolve it [BD08;

WXW11]. All these methods aim to create a common clustering for a group of points, similarly

to LightSlice but starting from this common clustering they refine it for each individual point.

These methods have to balance between how many points can share a clustering and how well

adapted this clustering is to each point (or in other words how much additional refinement is

needed).

Our proposed method, IlluminationCut, creates a product-space clustering without any a priori

constraints on either the points or the VPLs that can appear in product-space clusters. These

clusters capture similar point-VPL pairs such that shading every point in a cluster by using a

single representative VPL instead of all VPLs in the cluster causes error that remains under a

threshold. Treating cluster pairs enables us to amortize calculations that were previously carried

out separately for each point in Lightcuts; and to construct non-uniform clusters with different

subsets of points with different subsets of VPLs, which is more adaptive clustering than that

of LightSlice. Moreover we don’t require additional refinement since our clusters are already

adapted to each individual point. See Figure 4 (d).
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IlluminationCut builds on the Multidimensional Lightcuts approach [WAB+06], in that they

both utilize two hierarchies (trees), one on points and one on VPLs to construct product-space

clusters with bounded error by simultaneously descending on the trees. The difference is that

the latter has to maintain a heap and repeatedly builds a tree only for points that originate from

the same pixel (e.g., for use in spatial anti-aliasing). It does not exploit possible similarity

among points originating from different pixels and so does not improve upon Lightcuts if there

is only one point per pixel. See Figure 4 (c). The difficulty in extending the method over

pixel boundaries is to maintain the tight upper bound on the error. We resolve this problem by

introducing a two phase rendering algorithm. Phase I computes a coarse but fast approximation

of the radiance at every shaded point. In Phase II, this approximate radiance is used to guide

a top-down search of both trees simultaneously to construct the list of desired product-space

clusters. The top-down search is almost identical to the one used in Lightcuts, only that now we

start with the pair of roots of the two trees and we refine point and VPL nodes in an alternating

order. This search continues as long as a product space cluster has a bigger maximum possible

error than 1% of the minimum of the coarse approximate illumination for any point in the

cluster. We use almost the same error bounds as in Lightcuts with only a very slight relaxation

of the error bound, practically obtaining a same quality clustering. Finally, for all product-

1 150 4000 21K

FIGURE 5: The logarithm of the number of clustering calculations per point for the well-
known Sponza scene for Lightcuts (left) and IlluminationCut (right). IC amortizes the cost of

clustering calculations very efficiently.

space clusters, illumination contribution from the representative is added to the radiance of each

point in the cluster. To compare the efficiency of Lightcuts and IlluminationCut, see Figure 5,

where we present the logarithm of clustering computations carried out per point. It is clear that

our method is superior to Lightcuts in efficiency. Our method is further extended by adaptive

visibility sampling within a product-space cluster i.e., we do not trace a ray to all the points in

the cluster, only if a small sample of rays shows different visibility values. This reduces the
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number of rays traced for each product-space cluster without introducing high error since the

our tight error bound already ensures that the error that can be caused by the cluster is small.

Our results improve on both the quality and the efficiency of previous methods. We achieve 3−6

times speed-up over both Lightcuts and LightSlice by reducing the number of visibility queries,

dramatically decreasing the computations needed to construct clusters, as well as eliminating the

need for maintaining a heap during rendering in Lightcuts. The drawback of the method is that

it exploits the similarity of shaded points and if the scene is very heterogeneous its performance

degrades. Chapter 3 describes the technical details of this work and is based on the following

paper.

Norbert Bus, Nabil H. Mustafa, and Venceslas Biri. “IlluminationCut.” In: Computer

Graphics Forum (Proceedings of Eurographics 2015) 34 (2), 2015

The family of Lightcuts methods have attracted much attention since they have been published

and we believe that future research will be able to provide several improvements. One of the

most important directions is to optimize the error bounds used by them since it is a widely

observed fact that in dark areas of the image and in the presence of highly glossy materials the

current error bounds create unnecessarily refined clusterings.

Combinatorial Optimization

Combinatorial optimization is one of the fundamental fields of discrete mathematics with a

very wide range of problems coming from both theoretical and applied research. It aims to

find an optimal object from a finite set of objects. The difficulty in these problems is that an

exhaustive search for the solution is not tractable due to the exponentially large set of possible

solutions. Some of the most well-known problems in the field include the traveling salesman

problem, integer programming or vehicle routing problems. Many problems in the field are NP-

complete, therefore finding polynomial time algorithms that solve the problem exactly seem to

be impossible. This has led to a vast amount of research on solving special cases of them or

giving approximately good solutions. Our work aims to solve problems efficiently even for large

datasets while obtaining a solution closest to the optimal.

The minimum hitting set problem, the focus of our work, is one of the most fundamental com-

binatorial optimization problems: given a range space (P,D) consisting of a set P and a set

D of subsets of P called the ranges, the task is to compute the smallest subset Q ⊆ P that

has a non-empty intersection with each of the ranges in D. This problem is strongly NP-hard.

If there are no restrictions on the set system D, then it is known that it is NP-hard to approxi-

mate the minimum hitting set within a logarithmic factor of the optimal [RS97]. The problem

is NP-complete even for the case where each range has exactly two points since this problem is
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equivalent to the vertex cover problem which is known to be NP-complete [Kar72; GJ79]. A

natural occurrence of the hitting set problem occurs when the range space D is derived from ge-

ometry – e.g., given a set P of n points in R2, and a setD of m triangles containing points of P ,

compute the minimum-sized subset of P that hits all the triangles in D. Unfortunately, for most

natural geometric range spaces, computing the minimum-sized hitting set remains NP-hard. For

example, even the (relatively) simple case where D is a set of unit disks in the plane is strongly

NP-hard [HM87]. Therefore fast algorithms for computing provably good approximate hitting

sets for geometric range spaces have been intensively studied for the past three decades (e.g.,

see the two recent PhD theses on this topic [Fra12; Gan11]). Although the problem seems to be

very theoretical at first sight, it turns out that it can model a wide range of real world problems

e.g., designing wireless networks [LN12], filtering data of bathymetric measurements [Fra12],

image processing and VLSI design [HM85], model based diagnosis systems [LJ03] or classi-

fier generation [VØ00]. These practical problems make efficient implementations of hitting set

algorithms highly desired.

The special case studied in this work – hitting sets for disks in the plane – has been the subject

of a long line of research. The case when all the disks have the same radius is easier, and has

been studied in a series of works: Călinsecu et al. [CMW+04] proposed a 108-approximation

algorithm, which was subsequently improved by Ambhul et al. [AEM+06] to 72. Carmi et

al. [CKLT07] further improved that to a 38-approximation algorithm, though with the running

time of O(n6). Claude et al. [CDD+10] were able to achieve a 22-approximation algorithm

running in time O(n6). More recently Fraser et al. [DFLO+12] presented a 18-approximation

algorithm in time O(n2) and Acharyya et al. [ABD13] presented an (9 + ε)-approximation

algorithm in O(n4+18/ε log n) time. See Table 1 for the state-of-the-art and our contributions.

So far, besides ad-hoc approaches, there are two systematic lines along which all progress on

the hitting-set problem for geometric ranges has relied on: rounding via ε-nets, and local-search.

Both these approaches have to be evaluated on the questions of computational efficiency as well

as approximation quality. In spite of all the progress, there remains a large gap between theory

and practice – mainly due to the ugly trade-offs between running times and approximation fac-

tors. We have made progress on both approaches and we describe these methods in the following

along with the necessary definitions.

Rounding via ε-nets. Given a range space (P,D) and a parameter ε > 0, an ε-net is a subset

S ⊆ P such that D ∩ S 6= ∅ for all D ∈ D with |D ∩ P | ≥ εn. The famous “ε-net theorem”

of Haussler and Welzl [HW87] states that for range spaces with VC-dimension d, there exists

an ε-net of size O(d/ε log d/ε) (this bound was later improved to O(d/ε log 1/ε), which was

shown to be optimal in general [PA95; Mat02]). Sometimes, weighted versions of the problem

are considered in which each p ∈ P has some positive weight associated with it so that the total

weight of all elements of P is 1. The weight of each range is the sum of the weights of the
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CONGRUENT DISKS
Quality Time

Călinsecu et al. [CMW+04] 108 O(n2)

Ambhul et al. [AEM+06] 72 O(n2)

Carmi et al. [CKLT07] 38 O(n6)

Claude et al. [CDD+10] 22 O(n6)

Fraser et al. [DFLO+12] 18 O(n2)

Acharyya et al. [ABD13] (9 + ε) O(n4+18/ε log n)

ARBITRARY DISKS
Quality Time

Bronniman-Goodrich et al. [BG95] O(1) O(n3)

Mustafa-Ray et al. [MR10] (1 + ε) nO(1/ε2)

Agarwal et al. [AES12] O(log n) Õ(n)

Agarwal-Pan [AP14] O(1) Õ(n)

OUR RESULTS FOR ARBITRARY DISKS

Bus et al. [BMR15] 13.4 Õ(n)

Bus et al. [BGM+15] (8 + ε) Õ(n7/3)

TABLE 1: Summary of previous work.

elements in it. The aim is to hit all ranges with weight more than ε. The condition of having

finite V C-dimension is satisfied by many geometric set systems: disks, half-spaces, k-sided

polytopes, r-admissible set of regions etc. in Rd. For certain range spaces, one can even show

the existence of ε-nets of size O(1/ε) – an important case being for disks in R2 [PR08]. In

1994, Bronnimann and Goodrich [BG95] proved the following interesting connection between

the hitting-set problem 1, and ε-nets: let (P,D) be a range-space for which we want to compute

a minimum hitting set. If one can compute an ε-net of size c/ε for the ε-net problem for (P,D)

in polynomial time, then one can compute a hitting set of size at most c ·OPT for (P,D), where

OPT is the size of the optimal (smallest) hitting set, in polynomial time. A shorter, simpler proof

was given by Even et al. [ERS05]. Both these proofs construct an assignment of weights to

points in P such that the total weight of each range D ∈ D (i.e., the sum of the weights of the

points in D) is at least (1/OPT)-th fraction of the total weight. Then a (1/OPT)-net with these

weights is a hitting set. Until very recently, the best such rounding algorithms had running times

of Ω(n2), and it had been a long-standing open problem to compute a O(1)-approximation to

the hitting-set problem for disks in the plane in near-linear time. In a recent break-through,

Agarwal-Pan [AP14] presented an algorithm that is able to do the required rounding efficiently

for a broad set of geometric objects. In particular, they are able to get the first near-linear

algorithm for computing O(1)-approximations for hitting sets for disks. The catch is that the

approximation factor depends on the sizes of ε-nets for disks; despite over 7 different proofs

of O(1/ε)-sized ε-nets for disks, the precise bounds are not very encouraging. So far, the best

constants for the ε-nets come from the proofs in [PR08] and [HKS+14]. The latter paper presents
1They actually proved a more general statement, but the following is more relevant for our purposes.
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five proofs for the existence of linear size ε-nets for halfspaces in R3. The best constant for

disks is obtained by using their first proof. A lifting of the problem of disks to R3 gives an ε-net

problem with lower halfspaces in R3, for which [HKS+14] obtains a bound of 4
εf(α) where

α < 1
3 and f(α) is the best bound on the size of an α-net for lower halfspaces in R3. Using the

lower bound of [PW90] for halfspaces in R2, f(α) ≥ d2/αe − 1 ≥ 6, although we believe that

it is at least 10 since even for ε = 1/2, no ε-net construction of size less than 10 is known. Thus,

the best constructions so far give a bound that is at least 24/ε and most likely more than 40/ε.

Furthermore, there is no implementation or software solution available that can even compute

such ε-nets efficiently.

The breakthrough algorithm of Agarwal-Pan [AP14] has two problems: the constant in the

approximation depends on the constant in the size of ε-nets, which are large and it uses so-

phisticated data-structures that have large constants in the running time. Our work makes an

attempt to improve on both shortcomings. It turns out that Delaunay triangulations will be the

key structures in our approach.

FIGURE 6: Delaunay triangulation of the sampled points (in red). Disks that are not hit (in
red) are contained in two neighboring Delaunay disks (in blue).

The algorithm for constructing small sized ε-nets starts by taking a random sample of the points

in P . The key observation is that any disk that is not hit by this random sample is contained in

two neighboring Delaunay disks i.e., disks that correspond to neighboring Delaunay triangles.

This enables the application of a divide and conquer approach i.e., create subproblems for each

pair of neighboring Delaunay disks and solve them recursively. We show that such subproblems

can be created efficiently i.e., in near linear time. Moreover, we give algorithms to solve certain

subproblems without recursion by proposing a novel method to construct small sized ε-nets for

large values of ε, i.e, ε > 1/2. Through a careful analysis we show that by properly adjusting

the probability with which we pick points into the random sample this randomized algorithm

gives an ε-net of expected size 13.4/ε in near linear time. We have implemented our algorithm

showing that in practice it can output ε-nets of size 9/ε. Together with the result of Agarwal-

Pan, this immediately implies: for any δ > 0, one can compute a (13.4 + δ)-approximation to

the minimum hitting set for (P,D) in time Õ(n).
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Technical description can be found in 6 and it is based on the following publication.

Norbert Bus, Shashwat Garg, Nabil H. Mustafa, and Saurabh Ray. “Tighter Estimates

for epsilon-nets for Disks.” In: Computational Geometry: Theory and Applications

53, 2016

To address the second shortcoming of the Agarwal-Pan algorithm we propose a modification of

it that does not use any complicated data structures – just Delaunay triangulations, ε-nets. This

comes with a price: although experimental results indicate a near-linear running time, we have

been unable to theoretically prove that the algorithm runs in expected near-linear time. The idea

for avoiding the use of range-reporting data-structure is to observe that the very fact that a disk

D is not hit by Q, where Q is an ε-net, makes it possible to use Q in a simple way to efficiently

enumerate the points in D, since D lies in the union of two Delaunay disks in the Delaunay

triangulation of Q. The range counting data structure in the Agarwal-Pan algorithm is used to

determine all the disks that contain a low number of points (in other words have a low weight).

This structure is replaced by a second ε-net since disks that are not hit by it are guaranteed to

have a low weight. Unfortunately this does not completely solve the problem since there might

be disks that are hit but have low weight. We propose additional steps to ensure that all disks

that have a low weight are found, but these steps prevent our algorithm to run in near linear time

in worst case.

We have published an implementation of our algorithm and give detailed experimental results on

both synthetic and real-world data sets, which indicates that the algorithm computes, on average,

a 1.3-approximation in near-linear time. This surprisingly low approximation factor compared

to the proven worst case bound is the result of fine tuning the parameters of the algorithm. The

algorithm is capable of handling extremely large datasets. We have tested it on set of points

consisting of the locations of cities on Earth (except for the USA) containing altogether 10

million points with disks of fixed radius around each point, see Figure 7 for a visualization

based on a subset of the problem.

The complete technical description can be found in 7 and it is based on the following publication.

Norbert Bus, Nabil H. Mustafa, and Saurabh Ray. “Geometric Hitting Sets for Disks:

Theory and Practice.” In: 23rd European Symposium on Algorithms (ESA). 2015

Local search. There is a fundamental limitation of the rounding technique: it cannot give better

than constant-factor approximations. The reason is that the technique reduces the problem of

computing a minimum size hitting set to the problem of computing a minimum sized ε-net. And

it is known that for some constant c ≥ 2, there do not exist ε-nets of size smaller than c/ε. This

limitation of the rounding technique – that it cannot give a PTAS – was the main barrier towards

better quality algorithms until the usefulness of local search algorithms was introduced. Starting
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FIGURE 7: A subset of the hitting set for cities on Earth.

from the beautiful use of local search for clustering problems in Arya et al. [AGK+01], there

has been recent progress in breaking the constant-approximation barriers for many geometric

problems; e.g., see [KMN+02; AM06; CHP09]. For the hitting set problem on (P,D), consider

the following algorithm: start with any hitting set S ⊆ P , and repeatedly decrease the size of

S, if possible, by replacing k points of S with < k points of P \ S. Call such an algorithm a

(k, k − 1)-local search algorithm. Mustafa-Ray [MR10] showed that a (k, k − 1)-local search

algorithm for the hitting set problem gives a (1 + c/
√
k)-approximation, for a fixed constant

c, when the ranges are disks, or more generally, pseudo-disks in R2. The running time of their

algorithm to compute a (1 + ε)-approximation is O(nO(1/ε2)).

The k-local search algorithm of Mustafa-Ray [MR10] can compute solutions arbitrarily close

to the optimal, but it is extremely inefficient, even for reasonable approximation factors. For

example, it takes time O(n66)[Fra12] to compute a 3-approximation. Furthermore, note that

any attempts at progress on improving local search must take into account that as the hitting set

problem is strongly NP-hard, it is unlikely that algorithms exist that do not have a dependency

on 1/ε in the exponent. Therefore in this work we undertake a closer study of (k, k − 1)-local

search for k = 3. We show that a (3, 2)-local search algorithm returns a 8-approximation to the

minimum hitting set. We show this by creating a bipartite graph G = (R,B,E) on the points

of the optimal solution R and the points of the local search result B with edges E between

nodes ofR and B located in the same disk. The condition that no more steps of our local-search

can be carried out implies that no three nodes of B have a neighborhood of less than three

nodes which is crucial for showing that |B| ≤ 8|R|. Furthermore, by giving a construction of

a special graph, we show that this is tight i.e., there exist a set of points P and a set of disks
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D where (3, 2) local search does not return hitting-sets of size less than 8 times the size of

the optimal hitting set. A straightforward algorithm for (3, 2)-local search proceeds as follows:

each (3, 2) improvement step tries all O(n5) 5-tuples, and for each tuple it checks in time O(n)

if it is indeed an improvement. The total number of steps can be O(n), giving a O(n7) naive

running time. We show how to perform this search more efficiently, in expected time O(n2.34).

One of the key observations is that a pair of points considered by the local search algorithm

might replace more than one single 3-tuple. We propose a randomized algorithm that efficiently

find pairs that replace many 3-tuples of points hence at the same time decreases the number

of required local search steps and improves the complexity of each individual step. Technical

results are presented in Chapter 8 based on the following paper.

Norbert Bus, Shashwat Garg, Nabil H. Mustafa, and Saurabh Ray. “Improved Local

Search for Geometric Hitting Set.” In: 32st International Symposium on Theoretical

Aspects of Computer Science (STACS). 2015

Both methods proposed for solving the approximate hitting set problem have improved upon

existing algorithms, but it always remains an interesting question to see how far these algorithms

can be pushed to achieve better running times or better approximation factors.

The last part of this work focuses on a different problem, namely efficient computation of convex

hulls in the plane. The convex hull of a set of n points in a Euclidean space is the smallest

convex set containing all the points. It has applications in, e.g., pattern recognition, image

processing and micro-magnetic analysis [PS85; PGD+96]. We propose an on-line algorithm to

construct the dynamic convex hull of a simple polygonal chain in the Euclidean plane supporting

deletion of points from the back of the chain and insertion of points in the front of the chain.

Both operations require amortized constant time. The key idea of our algorithm is to build

two convex hulls, one handling insertions and the other handling deletions. The desired convex

hull is simply the merge of these hulls. The two hulls are built as follows. Given a polygonal

chain we create one empty convex hull that can be iteratively expanded when we are inserting

points and we build another one for all the points currently in the chain. This hull will shrink as

points are deleted and when it becomes empty we simply reset the data structures. See Figure 8.

FIGURE 8: From left to right: initial setup, inserting a point, deleting a point. The red convex
hull handles the deletion of points, the green convex hull handles the insertion of points and

the blue convex hull is the merge of them.

The image on the left depicts an intermediate state after addition and deletion of points. The

image on the middle shows adding a point. The convex hull that handles insertions (in green) is
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extended and the merge of the convex hulls (in blue) is updated. The image on the right depicts

the deletion of a point. Here the previously built convex hull (in red) decreases and the merged

hull is updated. Technical details can be found in Chapter 9. The presentation is the extended

version of the following work.

Norbert Bus and Lilian Buzer. “Dynamic Convex Hull for Simple Polygonal Chains in

Constant Amortized Time per Update.” In: Proceedings of the 31th European Work-

shop on Computational Geometry (EUROCG). 2015
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Computer Graphics: Rendering
Photo-Realistic Images
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Chapter 1

Introduction to Many-Lights Methods

Rendering photo-realistic images efficiently is a challenging task in computer graphics. As the

complexity of scenes, materials and lighting increases, so does the need for fast and accurate

rendering methods. Unbiased algorithms such as Metropolis light transport [VG97] or bidi-

rectional path tracing [VG95] result in the best quality images and handle the widest range of

illumination types but take long time to converge due to their stochastic nature. Several solutions

have been proposed to speed up rendering and to alleviate noise quickly but most of them do

not retain the unbiased property of pure path tracing algorithms. Such solutions include Photon

Mapping [Jen01], point-based illumination [Chr08] and many-lights methods such as Instant

Radiosity [Kel97].

This chapter aims to introduce the notations used in our many-lights algorithms and to present

previous results on the problem. Many-lights methods have gained much attention recently

since they produce high quality images in a fraction of the time taken by Monte Carlo methods

without noise. They are based on the observation that one can generate virtual light sources prior

to rendering that are responsible for approximating global illumination. The image is rendered

by simply summing up the direct contribution of all virtual light sources. We omit the details

of the procedure to generate virtual light sources (referred to as virtual point lights or VPLs

hereafter). Details and a formal derivation of the method can be found in [Kel97]. Using VPLs

we obtain a discretization of the rendering equation that makes handling the problem easier

since it has no recursive part.

Denote by S the set of VPLs and by P the set of points to be shaded (i.e., points in the scene hit

by the rays traced from the camera). We use similar notation as in Lightcuts [WFA+05]. The

radiance for a point p ∈ P in direction ω caused by the direct contribution of the lights in S
is denoted by L(p, ω). It is a function that sums up over all lights the product of the material,

geometry, visibility and intensity terms, where each product represents the radiance caused by a

21
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single light:

L(p, ω) =
∑
s∈S

Ms(p, ω) ·Gs(p) · Vs(p) · Is (1.1)

p

s

θ

ω

Np

ω′
β

Nsφ

Is is the intensity of the light s and Vs(p) denotes the visibility between s and p. Ms(p, ω)

is the BRDF which depends on the material at p. We use Lambertian and Blinn micro-facet

BRDFs (in Chapter 2 the latter is replaced by Phong BRDFs). They have the form 1
πkdiff cos θ

and 1
2πkspec(n + 2) cos(β)n cos θ respectively ( 1

2πkspec cos(β)n cos θ in the case of the Phong

BRDF), where each component of kdiff and kspec has values between 0 and 1, and n is the

specular coefficient. The angles β, φ and θ are denoted in the figure below where ω′ is the view

direction ω reflected with the surface normal Np, and Ns is the normal of the light s. With

these notations β is the angle between ω′ and s − p, φ is the angle between Ns and p − s

while θ denotes the angle between Np and s − p. The geometric term Gs(p) captures the light

attenuation Gs(p) = cos(φ)/d(p, s)2, where d(p, s) is the Euclidean distance between p and s.

For a cluster C ⊆ S, let rep(C) denote a representative light s ∈ C. Then the radiance at p

from lights in C with representative rep(C) can be approximated as:

LC(p, ω) = Mrep(C)(p, ω) ·Grep(C)(p) · Vrep(C)(p) ·
∑
s∈C

Is (1.2)

Let C = {C1, . . . , Ck} denote a clustering of S into k clusters. The radiance at P from all the

lights in S can be approximated as:

LC(p, ω) =
∑
C∈C

LC(p, ω) (1.3)

For further details on the many-lights methods we refer the reader to the SIGGRAPH course

notes on the many-lights problem [KHA+12] and the EG state-of-the-art report [DKH+13]. In

what follows we give a brief introduction to various improvements and extensions of the many-

lights methods that have been left out from the introduction.
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Real-time techniques. The many-lights framework can be used for rendering images in real

time with incremental updating of VPLs, though this is limited to few hundreds of VPLs [LSK+07].

Other methods achieving interactive frame rates include calculating level of details structures

efficiently [HRE+11] and imperfect shadow maps [RGK+08]. Clustering VPLs into area lights

for real-time GPU based rendering has been proposed in [PKD12]. [SIM+06] uses stochastic

sampling of VPLs to achieve interactive frame rates. For a summary see [Rad08]. Our methods

have different scope from all these approaches since they are designed to handle significantly

larger number of VPLs.

Extensions and limitations. To render participating media, virtual ray and virtual beam lights

have been introduced in [NND+12b; NND+12a], respectively. Limitations of VPL-based al-

gorithms, like clamping [KK06] of VPL contributions due to the singularities or the limi-

tation of only representing diffuse global illumination, can be solved using virtual spherical

lights [HKW+09] or Rich-VPLs [SHD15] instead of virtual point lights. To handle more effi-

ciently highly glossy material [KFB10], Davidovič et al. [DKH+10] use row-column sampling

with an adaptive ray-casting strategy. Other techniques such as bidirectional lightcuts [WKB12]

or specular gathering [DKL10] combine path tracing techniques and VPL global illumination.

These methods greatly increase the rendering time compared to pure many-lights algorithms.

Good fidelity off-line rendering requires a large number of VPLs (typically hundreds of thou-

sands of VPLs). There are two main approaches that avoid computing the radiance for all

point-VPL pairs.

Sampling. To decrease the complexity of the problem, one can sample the VPLs according

to their contribution to the image [GS10]. The method proposed in [GKP+12] calculates the

exact illumination at a sparse set of locations and builds the probability distribution of the in-

coming light at each sample. These distributions are then used to importance sample the VPLs.

[SIM+06] uses stochastic sampling of the VPLs to achieve real-time global illumination. Com-

pared to light clustering implementations, sampling introduces unstructured noise. [SIP07] sam-

ples the VPLs using a modified Metropolis-Hastings algorithm [VG97].

Visibility estimation. To further speed up rendering [PGS+13] caches visibility queries. The

authors in [BEL+13] propose a novel framework for stochastic evaluation of visibility. Visibil-

ityCluster [WC13] first clusters the pixels and the VPLs separately and creates pairs of these

clusters. Then it calculates approximate visibility for these pairs and uses this information to

improve the importance sampling of VPLs.





Chapter 2

Global Illumination Using
Well-Separated Pair Decomposition

This chapter describes a data structure that compactly stores all possible clusterings of the VPLs

and enables efficient extraction of a clustering for any shaded point, resulting in a very fast

rendering algorithm in the many-lights framework. This chapter is based on the following paper.

Norbert Bus, Nabil H. Mustafa, and Venceslas Biri. “Global Illumination Using Well-Separated

Pair Decomposition.” In: Computer Graphics Forum 34 (8), 2015

2.1 General Idea

One key idea for speeding up computations is to cluster the VPLs. In other words, for each

point p ∈ P , partition S into a small number of clusters (each partition of S into clusters is

called a clustering of S), and then consider each cluster as a single VPL when calculating its

contribution to the shading at p.

The goal is to compute, for each p ∈ P , a clustering that minimizes the shading error at p. This

forces all algorithms to be adaptive, i.e., as one iterates over all the points to be shaded, the

clustering has to be recomputed again with respect to the spatial and radiometric properties of

each point (though various improvements are possible, at a loss of quality, by exploiting spatial

coherence to re-use previous computation).

As the set S of VPLs is view-independent, an idea that improves efficiency is to compute the set

of all possible candidate clusters of S before the rendering computation (and store in some hi-

erarchical structure). Then during rendering, a clustering for each point is selected by choosing

an appropriate subset of clusters from this pre-computed set. This is an expensive task which
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forces examining a large number of clusters (again, this can be somewhat ameliorated by ex-

ploiting the spatial coherence between neighboring pixels). This has been the basis of previous

work; two well-known examples are Lightcuts [WFA+05] and LightSlice [OP11].

Our Contributions. We consider our main contributions to be two-fold. First, we make the

next logical step in the many-lights clustering paradigm: rather than pre-computing a set of

individual candidate clusters from which clusterings are computed during rendering, we pre-

compute a number of clusterings of S. Then, during the rendering phase, the clustering for a

point p can simply taken to be one of these pre-computed clusterings, together with some minor

modification. Our data structure stores the clusterings compactly, it is view-independent and

it is computed prior to rendering. This results in a very efficient rendering phase. For a very

natural criterion of clustering, we show that

• the total number of these pre-computed clusterings will be independent of the number of

points in P to be shaded and will only depend on the size of S.

• the modification required for each point will be provably small; in fact it will be indepen-

dent of the size of S or P .

Second, we develop the above framework into an accurate and efficient new many-lights clus-

tering method. It computes a clustering relying on geometric and radiometric data for fast and

accurate computation. We show that the complexity of our scheme is largely invariant on geo-

metric scenes, and it is easily scalable with the number of VPLs.

We prove theoretical guarantees as well as experimentally validate the computational efficiency

of our scheme, contrasting it with two of the most well-known earlier systems, Lightcuts [WFA+05]

and LightSlice [OP11]. In particular, the advantages of our work include:

• Our pre-computation phase is view-independent, and so are the pre-computed clusterings.

Unlike LightSlice and Lightcuts, this allows our algorithm to re-utilize computation with

changing camera position.

• As all the clustering computations are moved to the pre-computation phase, the rendering

phase takes constant time for each p ∈ P , i.e., independent of the number of VPLs. On the

other hand, Lightcuts has to maintain a heap and do clustering computations. Our method

is able to produce similar output as Lightcuts with around 3 times average speedup.

• It outperforms LightSlice in speed and quality, achieving, e.g., 2 times speedup with

consistently better quality. The errors of our algorithm are smooth, and visually difficult

to detect, unlike for LightSlice which suffers from visible blocking effects.
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Pre-processing

Render each pixel p ∈ P

Algorithm workflow

BVH for
geometry

Pre-compute
clusterings

VPL
generation

Compute
ws-clusterings

Additional
structures

Retrieve ws-
clustering C

Calculate
LC(p, ω)

Extract initial
clustering C

Refine
clusters in C

Embree
raytracing

kernel

FIGURE 2.1: Overview of the system building blocks. The Embree framework (in purple) has
been augmented by our algorithms (in green). Details of each block follow in Sections 2.2, 2.2

and 2.3.

• It also uses a significantly lower amount of memory than LightSlice which requires around

30 GB for scenes with around 0.5 million VPLs while our algorithm runs with 5 GB. This

allows the usage of a considerably higher number of VPLs for rendering.

Broadly our work shows that the set of VPLs itself contain enough information such that with

intensive preprocessing, a geometrically good clustering can be constructed for each point p ∈ P
with provably little effort.

Organization. We present the novel ideas involved in our approach in Section 2.2 along with

theoretical details on our clustering representation and computation. Section 2.3 describes ad-

ditional structures to further improve the clustering. Extensive experimental results and com-

parison with previous work are presented in Section 2.4. Finally, limitations are discussed in

Section 2.5.

2.2 Algorithm

For a point p ∈ P to be shaded, consider a clustering of the set of VPLs S into k clusters

C1, . . . , Ck such that the radius of the smallest-ball containing each cluster is much smaller

than the distance of that ball to p (this will be formulated precisely). Call such a cluster well-

separated, or a ws-cluster for brevity, from p, and the clustering {C1, . . . , Ck} a well-separated

clustering, or a ws-clustering, for p. Intuitively, from the point of view of p, all the points in

each cluster behave roughly like a single point. Figure 2.2 illustrates this for an arbitrary point

p, shaded bright green, a few of the ws-clusters of S around it. Note that as the ws-cluster’s

distance to p decreases, the well-separated criterion automatically ensures that the radius of the

cluster decreases as well. Our goal is to compute a ws-clustering of S for each point p to be

shaded during the rendering phase.
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Our approach has two main components: first we propose a method to pre-compute and com-

pactly store several ws-clusterings of S. Then during rendering, we show how to quickly ex-

tract a ws-clustering for each point to be shaded using this pre-computed structure. This pre-

computed clustering will then be slightly modified to fit the spatial properties of the shaded

point. We sketch the main components of the system in Figure 2.1, and outline them below.

Pre-Compute Clusterings The computation of ws-clustering for each point p is dependent

on spatial properties of p, and requires individual computation during rendering for each point,

an expensive task. Instead, we will do the following in a view-independent pre-rendering phase:

compute a ws-clustering of S with respect to each light s ∈ S. In other words, for each light s in

S, compute the partition of the remaining lights into clusters satisfying the well-separatedness

criterion. The key to this construction will be the use of a partitioning data-structure, the well-

separated pair decomposition [CK95] (henceforth denoted as WSPD). These ws-clusterings

will be stored implicitly in a compact structure from which the ws-clustering for any light s ∈ S
can be extracted quickly.

Well-separated clusters approximate the geometric terms of the rendering equation, but ignore

visibility and material properties. To adjust for this, we will further compute two additional

structures in this pre-processing phase. First, we further group the lights in each ws-cluster

C into a small number of subgroups by similar light normals. This additional grouping will

be used to evaluate the illumination from the cluster more precisely. Second, we introduce

representative lights that approximate local visibility for each ws-cluster C as follows: sample

a number of directions and compute the illumination of the lights in C reaching the boundary

of the ball b(C) in the sampled directions, where b(C) is the smallest-ball containing C. This

will be used to estimate the visibility of the lights in C to b(C); the visibility test from b(C) to

p will be performed during the view-dependent rendering phase.

FIGURE 2.2: The Museum scene with the well-separated clusters (represented by their enclos-
ing spheres) around a shaded point, shown as a bright green square in the middle of the image.

For visualization purposes we only included a quarter of the clusters.
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Retrieve ws-clustering During the rendering computation, for an arbitrary point p, find the

closest point in S to p (an approximate nearest-neighbor is sufficient and will be used), and

start with its (pre-computed) clusters as the clustering for p. Furthermore, refine each cluster

by subdividing it into new clusters until they are well-separated from p. The number of clusters

required to achieve this ws-clustering criteria could potentially be quite high, for two reasons: i)

the clustering for the closest point in S to p could have many clusters, and ii) refinement could

add many more new clusters to this initial clustering. It will be shown that refinement can only

add a constant number of new clusters for any point p. This constant is provably independent of

the number of lights in S or points inP . Also, under some basic assumptions on the geometry of

scenes, we will show that the average size of a ws-clustering for points of p will be logarithmic

in the size of S . Experimental evidence will confirm this behavior.

Calculate L(p, ω). Let Cp = {C1, . . . , Ck} be the final constructed ws-clustering for p ∈ P
during rendering. Furthermore let {C1

i , . . . , C
ki
i } be the ki subgroups of each Ci by similar

light normals. From a single subgroup Cji of Ci ∈ Cp, we compute:

L
Cj

i
(p, ω) = M

rep(Cj
i )

(p, ω) ·G
rep(Cj

i )
(p) ·

∑
s∈Cj

i

Is (2.1)

Then we approximate the illumination at p from the cluster Ci ∈ Cp as:

LCi(p, ω) =

 ki∑
j=1

L
Cj

i
(p, ω)

 · Vp(∂(b(Ci))) ·R(Ci, p) (2.2)

where Vp(∂(b(Ci))) denotes the visibility from p to the boundary of the sphere b(Ci) enclosing

cluster Ci; this is computed by a shadow ray with the Embree raytracing kernel. R(Ci, p) is

the proportion of the summed intensity of the lights in Ci reaching the boundary of the ball

b(Ci) in the direction from the center of b(Ci) to p; see Section 2.3 for its precise definition and

computation.

Constructing ws-clusterings

For a cluster C ⊆ S, define b(C) to be the smallest-enclosing ball of the points in C. Let r(C)

be the radius of the ball b(C). For any point p, d(p, C) denotes the Euclidean distance of p to

b(C).

A well-separated cluster. We introduce a necessary condition that each cluster must satisfy

when constructing a clustering of S w.r.t. a shaded point p – namely that it is well-separated

from p, for a given parameter 0 ≤ ε ≤ 1 (ε will be called the separation parameter).
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Definition 2.1. A cluster of lights C is well-separated from a point p if r(C) < ε · d(p, C),

where ε is the separation parameter.

C

p

d(p, C)
r(C)

FIGURE 2.3: For ε = 0.5, C is ws from p. In other words, we have d(p, C) > 2 · r(C).

The lights in a ws-cluster w.r.t. p are ‘far enough’ from p, and concentrated in a small ball (see

Figure 2.3). This condition implies that from the point of view of p, all the lights in a ws-cluster

are in a similar direction and the distances of p to the lights in C are approximately the same.

Since the luminosity reaching p depends on the angle and the distance of lights in S from p

(differences regarding visibility and light normals will be accounted for later in Section 2.3) it

can be argued that treating all the lights in a ws-cluster as one point does not introduce significant

error. This intuition is captured in the following theorem:

Theorem 2.2. For a point p and a ws-cluster C ⊆ S , assume that all lights in C face in the

same direction and they have the same visibility from p. Then the error from representing C

with any one light in C (which has the cumulative intensity summed over all the lights in C)

is bounded by a function depending only on ε. In case the point to be shaded has Lambertian

BRDF, it is ∣∣L(p, ω)− LC(p, ω)
∣∣ = O(ε)

∑
s∈C

Is
d(p, s)2

(2.3)

where L(p, ω) denotes the exact illumination from lights in C.

Proof. First we show ε-dependent bounds of the changes of angles and distances between p and

the lights in a ws-cluster C. See Figure 2.4 for the interaction of p with two lights s, r in C

where r denotes the light chosen as the representative of the cluster.

C

p
s

r
∆θ

d(p, C)
r(C)

FIGURE 2.4: Changes in the angles and distances are bounded by a function of ε.

Estimating the change in the distances follows immediately from the ws property:

d(p, s) ≤ d(p, r) + 2r(C) ≤ d(p, r) + 2εd(p, s) (2.4)
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For bounding the change of angles ∆θ, it is clear that the angle between the two tangents of the

circle from p is the upper bound. The center of the circle, p and the point on tangency form a

right angle triangle:

sin
∆θ

2
=

r(C)

d(p, C) + r(C)
≤ εd(p, C)

d(p, C)
≤ ε (2.5)

Hence using the approximation for the sine function with Taylor series we have ∆θ = O(ε).

In the following we approximate the error for one cluster using the previous results. We assume

that the visibility is always 1 (the case of 0 is trivial). Therefore the error is:

∣∣L(p, ω)− LC(p, ω)
∣∣ = (2.6)

= |
∑
s∈C

Vs(p)IsMs(p, ω)Gs(p)

− Vr(p)Mr(p, ω)Gr(p)
∑
s∈C

Is| (2.7)

=
∑
s∈C

Is
∣∣Ms(p, ω)Gs(p)−Mr(p, ω)Gr(p)

∣∣ (2.8)

The above formula has the important property that the Ms and Gs functions are dependent on

the cosines of angles and distances which are closely bounded because of the ws property. This

result intuitively means that the error cannot be too big for a BRDF that relies on distances and

angles. In the case of the diffuse BRDF, Ms(p, ω) = kd(p) cos θs where kd(p) is the diffuse

reflection coefficient and θs is the angle between the surface normal at p and s − p. Denote by

φs the angle between the light normal and p − s and for brevity denote d(p, s) by rs, then the

formula becomes:

∑
s∈C

Is

∣∣∣∣kd(p) cos θs cosφs
r2
s

− kd(p) cos θr cosφr
r2
r

∣∣∣∣ = (2.9)

kd(p)
∑
s∈C

Is

∣∣∣∣cos θs cosφs
r2
s

− cos(θs + ∆θs) cos(φs + ∆φs)

(rs + ∆rs)2

∣∣∣∣ (2.10)

We omit a complete analysis and just minimize the subtrahend assuming that ∆θ,∆φ,∆r ≥ 0

(the other cases are similar). Using the ws property and that cos(θ + ∆θ) ≥ cos θ −∆θ,

≤ kd(p)
∑
s∈C

Is

(
cos θs cosφs

r2
s

− (cos θs −∆θs)(cosφs −∆φs)

(1 + 2ε)2r2
s

)
(2.11)

Using that cosx ≤ 1 and the bound on ∆θ

≤ kd(p)
∑
s∈C

Is

(
(4ε+ 4ε2 + ∆θs + ∆φs −∆θs∆φs)

(1 + 2ε)2r2
s

)
(2.12)
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= O(ε)kd(p)
∑
s∈C

Is
r2
s

(2.13)

In other words, the error is proportional to the complete intensity received by a pixel. Note that

this does not account for visibility difference of course, which we address with other methods.

Remark: In the case of Phong BRDF theMs(p, ω) function becomes ks(p)cosnβs cos θs where

βs is the angle between ω and the direction of s−p reflected on the surface normal (the subscript

of k now refers to the word specular). In this case the above calculations are as follows:

∑
s∈C

Is

∣∣∣∣ks(p) cosn βs cos θs cosφs
r2
s

− ks(p) cosn βr cos θr cosφr
r2
r

∣∣∣∣ (2.14)

= ks(p)
∑
s∈C

Is

∣∣∣∣cosn βs cos θs cosφs
r2
s

− cosn(βs + ∆βs) cos(θs + ∆θs) cos(φs + ∆φs)

(rs + ∆rs)2

∣∣∣∣
(2.15)

≤ ks(p)
∑
s∈C

Is

(
cosn βs cos θs cosφs

r2
s

− (cosβs −∆βs)
n(cos θs −∆θs)(cosφs −∆φs)

(1 + 2ε)2r2
s

) (2.16)

One could upper bound this error but the subtrahend converges to 0 as n→∞ hence in this case

one could only give a weak bound which depends on n as well. If we were to set ε according to

such a bound one would have to build a too fine WSPD which would result in a prohibitively

big runtime. We remark that this could be possibly overcome by refining the WSPD with a

smaller epsilon during the rendering phase but only for those clusters that have a high value for

Mr(p, ω). However we have not experimented with this approach.

To compute ws-clusterings efficiently, we will need to use a basic structure in the theory of

geometric computing, the well-separated pair decomposition.

Well-separated pair decompositions. We first need to extend the notion of well-separatedness

between a point and a cluster to that of between two clusters. Two point sets R and Q are well-

separated from each other if, for a given separation parameter ε > 0, the radius of both the balls

b(R) and b(Q) is smaller than ε · d(R,Q), i.e., max(r(R), r(Q)) < ε · d(R,Q) where d(R,Q)

is the distance between b(R) and b(Q).

Definition 2.3. A well-separated pair decomposition of S for a given separator parameter ε is a

list of pairs of clusters
{
{R1, Q1} , . . . , {Rs, Qs}

}
, where each Ri, Qi ⊆ S, and
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i) for every pair of points p, q ∈ S , there is a unique index i such that p ∈ Ri and q ∈ Qi,
and

ii) for all i = 1 . . . s, the clusters Ri and Qi are well-separated from each other, with separa-

tion parameter ε.

2.5× zoom

FIGURE 2.5: Each red edge represents a pair {Ri, Qi}, where the sets Ri, Qi are enclosed in
green circles.

Here s is called the size of the WSPD. See Figure 2.5 for some example pairs {Ri, Qi} for a

point set in two dimensions. A remarkable fact about WSPDs is that there always exist WSPDs

of size linear in |S|. In particular, for any ε > 0, and any set of points S ⊂ Rd, there exists a

WSPD of size O(|S|ε−d) that can be computed in time O(|S| log |S|+ |S|ε−d) [CK95] .
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FIGURE 2.6: A geometric condition.

Recall that the set of VPLs S was placed on the surface of objects by tracing random light

particles from the light sources. The geometry of graphics scenes is usually such that it satisfies

a technical geometric condition. Namely, that if the three-dimensional space was partitioned into

equal-sized cubes of size δ, the boundary of scene objects would intersect on average O(ε−2)

cubes in a ball of radius δ/ε (note that there are Θ( (δ/ε)3

δ3
) = Θ(ε−3) cubes in a ball of radius

δ/ε). Figure 2.6 shows that, for a variety of scenes, the average number of cells containing

VPLs within a ball of radius δ/ε in our octree behaves more like O(ε−2) than O(ε−3). This
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FIGURE 2.7: WSPD size ratios for some graphical scenes.

implies better than cubic dependency on 1/ε of WSPD sizes in three dimensions, since the

proof [CK95] uses a trivial cubic upper bound for non-empty cubes of size δ within a ball of

radius δ/ε. Experimental results confirm this: Figure 2.7 plots, for several scenes, the ratio of

the WSPD size for varying separation parameter ε to WSPD size for separation parameter 1.

Observe that the behavior of the WSPD is relatively unchanged from one scene to the next.

Constructing well-separated pair decomposition of S. We use a compressed octree of S as

an underlying data structure to compute the initial ws-clusters for S , to find approximate nearest

neighbors, and for the local refinement for each point p during the rendering computation. The

compressed octree is an octree where the non-branching paths are contracted into one edge. The

compressed octree can be directly computed in linear time [Sam95]. Each node corresponds to

an axis-aligned bounding box. We associate with each node the set of VPLs of S contained in

its bounding box. Note that each leaf of the octree contains exactly one unique point of S. For

a node w, denote by Rw the corresponding set of VPLs. Note that the height of the octree is

linear in the worst-case, though in practice it is logarithmic. In Table 2.1 we show the depth of

the tree for 300K VPLs, which is logarithmic for a variety of scenes.

Tree depth
Scene Octree Compressed

Conference 19 14
Sibenik 20 14
Museum 18 15

San Miguel 22 14

TABLE 2.1: Octree depths with 320K VPLs, both with and without compression.

After constructing the compressed octree, Algorithm 1 computes the WSPD of S by utilizing

a top down search on the tree for ws-pairs. Two nodes w, v of the octree will form a ws-pair

if the corresponding sets Rw, Rv are well-separated. Note that instead of simply storing all the

pairs of the WSPD as a list, we directly store the WSPD structure in the octree by storing, for
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Algorithm 1: Create WSPD for the set of points S
1 Function CreateWSPD(S)
2 root← create compressed octree on S
3 S: stack of pairs, S.pushback({root, root})
4 while notEmpty(S) do
5 {w, v} = S.pop()
6 if isWellSeparated(Rw, Rv) then
7 Insert v into pairs(w)
8 Insert w into pairs(v)

9 else
10 if r(Rw) < r(Rv) then
11 Swap(w, v)

12 foreach i ∈ children(w) do
13 S.pushback({i, v})

each node w of the octree, a list of pointers to all the other nodes with which w forms ws-pairs

in the WSPD. We denote this list by pairs(w). In Figure 2.8 we show a simple example for

2 dimensional data with the red links denoting the pairs of sets. The construction ensures a

hierarchical structure on the clusters which enables us to easily refine a cluster if needed by

simply descending in the octree.

a
b c d

e
f

a, b, c, d, e, f

e, f
d

a, b, c

e f a b c

FIGURE 2.8: The compressed octree and the WSPD for a set of points.

Pre-computing ws-clusterings of S. From the WSPD of S one can compute a set of clusterings

{Cs, s ∈ S}, where Cs will be a ws-clustering of S for the point s ∈ S. Namely, for each

s ∈ S , Cs is a partition of the lights in S \ {s} into a number of clusters, each of which is

well-separated from s. Note that if the two sets {R,Q} are well-separated, then for every point

p ∈ R, Q is a ws-cluster with respect to p. The definition of WSPD ensures that for every pair

of points p1 and p2, there is a unique {R,Q} such that p1 ∈ R and p2 ∈ Q. Therefore Cs =

{Q | {R,Q} is ws, s ∈ R} is a ws-clustering of S for s. If the WSPD has been computed, then

a ws-clustering for each point s ∈ S can be extracted from it efficiently, as follows. Consider

the leaf node of the compressed octree corresponding to s. Any node w of the octree on the

path from this leaf to the root has s ∈ Rw, and so the ws-clustering of s is simply the union of
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Algorithm 2: Constructing ws-clusters Cp for p ∈ P .

1 Function ConstructWSPDClustering(p)
2 Cp ← ∅
3 s← closest point in S to p
4 Cs ← ws-clustering of s
5 foreach Q ∈ Cs do
6 if d(s,Q) ≥ d(p,s)

ε then
7 add Q to Cp
8 else
9 refine Q into subclusters that are ws from p

10 add the resulting clusters to Cp
11 return Cp

pairs(w) for all such nodes w, and can be computed by traversing the octree from this leaf to

the root.

Computing ws-clusterings of P during rendering. We now show how to use the clusterings

Cs, pre-computed for each s ∈ S before the rendering phase, to quickly compute a ws-clustering

of S with respect to any point p ∈ P .

Consider the case for an arbitrary point p ∈ P . Compute the closest light, say s ∈ S , to p.

One could use a variety of known optimal algorithms, but for us an approximation will suffice.

We find the smallest node of the compressed octree containing p and return an arbitrary light

contained in it. A calculation shows that for randomly shifted octrees, the expected distance

from the true nearest neighbor is bounded. Point location in a compressed octree takesO(log n)

time with some additional data structures, but for us the naive implementation suffices as the

tree has logarithmic depth (see Table 2.1).

Say s is at distance d from p. Take the ws-clustering Cs of s. These were pre-computed, and can

be efficiently retrieved. The key idea now is to consider two types of clusters in Cs separately:

far clusters in Cs are at distance further than d/ε from s and close clusters are those closer than

d/ε from s. We show that each far cluster in Cs is an approximately ws-cluster from p. For the

remaining close clusters in Cs, we recursively subdivide them until they are ws-clusters from

p. The subdivision uses the same octree that was used for the construction of the WSPD. See

Algorithm 2. Note that the above algorithm is adaptive to the local geometry of the scene: for a

point p closely surrounded by VPLs, it will refine at a smaller radius.

We now prove that the clusters far from s are approximately ws-clusters from p.

Lemma 2.4. Let p be an arbitrary point and s be its nearest-neighbor with d(p, s) = d. Any

ws-cluster Co ∈ Cs disjoint with the ball of radius d
ε around s is approximately well-separated

from p, namely it is well-separated with separation parameter ε′ = ε
1−ε .
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p
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Ci

d
ε

d
do

FIGURE 2.9: A close ws-cluster Ci and a far ws-cluster Co from s.

Proof. See Figure 2.9. As Co is ws from s, it follows that εd0 ≥ r(Co), where r(Co) is the

radius of the cluster Co. Also d ≤ εdo since the cluster is disjoint. Triangle inequality implies

d(s, Co) = do ≤ d + d(p, Co), and so d(p, Co) ≥ do − d ≥ do(1 − ε) ≥ r(Co)(1−ε)
ε . Thus for

the slightly larger value of the separation parameter ε′ = ε
1−ε , Co is ws from p.

We next prove that the additional number of clusters added in the refinement of a cluster close

to s is low.

Theorem 2.5. Let p be an arbitrary point and s be its nearest neighbor with d(p, s) = d. After

refining the clusters in the set C∗ ⊆ Cs which intersect the ball with radius d
ε around s, there are

at most O( 1
ε6

) new ws-clusters C′ created. The resulting set Cs\C∗ ∪ C′ is a partition of S into

ws-clusters around p, with separation parameter ε/(1− ε).

Proof. The second statement of the proof comes from Lemma 2.4. Take a cluster Ci ∈ Cs lying

inside the ball of radius d/ε around s. If it is not ws-separated from p, partition the bounding-

box of Ci into 8 equal-volume bounding boxes (the children of the node in the octree), and

recursively check the ws-separated property of these new refined clusters with p. Eventually

when a newly refined cluster is finally a ws-cluster from p, add it to C′. To count the total

number of new ws-clusters added to C′, consider a cluster C ∈ C′. It exists because its parent,

say cluster D, was not a ws-cluster with p. i.e., r(D) > εdp, where dp is the distance of the ball

of D to p. Because s is the nearest neighbor of p we know that no other point is in the small

ball of radius d around p; in particular it cannot completely contain the ball of D and hence

r(D)/ε ≥ dp ≥ d− 2r(D), which implies that r(D) ≥ d
2+ε−1 . So each cluster added to C′ has

a parent with radius at least the above value. Grouping the parents by size (higher level parents

are the same size but multiplied by some power of two) we can give an upper bound on their

number by a simple packing argument since parents with the same size are disjoint (since octree

nodes can either contain each other or be disjoint):

∞∑
i=0

(
d/ε

2i( d
2+ε−1 )

)3

= O(
1

ε6
) (2.17)

Since we have bounded the number of parents and each of them can have at most 8 children,

this finishes the proof.
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While the above theorem may be surprising at first glance, we hope the following intuition sheds

some light: consider the distance of the closest point s ∈ S to p. If this distance is small, then

it is not hard to argue that the clusters for the closest light provide a good approximation of the

clustering for p, and so little refinement is necessary. On the other hand, if this closest distance

is large, then all points of S are ‘far’ from p, and so any ws-cluster from s is far from p and

thus approximately well-separated from p; again little refinement is needed to approximate the

separation (and thus illumination). This intuition is formalized in the proof of the theorem. For

empirical validation, see Table 2.2 for the maximum number of new clusters added per point for

a number of scenes with varying values of ε.

Refined clusters for varying ε
Scene 0.9 0.7 0.5 0.3 0.1

Conference 58 75 114 227 1401
Sibenik 57 74 109 219 1505
Museum 81 103 159 326 2350

San Miguel 80 108 167 370 3411

TABLE 2.2: Maximum number, over all p ∈ P , of added clusters during refinement with 320K
VPLs.

Cluster sizes. We have proved that the clustering stored in the WSPD can be used to retrieve

clustering for arbitrary points without increasing the number of clusters more than an additive

constant. It remains to argue that the initial clustering for every light s ∈ S is compact. While

one can construct examples of arbitrary points where the average number of ws-clusters for a

point p is linear (as a function of |S|), those are never realized in practice for the set of lights

arising in geometric scenes. The spatial partitioning structures (octrees) turn out to be roughly

balanced, and so the number of ws-clusters is logarithmic.

2.3 Additional Structures for Illumination Computation

We enhance the purely geometric WSPD based clustering with the following additional struc-

tures that improve the efficiency and accuracy in calculating illumination. Recall that given a

ws-clustering Cp for p, for a ws-cluster Ci ∈ Cp, the approximation of the radiance with a single

representative has the form:

Mrep(Ci)(p, ω) ·Grep(Ci)(p) · Vrep(Ci)(p) ·
∑
s∈Ci

Is. (2.18)

Clustering refinement by direction. The WSPD data structure is able to efficiently bound

angles and distances between points. However, the normals of the lights could vary widely in
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directions. To overcome this difficulty, the lights in each ws-cluster are grouped into a few sub-

groups with similar normals. For a ws-cluster Ci, construct the subgroups C1
i , . . . , C

ki
i , where

all the lights in each Cji , j = 1 . . . ki, will have similar normal directions. The approximation

then becomes

LCi(p, ω) =

 ki∑
j=1

L
Cj

i
(p, ω)

 · Vrep(Ci)(p) (2.19)

where L
Cj

i
(p, ω) is defined in Equation 2.1. The subgroups are constructed by first picking a

center cj ∈ Ci for each subgroup Cji , and then assigning each VPL s ∈ Cj to the subgroups

with most similar center. see Algorithm 3.

Algorithm 3: Computing subgroups of a given cluster Ci
1 Function ClusterNormals(Ci)
2 j ← 1; c1 ← random light in Ci
3 largestDistance←∞
4 while largestDistance ≥ threshold do
5 For each s ∈ Ci, ds ← mink≤j d(s, ck)
6 cj+1 ← q, where q has largest dq value
7 j ← j + 1
8 largestDistance← dq

9 For each l, C li ← {s ∈ Ci|l = arg mink<j d(s, ck)}

During the shading of a point p ∈ P , as before, visibility test will still be performed once for

each ws-cluster of p. However, the radiance LCi(p, ω) for a ws-cluster Ci will be calculated

by summing up the radiance contributions separately for each subgroup Cji of Ci, using the

normal of the center light for each subgroup. The distance d(s, cj) used in the algorithm is the

Euclidean distance with threshold set to 0.01, which did not result in too many subgroups on

average (see Table 2.3). The number of subgroups is slightly higher for more complex scenes

and decreases with ε since the clustering becomes more fine.

Scene Average number of subgroups
ε 0.9 0.7 0.5 0.3

Conference 8.3 8.1 6.7 5.3

Sibenik 9.5 9.3 8.0 5.9

Museum 23.3 21.2 16.8 11.4

San Miguel 44.72 39.6 31.2 18.5

TABLE 2.3: Average number of subgroups per cluster.

Visibility testing. Visibility differences within a cluster can cause errors with a fixed represen-

tative light. Consider for example a flat object with VPLs on both sides. Since the representative

light is either on one side or the other, visibility queries falsely return occlusion if the pixel is on
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the other side of the object. To overcome this problem we propose to augment our ws-clusters

with additional visibility information.

As stated in Theorem 2.2, without taking into account visibility differences, a ws-clustering with

a single representative and clustered normals gives a good approximation to L (as a function of

ε). The visibility computation for a ws-clusterCi will be divided into two parts: a simple shadow

test from p to the boundary of the ball of Ci for the outside visibility and then shadow testing

from the boundary to each light for visibility inside the ball ofCi. Here again the geometric well-

separated property of the ws-clustering comes in useful, as the angles from p to Ci are bounded

(as a function of ε). We use a new approximation for L(p, ω), to better handle visibility:

LCi(p, ω) =

 ki∑
j=1

L
Cj

i
(p, ω)

 · Vp(∂(b(Ci))) ·R(Ci, p) (2.20)

R(Ci, p) is the proportion of the summed intensity of the lights in Ci reaching the boundary of

the ball b(Ci) in the direction of p from the center of b(Ci).

R(Ci, p) =

∑
s∈Ci

Vp(s, ∂(b(Ci))) · Is · cosφs∑
s∈Ci

Is · cosφs
(2.21)

where Vp(s, ∂(b(Ci))) denotes the visibility from s to the boundary of the sphere in the direction

from the center of b(Ci) to the shaded point p and φs is the angle between the same direction

and the normal of the light. Note that as ε→ 0, equation 2.20 converges to L(p, ω). Since com-

putingR(Ci, p) during rendering would be expensive, we do the following in the pre-processing

phase. For each cluster Ci and for a small uniform set of directions on ∂b(Ci), R(Ci, p) is pre-

computed and stored in a cubemap (with a resolution of 6× 6 on each side). This enables quick

lookup of R(Ci, p) for p. During the rendering of a point p, nearest-neighbor interpolation on

the cubemap yields R(Ci, p). A shadow test to ∂b(Ci) gives the Vp term.

High intensity clusters. To further minimize the error coming from a badly chosen represen-

tative for high intensity clusters we limit the radiance from each cluster (by further refining the

cluster if necessary) to be less than 1% of the radiance received by a pixel. This refinement hap-

pens at the pre-processing phase only using approximate intensities between the cluster pairs.

2.4 Results and Discussion

In this section we present the experimental results on several scenes of varying complexity.

Timings are for a workstation equipped with two Xeon X5570 processors each with 4 cores



Chapter 2 Global Illumination Using Well-Separated Pair Decomposition 41

Museum Sibenik Conference San Miguel

Scenes
Triangles 1.5M 0.07M 0.33M 10.5M
Resolution 10242@1 10242@1 10242@1 10242@1
VPLs 472K 540K 516K 400K

Lightcuts(1%)
max cut: ∞

Preproc. time (s) 0.38 0.47 0.44 0.29
Render time (s) 515.06 216.29 219.43 1583.63
Avg # of rays 1872 1399 957 3226
RMSE 0.004674 0.003094 0.002220 0.005828
LMSE 0.000735 0.001124 0.003228 0.003134
Rel. Error(%) 1.123480 1.094558 1.273182 2.617376
Speedup 1.0 1.0 1.0 1.0

Lightcuts (2%)
max cut: 2000

Preproc. time (s) 0.38 0.47 0.43 0.29
Render time (s) 218.81 103.31 125.98 306.39
Avg # of rays 884 724 556 714
RMSE 0.006223 0.004401 0.003030 0.021054
LMSE 0.001155 0.001599 0.002794 0.019569
Rel. Error(%) 1.727831 1.860882 1.689145 8.528274
Speedup 2.3 2.1 1.8 5.2

Lightslice

Preproc. time (s) 0.02 0.02 0.02 0.01
Render time (s) 208.17 225.12 202.44 106.94
Avg # of rays 665 795 750 463
RMSE 0.009606 0.006820 0.005657 0.034085
LMSE 0.009220 0.005171 0.009392 0.236342
Rel. Error(%) 3.273127 3.342225 4.164747 13.855263
Speedup 2.5 1.0 1.1 14.8

WSPD 0.7

Preproc. time (s) 52.00 50.01 40.52 35.10
Render time (s) 62.93 31.10 35.24 86.91
Avg # of rays 711 532 642 715
RMSE 0.007049 0.004366 0.003515 0.014771
LMSE 0.002025 0.002145 0.003384 0.028564
Rel. Error(%) 2.416694 2.148956 2.592963 7.539747
Speedup 8.2 7.0 6.2 18.2

WSPD 0.5

Preproc. time (s) 55.88 52.86 44.47 38.73
Render time (s) 86.72 37.85 42.33 115.87
Avg # of rays 901 635 665 915
RMSE 0.005750 0.004254 0.002858 0.013161
LMSE 0.001642 0.002147 0.003961 0.023084
Rel. Error(%) 1.923812 1.826188 2.180026 6.760511
Speedup 5.9 5.7 5.2 13.7
Preproc. time (s) 76.86 64.31 60.41 232.91
Render time (s) 190.27 68.00 80.28 950.88
Avg # of rays 1913 1183 1318 6972
RMSE 0.004652 0.002833 0.002219 0.005864
LMSE 0.001040 0.001822 0.002624 0.004080
Rel. Error(%) 1.439894 1.261353 1.597909 2.886980
Speedup 2.7 3.2 2.7 1.6

WSPD ε
(equal RMSE
compared to

Lightcuts(1%) )

ε 0.25 0.25 0.25 0.09

TABLE 2.4: Rendering statistics for the three different methods, Lightcuts, LightSlice and the
WSPD algorithm.
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Reference

Lightcuts

LightSlice

WSPD ε

FIGURE 2.10: Museum scene rendered with the three different methods, Lightcuts, LightSlice
and the WSPD algorithm together with the error images.
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Reference

Lightcuts

LightSlice

WSPD ε

FIGURE 2.11: Sibenik scene rendered with the three different methods, Lightcuts, LightSlice
and the WSPD algorithm together with the error images.
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Reference

Lightcuts

LightSlice

WSPD ε

FIGURE 2.12: Conference scene rendered with the three different methods, Lightcuts, Light-
Slice and the WSPD algorithm together with the error images.
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Reference

Lightcuts

LightSlice

WSPD ε

FIGURE 2.13: San Miguel scene rendered with the three different methods, Lightcuts, Light-
Slice and the WSPD algorithm together with the error images.
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running at 2.93GHz and with 32 GB of memory. We compare our algorithm with two well-

known methods: Lightcuts [WFA+05] and LightSlice [OP11]. The authors of LightSlice have

made their code publicly available, which also includes an implementation of Lightcuts. In

order to do fair comparisons between all three methods, we have ported their implementation

of LightSlice (and Lightcuts) into the ray-tracing system INTEL EMBREE [WFW+13] without

modifying the core of the algorithms. Our code is also written to use Embree as its ray-tracing

engine.

Unless otherwise stated, we run LightSlice and Lightcuts with similar parameters as used in [OP11]:

Lightcuts error bound is set to 1% and unbounded the maximum cut size. In order to compare

our method to Lightcuts with the parameters set as in [WFA+05], we include results with 2%

error and maximum cut size set to 2000. We use the version with 1% error threshold as the ref-

erence for equal quality comparisons. LightSlice is run with approximately 1400 slices and 400

columns (the number of slices determines the size of the reduced light transport matrix while

the number of columns determines the number of clusters used per point). For our method,

the user is free to set the separation parameter ε. This parameter closely tracks both theoreti-

cally and practically the quality of the resulting image. In general, setting ε to 0.5 gives a good

compromise between quality and speed.

One inherent disadvantage of the many-lights technique is the presence of certain artifacts due

to the overly-high contribution of some VPLs to their neighboring points. The standard way

to avoid these problems is by clamping: limiting the contribution of any one VPL within some

small Euclidean distance by applying a clamping threshold. The bias introduced by this tech-

nique requires the image rendered with all VPLs to be used as our reference image and not

the path traced one. Our experiments use 1 and 4 samples per pixel to compare the quality of

clustering obtained by the different methods.

Scenes. We test the algorithms on standard collection of scenes with only moderately glossy

materials. The Museum has specular materials like the bones of the dinosaur and the canvas on

its stand. Most of the primary lights are facing the ceiling to ensure that the scene is mainly lit

by indirect illumination. In Sibenik, the light sources are facing upwards in the dome such that

the scene is again lit by indirect illumination, and is made up of purely diffuse materials. The

big uniformly colored surfaces in the Conference are challenging since the clustering methods

have to be spatially consistent, with moderately shiny materials. The outdoor scene San Miguel

is our largest scene consisting of 10M triangles lit by an environment map of sunset. This is our

most challenging scene since the area under the tree and in the corridors is mostly lit by indirect

illumination with lots of smooth shadows.
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Performance. The images are rendered at a 1024 × 1024 resolution with 1 sample per pixel

(spp) and with approximately 500K VPLs. We provide the running times for the pre-processing

and the rendering phase along with the average number of shadow rays per pixel.

We provide three different error metrics. Denote by F (x, y, c) the value of a color channel c

in the image at coordinate (x, y) and by F̂ (x, y, c) the same value in the reference image. The

number of pixels multiplied by the number of color channels is m = 3 · 1024 · 1024 and each

value of F and F̂ is between 0 and 1.

• The normalized RMSE provides numerical difference against the VPL reference image:

RMSE =

√∑ (F (x, y, c)− F̂ (x, y, c))2

m

where the summation is over all pixels and color channels of the images.

• The LMSE represents the average squared difference of the gradients between the ren-

dered image and the reference[SPA07]:

LMSE =

∑
(∇F (x, y, c)−∇F̂ (x, y, c))2∑∇F (x, y, c)

where∇F (x, y, c) = F (x+ 1, y, c) +F (x− 1, y, c) +F (x, y+ 1, c) +F (x, y− 1, c)−
4F (x, y, c). A high LMSE error implies sharp discontinuities (e.g., sharp error edges),

identifying more noticeable errors.

• Average relative error is given by:

Rel. Error =
100

m
·
∑ |F (x, y, c)− F̂ (x, y, c)|

F̂ (x, y, c)
.

The error images are calculated by taking the channel-wise Euclidean distance between the

image, and the VPL reference image, and multiplying it by a factor of 32.

Table 2.4, Figure 2.10, 2.11, 2.12 and 2.13 show the results with all these statistics, rendered

images and error images. In general, we find that with ε = 0.25, the quality of our results is

similar to Lightcuts with around 3× speedup (the last row in Table 2.4). The average number

of shadow rays for WSPD can be larger than that of Lightcuts; however, as proved earlier,

almost no other computation except visibility testing is done by the WSPD algorithm. The

WSPD method solely relies on the pre-computed pairs which results in a shorter rendering

time since there is no additional work done. Lightcuts, on the other hand, has to descend the

tree, maintaining an expensive heap data structure during this traversal. The cost of calculating

upper bounds during rendering is also significant. Bounding the maximum cut size can result
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in significant loss of quality unless the ideal cut size is known a priori (e.g., as in San Miguel).

Considering this run as a reference for equal quality comparison, our method with ε = 0.5 still

shows similar or even better quality with around 3 times speed-up (e.g., as in Museum).

LightSlice is able to explore the structure of VPLs and adapt to it more efficiently than Light-

cuts, but dividing the image into slices results in visually disturbing blocking artifacts if the

error is not low enough. This is captured by the high errors (especially the LMSE) of LightSlice

compared with WSPD ε in all the scenes. The WSPD method locally adjusts the cluster radius

based on the well-separated criteria. Thus the errors in the resulting image are smoothly dis-

tributed, with visually minimal artifacts. The value of the parameter ε closely tracks the quality;

for scenes with complex shadows like San Miguel, ε has to be set lower (0.1) for comparable

quality to Lightcuts. LightSlice relies also on a fixed parameter (number of columns, set to 400).

For San Miguel it is unable to adapt to the complexity of the shadows with such a low number

of columns, resulting in faster running times with high errors.

Scalability. See Table 2.5 for the total memory (GB) used by the three methods. Lightcuts

is the most efficient on memory consumption, followed by WSPD. LightSlice, due to the light

transport matrix storage, has prohibitively high memory consumption.

# VPLs: 75K 115K 200K 375K 776K
Lightcuts 0.59 0.6 0.63 0.74 0.84
LightSlice 4.53 6.31 9.85 18.81 36.58
WSPD 0.5 1.14 1.40 1.98 3.38 6.17

TABLE 2.5: Memory requirements for the Museum scene (GB).

In Figure 2.14 we plot the rendering times of the three methods with varying number of VPLs

in the Museum scene. Note how our algorithm consistently outperforms Lightcuts even with

3M VPLs and both of them scale sub-linearly in the number of light sources. LightSlice is only

usable as long as it does not allocate more memory than present in the system.
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FIGURE 2.14: Varying number of VPLs for the Museum scene.
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Trade-off: In Figure 2.15 we plot the relative error and the rendering time against ε in the

Museum scene. The curve is not strictly monotonic since our algorithm is not deterministic

(e.g., approximate nearest neighbor).
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FIGURE 2.15: Relative error (red) and render time (green) with varying ε for the Museum
scene.

Blocking artifacts. In contrast to LightSlice, our method and Lightcuts currently do not take

advantage of using different representative lights for each sample per pixel. We have found that

increasing the number of samples increases the quality of the images rendered with LightSlice.

Table 2.6, Figure 2.18 and 2.19 show some results with 4 samples per pixel. Note that our

algorithm still matches LightSlice in performance. See Figure 2.16 for the effect of multiple

samples per pixel on the Museum scene. Our method has no visible artifacts (nor does Lightcuts)

even with ε = 0.9 and 1 sample per pixel. On the other hand LightSlice has visible blocks on the

image due to the clustering of the shaded points. These errors can be reduced by increasing the

number of columns for LightSlice but this results in a higher running time. If one increases the

number of samples then LightSlice becomes competitive, although some artifacts remain even

with 9 samples per pixel.

Refinement. This method ensures that the final clustering used for a point satisfies our theo-

retical criteria. However, with a high number of VPLs the approximate nearest neighbor search

is very accurate therefore our refinement method has less importance. If the density of the VPLs

is low in an area its usage becomes more important in order to avoid blocking artifacts. We

demonstrate this in Figure 2.17, by rendering the scene with and without refinement.

2.5 Limitations

We have showed that the WSPD structure is suitable for compactly storing clustering infor-

mation and for providing fast extraction of clusters during render time. We showed theoretical
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WSPD 0.9 LightSlice LightSlice LightSlice
1 spp 1 spp 4 spp 9 spp

FIGURE 2.16: Part of the Museum scene rendered with different values of samples per pixel.

FIGURE 2.17: Error images for the Museum with 10K VPLS, rendered with refinement (left)
and without refinement (right), for ε = 0.25.

bounds on the error for diffuse materials. The data structure proposed in this work gives a new

perspective on how to efficiently store and retrieve a view-independent clustering for scenes.

This framework is very flexible and leaves several possibilities for improving and enhancing the

current solution.

One of the main limitations of our method is that it is suited towards diffuse surfaces, and

the quality decreases with highly glossy surfaces. The upper-bound proved in Theorem 2.2

increases as a function of glossiness, and so higher glossiness requires smaller values of ε in the

WSPD construction for similar error upper-bounds. One can compensate for it with decreasing

ε, at the loss of efficiency. In order to demonstrate this, we have replaced the Phong BRDFs in

the Conference scene with Blinn microfacet BRDFs. This BRDF results in a very significant

contribution from the direction of the reflected view ray. See Figure 2.20 for the results with 1

sample per pixel. The most prominent error is around the shadows of the chairs on the highly

glossy floor where the exponent for the Blinn microfacet BRDF is set to 100. Lightcuts can

more efficiently adapt to highly glossy materials than our method.
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Museum Conference

Scenes
Triangles 1.5M 0.33M
Resolution 1024× 1024@4 1024× 1024@4
VPLs 474K 516K

Lightcuts

Preproc. time (s) 0.48 0.44
Render time (s) 2080.97 876.96
Avg # of rays 7544 3828
RMSE 0.003374 0.002119
LMSE 0.001008 0.003789
Rel. Error(%) 0.905316 1.208336
Speedup 1.0 1.0

Lightslice

Preproc. time (s) 0.01 0.02
Render time (s) 344.73 262.89
Avg # of rays 1696 1792
RMSE 0.005662 0.003025
LMSE 0.005431 0.005524
Rel. Error(%) 1.836033 2.328994
Speedup 6.0 3.3

WSPD 0.7

Preproc. time (s) 63.47 40.27
Render time (s) 265.25 158.72
Avg # of rays 2660 2528
RMSE 0.006984 0.003378
LMSE 0.002270 0.004733
Rel. Error(%) 2.318444 2.425038
Speedup 7.8 5.5

WSPD 0.5

Preproc. time (s) 68.38 43.25
Render time (s) 356.20 165.58
Avg # of rays 3728 2588
RMSE 0.005661 0.003029
LMSE 0.001876 0.005271
Rel. Error(%) 1.809967 2.099148
Speedup 5.8 5.3

WSPD 0.3

Preproc. time (s) 84.68 56.42
Render time (s) 646.19 260.38
Avg # of rays 6228 4192
RMSE 0.005458 0.002664
LMSE 0.001481 0.004486
Rel. Error(%) 1.563184 1.717990
Speedup 3.2 3.4

TABLE 2.6: Rendering statistics and images for 4 samples per pixel.

A similar problem is the need to use a small ε for scenes with highly varying visibility properties

since in this case the number of clusters increases globally without only refining the clustering

where it is necessary. Currently our definition of well-separatedness is purely geometric, we

show in the next chapter how to create a clustering more adapted to illumination properties.
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Reference

Lightcuts

LightSlice

WSPD 0.5

FIGURE 2.18: Museum scene rendered with 4 samples per pixel with the three different meth-
ods, Lightcuts, LightSlice and the WSPD algorithm together with the error images.
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Reference

Lightcuts

LightSlice

WSPD 0.5

FIGURE 2.19: Conference scene rendered with the three different methods, Lightcuts, Light-
Slice and the WSPD algorithm together with the error images.
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Reference Lightcuts

WSPD 0.1 LightSlice

FIGURE 2.20: Part of the Conference scene with highly glossy floor using 1 sample per pixel.



Chapter 3

IlluminationCut

This chapter describes our improved many-lights algorithm achieved by clustering the product

space of VPLs and shaded points, it is based on the following paper.

Norbert Bus, Nabil H. Mustafa, and Venceslas Biri. “IlluminationCut.” In: Computer Graphics

Forum (Proceedings of Eurographics 2015) 34 (2), 2015

3.1 General Idea

This work proposes a new algorithm belonging to the family of instant radiosity methods. We

start with a detailed overview of the different clustering techniques in the many-lights methods

in order to highlight the differences between the structure of clusters. Current state-of-the-art

clustering algorithms are, e.g., Lightcuts [WFA+05] and LightSlice [OP11]. Lightcuts builds a

tree on the VPLs where each node of this tree represents a cluster of VPLs in the subtree of that

node. For each point to be shaded, it descends in the tree to select a set of nodes (a ‘cut’) which

is taken to be the VPL clustering for that point. While the method is robust and able to bound

the error resulting from treating each cluster as a single VPL, the cut is recomputed for every

point and descending in the tree is expensive for complex lighting situations.

LightSlice first groups all points to be shaded into a small number of roughly equal-sized clus-

ters, called point-clusters, based on their geometric proximity. Then it uses visibility and shad-

ing information to obtain a clustering of the VPLs for each of these point-clusters. Thus all

the points in the same point-cluster have the same clustering of the VPLs. The main advantage

of the method is its speed, since it is able to detect occluded clusters and amortize the cost of

creating VPL clusterings across points in a point-cluster. However, it has no error bound and as

the construction of the point-clusters is not adapted to the illumination of the scene, it is prone

to failure if the radiance of points within a group is highly varying.

55
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Lightcuts constructs a different clustering of VPLs for each point; LightSlice clusters all the

points to be shaded into a number of point-clusters for which the same clustering of VPLs is

computed. Our idea is based on the following observation: instead of clustering points or VPLs

independently, what is required is clustering their product-space, namely to cluster all point-

VPL pairs. Each cluster in this product-space consists of a subset of points (to be shaded) paired

with a subset of VPLs.
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FIGURE 3.1: Partial light transport matrices, with rectangles denoting product-space clusters.
Red stripes denote parts that could be improved. (a) Lightcuts creates clusters that could be
merged; (b) LightSlice creates clusters that should be merged or refined; (c) Multidimensional
Lightcuts only merges and refines clusters limited to points originating from the same pixel;

(d) IlluminationCut merges and refines clusters for any set of points and VPLs.

In fact, both Lightcuts and LightSlice can be seen as constructing constrained product-space

clusterings. Each cluster created by Lightcuts consists of a single point paired with a set of

VPLs. This constraint is wasteful as two points which are very similar could have been grouped

together in many product-space clusters. See Figure 3.1 (a).

LightSlice, on the other hand, constructs a product-space clustering where the same set of points

are grouped together in any cluster. For efficiency reasons each point-cluster is large, which

severely limits how well the VPL-clusters paired to them can be adapted to each individual

point in the point-cluster. Furthermore, as the initial clustering of points used only geomet-

ric information, these clusters cannot be completely adapted to illumination, and are likely to

introduce artifacts on the cluster boundary. See Figure 3.1 (b).

Our contribution. Our proposed method, IlluminationCut, targets high fidelity off-line ren-

dering by constructing an illumination-aware clustering of the product-space of all point-VPL

pairs. We create illumination-aware product-space clusters without any a priori constraints on

either the points or the VPLs that can appear in product-space clusters. These clusters capture

similar point-VPL pairs such that shading every point in a cluster by using a single representa-

tive VPL instead of all VPLs in the cluster causes error that remains under a threshold. Treating

cluster pairs enables us to amortize calculations that were previously carried out separately for

each point in Lightcuts; and to construct non-uniform clusters with different subsets of points

with different subsets of VPLs, which is more adaptive clustering than that of LightSlice. Our

method is further extended by adaptive visibility sampling, reducing the number of rays traced

for each product-space cluster without introducing high error. See Figure 3.1 (d).
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IlluminationCut builds on the Multidimensional Lightcuts approach [WAB+06], in that they

both utilize two hierarchies (trees), one on points and one on VPLs to construct product-space

clusters with bounded error by simultaneously descending on the trees. The difference is that the

latter has to maintain a heap and repeatedly builds a tree only for points that originate from the

same pixel (e.g., for use in spatial anti-aliasing). It does not exploit possible similarity among

points originating from different pixels and so does not improve upon Lightcuts if there is only

one point per pixel. See Figure 3.1 (c).

Our results improve on both the quality and the efficiency of previous methods. We achieve

3 − 6 times speed-up by reducing the number of visibility queries, dramatically decreasing the

computations needed to construct clusters, as well as eliminating the need for maintaining a

heap during rendering.

Organization. A detailed description of our algorithm is given in Section 3.2. Experimen-

tal results and comparison with state-of-the-art methods are presented in Section 3.3. Finally,

limitations and future work are discussed in Section 3.4.

3.2 Algorithm

Overview. The method first constructs a cluster hierarchy on P , called the point tree and on

S, called the light tree. Then using these trees, Phase I computes a coarse but fast approxi-

mation for every point p ∈ P . In Phase II, this approximate image is used to guide a top-

down search of both trees simultaneously to construct the list of desired product-space clusters

(R1, Q1), . . . , (Rk, Qk). Here each (Ri, Qi) is a product-space cluster composed of the set of

points Ri ⊆ P and the set of VPLs Qi ⊆ S . Finally, for all product-space clusters (Ri, Qi),

illumination contribution from Qi is added to the radiance of each point p ∈ Ri.

Light and point trees. For the light tree we use the same structure as Lightcuts [WFA+05].

For the point tree, we use a compressed octree, which differs from a simple octree by the fact that

paths without branching are contracted into a single edge. Then each node in the tree represents

a unique cluster of the points in its bounding box. To ensure that the points located in the same

node face approximately in the same direction, we make a slight modification: the subdivision of

the first 3 levels into octants correspond to the subdivision of the space of normals of the points

(these are unit vectors in R3) and the remaining levels follow the standard octree subdivision

rule. The points in P are stored in an array. In our implementation the octree is constructed by

repeatedly subdividing the bounding box of the scene along planes perpendicular to the three

axes. Thus recursively, at each subdivision, the points corresponding to a node are partitioned
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in-place into two contiguous subarrays. As a result the points in the array are in z-order (also

called Morton-order [Gar82]). The construction ensures that each node in the tree contains

points located in a contiguous part of the array. Therefore retrieving points associated to a node

is efficient since one has to only iterate over a subarray.

Our algorithm stores additional auxiliary data with the nodes of both trees. These are the

bounding box of the points inside the node and representative lights/points. The latter are

sampled in the same way as Multidimensional Lightcuts (the sampling ensures that the algo-

rithm remains unbiased in the Monte Carlo sense). For each light tree node we also store

the bounding cone of the light directions of VPLs associated with that node. Each node of

the point tree stores the maximum/minimum BRDF components in the subtree of the node

(kspec max, kdiff max, nmin, nmax). We also need to associate color data (color) with the nodes

of the point tree.

Clusters and representatives. We will identify the nodes of the tree with the points they

contain, e.g., the root of the light tree is simply denoted by v(S). Let us denote by Q a cluster

of lights Q ⊆ S and its corresponding octree node as v(Q). Denote the radiance at p caused by

lights in Q as LQ(p, ω).

LQ(p, ω) =
∑
s∈Q

Ms(p, ω) · Vs(p) · Is ·Gs(p) (3.1)

For a node v(Q) let rep(Q) ∈ Q denote its representative light, and then compute the approxi-

mate radiance at p from lights in Q with representative rep(Q) as:

L̃Q(p, ω) = Mrep(Q)(p, ω) ·Grep(Q)(p) · Vrep(Q)(p) ·
∑
s∈Q

Is (3.2)

For a cluster R denote the radius of the enclosing ball of its bounding box by r(R), and by

d(R,Q) the distance between the enclosing balls of clusters R and Q.

Phase I: Computing approximate shading. Our algorithm needs an estimate of the radiance

of each point p ∈ P . It is computed by descending in both trees until for a pair of point and

VPL nodes (v(R), v(Q)), the condition max(r(R), r(Q)) < 0.1 · d(R,Q) is satisfied and the

aperture of the light node’s cone is less than 20◦; we then add the contribution of the VPL

cluster Q to each point in R. This criteria attempts to ensure, though without any guaranteed

bound on the error, that this estimated radiance roughly matches the value that would result

from exhaustively evaluating the radiance for every point-VPL pair in (R,Q). Notice that for

shading a pair (R,Q) we only take into account the representative point’s BRDF and do not

shade every point individually. This necessarily introduces error to our approximation image
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(e.g., the texture can vary within clusters). However, since this image is only used as an error

upper bound it does not have a significant effect on the final image (Section 3.4 contains a more

detailed discussion). Furthermore, instead of adding the calculated contribution of Q to all the

points in v(R), we can simply accumulate it in the node and later with a tree traversal, distribute

it to the leaves (each containing a point of P). We also store the minimum of the approximate

radiances of the points in a node v(R) as v(R).color. This is used in Phase II.

In Figure 3.2 we show the images rendered with this approximation to illustrate how they capture

illumination.

Illumination-aware pairs. A set of points R ⊆ P and a set of lights Q ⊆ S form an

illumination-aware pair if

max
p∈R
|L̃Q(p, ω)− LQ(p, ω)| < δ ·min

p∈R
L(p, ω) (3.3)

where δ is the error threshold, e.g., 1%.

FIGURE 3.2: Approximate images for various scenes. These images are used to guide the
search for product-space clusters in Phase II.
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Algorithm 4: IlluminationCut
Data: W: stack of pairs; light and point trees for S, P

1 Function IlluminationCut()
2 W ← ∅
3 W .pushback(v(P), v(S))
4 while notEmpty(W ) do
5 (v(R), v(Q)) = W .pop()
6 if IsIllumAwarePair(v(R), v(Q)) then
7 foreach p ∈ R do
8 L(p, ω) += L̃Q(p, ω)

9 else
10 if r(Q) > r(R) then
11 if v(Q) has no children then
12 foreach p ∈ R do
13 L(p, ω) += L̃Q(p, ω)

14 else
15 foreach u ∈ children(v(Q)) do
16 W .pushback(u, v(R))

17 else
18 if v(R) has no children then
19 foreach p ∈ R do
20 L(p, ω) += L̃Q(p, ω)

21 else
22 foreach u ∈ children(v(R)) do
23 W .pushback(v(Q), u)

24

25 Function IsIllumAwarePair(v(R),v(Q))
26 return δ · v(R).color > LUB(v(R), v(Q))

The definition ensures that for any point p ∈ R, usingQ as a light cluster would result in a small

error. This is the most conservative error bound but other variations, e.g., average of L(p, ω)

could be used as well. In order to evaluate this condition one requires the knowledge of the

true radiance a priori. This is estimated using the approximate image calculated in Phase I; i.e.,

use the minimum radiance in the approximate image of points belonging to R. This minimum

was stored in each node as v(R).color in Phase I.

The left-hand side of Equation (3.3), denoted LUB(v(R), v(Q)), can be upper bounded in a

similar manner as Multidimensional Lightcuts. Let Mmax and Gmax be the upper bounds on

the material and geometric terms over all point-VPL pairs in (R,Q). As the visibility term can
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Algorithm 5: Adaptive sampling for a pair (R,Q)

1 Function AdaptiveSampling(R,Q)
2 if Q is a leaf or |R| < 8 then
3 foreach p ∈ R do
4 L(p, ω) += L̃Q(p, ω)

5 else
6 vs: the number of samples
7 if |R| > 32 then
8 vs← 16
9 else

10 vs← 8

11 compute R′, with |R′| = vs
12 if Vrep(Q)(q) = 1 for all q ∈ R′ then
13 foreach p ∈ R do
14 L(p, ω) += L̃Q(p, ω) with
15 Vrep(Q)(p) set to 1

16 else if Vrep(Q)(q) = 0 for all q ∈ R′ then
17 return
18 else
19 foreach Ri defined by R′ do
20 AdaptiveSampling(Ri, Q)

be upper bounded by 1, LUB(v(R), v(Q)) can be written as:

LUB(v(R), v(Q)) = Mmax ·Gmax
∑
s∈Q

Is (3.4)

We show how to calculate Gmax = cosφmax

r2min
where rmin = minp∈R,s∈Q d(p, s) and φmax is

the angle between the light normals and light directions for which the cosine function attains its

maximum value. rmin is set to d(R,Q). For φmax, we use the same technique as described in

Multidimensional Lightcuts. First, we simplify the problem by calculating the bounding box of

all possible light-point vectors between R and Q then apply a linear transform to this bounding

box such that the direction of the light node’s cone is aligned with the z axis. This transformation

enables the direct evaluation of φmax. Calculating Mmax can be done in a similar fashion by

using the surface normal and the reflected view ray ω′ of rep(R) in the role of the cone direction

(the surface normals and reflected view rays for points in a node are located in a small cone due

to our octree construction). See the details in [WAB+06].

Phase II: Rendering with illumination-aware pairs. Once we have an approximate radiance

for each point p ∈ P as well as the minimum radiance of all the points in a subtree rooted at

v (stored as v.color), we again traverse the two trees simultaneously top-down to construct
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the illumination-aware pairs. For each illumination-aware pair (R,Q), add the illumination

contribution of the VPL cluster Q to each point in R. See Algorithm 4. The straightforward

way of adding the illumination contribution of Q to each point in R is by computing L̃Q(p, ω)

separately via a shadow test from each p to rep(Q) and then using Equation (3.2). We refer to

this method as IlluminationCut.

Adaptive sampling. Algorithm 4 computes, for each illumination-aware pair (R,Q), the con-

tribution L̃Q(p, ω) of Q to each point p ∈ R by performing a visibility query from p to rep(Q).

Instead, one can use an adaptive sampling technique that reduces the number of visibility queries

to be considerably less than the number of points in R, denoted by |R|. Given an illumination-

aware pair (R,Q), we have access to the points in R as a subarray in z-order; we refer to this

subarray as R, this ambiguity shall not cause a problem. Take a subset R′ of R dividing it into

at most 16 equal length subarrays and calculate the visibility between points of R′ and the rep-

resentative light rep(Q). If all points in R′ are visible or all are occluded, use this visibility for

shading R; if not, then we recurse on the subarrays Ri defined by R′ . We note that choosing R′

in this manner makes the algorithm biased. Though errors are unlikely, as the subarrays consist

of spatially proximate points. See Algorithm 5. We refer to this method as IlluminationCut-

Sampling.

3.3 Results and Discussion

In this section we present experimental results for several scenes with complex lighting, highly

glossy materials and varying geometric complexity. Timings are for a server equipped with

Intel(R) Xeon(R) E5-2680 CPUs utilizing in total 20 cores running at 2.8 GHz, with 74 GB of

memory.

Implementation. We compare our algorithm with two well-known methods: Lightcuts [WFA+05]

and LightSlice [OP11]. Since the authors of LightSlice published their code, we have ported

their implementation into the ray-tracing system Intel Embree 2.3 [WFW+13; WWB+14]. We

have improved their Lightcuts implementation with the agglomerative clustering method pre-

sented in [Mik10]. The code is written in C++ with a very efficient ray-tracing engine. Due

to recent advantages in packeted ray-tracing algorithms and their implementations, shading and

other calculations account for a significant portion of the overall rendering time in our system;

e.g., approximately 20% of the total time for Lightcuts is used by ray tracing (see [WPS+03]).

The code can be downloaded at the website of the authors.

http://perso.esiee.fr/~busn
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Banquet San Miguel Sponza Kitchen

Scenes
Triangles 0.74M 10.5M 0.28M 0.17M
VPLs 638K 677K 641K 551K

LC(1%)

Preproc. time (s) 56.05 109.22 80.57 89.80
Render time (s) 116.71 749.41 233.31 183.07
Avg # of rays 947 5161 2294 1597
RMSE 0.010468 0.011369 0.005913 0.010336
Rel. Error 2.740256 2.770336 4.316007 8.957002
Upper bound 2878 14202 6183 4313

LS

Render time (s) 365.74(230) 227.88(41) 263.35(129) 116.61(67)
Avg # of rays 2879 2722 2849 1362
RMSE 0.016666 0.028958 0.011842 0.013217
Rel. Error 3.469874 7.718524 4.048875 10.411767
Columns 3200 3200 3200 1600
Speedup 0.3 3.3 0.9 1.6

IC(1.5%)

Preproc. time (s) 58.28 112.48 82.07 93.02
Render time (s) 36.94 186.12 71.83 43.04
Avg # of rays 1301 5561 3064 1258
RMSE 0.010401 0.012534 0.005747 0.012562
Rel. Error 2.442368 3.137196 4.113609 9.543214
Upper bound 90 236 69 216
Speedup 3.1 4.0 3.3 4.2

IC-S(1%)

Preproc. time (s) 58.32 112.40 82.31 92.31
Render time (s) 23.30 78.58 23.89 30.26
Avg # of rays 463 1849 720 602
RMSE 0.010097 0.012956 0.006997 0.011005
Rel. Error 2.639261 3.807332 4.382032 9.087991
Upper bound 155 362 102 350
Speedup 5.0 9.6 9.7 6.1

TABLE 3.1: Rendering statistics for 1600 × 1200 resolution images with 1 sample per pixel.
The parameters are set to achieve approximately equal RMSE error, except for LightSlice

which fails to resolve certain artifacts.

Scenes. We test the algorithms on a collection of scenes, all of them having highly glossy

materials except for Sponza, which is completely diffuse. The outdoor scene San Miguel is our

largest scene, consisting of 10M triangles lit by an environment map. Many of the VPLs are

placed on walls facing outward; therefore this scene is exploiting the weakness of our algorithm

and Lightcuts, namely that occluded clusters are not quickly discarded. Banquet has a grid

of point light sources directed towards the ceiling and lights inside the lamps, both creating a

challenging global illumination setup as there is significant indirect lighting. It also contains

a strip of area lights running around the ceiling. Sponza has all its original point light sources

facing the ceilings on the side corridors and a moderately dark environment map. The light

filtering through the gaps around the curtains are challenging to capture properly. Kitchen is lit

by upward facing spotlights located inside the lamps and an area light under the shelf.
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Reference LS(3200) LS(3200) Error

LC(1%) IC(1.5%) IC-S(1%)

LC(1%) Error IC(1.5%) Error IC-S(1%) Error

FIGURE 3.3: Banquet scene rendered with the 4 methods (LC,LS,IC,IC-S) with error images
for 1600× 1200 resolution with 1 samples per pixel.

Parameters. For Lightcuts the error bound is set to 1% (as in earlier work [OP11]). We give

the results of both IlluminationCut and IlluminationCut-Sampling, setting the error to 1.5% in

the former case and to 1% in the latter. LightSlice is run with approximately 1500 slices and with

varying columns. The number of slices determines the size of the reduced light transport matrix

while the number of columns determines the number of clusters used for rendering a point.

For the sake of compactness we refer to these algorithms in the figures as LC(1%), LS(3200),

IC(1.5%) and IC-S(1%). The images have 1600 × 1200 resolution and use 1 sample per pixel

for a clear comparison of the quality of clusterings obtained by the different methods. We give

a second table with comparison for anti-aliased images with 9 samples per pixel to show how

the methods behave in this case. For each scene, around 650K VPLs are generated by tracing

light paths from the original light sources up to depth 10. Our implementation uses clamping by

setting the point-VPL distance not smaller than 5% of the scene radius. Due to the consequent

energy loss, we use the image rendered with all VPLs as our reference image.
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Reference LS(3200) LS(3200) Error

LC(1%) IC(1.5%) IC-S(1%)

LC(1%) Error IC(1.5%) Error IC-S(1%) Error

FIGURE 3.4: San Miguel scene rendered with the 4 methods (LC,LS,IC,IC-S) with error im-
ages for 1600× 1200 resolution with 1 samples per pixel.

Performance. Table 3.1 shows the results with various statistics for 1 sample per pixel. Fig-

ure 3.3, 3.4, 3.5 and 3.6 contain the rendered images and error images for the four scenes. We

set the error bound of Lightcuts to 1% and adjusted the other methods (error bound or column

number) to provide similar RMSE quality. We note that all algorithms exhibit small variations

in quality due to randomness. We provide the running times for the preprocessing and the ren-

dering phase. For our method and Lightcuts, the preprocessing consists of building the light tree

while for LightSlice there is no view independent preprocessing phase. The normalized RMSE

and average relative error provides numerical difference against the VPL reference image. Both

our method and Lightcuts are using similar error upper bound calculations. In order to compare

the reduction of such calculations we have included in the table the number of upper bound

calculations averaged over the number of pixels. We also give average number of shadow rays

per pixel. Note that these are not identical, since lights facing away are not tested and additional

shadow rays are traced in other parts of the algorithms. The latter happens for Phase I and for

building the reduced light transport matrix in LightSlice. The error images are calculated by

taking the channel-wise Euclidean distance between the image, and the VPL reference image,
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Reference LS(3200) LS(3200) Error

LC(1%) IC(1.5%) IC-S(1%)

LC(1%) Error IC(1.5%) Error IC-S(1%) Error

FIGURE 3.5: Sponza scene rendered with the 4 methods (LC,LS,IC,IC-S) with error images
for 1600× 1200 resolution with 1 samples per pixel.

and multiplying it by a factor of 16. For LightSlice we report in parenthesis the time to cluster

the reduced matrix because that is single threaded and it is a significant part of the rendering

causing the main bottleneck of the algorithm. We also include highlights of typical errors (see

Figure 3.7).

Comparison to Lightcuts. In general, the quality of our results is similar to Lightcuts with

3−6 times speedup. Both methods adapt well to the scenes, keeping the error low with the upper

bounding methods and both methods oversample shadowed areas. The only visible artifacts are

the non smooth shading of uniform surfaces, e.g., in San Miguel. Note that as Embree is a high

performance ray tracing kernel we gain speed-up by significantly reducing the cost of clustering.

In Figure 3.8 we illustrate the number of upper bound calculations for each point p ∈ P . The

images are using false coloring with a logarithmic scale. In Lightcuts, for each p we add 1

at each upper bound calculated while shading the point. In IlluminationCut, when an upper

bounding calculation is carried out for an illumination-aware cluster we add to each p in the

cluster the inverse of the number of points in the cluster. This shows the amortized cost of
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Reference LS(3200) LS(3200) Error

LC(1%) IC(1.5%) IC-S(1%)

LC(1%) Error IC(1.5%) Error IC-S(1%) Error

FIGURE 3.6: Kitchen scene rendered with the 4 methods (LC,LS,IC,IC-S) with error images
for 1600× 1200 resolution with 1 samples per pixel.

clustering and it is consistent since an upper bounding calculation still increases the total value

by 1, just as in Lightcuts.

Comparison to LightSlice. LightSlice performs less efficiently in our highly glossy environ-

ments. Its ability to explore the structure of VPLs and to adapt to occluded lights reduces the

number of rays traced. But this comes with a cost. Clustering the reduced matrix becomes the

bottleneck and clustering the points into slices causes blocking artifacts, especially on glossy

surfaces. The method fails to handle complex lighting situations, since using randomly sampled

representatives easily miss important details. Consider, e.g., Sponza, where it is unable to cal-

culate a good shading for the floor in a reasonable time while the other parts of the image are

very close to the reference.

Maximum cut size. The original Lightcuts method sets the maximum cut size to 2000. We

now present the results of Lightcuts with this additional constraint. For Banquet the results re-

mained basically unchanged. For San Miguel the rendering time becomes similar to our method
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Reference LC

LS IC

Reference LS

Reference IC-S

FIGURE 3.7: Typical errors of the four methods (LC, LS, IC, IC-S). The first two rows show
that LC and IC both fail to reproduce smooth color gradients in complex illumination (the pink
color is the result of light reflected on the lamps). LS performs better but it introduces blocking
artifacts. Sponza shows that if within a point-cluster the radiance of points changes drastically
LS has no means to adapt to it. San Miguel demonstrates that IC-S might fail to detect small

shadows.
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1 150 4000 21K

FIGURE 3.8: The logarithm of the number of upper bound calculations per point for Kitchen
and Sponza for LC (left) and IC (right). IC amortizes the cost of upper bounding calculations
very efficiently but suffers from descending too deep in the tree for dark areas, just as Lightcuts.

but the quality is significantly worse. For Sponza this results in degradation of quality while for

Kitchen the quality remains unchanged. We believe that maximum cut size is effective mainly if

one can properly set it prior to rendering a scene. In Table 3.2 we included results with setting

the maximum cut size to 2000.

Banquet San Mig. Sponza Kitchen
R. time (s) 103.88 175.54 99.34 82.47
RMSE 0.01066 0.02548 0.00632 0.01581
Rel. Err. 3.04835 8.95983 5.16506 10.10555

TABLE 3.2: Lightcuts with maximum cut size set to 2000.

High fidelity images. We have set our error threshold for Lightcuts to 1% which closely

matches the parameters used in previous work [WFA+05; OP11]. Despite that, the quality

of our images are not matching the reference. In order to show that our methods are capable

of producing nearly indistinguishable results we have set more strict error thresholds. See the
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result for Banquet in Table 3.3. Note that we still maintain our speed up over Lightcuts while

the quality is the same. LightSlice converges very slowly to the correct solution if one only

varies the number of columns. On the other hand, using more slices requires prohibitively large

memory.

LC(0.1%) LS(6400) IC(0.15%) IC-S(0.1%)
R. time (s) 602.98 720.46 180.57 178.83
RMSE 0.00315 0.01490 0.00319 0.00425
Rel. Err. 1.12375 2.37685 1.08088 1.18171

CT LS IC IC-S

TABLE 3.3: Results for Banquet where the images are visually indistinguishable from the
reference.

Speed up. The ray tracing kernel used in our implementation is more highly optimized than

the renderer (see [WWB+14] for details on the ray tracing kernel). Therefore the speed up

achieved by the method is less if these two components are similarly efficient. In order to have

a more objective comparison we have measured the proportion of different components in our

implementation of Lightcuts. Approximately 20% is spent on ray tracing, 60% on upper bound-

ing computations and the remaining 20% is spent on shading and heap maintenance. The upper

bounding calculations in our method are only a fraction of Lightcuts’, therefore we achieve on

average 3 times speedup over Lightcuts.

Memory. See Table 3.4 for the peak memory consumption (in GB) of the four algorithms

LC(1%), LS(800), IC(1.5%), IC-S(1%) run on Banquet with 1 sample per pixel and 1600×1200

resolution. Lightcuts is the most efficient on memory consumption, followed by our method.

For the latter the point tree consumes most memory, scaling linearly with the number of points

(e.g., 9 samples per pixels would require extra 8 GB of memory). We note that in order to

alleviate the memory consumption one could partition the tree into a few subtrees and process

them independently. LightSlice, due to the light transport matrix storage (the size of it is the

number of slices times the number of VPLs), has a very high memory consumption.
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# VPLs: 50K 300K 600K 1.2M
LC(1%) 0.31 0.62 1.02 1.74
LS(800) 2.95 14.18 29.53 55.10
IC(1%) 1.35 1.65 2.24 2.70

TABLE 3.4: Peak memory requirements for Banquet (in GB).

Scalability. In Figure 3.9 we plot the rendering times of four methods (LC(1%), LS(1600),

IC(1.5%), IC-S(1%)) with varying number of VPLs for Banquet (1 sample per pixel, 1600 ×
1200 resolution). Our method consistently outperforms Lightcuts and LightSlice. The rendering

times of both LC and IC are sub-linear in the number of VPLs. For LS, above a certain number

of VPLs, the construction and clustering of the reduced light transport matrix becomes the

dominant cost, therefore scaling approximately linearly.
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FIGURE 3.9: Render times with varying number of VPLs for San Miguel (top) and for Banquet
(bottom).

Anti-aliasing. We have found that increasing the number of samples increases the quality of the

images rendered with LightSlice. Given a VPL-cluster, the method uses different representative

lights of the light cluster for shading the different samples in a pixel. See Table 3.5, Figure 3.10,

3.11, 3.12 and 3.13 for the results of the methods with 9 samples per pixel. This technique

smooths the errors, thus enables LightSlice to achieve better quality with only 800 columns, im-

proving its rendering time significantly. For Kitchen, LightSlice now outperforms our algorithm

but it is still not well-suited for highly glossy environments (e.g., Banquet) and challenging illu-

mination (e.g., Sponza). In these cases IlluminationCut-Sampling performs better. Our method

can be further enhanced for the case of multiple samples per pixel, in a similar way as Multi-

dimensional Lightcuts, by limiting the number of traced rays and shadings. Namely, in each

illumination-aware pair use only a single representative for the points originating from the same

pixel. This would result in fewer visibility queries but likely increase the error on surfaces with

non-uniform textures.
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Banquet San Miguel Sponza Kitchen

LC(1%)

Preproc. time (s) 53.70 92.53 82.36 68.16
Render time (s) 1031.02 6665.94 2007.74 1522.25
RMSE 0.010991 0.012007 0.006238 0.012434
Rel. Error 2.543368 2.681210 3.279278 9.397545

LS(800)

Render time (s) 346.61 399.48 332.62 221.34
RMSE 0.016470 0.026163 0.005793 0.008920
Rel. Error 4.010837 6.959285 2.938075 8.923159
Speedup 3.0 16.7 6.0 6.9

IC(1.5%)

Preproc. time (s) 55.14 95.35 84.90 70.48
Render time (s) 281.11 1567.65 665.01 360.33
RMSE 0.008770 0.011267 0.005986 0.011585
Rel. Error 2.280708 2.772934 2.815512 9.152297
Speedup 3.7 4.3 3.0 4.2

IC-S(1%)

Preproc. time (s) 55.20 95.21 83.57 70.10
Render time (s) 117.58 444.25 143.87 170.65
RMSE 0.008096 0.010349 0.005480 0.012178
Rel. Error 2.257898 2.686910 2.791644 9.766247
Speedup 8.8 15.0 14.0 8.9

TABLE 3.5: Statistics for images of 1600× 1200 resolution with 9 samples per pixel.

3.4 Limitations

We have presented an implementation of a flexible and efficient framework handling highly

glossy materials. It is several times faster than Lightcuts and has similar speedup as LightSlice

while guaranteeing low perceptual error which can be set a priori to rendering.

The usage of an octree for the point tree can cause blocking artifacts, however with low error

threshold these disappear. The approximate image used in our algorithm has errors and it is

not progressively refined (contrary to Lightcuts), thus it might introduce errors in Phase II. This

effect, however, is unnoticeable since even a 100% error in the approximate image only results

in at most 1% additional error (per cluster) in the final image. IlluminationCut reduces calcu-

lations by exploiting the similarity of points, therefore it is less efficient for scenes where the

shaded points have highly varying properties (e.g., heterogeneous BRDFs or spatial incoher-

ence). Our current implementation requires the BRDFs to belong to a family with a low number

of parameters since otherwise bounding these parameters for nodes of the octree would become

prohibitively expensive.

The construction method of the point tree is not important (to some extent) for Algorithm 4

to extract pairs of clusters. Thus one step further would be to utilize a complex metric for the

point tree, e.g., incorporating material properties as well. Such a strategy could be useful in a

scene with highly varying materials since it would enable tighter error bounds for the individual

clusters.
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Reference LS(800) LS(800) Error

LC(1%) IC(1.5%) IC-S(1%)

LC(1%) Error IC(1.5%) Error IC-S(1%) Error

FIGURE 3.10: Banquet scene rendered with the 4 methods (LC,LS,IC,IC-S) with error images
for 1600× 1200 resolution with 9 samples per pixel.
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Reference LS(800) LS(800) Error

LC(1%) IC(1.5%) IC-S(1%)

LC(1%) Error IC(1.5%) Error IC-S(1%) Error

FIGURE 3.11: San Miguel scene rendered with the 4 methods (LC,LS,IC,IC-S) with error
images for 1600× 1200 resolution with 9 samples per pixel.



Chapter 3 IlluminationCut 75

Reference LS(800) LS(800) Error

LC(1%) IC(1.5%) IC-S(1%)

LC(1%) Error IC(1.5%) Error IC-S(1%) Error

FIGURE 3.12: Sponza scene rendered with the 4 methods (LC,LS,IC,IC-S) with error images
for 1600× 1200 resolution with 9 samples per pixel.
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Reference LS(800) LS(800) Error

LC(1%) IC(1.5%) IC-S(1%)

LC(1%) Error IC(1.5%) Error IC-S(1%) Error

FIGURE 3.13: Kitchen scene rendered with the 4 methods (LC,LS,IC,IC-S) with error images
for 1600× 1200 resolution with 9 samples per pixel.



Chapter 4

Software

In our work we have introduced novel algorithms for computing global illumination in the many-

lights setup and provided comparisons with state-of-the-art techniques. In order to report ap-

propriate data and to do a fair comparison it is required that all methods share the same frame-

work and that this framework is representative of recent professional rendering environments.

In order to fulfill these requirements we have chosen a relatively simple yet fully functional

rendering framework with state-of-the-art ray tracing kernels, namely the Embree rendering

framework [WWB+14]. This system is capable of creating high quality images, see Figure 4.1.

We have implemented (or if the code was available simply ported) all algorithms in this envi-

ronment.

FIGURE 4.1: Images rendered with the Embree framework [WWB+14].

77
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The Embree framework consists of two main parts. High performance ray tracing kernels and a

simple but fully functional rendering engine with path tracing. The former was designed with a

simple low level interface for ray tracing enabling any existing rendering application to simply

use the ray tracing functionalities and benefit from its extreme speed. Listing 4.1 and 4.2 shows

a few examples of using the Embree API.

1 u n s i g n e d geomID = rtcNewTriangleMesh (scene , geomFlags , numTriangles , ←↩
numVertices ) ;

2

3 s t r u c t Vertex { f l o a t x , y , z , a ; } ;

4 s t r u c t Triangle { i n t v0 , v1 , v2 ; } ;

5

6 Vertex∗ vertices = (Vertex∗ ) rtcMapBuffer (scene , geomID , RTC_VERTEX_BUFFER )←↩
;

7 / / f i l l v e r t i c e s h e r e

8 rtcUnmapBuffer (scene , geomID , RTC_VERTEX_BUFFER ) ;

9

10 Triangle∗ triangles = (Triangle∗ ) rtcMapBuffer (scene , geomID , ←↩
RTC_INDEX_BUFFER ) ;

11 / / f i l l t r i a n g l e i n d i c e s h e r e

12 rtcUnmapBuffer (scene , geomID , RTC_INDEX_BUFFER ) ;

LISTING 4.1: The Embree API: mesh creation

1 vo id rtcIntersect ( RTCScene scene , RTCRay& ray ) ;

2 vo id rtcOccluded ( RTCScene scene , RTCRay& ray ) ;

LISTING 4.2: The Embree API: ray - primitive intersection

The ray tracing kernels provide efficient intersection methods by using state-of-the-art accel-

eration structures (e.g., bounding volume hierarchies built using SAH [Wal07]), packeted ray

tracing and low level optimization using vector instructions (both SSE and AVX). It’s perfor-

mance is comparable to state-of-the-art GPU ray tracing systems. The rendering engine was

designed to provide a realistic environment for testing the kernel’s performance for professional

rendering. It only includes a path tracing implementation which is completely enough for our

purposes. The renderer provides SIMD accelerated computation of vector arithmetics but does

not offer parallel shading capabilities (in case this is needed it provides a renderer written in the

Intel SPMD framework, a SIMD extension of the C language).

The clear and simple design of Embree enabled us to easily integrate different many-lights meth-

ods into one package enabling our ultimate goal of accurate comparison. In what follows we

will give a brief description of the included algorithms. Due to the clamping of VPLs in the
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many-lights methods we have used a simple exhaustive rendering as the reference image. The

included algorithms are Lightcuts [WFA+05], LightSlice [OP11] and our work, Illumination-

Cut [BMB15b].

The source code of our project can be found on the author’s website. We will here highlight

some decisions and crucial parts of the algorithm. The code contained in this document is a

subset of the real code only for presentation purposes.

Lightcuts

We have implemented the Lightcuts algorithm but additionally we include the implementation

provided by the authors of LightSlice. Our implementation performs slightly better in the Em-

bree framework.

We have used a heap-less agglomerative clustering algorithm for building the lighttree [WBK+08]

using a fast customized kd-tree [Mik10]. See the Listing 4.3 where the kd-tree query returns

the closest node using a custom metric (the one described in the original Lightcuts paper) for

clustering the lights. This results in a slower construction but a better quality tree than the one

used by the authors of LightSlice (built with divisive clustering based on spatial and directional

splits). We have decided to use this method since the better quality tree resulted in an improve-

ment of the rendering time.

1 Node∗ ClusterLightCuts : : buildTreeFromLeavesLocal ( )

2 {
3 / / F a s t A g g l o m e r a t i v e C l u s t e r i n g f o r Render ing , W a l t e r e t a l , 2008

4 / / L o c a l l y−o r d e r e d a g g l o m e r a t i v e c l u s t e r i n g

5 std : : vector<Node∗> clusters ; clusters .resize (numNodes ) ;

6

7 / / c r e a t e t h e i n i t i a l c l u s t e r s , c o r r e s p o n d i n g t o s i n g l e v p l s

8 . . .

9

10 / / c o n s t r u c t k d t r e e

11 KdTree<Node> kdtree ( t h i s−>sceneradiusSqr ) ;

12 kdtree .constructTree (clusters ,numCurrentClusters ) ;

13

14 Random rnd (RND_SEED ) ;

15

16 Node∗ na = clusters [ 0 ] ;

17 Node∗ nb = kdtree .queryNN (na ) ;

18

19 w h i l e ( numCurrentClusters < numNodes )

20 {
21 Node∗ nc = kdtree .queryNN (nb ) ;

http://perso.esiee.fr/~busn
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22

23 i f ( na == nc )

24 {
25 na−>valid = f a l s e ;

26 nb−>valid = f a l s e ;

27 Node∗ naOld = na ;

28 na = na−>merge (nb ,rnd ) ;

29 kdtree .invalidateNodesAndUpdate (naOld ,nb ,na ) ;

30 clusters [numCurrentClusters++] = na ;

31 nb = NULL ;

32 nb = kdtree .queryNN (na ) ;

33 } e l s e {
34 na = nb ;

35 nb = nc ;

36 }
37 }
38 Node∗ root = clusters [numNodes − 1 ] ;

39 r e t u r n root ;

40 }

LISTING 4.3: Heap-less agglomerative clustering

For ensuring that the rendering phase is efficient we store the lighttree nodes in an array with a

copy of the representative lights, therefore enforcing spatial locality of the nodes in memory and

avoiding additional pointer indirection compared to only storing pointers to the representative

lights. In Listing 4.4 we included the definition of our node class. We could have achieved a

smaller memory footprint by separating the variables only needed for construction but in order to

have a more readable code we have decided against it. A crucial part of the Lightcuts algorithm

is the maintenance of a heap. In order to speed up this part we use thread safe preallocated

memory space avoiding costly memory re-allocation for each cut.

1 /∗ ! \ b r i e f Node f o r l i g h t c u t s t r e e ∗ /

2 c l a s s Node

3 {
4 p u b l i c :

5 / / member f u n c t i o n s

6 . . .

7

8 vplVPL repLights [REP_LIGHT_NUM ] ; / / !< r e p r e s e n t a t i v e l i g h t s

9 BBox3f cell ; / / !< bounding box

10 Cone cone ; / / !< cone of d i r e c t i o n s

11 Node∗ lc , ∗rc , ∗parent ; / / !< c h i l d r e n and p a r e n t

12 KdNode<Node>∗ kdnode ; / / !< kd−node f o r t r e e ←↩
c r e a t i o n

13 boo l valid ; / / !< used f o r t r e e c r e a t i o n
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14 boo l repLightFromRightChild [REP_LIGHT_NUM ] ; / / !< wi th which c h i l d i s t h e←↩
r e p r e s e n t a t i v e l i g h t s h a r e d

15 } ;

LISTING 4.4: Lighttree node

LightSlice

We have used the code published by the authors of LightSlice. The only modification we have

done is that we have adjusted it to use our framework. The code was downloaded from the

authors’ website.

IlluminationCut

Since IlluminationCut shares data structures and algorithms with Lightcuts we will only give

some details regarding the difference, namely the pixeltree. The pixeltree was simply built by

a divisive algorithm to minimize the construction time, repeatedly partitioning the set of pixels

into two subsets. Each node corresponds to a group of pixels which we store in an array to

have a fast access to them for shading. In order to avoid copies of the same pixels there is only

one array storing all pixels and each node keeps only the beginning and ending pointer of a

continuous range of this array. This is a well-known method to store a binary tree in an array. It

is achieved by recursively partitioning the array, see Listing 4.5.

1 c l a s s icPixelNode

2 {
3 p u b l i c :

4 enum { nChildren = 2 } ;

5

6 icPixelNode∗ parent ; / /< p o i n t e r t o p a r e n t node

7 icPixelNode∗ children [nChildren ] ; / /< p o i n t e r t o c h i l d r e n , n u l l i f t h e r e ←↩
i s no c h i l d

8 BBox6f cell ; / /< bbox of t h e p i x e l s i n t h i s node

9 icPixel∗ pixel ; / /< f o r l e a f node t h e p i x e l , o t h e r w i s e ←↩
random r e p r e s e n t a t i v e

10 icPixel∗ start ; / /< p i x e l r a n g e s t a r t

11 icPixel∗ end ; / /< p i x e l r a n g e end

12 Color maxKd , maxKs ; / /< max m a t e r i a l c o e f f s

13 f l o a t maxExp , minExp ; / /< spec exp f o r ub ( min i s f o r power ←↩
of a v a l u e < 1)

14 Color color ; / /< l uminance used f o r s t o r i n g approx←↩
image and ub

15 } ;

http://pellacini.di.uniroma1.it/publications/lightslice11/lightslice11.html
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16

17 vo id icPixeltree : : createOctreeNonRecursiveAndCompress ( )

18 {
19 / / c r e a t e r o o t

20 t h i s−>root = . . .

21

22 std : : stack<icPixelNode∗> nodesToProcess ;

23 nodesToProcess .push ( t h i s−>root ) ;

24 Random rnd (RND_SEED ) ;

25

26 w h i l e ( !nodesToProcess .empty ( ) )

27 {
28 / / g e t n e x t node t o p r o c e s s

29 icPixelNode∗ node = nodesToProcess .top ( ) ; nodesToProcess .pop ( ) ;

30

31 / / p u t t h e l i g h t s i n t h e p r o p e r c h i l d ( bb )

32 size_t dim ;

33 f l o a t separator ;

34 node−>getNextDividingPlanePosition (separator ,dim ) ;

35 icPixel∗ middle ;

36 separatorPredicate sp (separator ,dim ) ;

37 middle = std : : partition (node−>start ,node−>end ,sp ) ;

38

39 i f (middle==node−>start | | middle==node−>end | | isLeaf (node ) )

40 {
41 . . .

42 }
43 / / c r e a t e two new c h i l d r e n

44 . . .

45

46 node−>children[0]−>start = node−>start ;

47 node−>children[0]−>end = middle ;

48 node−>children[1]−>start = middle ;

49 node−>children[1]−>end = node−>end ;

50

51 / / c r e a t e s u b t r e e s f o r c h i l d r e n

52 f o r (size_t i = 0 ; i < nChildren ; i++ )

53 nodesToProcess .push (nrs [i ] ) ;

54 }
55 }

LISTING 4.5: Pixeltree node and in-place storage of pixels
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Chapter 5

Overview of the Hitting Set Problem

The minimum hitting set problem is one of the most fundamental combinatorial optimization

problems: given a range space (P,D) consisting of a set P and a setD of subsets of P called the

ranges, the task is to compute the smallest subset Q ⊆ P that has a non-empty intersection with

each of the ranges in D. This problem is strongly NP-hard. If there are no restrictions on the set

system D, then it is known that it is NP-hard to approximate the minimum hitting set within a

logarithmic factor of the optimal [RS97]. The problem is NP-complete even for the case where

each range has exactly two points since this problem is equivalent to the vertex cover problem

which is known to be NP-complete [Kar72; GJ79].

The special case studied in this work – hitting sets for disks in the plane – has been the subject of

a long line of research. Besides ad-hoc approaches, there are two systematic lines along which

all progress on the hitting-set problem for geometric ranges has relied on: rounding via ε-nets,

and local-search. Both these approaches have to be evaluated on the questions of computational

efficiency as well as approximation quality. In spite of all the progress, there remains a large

gap between theory and practice – mainly due to the ugly trade-offs between running times and

approximation factors.

Rounding via ε-nets. Given a range space (P,D), a positive measure µ on P (e.g., the counting

measure), and a parameter ε > 0, an ε-net is a subset S ⊆ P such that D∩S 6= ∅ for all D ∈ D
with µ(D ∩ P ) ≥ ε · µ(P ). The famous “ε-net theorem” of Haussler and Welzl [HW87] states

that for range spaces with VC-dimension d, there exists an ε-net of size O(d/ε log d/ε) (this

bound was later improved to O(d/ε log 1/ε). The condition of having finite V C-dimension is

satisfied by many geometric set systems: disks, half-spaces, k-sided polytopes, r-admissible set

of regions etc. in Rd. For certain range spaces, one can even show the existence of ε-nets of size

O(1/ε) – an important case being for disks in R2 [PR08].
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In 1994, Bronnimann and Goodrich [BG95] proved the following interesting connection be-

tween the hitting-set problem 1, and ε-nets: let (P,D) be a range-space for which we want to

compute a minimum hitting set. If one can compute an ε-net of size c/ε for the ε-net problem

for (P,D) in polynomial time, then one can compute a hitting set of size at most c · OPT for

(P,D), where OPT is the size of the optimal (smallest) hitting set, in polynomial time. Until

very recently, the best such rounding algorithms had running times of Ω(n2), and it had been

a long-standing open problem to compute a O(1)-approximation to the hitting-set problem for

disks in the plane in near linear time. In a recent break-through, Agarwal-Pan [AP14] presented

the first near-linear time algorithm that is able to do the required rounding for a broad set of

geometric objects.

Bounds on ε-nets. The result of Agarwal-Pan [AP14] opens the way, for the first time, for near

linear-time algorithms for the geometric hitting set problem. The catch is that the approximation

factor depends on the sizes of ε-nets for disks. So far, the best constants for the ε-nets come

from the proofs in [PR08] and [HKS+14]. These constructions give a bound that is at least 24/ε

and most likely more than 40/ε. Furthermore, there is no implementation or software solution

available that can even compute such ε-nets efficiently.

Local search. For the hitting set problem on (P,D), consider the following algorithm: start

with any hitting set S ⊆ P , and repeatedly decrease the size of S, if possible, by replacing

k points of S with < k points of P \ S. Call such an algorithm a (k, k − 1)-local search

algorithm. Mustafa-Ray [MR10] showed that a (k, k − 1)-local search algorithm for the hitting

set problem gives a (1 + c/
√
k)-approximation, for a fixed constant c, when the ranges are

disks, or more generally, pseudo-disks in R2. The running time of their algorithm to compute a

(1 + ε)-approximation is O(nO(1/ε2)).

1They actually proved a more general statement, but the following is more relevant for our purposes.



Chapter 6

Tighter Estimates for ε-nets for Disks

This chapter describes a near linear algorithm to construct small sized ε-nets for disks. It is

based on the following paper.

Norbert Bus, Shashwat Garg, Nabil H. Mustafa, and Saurabh Ray. “Tighter Estimates for

epsilon-nets for Disks.” In: Computational Geometry: Theory and Applications 53, 2016

6.1 A Near Linear Time Algorithm for Computing ε-nets for Disks
in the Plane

We prove new improved bounds on sizes of ε-nets and present efficient algorithms to compute

such nets. Our approach is simple: we will show that modifications to a well-known technique

for computing ε-nets – the sample-and-refine approach of Chazelle-Friedman [CF90] – together

with additional structural properties of Delaunay triangulations in fact results in ε-nets of sur-

prisingly low size:

Theorem 6.1. Given a set P of n points in R2, there exists an ε-net under disk ranges of size at

most 13.4/ε. Furthermore it can be computed in expected time O(n log n).

Together with the result of Agarwal-Pan, this immediately implies the following:

Corollary 6.2. For any δ > 0, one can compute a (13.4 + δ)-approximation to the minimum

hitting set for (P,D) in time Õ(n).

Through a careful analysis, we present the algorithm for computing an ε-net of size 13.4
ε , running

in near linear time. The method, shown in Algorithm 6, computes a random sample and then

solves certain subproblems involving subsets located in pairs of Delaunay disks circumscribing
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adjacent triangles in the Delaunay triangulation of the random sample. The key to improved

bounds is i) considering edges in the Delaunay triangulation instead of faces in the analysis,

and ii) new improved constructions for large values of ε.

Let ∆(abc) denote the triangle defined by the three points a, b and c. Dabc denotes the disk

through a, b and c, while Dabc denotes the halfspace defined by a and b not containing the point

c. Let c(D) denote the center of the disk D.

Let Ξ(R) be the Delaunay triangulation of a set of points R ⊆ P in the plane. We will use Ξ

when R is clear from the context. For any triangle ∆ ∈ Ξ, let D∆ be the Delaunay disk of ∆,

and let P∆ be the set of points of P contained in D∆. Similarly, for any edge e ∈ Ξ, let ∆1
e and

∆2
e be the two triangles in Ξ adjacent to e, and Pe = P∆1

e

⋃
P∆2

e
. If e is on the convex-hull,

then one of the triangles is taken to be the halfspace defined by e not containing R.

Algorithm 6: Compute ε-nets
Data: Compute ε-net, given P : set of n points in R2, ε > 0 and c1.

1 if εn < 13 then
2 Return P

3 Pick each point p ∈ P into R independently with probability c1
εn .

4 if |R| ≤ c1/2ε then
5 restart algorithm.

6 Compute the Delaunay triangulation Ξ of R.
7 for triangles ∆ ∈ Ξ do
8 Compute the set of points P∆ ⊆ P in Delaunay disk D∆ of ∆.

9 for edges e ∈ Ξ do
10 Let ∆1

e and ∆2
e be the two triangles adjacent to e, Pe = P∆1

e
∪ P∆2

e
.

11 Let ε′ = ( εn
|Pe|) and compute a ε′-net Re for Pe depending on the cases below:

12 if 2
3 < ε′ < 1 then

13 compute using Lemma 6.3.

14 if 1
2 < ε′ ≤ 2

3 then
15 compute using Lemma 6.4.

16 if ε′ ≤ 1
2 then

17 compute recursively.

18 Return
(⋃

eRe
)
∪R.

In order to prove that the algorithm gives the desired result, the following theorems regarding

the size of an ε-net will be useful. Let f(ε) be the size of the smallest ε-net for any set P of

points in R2 under disk ranges.

Lemma 6.3 ([AAG14]). For 2
3 < ε < 1, f(ε) ≤ 2, and can be computed in O(n log n) time.

Lemma 6.4. For 1
2 < ε ≤ 2

3 , f(ε) ≤ 10 and can be computed in O(n log n) time.
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q

Q

R

FIGURE 6.1: Setup around q.

Proof. Divide the plane into 4 quadrants with 2 lines, intersecting at a point q, such that each

quadrant contains n/4 points. See Figure 6.1. Using the Ham-Sandwich theorem, this can be

done in linear time [Mat02]. Create a 2
3 -net for each quadrant, using Lemma 6.3. Add these 8

points to the ε-net of P . If q ∈ P then add q to the ε-net; otherwise let ∆ be the triangle in the

Delaunay triangulation of P that contains the point q. Add the two vertices of ∆ that are in the

opposite quadrants to the ε-net. The resulting size of the net is at most 10. Denote the quadrant

without a vertex of the Delaunay triangle inside it by Q and its opposite quadrant by R. If a

disk D intersects at most 3 quadrants and does not contain any of the points from the 2
3 -net in

each of those quadrants, it can contain only at most 3 · 2
3 · n4 = n

2 points. On the other hand, if

D contains points from each of the 4 quadrants, then it must contain points from Q and R that

are outside of the Delaunay disk D∆ of ∆ (as D∆ is empty of points of P ). Then if D does not

contain any of the two vertices of ∆ in the opposite quadrants (already added to the ε-net), it

must pierce D∆, a contradiction.

Call a tuple ({p, q}, {r, s}), where p, q, r, s ∈ P , a Delaunay quadruple if int(∆(pqr)) ∩
int(∆(pqs)) = ∅. Define its weight, denoted W({p,q},{r,s}), to be the number of points of P in

Dpqr ∪Dpqs. Let T≤k be a set of Delaunay quadruples of P of weight at most k and similarly

Tk denotes the set of Delaunay quadruples of weight exactly k. Similarly, a Delaunay triple

is given by ({p, q}, {r}), where p, q, r ∈ P . Define its weight, denoted W({p,q},{r}), to be the

number of points of P in Dpqr ∪Dpqr. Let S≤k be a set of Delaunay triples of P of weight at

most k, and Sk denotes the set of Delaunay triples of weight exactly k.

One can upper bound the size of T≤k, S≤k and using it, we derive an upper bound on the

expected number of sub-problems with a certain number of points.

Lemma 6.5. |T≤k| ≤ (e3/9)nk3 asymptotically and |T≤k| ≤ (3.1)nk3 for k ≥ 13.

Proof. The proof is an application of the Clarkson-Shor technique [Mat02]. Pick each point in

P independently with probability pcs to get a random sample Rcs. Count the expected number

of edges in the Delaunay triangulation of Rcs in two ways. On one hand, it is simply less than
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3E[|Rcs|] = 3npcs. On the other hand, it is:

3npcs ≥ E[Number of Delaunay edges in Rcs] =
∑
p,q∈P

Pr[{p, q} is a Delaunay edge of Rcs]

≥
∑
p,q∈P

∑
r,s∈P

Pr[(Dpqr ∪Dpqs) ∩Rcs = ∅] (disjoint events)

≥
∑

({p,q},{r,s})∈T≤k

Pr[(Dpqr ∪Dpqs) ∩Rcs = ∅]

≥
∑

({p,q},{r,s})∈T≤k

p4
cs · (1− pcs)k = |T≤k| · p4

cs · (1− pcs)k

Therefore |T≤k| ≤ 3npcs/(p
4
cs(1− pcs)k) and a simple calculation gives that setting pcs = 3

k+3

minimizes the right hand side. Then |T≤k| ≤ 3n 3
k+3/((

3
k+3)4(1− 3

k+3)k) = nk3 1
9(1 + 3

k )k+3,

and the claim follows.

Lemma 6.6. |S≤k| ≤ (e2/4)nk2 asymptotically and |S≤k| ≤ (2.14)nk2 for k ≥ 13.

Proof. Pick each point in P independently with probability pcs to get a random sample Rcs.

Count the expected number of edges in the Delaunay triangulation of Rcs that lie on the bound-

ary of the Delaunay triangulation, i.e., adjacent to exactly one triangle, in two ways. On one

hand, it is exactly the number of edges in the convex-hull of Rcs, therefore at most E[|Rcs|] =

npcs. Counted another way, it is:

npcs ≥ E[Number of boundary Delaunay edges in Rcs]

=
∑
p,q∈P

Pr[{p, q} is a boundary Delaunay edge of Rcs]

≥
∑
p,q∈P

∑
r∈P

Pr[(Dpqr ∪Dpqr) ∩Rcs = ∅] (disjoint events)

≥
∑

({p,q},{r})∈S≤k

Pr[(Dpqr ∪Dpqr) ∩Rcs = ∅]

≥
∑

({p,q},{r})∈S≤k

p3
cs · (1− pcs)k = |S≤k| · p3

cs · (1− pcs)k

Setting pcs = 2
k+2 gives the required result.

Lemma 6.7.

E
[
|{e ∈ Ξ | k1εn ≤ |Pe| ≤ k2εn}|

]
≤ (3.1)c3

1

εek1c1
(k3

1c1 + 3.7k2
2) if εn ≥ 13.

Proof. The crucial observation is that two points {p, q} form an edge in Ξ with two adjacent

triangles ∆(pqr),∆(pqs) ∈ Ξ iff {p, q, r, s} ⊆ R and none of the points of P in Dpqr ∪Dpqs
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are picked in R (i.e, the points p, q, r, s form the Delaunay tuple ({p, q}, {r, s})). Or {p, q}
form an edge on the convex-hull of Ξ with one adjacent triangle ∆(pqr) iff {p, q, r} ⊆ R and

none of the points of P in Dpqr ∪Dpqr are picked in R.

Let χ({p,q},{r,s}) be the random variable that is 1 iff {p, q} form an edge in Ξ and their two

adjacent triangles are ∆(pqr) and ∆(pqs). Let χ({p,q},{r}) be the random variable that is 1 iff

{p, q} form an edge in Ξ with exactly one adjacent triangle ∆(pqr). Noting that every edge in

Ξ must come from either a Delaunay quadruple or a Delaunay triple,

E[|{e | k1εn ≤ |Pe| ≤ k2εn}|] =
∑

p,q,r,s∈P
k1εn≤W({p,q},{r,s})≤k2εn

Pr[χ({p,q},{r,s}) = 1] +

∑
p,q,r∈P

k1εn≤W({p,q},{r})≤k2εn

Pr[χ({p,q},{r}) = 1]

The second term is asymptotically smaller, so we bound it somewhat loosely:

∑
p,q,r∈P

k1εn≤W({p,q},{r})≤k2εn

Pr[χ({p,q},{r}) = 1] ≤
∑
p,q,r

k1εn≤W({p,q},{r})≤k2εn

(c1/εn)3(1− c1/εn)W({p,q},{r})

≤ |S≤k2εn| · (c1/εn)3(1− c1/εn)k1εn

≤ (2.14)n(k2εn)2 · (c1/εn)3 · e−c1k1 =
(2.14)k2

2c
3
1

εec1k1
.

Now we carefully bound the first term:

∑
p,q,r,s∈P

k1εn≤W({p,q},{r,s})≤k2εn

Pr[χ({p,q},{r,s}) = 1] ≤
k2εn∑
i=k1εn

∑
p,q,r,s

W({p,q},{r,s})=i

Pr[χ({p,q},{r,s}) = 1]

≤
k2εn∑
i=k1εn

∑
p,q,r,s

W({p,q},{r,s})=i

(c1/εn)4(1− c1/εn)i

≤
k2εn∑
i=k1εn

|Ti|(c1/εn)4(1− c1/εn)i

As the above summation is exponentially decreasing as a function of i, it is maximized when

|Ti0 | = max |T≤i0 | where i0 = k1εn, and |Ti| = max |T≤i| − max |T≤i−1| and so on. Using
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Lemma 6.5 we obtain:

≤ |T≤k1εn| · (c1/εn)4(1− c1/εn)k1εn +

k2εn∑
i=k1εn+1

(|T≤i| − |T≤i−1|) · (c1/εn)4(1− c1/εn)i

≤ (3.1)n(k1εn)3 · (c1/εn)4(1− c1/εn)k1εn +

k2εn∑
i=k1εn+1

(3.1)n · 3i2 · (c1/εn)4(1− c1/εn)i

≤ (3.1)
k3

1c
4
1e
−k1c1

ε
+ (3.1)

3k2
2c

4
1

ε2n

k2εn∑
i=k1εn+1

(1− c1/εn)i

≤ (3.1)
k3

1c
4
1e
−k1c1

ε
+ (3.1)

3k2
2c

4
1

ε2n

(1− c1/εn)k1εn

c1/εn
≤ (3.1)c3

1

εek1c1
(k3

1c1 + 3k2
2).

The proof follows by summing up the two terms.

Using the above facts we can prove the main result.

Lemma 6.8. Algorithm COMPUTE ε-NET computes an ε-net of expected size 13.4/ε.

p1

p2

D

e

D

Proof. First we show that the algorithm computes an ε-net.

Take any disk D with center c containing εn points of P ,

and not hit by the initial random sample R. Increase its

radius while keeping its center c fixed until it passes through

a point, say p1 ofR. Now further expand the disk by moving

c in the direction ~p1c until its boundary passes through a

second point p2 of R. The edge e defined by p1 and p2 belongs to Ξ, and the two extreme disks

in the pencil of empty disks through p1 and p2 are the disks D∆1
e

and D∆2
e
. Their union covers

D, and so D contains εn points out of the set Pe. Then the net Re computed for Pe must hit D,

as εn = (εn/|Pe|) · |Pe|.

For the expected size, clearly, if εn < 13 then the returned set is an ε-net of size 13
ε . Oth-

erwise we can calculate the expected number of points added to the ε-net during solving the

sub-problems. We simply group them by the number of points in them. Set Ei = {e | 2iεn ≤
|Pe| < 2i+1εn}, and let us denote the size of the ε-net returned by our algorithm with f ′(ε).

Then

E
[
f ′(ε)

]
= E[|R|] + E

[
|
⋃
e∈Ξ

Re|
]

=
c1

ε
+ E[|{e | εn ≤ |Pe| < 3εn/2}|] · f(2/3)

+E[|{e | 3εn/2 ≤ |Pe| < 2εn}|] · f(1/2)

+
∑
i=1

E

∑
e∈Ei

f ′
(
εn

|Pe|

)
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Noting that E[
∑

e∈Ei
f ′( εn
|Pe|) | |Ei| = t] ≤ tE[f ′(1/2i+1)], we get

E

∑
e∈Ei

f ′
(
εn

|Pe|

) = E

E[
∑
e∈Ei

f ′
(
εn

|Pe|

)
|Ei]

 ≤ E
[
|Ei| · E[f ′(1/2i+1)]

]
= E[|Ei|]·E[f ′(1/2i+1)]

as |Ei| and f ′(·) are independent. As ε′ = εn
|Pe| > ε, by induction, assume E[f ′

(
ε′
)
] ≤ 13.4

ε′ .

Then

E
[
f ′(ε)

]
≤ c1

ε
+

(3.1) · c3
1(c1 + 8.34)

εec1
· 2 +

(3.1) · c3
1((3/2)3c1 + 14.8)

εe3c1/2
· 10

+
∑
i

(3.1) · c3
1(23ic1 + 3.7 · 22i+2)

εec12i
· 13.4 · 2i+1 ≤ 13.4

ε

by setting c1 = 12.

Finally, we bound the expected running time of the algorithm.

Lemma 6.9. Algorithm COMPUTE ε-NET runs in expected time O(n log n).

Proof. Note that E[|R|] = c1/ε. First we bound the expected total size of all the sets Pe:

E
[∑
e∈Ξ

|Pe|
]
≤ E[|{e | 0 ≤ |Pe| < εn}|] · εn+

∑
i=0

E[|{e | 2iεn ≤ |Pe| < 2i+1εn}|] · 2i+1εn

≤ O(
εn

ε
) +

∑
i=0

O

(
(2i)3

εe2ic1

)
· 2i+1εn = O(n),

as the last summation is a geometric series. This implies that the expected total number of

incidences between points in P , and Delaunay disks in Ξ is O(n). The Delaunay triangulation

of R can be computed in expected time O(1/ε log 1/ε). Steps 5-6 compute, for each Delaunay

disk D ∈ Ξ, the list of points contained in D. This can be computed in O(n log 1/ε) time by

instead finding, for each p ∈ P , the list of Delaunay disks in Ξ containing p, as follows. First do

point-location in Ξ to locate the triangle ∆ containing p, in expected time O(log 1/ε). Clearly

D∆ contains p. Now starting from ∆, do a breadth-first search in the dual planar graph of the

Delaunay triangulation to find the maximally connected subset of triangles (vertices in the dual

graph) whose Delaunay disks contain p. As each vertex in the dual graph has degree at most 3,

this takes time proportional to the discovered list of triangles, which as shown earlier is O(n)

over all p ∈ P . The correctness follows from the following:

Lemma 6.10. Given a Delaunay triangulation Ξ onR and any point p ∈ R2, the set of triangles

in Ξ whose Delaunay disks contain p form a connected sub-graph in the dual graph to Ξ.
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Proof. This can be seen by lifting P to R3 via the Veronese mapping, where it follows from the

fact that the faces of a convex polyhedron that are visible from any exterior point are connected.

Note that by the ε-net theorem, the probability of restarting the algorithm (lines 4-5) at any call

is at most a constant. Therefore it is re-started expected at most a constant number of times, and

so the expected running time, denoted by T (n):

E[T (n)] = O(1/ε log 1/ε) +O(n log 1/ε) +
∑
e∈Ξ

E[T (|Pe|)] ≤ O(n log 1/ε) +
∑
e∈Ξ

E[T (|Pe|)]

Similarly to previous calculations we have that

E[T (n)] ≤ O(n log 1/ε) +
(3.1) · c3

1(c1 + 8.34)

εec1
·O(3εn/2 log(3εn/2))

+
(3.1) · c3

1((3/2)3c1 + 14.8)

εe3c1/2
·O(2εn log(2εn))

+
∑
i=1

(3.1) · c3
1(23ic1 + 3.7 · 22i+2)

εec12i
· E[T (2i+1εn)]

≤ dn log n+
∑
i=1

(3.1) · c3
1(23ic1 + 3.7 · 22i+2)

εec12i
· E[T (2i+1εn)]

for a constant d coming from the constants above, as well as in Delaunay triangulation, point-

location and list-construction computations. Setting E[T (k)] = ck log k satisfies the above

inequality for c ≥ 2d, since

E[T (n)] ≤ dn log n+
∑
i=1

(3.1) · c3
1(23ic1 + 3.7 · 22i+2)

εec12i
· c(2i+1εn) log(2i+1εn)

≤ dn log n+ (cn log n)
∑
i=1

2i+1 · (3.1) · 123(23i · 12 + 3.7 · 22i+2)

e12·2i

≤ dn log n+ cn log n · 1

2
≤ cn log n, for c ≥ 2d.

6.2 Implementation and Experimental Evaluation

In this section we present experimental results for our algorithms implemented in C and running

on a machine equipped with an Intel Core i7 870 processor (2.93 GHz) and with 16 GB main

memory. All our implementations are single-threaded. The source code can be obtained from
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FIGURE 6.2: ε-net size multiplied by ε for the datasets, ε = 0.01 (left) and a subset of the ε-net
for the World dataset (right).

the authors’ website. For nearest-neighbors and Delaunay triangulations, we use CGAL. It

computes Delaunay triangulations in expected O(n log n) time.

Datasets. In order to empirically validate our algorithms we have utilized several real-world

point sets. All our experiments’ point sets are scaled to a unit square. The World dataset [Ngs]

contains locations of cities on Earth (except for the US) having around 10M records. For our

experiments we use only the locations of cities in China having 1M records (the coordinates

have been obtained from latitude and longitude data by applying the Miller cylindrical pro-

jection). The dataset ForestFire contains 700K locations of wildfire occurrences in the United

States [Fwf]. The KDDCUP04Bio dataset [Cd] (KDDCU for short) contains the first 2 dimen-

sions of a protein dataset with 145K entries. We have also created a random data set Gauss9 with

90K points sampled from 9 different Gaussian distributions with random mean and covariance

matrices.

Sizes of ε-nets. Setting the probability for random sampling to 12
ε·n results in approximately 12

ε

sized nets for nearly all datasets, as expected by our analysis. We note however, that in practice

setting c0 to 7 gives smaller size ε-nets, of size around 9
ε . See Figure 6.2 for the dependency

of the net size on c0 for ε = 0.01. It also includes an ε-net calculated with our algorithm for a

subset of the World data (red points denote the ε-net and each pixel’s color is the logarithm of

the number of disks it is contained in). See Table 6.1 for the ε-net sizes for different values of ε

as c0 varies from 7 to 12. This table also includes the size of the first random sample (R), which

shows that the number of subproblems to solve increases as the random sample is more sparse.

The results for our ε-net algorithm indicate that our theoretical analysis in Section 6.1 closely

tracks the actual size of the nets. This can additionally be seen as continuing the program for

better analysis of basic geometric tools; see, e.g., Har-Peled [HP00] for analysis of algorithms

and Matousek [Mat98] for detailed analysis, both for a related structure called cuttings in the

plane.

http://perso.esiee.fr/~busn
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TABLE 6.1: The size of the ε-net multiplied by ε (left value in a column for a fixed ε) and the
size of R, the first random sample multiplied by ε (right value in a column) for various point

sets with c0 = 7 or 12.

c0 = 7 c0 = 12

ε 0.2 0.1 0.01 0.001 0.2 0.1 0.01 0.001

China 7.8 6.6 8.3 6.1 8.28 6.80 8.426 7.090 14.2 14.2 10.6 10.6 12.33 12.33 12.152 12.138

ForestFire 7.4 7.4 8.3 7.3 8.46 7.46 8.522 6.892 13 13 11.6 11.6 12.01 12.01 12.103 12.077

KDDCU 7.4 7.4 8.4 7.4 8.31 7.29 8.343 6.989 10.2 10.2 9.8 9.8 11.65 11.57 12.006 11.978

Gauss9 7.4 5.8 7.8 7.6 8.00 7.18 8.100 6.882 9.8 9.8 12.0 12.0 11.61 11.43 11.969 11.965

Europe 6.2 5 8.7 5.9 7.93 7.39 8.300 7.048 14.2 14.2 12.2 12.2 11.95 11.75 11.777 11.741

Birch 3 6.2 6.2 6.9 6.7 7.91 7.09 8.134 6.923 8.6 8.6 11.3 11.3 11.73 11.71 11.792 11.782

Uniform 9.4 5.4 6.5 6.5 9.00 7.08 8.014 6.940 14 14 10.9 10.9 12.45 12.43 12.034 12.014

MOPSI 9.6 7.2 9.4 7.6 7.85 6.95 7.119 7.093 13.8 13.8 14.5 14.5 12.10 11.98 12.017 12.017



Chapter 7

Engineering the Agarwal-Pan
Algorithm

In this chapter we present our algorithm for computing hitting sets via the rounding technique.

This work is based on the following paper.

Norbert Bus, Nabil H. Mustafa, and Saurabh Ray. “Geometric Hitting Sets for Disks: Theory

and Practice.” In: 23rd European Symposium on Algorithms (ESA). 2015

7.1 General Idea

The breakthrough algorithm of Agarwal-Pan [AP14] uses sophisticated data-structures that have

large constants in the running time. In particular, it uses the O(log n + k)-time algorithm for

range reporting for disk ranges in the plane (alternatively, for halfspaces in R3) as well as a

dynamic data-structure for maintaining approximate weighted range-counting under disk ranges

in polylogarithmic time. We have not been able to find efficient implementations of any of these

data-structures.

This work is an attempt to address this shortcoming by observing that in this specific applica-

tion (i.e., minimum hitting set problem for disks), we don’t need general range-searching and

dynamic range counting tools, we give a new modified elementary algorithm. More specifically,

rur contributions are:

1. Engineering a hitting-set algorithm (Section 7.2). Together with the result of Agarwal-

Pan, Theorem 6.1 immediately implies, that for any δ > 0, one can compute a (13.4 + δ)-

approximation to the minimum hitting set for (P,D) in time Õ(n). We present a modification of

the algorithm of Agarwal-Pan that does not use any complicated data-structures – just Delaunay

97
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triangulations, ε-nets and binary search (e.g., it turns out that output sensitive range reporting

is not required). This comes with a price: although experimental results indicate a near-linear

running time, we have been unable to theoretically prove that the algorithm runs in expected

near-linear time.

2. Implementation and experimental evaluation (Section 7.3). A major advantage of Delau-

nay triangulations is that their behavior has been extensively studied, there are many efficient

implementations available, and they exhibit good behavior for various real-world data-sets as

well as random point sets. We present dnet, a public source-code module that incorporates

these ideas and an implementation of our ε-net algorithm to efficiently compute small-sized

hitting sets in practice. We give detailed experimental results on both synthetic and real-world

data sets, which indicates that the algorithm computes, on average, a 1.3-approximation in near-

linear time.

7.2 Algorithm

The Agarwal-Pan (AP) algorithm (shown in Algorithm 7) uses an iterative reweighing strategy,

where the idea is to assign a weight w(·) to each p ∈ P such that the total weight of points

contained in each D ∈ D is relatively high. It starts by setting w(p) = 1 for each p ∈ P . If

there exists a disk D with small weight, it increases the weight of the points in D until their

total weight exceeds a threshold of cW/OPT, where c is some constant andW =
∑

p∈P w(p) is

the current total weight. If after any iteration, all disks have weight above the threshold cW
2eOPT ,

return a c
2eOPT -net with respect to these weights, ensuring that every disk is hit.

For the purpose of analysis, Agarwal and Pan conceptually divide the reweighings intoO(log n)

phases, where each phase (except perhaps the last) performs Θ(OPT) reweighings. The imple-

mentation of the AP algorithm requires two ingredients: A) a range reporting data structure and

B) a dynamic approximate range counting data structure. The former is required for figuring

out whether a disk needs reweighing and the latter is used to construct the set of points to be

reweighed. As a pre-processing step, the AP algorithm first computes a 1/OPT-net Q to be

returned as part of the hitting set. This ensures that the remaining disks not hit by Q contain less

than n/OPT points. Additionally they observe that in any iteration, if less than OPT disks are

reweighed, then all disks have weight more than cW
2eOPT .

The AP algorithm is simple and has a clever theoretical analysis. Its main drawback is that

the two data structures it uses are sophisticated with large constants in the running time. This

unfortunately renders the AP algorithm impractical. Our goal is to find a method that avoids

these sophisticated data structures and to develop additional heuristics which lead to not only a

fast implementation but also one that generally gives an approximation ratio smaller than that
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Algorithm 7: AP algorithm for computing hitting sets
Data: A point set P , a set of disks D, a fixed constant c, and the value of OPT.

1 Compute a (1/OPT)-net, Q, of P and remove disks hit by Q
2 Set w(p) = 1 for all p ∈ P
3 repeat
4 foreach D ∈ D do
5 if w(D) ≤ cW/OPT then
6 reweigh D repeatedly until the weight w(D) exceeds cW/OPT

7 flag = false
8 foreach D ∈ D do
9 if w(D) < (c/2e) ·W/OPT then flag = true;

10 until flag = true
11 return (c/2eOPT)-net R along with Q

guaranteed by the theoretical analysis of the AP algorithm. As part of the algorithm, we use the

algorithm for constructing ε-nets described in the previous section, which already reduces the

approximation factor significantly.

Removing A). Just as Agarwal and Pan do, we start by picking a c1/OPT-net, for some constant

c1. The idea for getting rid of range-reporting data-structure is to observe that the very fact that

a disk D is not hit by Q, when Q is an ε-net, makes it possible to use Q in a simple way to

efficiently enumerate the points in D. We will show that D lies in the union of two Delaunay

disks in the Delaunay triangulation of Q, which, as we show later, can be found by a simple

binary search. The resulting algorithm still has worst-case near-linear running time.

Removing B). Our approach towards removing the dependence on dynamic approximate range

counting data structure is the following: at the beginning of each phase we pick a c2/OPT-net

R, for some constant c2. The set of disks that are not hit byR are then guaranteed to have weight

at most c2W/OPT, which we can then reweigh during that phase. While this avoids having to

use data-structure B), there are two problems with this: a) disks with small weight hit by R are

not reweighed, and b) a disk whose initial weight was less than c2W/OPT could have its current

weight more than c2W/OPT in the middle of a phase, and so it is erroneously reweighed.

Towards solving these problems, the idea is to maintain an additional set S which is empty at

the start of each phase. When a disk D is reweighed, we add a random point of D (sampled

according to w(·)) to S. Additionally we maintain a nearest-neighbor structure for S, enabling

us to only reweigh D if it is not hit by R ∪ S. Now, if during a phase, there are Ω(OPT)

reweighings, then as in the Agarwal-Pan algorithm, we move on to the next phase, and a) is not

a problem. Otherwise, there have been less than OPT reweighings, which implies that less than

OPT disks were not hit by R. Then we can return R together with the set S consisting of one

point from each of these disks. This will still be a hitting set.
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Algorithm 8: Algorithm for computing small-sized hitting sets.
Data: A point set P , a set of disks D, and the size of the optimal hitting set OPT.

1 Compute a (c1/OPT)-net Q of P and the Delaunay triangulation Ξ(Q) of Q.
2 foreach q ∈ Q do construct Ψ(Q)(q).
3 foreach D ∈ D do
4 if D not hit by Q then add D to D1. // using Ξ(Q)

5 P1 = P \Q.
6 foreach p ∈ P1 do set w(p) = 1.
7 repeat
8 Compute a (c2/OPT)-net, R, of P and the Delaunay triangulation Ξ(R) of R.
9 Set S = ∅, Ξ(S) = ∅.

10 foreach D ∈ D1 in a random order do
11 if D not hit by R ∪ S then // using Ξ(R) and Ξ(S)

12 foreach p ∈ D do set w(p) = w(p) + c3w(p). // using Ψ(Q)

13 Add a O(1)-net to S; update Ξ(S).

14 until |S| ≤ c4OPT

15 return {Q ∪R ∪ S}

To remedy b), before reweighing a disk, we compute the set of points insideD, and only reweigh

if the total weight is at most c2W/OPT. Consequently we sometimes waste O(n/OPT) time to

compute this list of points inside D without performing a reweighing. Due to this, the worst-

case running time increases to O(n2/OPT). In practice, this does not happen for the following

reason: in contrast to the AP algorithm, our algorithm reweighs any disk at most once during

a phase. Therefore if the weight of any disk D increases significantly, and yet D is not hit by

S, the increase must have been due to the increase in weight of many disks intersected by D

which were reweighed before D and for which the picked points (added to S) did not hit D.

Reweighing in a random order makes these events very unlikely (in fact we suspect this gives

an expected linear-time algorithm, though we have not been able to prove it).

See Algorithm 8 for the new algorithm (the data-structure Ψ(Q) will be defined later).

Lemma 7.1. The algorithm terminates,Q∪R∪S is a hitting set, of size at most (13.4+δ)·OPT,

for any δ > 0.

Proof. By construction, if the algorithm terminates, then Q ∪ R ∪ S is a hitting-set. Set c1 =

13.4 · 3/δ, c2 = 1/(1 + δ/(13.4 · 3)), c3 = δ/10000 and c4 = δ/3. By the standard reweighing

argument, we know that after t reweighings, we have:

OPT (1 + c3)
t

OPT ≤ n · (1 +
c2c3

OPT
)t (7.1)

which solves to t = O( OPT logn
δ ). Each iteration of the repeat loop, except the last one, does at

least c4OPT reweighings. Then the repeat loop can run for at most O( OPT logn
c4OPTδ ) = O(log n/δ)

times.
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FIGURE 7.1: Computing D1 and D2.

By Theorem 6.1, |Q| ≤ (13.4/c1)OPT, |R| ≤ (13.4/c2)OPT, and |S| ≤ c4OPT. Thus the

overall size is 13.4OPT ·
(
1/c1 + 1/c2 + c4/13.4

)
≤ (13.4 + δ) · OPT.

Algorithmic details. Computing an ε-net takes O(n log n) time using Theorem 6.1. Checking

if a disk D is hit by an ε-net (Q, R, or S) reduces to finding the closest point in the set to the

center of D, again accomplished in O(log n) time using point-location in Delaunay/Voronoi

diagrams Ξ(·). It remains to show how to compute, for a given disk D ∈ D1, the set of points

of P contained in D:

Lemma 7.2. Given a disk D ∈ D1, the set of points of P contained in D can be reported in

time O(n/OPT log n).

Proof. Each disk in D1 is not hit by Q, and so contains at most c1n/OPT points of P . We now

show how, given any disk D with D ∩ Q = ∅, one can find two disks whose union covers D

in O(log n) time. Given D, compute, using Ξ(Q), the nearest neighbor p ∈ Q to the center of

D. Consider the list of Delaunay triangles incident to p, sorted by their circumcenters radially

around p. Denote this list for the point p by Ψ(Q)(p). LetD′1 andD′2 be the two Delaunay disks

of Ξ(Q) whose triangles are adjacent to p, and whose circumcenters are immediately before and

after the center of D in this radially sorted order.

Lemma 7.3. D ⊆ D′1 ∪D′2.

Proof. Lemma 6.8 proves that for any disk D not hit by the ε-net Q, there exist two Delaunay

disks of Ξ(Q), say D1 and D2, such that D ⊆ D1 ∪ D2. In particular, the proof shows that

given D, D1 and D2 are circumcircles of two adjacent Delaunay triangles, say ∆1
e and ∆2

e,

where e = {p1, p2} ∈ Ξ(Q) is the shared Delaunay edge. Moreover, one of the vertices of e,

say p1, is the closest point in Q to the center of D.

We finish the proof by showing that i) the circumcenters of D1 and D2 are consecutive in the

radially sorted list Ψ(Q)(p1), and ii) the center of D lies between c(D1) and c(D2) in this con-

secutive order. Thus {D′1, D′2} = {D1, D2}. See Figure 7.1(a) for the geometric configuration.
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For contradiction assume a disk D′ whose c(D′) lies between c(D1) and c(D2). D′ passes

through p1, and there are two cases:

• D′ enters/leaves p1 through D1/D2 (Figure 7.1(b) bottom). Then either D′ ⊂ D1 ∪D2,

and the two points of Q on ∂D′ lie inside D1 ∪D2, contradicting emptiness of int(D1 ∪
D2). Or D′ must contain p2, contradicting emptiness of D′.

• D′ enters/leaves p1 through outside ((Figure 7.1(b) top). Then c(D′) must lie radially

outside the interval of c(D1) and c(D2).

Finally note that Ψ(Q) can be constructed in the pre-processing phase in expected O(n log n)

time: for each point q ∈ Q, extract its set of adjacent Delaunay triangles from Ξ(Q), and

radially sort their circumcenters around q to get the list Ψ(Q)(q). As the number of triangles is

O(|Q|), this takes time O(|Q| log |Q|) = O(n/OPT log n). And for each D, one can find the

two Delaunay disks D′1 and D′2 by binary search in Ψ(Q)(q) in time O(log n).

7.3 Implementation and Experimental Evaluation

In this section we present experimental results for our algorithms implemented in C and running

on a machine equipped with an Intel Core i7 870 processor (2.93 GHz) and with 16 GB main

memory. All our implementations are single-threaded, but we note that our hitting set algorithm

can be easily multi-threaded. The source code can be obtained from the authors’ website. For

nearest-neighbors and Delaunay triangulations, we use CGAL. It computes Delaunay triangu-

lations in expectedO(n log n) time. To calculate the optimal solution for the hitting set problem

we use the IP solver SCIP (with the linear solver SoPlex).

Datasets. In order to empirically validate our algorithms we have utilized several real-world

point sets. All our experiments’ point sets are scaled to a unit square. The World dataset [Ngs]

contains locations of cities on Earth (except for the US) having around 10M records. For our

experiments we use only the locations of cities in China having 1M records (the coordinates

have been obtained from latitude and longitude data by applying the Miller cylindrical pro-

jection). The dataset ForestFire contains 700K locations of wildfire occurrences in the United

States [Fwf]. The KDDCUP04Bio dataset [Cd] (KDDCU for short) contains the first 2 dimen-

sions of a protein dataset with 145K entries. We have also created a random data set Gauss9 with

90K points sampled from 9 different Gaussian distributions with random mean and covariance

matrices.

http://perso.esiee.fr/~busn
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TABLE 7.1: Hitting sets. From top to bottom, RND(0.1), RND(0.01) and FIX(0.001).

# of
points

# of
disks

Q
size

R
size

S
size

# of
phases

IP
solution

dnet
solution

ap-
prox.

IP
time(s)

dnet
time(s)

China 50K 50K 367 809 604 11 1185 1780 1.5 60 12

ForestFire 50K 16K 43 85 224 11 267 352 1.3 54.3 6.9

KDDCU 50K 22K 171 228 786 11 838 1185 1.4 40.9 9.8

Gauss9 50K 35K 322 724 1035 11 1493 2081 1.4 52.5 11.7

Europe 50K 31K 185 322 419 11 630 926 1.5 87.6 9.8

Birch3 50K 29K 166 233 1036 11 1026 1415 1.4 51.4 10.4

Uniform 50K 48K 665 1109 2169 11 2824 3943 1.4 49.8 12.3

Mopsi 13K 5K 40 55 197 10 228 292 1.3 2.4 1.7

China 50K 49K 673 1145 4048 11 4732 5862 1.2 4.5 14.5

ForestFire 50K 25K 162 268 1021 11 1115 1451 1.3 6.2 9.5

KDDCU 50K 102K 1326 2492 6833 11 8604 10651 1.2 12.5 22.2

Gauss9 50K 185K 2737 6636 9867 11 15847 19239 1.2 22.4 36.0

Europe 50K 85K 683 1491 3138 11 4211 5312 1.3 13.2 18.1

Birch3 50K 117K 1359 3358 7223 11 9683 11940 1.2 15.4 25.6

Uniform 50K 387K 5549 13081 16826 11 31787 35446 1.1 34.7 66.3

MOPSI 13K 6K 179 314 656 10 762 1009 1.3 0.6 2.5

China 50K 50K 2765 7376 7851 11 − 17329 − − 19.8

ForesFire 50K 50K 331 602 1273 11 − 2206 − − 11.9

KDDCU 50K 50K 2764 5824 15734 11 22368 24318 1.1 8.9 22.3

Gauss9 50K 50K 5380 13321 19153 11 36302 37827 1.0 19.1 26.7

Europe 50K 50K 1376 2644 5161 11 − 9181 − − 16.2

Birch3 50K 50K 2709 7492 14434 11 − 24630 − − 22.1

Uniform 50K 50K 5442 13417 27573 11 46124 46420 1.0 19.4 30.4

MOPSI 13K 13K 354 673 870 10 1294 1646 1.3 127.2 2.9

Approximate hitting sets. For evaluating the practical usability of our approximate hitting set

algorithm we compare it to the optimal solution calculated by an IP solver. Our algorithm needs

a guess for OPT, and so we run it with O(log n) guesses for the value of OPT . The parameters

are set as follows: c0 = 10, c1 = 30, c2 = 12, c3 = 2, c4 = 2 and c5 = 0.6.

Our datasets only contain points and in order to create disks for the hitting set problem we have

utilized two different strategies. In the first approach we create uniformly distributed disks in the

unit square with uniformly distributed radius within the range [0, r]. Let us denote this test case

as RND(r). In the second approach we added disks centered at each point with a fixed radius

of 0.001. Let us denote this test case by FIX(0.001). The results are shown in Table 7.1 for

two values r = 0.1 and r = 0.01. Our algorithm provides a 1.3 approximation on average. With

small radius the solver seems to outperform our algorithm but this is most likely due to the fact

that the problems become relatively simpler and various branch-and-bound heuristics become

efficient. With bigger radius and therefore more complex constraint matrix our algorithm clearly

outperforms the IP solver. Our method obtains a hitting set for all point sets, while in some of

the cases the IP solver was unable to compute a solution in reasonable time (we terminate the

solver after 1 hour).

In Table 7.2 we have included the memory consumption of both methods and statistics for range

reporting. It is clear that the IP solver requires significantly more memory than our method. The

statistics for range reporting includes the total number of range reportings (calculating the points



104 Chapter 7 Engineering the Agarwal-Pan Algorithm

TABLE 7.2: Memory usage in MB (left) and range reporting statistics (right).

RND(0.01) RND(0.1) FIX(0.001)
IP dnet IP dnet IP dnet

China 243 21 4282 19 434 20

ForesFire 524 28 3059 18 5470 24

KDDCU 458 30 2999 23 175 22

Gauss9 569 33 3435 24 158 24

Europe 734 30 4418 25 659 24

Birch3 523 31 3655 24 960 26

Uniform 693 39 4083 25 155 24

MOPSI 30 11 294 8 1735 10

RND(0.01) RND(0.1) FIX(0.001)
total doubling total doubling total doubling

China 44014 43713 9406 9184 96335 95846

ForesFire 11167 11086 2767 2728 15648 15020

KDDCU 75448 75016 8485 8364 173147 173044

Gauss9 121168 120651 14133 13906 217048 217019

Europe 38112 37886 5224 5160 58644 57014

Birch3 85399 85063 11219 11049 167384 167197

Uniform 198168 197388 26970 26431 309286 309284

MOPSI 1883 1863 2283 2249 10360 10235
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FIGURE 7.2: Different point set sizes for the ForestFire (left) and China (right) datasets.

inside a disk) and the number of range reportings when the algorithm doubles the weight of the

points inside a disk (the doubling column in the table). It can be seen that only a fraction of the

computations are wasted since the number of doublings is almost as high as the total number or

range reportings. This in fact shows that the running time of our algorithm is near-linear in n.

In order to test the scalability of our method compared to the IP solver we have used the Forest-

Fire and China dataset with limiting the number of points to 10K, 20K, 30K. . . and repeating

exactly the same experiments as above (while increasing the number of disks in a similar man-

ner). In Figure 7.2 we plot the running time of the methods. The solid lines represent the

case RND(0.1) while the dashed ones denote RND(0.01). One can see that as the number of

points and disks increases our method becomes more efficient even though for small instances

this might not hold. It can be seen that for the China dataset and RND(0.01) the IP solver

is faster than our method but after 500K points our method becomes faster. In Figure 7.2 the

dotted line represents the running time of our algorithm for FIX(0.001). In this case the IP

running time is not shown because the solver was only able to solve the problem with 10K points

within a reasonable time (for 20K and 30K points it took 15 and 21 hours respectively).

We have varied the radius of the disks for the fixed radius case to see how the algorithms behave.

See the Figure 7.3. With bigger radius the IP solver becomes very quickly unable to solve the

problem (for radius 0.002 it was unable to finish within a day), showing that our method is more

robust.

In order to test the extremes of our algorithm we have taken the World dataset containing 10M

records. Our algorithm was able to calculate the solution of the FIX(0.001) problem of size
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FIGURE 7.3: Different radii settings for the KDDCU (left) and China (right) datasets.

around 100K in 3.5 hours showing that the algorithm has the potential to calculate results even

for extremely big datasets with a more optimized (e.g., multi-threaded) implementation.





Chapter 8

Local Search

This chapter aims to describe the technical details of our local search algorithm, it is based on

the following publication.

Norbert Bus, Shashwat Garg, Nabil H. Mustafa, and Saurabh Ray. “Improved Local Search for

Geometric Hitting Set.” In: 32st International Symposium on Theoretical Aspects of Computer

Science (STACS). 2015

8.1 General Idea

Let R be a region in the plane. We say that a point p ∈ R2 hits R if p ∈ R, and that a set of

points X hits a set of regions R if each region in R is hit by some point in X . We denote by

H(P,R) the set system (P, {R ∩ P : R ∈ R}) induced by P andR. A hitting set forH(P,R)

is a subset of P which hits R. A hitting set of the smallest cardinality is called the minimum

hitting set and its size is denoted OPT(P,R) (or simply OPT when it is clear from the context).

From now onwards, P denotes a set of points andD denotes a set of (circular) disks in the plane.

Our goal is to compute a hitting set for H(P,D) of a small size efficiently. Our algorithm is

based on local search. It starts with a hitting set and repeatedly tries to make local improvements.

Let S be a hitting set for H(P,D). Let X ⊆ S and Y ⊆ P . We say that (X,Y ) is a local

improvement pair with respect to S and H(P,D) if |Y | < |X| and (S \X) ∪ Y is a hitting set

forH(P,D). Such a local improvement reduces the size of the hitting set by |X|− |Y |. We will

refer to this quantity as the profit of the local improvement and the local improvement pair. We

say that X ⊆ S is locally improvable with respect to S and H(P,D) if there exists a Y ⊆ P

such that (X,Y ) is a local improvement pair. If (X,Y ) is a local improvement pair, we say that

Y can locally replace X .

As our first result, we determine the exact limits of (3, 2)-local search:

107
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Theorem 8.1 (Proof in Section 8.2). A (3, 2)-local search algorithm returns a 8-approximation

to the minimum hitting set. Furthermore, this is tight.

Remark: In fact this can be extended to many other local search algorithms; e.g., it implies

that the (3, 2)-local search gives 8-approximation to the independent-set problem for disks in

the plane.

We then show how to perform this search in slightly more than quadratic time:

Theorem 8.2 (Proof in Section 8.3). A (3, 2)-local search can be performed in expected time

O(n2.34).

In fact, our techniques can be generalized for larger values of k. In particular, it can be shown

that (4, 3)-local search gives a 5-approximation in time Õ(n3.75).

8.2 Analysis of Quality for Local Search

The PTAS of Mustafa and Ray [MR10] uses a (k, k − 1)-local search in which, for as long as

possible, we try to swap some set of at most k points in the current hitting set with a smaller set

of points while maintaining a hitting set. We stop when no such local improvement is possible.

The analysis of the approximation factor achieved by a (k, k − 1)-local search depends on the

following theorem on planar bipartite graphs.

Theorem 8.3. [MR10] Let G = (R,B,E) be a bipartite planar graph on red and blue vertex

sets R and B, |R| ≥ 2, such that for every subset B′ ⊆ B of size at most k, where k is a large

enough number,
∣∣NG(B′)

∣∣ ≥ ∣∣B′∣∣. Then, |B| ≤ (1 + c/
√
k) |R|, where c is a constant.

Here NG(B′) denotes the set of neighbors of the vertices in B′ in G. The proof of the above

theorem, which relies on planar graph separators, requires k to be quite large, thereby limiting

the practical utility of the above theorem. A priori, it is not clear whether the theorems holds at

all for small values of k. For instance, one can easily see that for k = 2 there is no upper bound

on |B|/|R| (e.g., consider complete bipartite graph where B is arbitrarily large and |R| = 2).

However, for k = 3, we show a small bound of 8 on |B|/|R|, and then prove that it is, in fact,

optimal.

Theorem 8.4. Let G = (R,B,E) be a bipartite planar graph on red and blue vertex sets R

and B, |R| ≥ 2, such that for every subset B′ ⊆ B of size at most 3,
∣∣NG(B′)

∣∣ ≥ ∣∣B′∣∣. Then,

|B| ≤ 8 |R| and this bound is tight.
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Proof. Let nb = |B| and nr = |R|. Our goal is to prove that nb ≤ 8nr. Note that no vertex

in B can have degree 0, otherwise the neighborhood of such a vertex is of size 0, violating the

conditions of the theorem. We make a new graph G′ by adding edges in G to all vertices of

B which have degree 1 in G. This can always be done while maintaining the planarity and

bipartiteness of the graph as any such vertex v must lie in a face which has at least two vertices

of R, at least one of which is not adjacent to v. Thus in G′ every vertex in B has degree at least

2. Let nb2 be the number of vertices of B which have degree 2 and nb≥3
= nb − nb2 be the

number of vertices of B which have degree at least 3 in G′. Since G′ is planar and bipartite the

number of edges in G′ ≤ 2(nb + nr). This implies that 2nb2 + 3nb≥3
≤ 2nb + 2nr. Since

nb = nb2 + nb≥3
, we obtain nb≥3

≤ 2nr.

We now show that nb2 ≤ 6nr. To do that we construct a graph H with vertex set R as follows:

two vertices r1 ∈ R and r2 ∈ R are adjacent in H iff there is at least one vertex b ∈ B of

degree 2 which is adjacent to both r1 and r2 in G′. Note that H is planar since the edge between

r1 and r2 can be routed via one such b. Note that for the same pair {r1, r2} there cannot be

three vertices b1, b2, b3 ∈ B of degree 2 each that are adjacent to both r1 and r2 since in that

case the neighborhood of the set {b1, b2, b3} is of size 2 violating the conditions of the theorem.

Therefore, each vertex b ∈ B of degree 2 corresponds to an edge inH and each edge has at most

two vertices in B that correspond to it. Since the number of edges in H is at most 3|R| = 3nr,

we conclude that nb2 ≤ 6nr. Thus nb = nb2 + nb≥3
≤ 6nr + 2nr = 8nr.

We now show that the bound given above is tight. However, that still leaves open the possibility

that, by exploiting other properties of disks, a (3, 2)-local search could give a better approxima-

tion for the problem of computing minimum hitting sets for disks in the plane. The following

theorem rules this out.

Theorem 8.5. For any δ > 0, one can construct a set D of disks in the plane, a set of points P

and a subset B ⊆ P s.t. i)B is a hitting set for H(P,D), ii) |B| ≥ (8 − δ)OPT and iii) there

are no subsets X ⊆ B and Y ⊆ P \ B, |Y | < |X| ≤ 3, s.t. (B \ X) ∪ Y is a hitting set for

H(P,D).

Proof. We first construct a bipartite graph G = (R,B,E) that satisfies the conditions of Theo-

rem 8.4 and |B| ≥ (8−δ)|R|. Let L be the triangular lattice, and take a large equilateral triangle

∆ aligned with the edges of L (so that L ∩∆ triangulates ∆) and containing many faces of the

lattice. Then replace each face of the lattice by the block of the type shown in Figure 8.1(left).

The corner vertices (unshaded) of the block map to the corner vertices of the face, while the

other vertices (shaded) in the block lie in the interior of the face (note that each edge of the face

has two shaded vertices near it). Let R be the set of vertices of L lying in ∆ and let B be the set

of vertices lying in the interior of the faces in L∩∆. The blocks together define a bipartite graph

(see Figure 8.1(right) for a small example with four blocks put together). The dotted edges and
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the edges of the lattice L are not part of the graph. If ∆ is large enough, the number of faces of

L in ∆ is nearly twice the number of vertices of L in ∆. Thus by making ∆ large enough, we

can ensure that |B| ≥ (8− δ)|R| since each face in L ∩∆ contains four points of B. It can be

verified by inspection that there is no subset of B of size at most 3 with a smaller neighborhood.

This shows that the bound in Theorem 8.4 is tight within additive constants.

Now, we extend G to a triangulation by including the dotted edges in the blocks. Note that there

are some dotted edges going between blocks. We also put an additional vertex in the outer face

and connect it to all vertices in the outer face of G (i.e. we stellate the outer face). The resulting

graph, call it Ξ, is triangulated (i.e., each face is of size 3) and furthermore it is 4-connected

since, as can be verified by inspection, there is no separating triangle (a non-facial cycle of

length 3). By a theorem of Dillencourt and Smith (Theorem 3.5 in [DS96]), there exists an

embedding of Ξ in the plane so that Ξ is the Delaunay triangulation of its vertices. Abusing

notation, we refer to the embedding as Ξ and we refer to the embedding of a vertex v in Ξ as v.

R and B are thus two sets of points. We set P = R ∪ B, and construct D by taking for each

edge e in G a disk that contains a disk that contains exactly the two end points of e among all

the vertices in Ξ. This is possible because Ξ is now a Delaunay triangulation of the points in

P . By construction, each disk in D contains exactly one point from each of the sets R and B

and thus both the sets are hitting sets for H(P,D). Since OPT is the size of the smallest hitting

set, OPT ≤ |R| and therefore |B| ≥ (8− δ)OPT. Consider a local improvement step where we

seek to decrease the size of the hitting set B by removing some subset X ⊆ B of size at most

3 and adding a smaller set Y outside B (i.e., Y ⊆ R) so that (B \ X) ∪ Y is a hitting set for

D. Let x be one of the points in X . Observe that then all neighbors of x in G must be in Y

since for each neighbor y of x, there is a disk in D which contains only the two points x and

y among all the points in R ∪ B. This means that |Y | ≥ |NG(X)|. Since for any X of size at

most 3, |NG(X)| ≥ |X|, we have that |Y | ≥ |X| implying that such a local improvement is not

possible.

8.3 An Õ(n7/3)-time Algorithm for Local Search

Let S be a hitting set for H(P,D). For any s ∈ S, we denote by D(s) the set of disks in D that

are hit by s but not by any other point in S. We will call the disks in D(s) the personal disks

of s. We will denote the region
⋂
D∈D(s)D by R(s) and call it the personal region of s. The

notations D(s) and R(s) are always with respect to a set system H(P,D) and a hitting set S.

These things that are not explicit in the notation will be clear from the context. We also extend

the same definitions for sets of points: for a set X ⊆ S, let D(X) be the set of disks in D which
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a) b)

FIGURE 8.1: Unshaded vertices correspond to red and shaded to blue vertices. The dotted lines
show a triangulation. We tile the triangles in (left) as shown in (right). The ratio of shaded to
unshaded vertices goes to 8 as size of the tiling is increased. Connecting the vertices at the

boundary of the tiling to a new vertex gives a 4-connected graph.

contain only points of X . We call these the personal disks of X . The personal region of X is

R(X) =
⋂
D∈D(X)D.

Before presenting our algorithm, we prove a few results that will be useful for describing the

algorithm.

Lemma 8.6. Let S be a hitting set for H(P,D). If |S| > 8 · OPT(P,D) + 3t, for some integer

t ≥ 0, then there exist t + 1 disjoint subsets X0, . . . , Xt of S, each of which is of size 3 and is

locally improvable with respect to S inH(P,D).

Proof. The proof is by induction. The statement is true for t = 0: if there is no locally im-

provable set X of size 3, then taking B = S and R = O, where O is the optimal hitting set

for H(P,D) and applying Theorem 8.4, we get that |S| ≤ 8OPT(P,D). Assume inductively

that the lemma is true for t − 1, and let the t disjoint sets of S be X0, · · · , Xt−1. It remains to

construct the set Xt. Let Z =
⋃t−1
i=0 Xi. Let P ′ = P \ Z, D′ = {D ∈ D : D ∩ Z = ∅} and

S′ = S \ Z. Clearly S′ is a hitting set forH(P ′,D′). Moreover,

Lemma 8.7. OPT(P ′,D′) ≤ OPT(P,D).

Proof. Take any hitting set A for H((P,D)). Then any point a ∈ A that hits a disk in D′ must

belong to P ′: otherwise a ∈ P \ P ′ = Z, and we had constructed D′ by removing all the disks

hit by Z from D. Therefore all the points in A hitting D′ belong to P ′, and form a hitting set in

P ′ forH((P ′,D′)) of size at most |A|.
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Therefore, |S′| = |S| − 3t > 8 ·OPT(P,D) ≥ 8 ·OPT(P ′,D′), and any hitting set forH(P,D)

contains a hitting set for H(P ′,D′). Now, using the Theorem 8.4 for t = 0 on S′ and (P ′,D′),

the fact that |S′| > 8 · OPT(P ′,D′) implies that there is set Xt ⊆ S′ of size 3 and a set Y ⊆ P ′

of size 2 such that (S′ \Xt)∪Y is a hitting set forH(P ′,D′). This means that (S′ \Xt)∪Y ∪Z
is a hitting set forH(P,D) since all disks in D \D′ intersect Z. In other words, (S \Xt)∪Y is

a hitting set for H(P,D) since S′ ∪ Z = S and Xt ∩ Z = ∅. That is, Xt is locally improvable

with respect to S in H(P,D). Since Xt ⊆ S′ and S′ ∩ Z = ∅, Xt is disjoint from the other

Xi’s.

The following key structural property is crucial for the efficiency of the algorithm:

Lemma 8.8. Let S be a hitting set for H(P,D). Then the personal regions of the points in S

form a collection of pseudodisks.

Proof. First observe that since each personal regionR(s) is an intersection of disks, it is convex.

We show that for any two points x, y ∈ S, R(x) and R(y) are non-piercing i.e., the regions

R(x) \ R(y) and R(y) \ R(x) are connected. Since the boundaries of two convex regions that

are non-piercing cannot intersect in more than two points, we conclude that the regions form a

collection of pseudodisks.

Assume for contradiction that R(x) and R(y) are piercing and without loss of generality that

R(x)\R(y) has at least two connected components. The point x lies in one of these components

and let x′ be a point in a different component of R(x) \ R(y). Since x′ does not lie in R(y),

there must be a disk Dy ∈ D(y) that does not contain x′. Since no disk in D(y) contains x,

Dy also does not contain x. Since Dy contains R(y), this implies that x and x′ are in different

connected components of R(x)\Dy. In other words R(x)\Dy is not connected. There are two

cases to consider now:

Case 1: Dy \ R(x) is not connected. In this case y lies in one of the connected components

of D \ R(x). Let y′ be a point in one of the other components. Since y′ /∈ R(x), there is some

disk Dx ∈ D(x) which does not contain y′ and by assumption does not contain y. Since Dx

contains R(x), this implies that Dy \Dx is not connected, a contradiction for disks.

Case 2: Dy \ R(x) is connected. In this case, since R(x) \Dy is not connected, the situation

is as shown in Figure 8.2. There is at least one point y′ where the boundaries of Dy and R(x)

intersect but do not cross. Furthermore, y′ does not lie on the boundary ofDy \Rx. Since y′ lies

on the boundary of Rx, it lies on the boundary of some disk Dx ∈ D(x). Note that Dx contains

Rx but does not contain y. Therefore, Dx must intersect the boundary of Dy at least twice in

the portion of ∂Dy that lies outside Rx, i.e., the arc between a and b (shown in the figure) in

counterclockwise direction. The boundaries of Dx and Dy then intersect at least three times, a

contradiction for disks.
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a b

FIGURE 8.2: Case 2 in the proof of Lemma 8.8

Remark: Lemma 8.8 holds even when D is a set of pseudodisks. In the proof we have only

used the fact that boundaries of disks cannot intersect more than twice.

Lemma 8.9. Let S be a hitting set forH(P,D). Suppose that we are given two sets X ⊆ S and

Y ⊆ P such that |Y | = O(1), |X| > 4|Y | and for each x ∈ X , Y hits D(x), the personal disks

of x. Then there exists a set X ′ ⊆ X of size Ω(|X|) such that (X ′, Y ) is a local improvement

pair with respect to S andH(P,D). Furthermore, given X and Y , X ′ can be computed in time

O(|X| log |X|).

Proof. Consider the Delaunay triangulation of the points inX , and letX ′ be an independent-set

in this Delaunay graph. First we show that (S \X ′) ∪ Y is a hitting set for H(P,D). Consider

a disk D that is not hit by S \ X ′. Since D is hit by S (S being a hitting set for H(P,D)), D

contains at least one point of X ′. If D contains exactly one point x′ ∈ X ′ then D is hit by Y

since D ∈ D(x′) and Y hits D(x′). Otherwise, D contains at least two points of X ′ in which

case it must contain some point of x ∈ X \X ′ ⊆ S \X ′ since X ′ is an independent set in the

Delaunay triangulation of X .

The Delaunay triangulation can be constructed in O(|X| log |X|) time. If |X| ≤ 5|Y |, i.e.

|X| = O(1), we find an independent set of size at least d|X|/4e > |Y | in the Delaunay graph

in O(1) time by brute force; the existence of such an independent set follows from the 4-color

theorem on planar graphs. If |X| > 5|Y |, we compute a 5-coloring of the Delaunay graph in

O(|X|) time and take the largest color class as X ′. Thus |X ′| ≥ d|X|/5e > |Y |.

Therefore |X ′| > |Y |, and so (X ′, Y ) is a local improvement pair.

Lemma 8.10. Let D be a set of m disks in the plane having a common intersection region,

say R. Then the boundary of R is composed of O(m) circular arcs, and can be computed in

O(m logm) expected time. We can also construct, in O(m logm) time, a data structure which,

for any given query point q, answers whether q ∈ R in O(logm) time.

Proof. Let p be a point in the region R and D be disk in D. Consider the function fD(θ), for

θ ∈ [0, 2π), to be the distance from p to the boundary of D in the direction θ (i.e., along a

ray emanating from p at an angle θ to the positive x axis). Clearly the graph of fD(θ) with
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θ plotted along the x-axis is an x-monotone curve which we denote by ΓD. Furthermore, for

any two disks D,D′ ∈ D the curves ΓD and ΓD′ intersect at most twice since the boundaries

of any two disks intersect at most twice. The curves in {ΓD : D ∈ D} therefore form a set

pseudo-parabolas. The number of arcs in the boundary of R is equal to the size of the lower

envelope of the arrangement of curves, which is O(m) due to the linear union complexity of

pseudo-parabolas [PS06; APS07].

The boundary of R can be computed by a randomized incremental construction in O(m logm)

in the same way as the union of a set of m regions with linear union complexity is computed

in the same amount of time. There is also a deterministic algorithm which takes O(m log2m)

time. It basically splits the disks inD into disjoint sets of half the size, computes the intersection

region for each, and then takes the intersection of the two intersection regions - which can be

computed using a circular sweep. For details see [OWW85; EHS04; APS07] and the references

therein.

Once R has been computed, we can easily set up a data structure that checks for a query point q

whether q ∈ R. The region R is almost like a convex polygon except that its sides are circular

arcs. We can take one vertex v of the region R and join it with a chord to each of the other

vertices. The chords define a linear order. Given a query point q, we can determine, by binary

search, two consecutive chords so that the cone defined by v and the rays emanating from v

along the two chords contains q. Next we just need to check whether q lies on the same side of

the circular arc bounding R in that cone, as v. Setting up this data structure takes O(m) time

and the query time is O(logm) as required.

Lemma 8.11. Let P be a set of n points in the plane and let D be a set of pseudodisks, the

boundary of each being composed of circular arcs. For any constant C, we can compute, for

each p ∈ P that lies in at mostC pseudodisks, the exact set of pseudodisks it hits inO(n log m)

time, where m is the total number of arcs in all the pseudodisks.

Proof. We first compute the shallow levels (of depth at most C) of the arrangement of pseu-

dodisks D. This can be done using a randomized incremental construction in exactly the same

way as the union of a set of pseudodisks is computed. This takes O(m logm) time since the

overall complexity of the shallow levels (for constant C) is linear. For details see [OWW85;

EHS04; APS07]. Once the shallow levels are computed, we set up a point location data struc-

ture. Then in O(logm) time per point, we can determine for each point exactly which of the at

most C pseudodisks it is contained in.

We now describe our algorithm for computing a small hitting set for H(P,D). We first com-

pute a hitting set S of size O(OPT). This can be done using the near linear time algorithm of
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Agarwal-Pan [AP14]. We also assume that we know the value of OPT = OPT(P,D) although it

suffices to guess the value of OPT within a (1+ε) factor which can be done inO(1/ log (1 + ε))

guesses since we know OPT within a constant factor. Throughout this section, we will use n as

the total input size. We therefore upper bound |P | and |D| by n.

We first prune the input so that no point is contained in more than ∆ = n/(ε · OPT) disks. This

can be done by iterating over each point p ∈ P and computing the number of disks D′ ⊆ D
that contain p. If |D′| ≥ ∆, remove the disks in D′ from D and add the point p to the set Q

(which is initially empty). Note that as we go over the points the set D changes but we do not

change the value of ∆. Since each time we add a point to Q, we remove at least ∆ disks from

D, |Q| ≤ n/∆ = ε · OPT. We can thus add the set Q to our hitting set at the cost of an added

ε in our approximation factor. This preprocessing procedure takes O(n2) time (this will not be

the bottleneck of our algorithm).

After preprocessing, we pass P and D to Algorithm 9 which we describe now. It requires an

initial hitting set S of sizeO(OPT) which we obtain from [AP14]. The goal of Algorithm 9 is to

compute a hitting set whose size is at most (8 + ε) ·OPT. We compute a value t = |S| − 8 ·OPT

which indicates how far we are from the solution we seek. As we will see, when t is large,

progress can be made quickly. However as we approach the quantity 8 ·OPT, progress becomes

slower and slower. The algorithm uses only local improvements of the type (X,Y ) where

|Y | ≤ 2. Throughout the algorithm we maintain for each D ∈ D, the number of points ND it

contains from S. Initially computing ND for each disk takes O(n2) time. After that we need

to update these quantities only when a local improvement (X,Y ) happens. We update ND as

follows: ND = ND−|D∩X|+ |D∩Y |. Since |Y | is always at most 2 in our algorithm, naively

this takes time O(n|X|). Since such a local improvement decreases the size of the hitting set

S by |X| − 2 = Ω(|X|), the overhead for maintaining ND is O(n) per improvement. Let

LocallyImprove(X,Y) be the procedure that updates S to (S \ X) ∪ Y and updates ND

for each disk as mentioned above.

In each iteration of the while loop in Algorithm 9, we first construct a range reporting data

structure [AC09] for the points in S so that given any disk D, we can find the set of points in

D∩S in time O(log n+ |D∩S|). We then use this data structure to compute the personal disks

of each s ∈ S as follows. Iterate over each disk D ∈ D and if ND = 1, use the reporting data

structure to find the single point s ∈ S that is contained by D. We then add D to the (initially

empty) list of personal disks of s. Since each query takes O(log n) time, the total time taken to

compute the personal disks is O(n log n). If we find some point s ∈ S for which D(s) = ∅,
we can just remove s from the current hitting set. In other words we do a local improvement

({s}, ∅).

The algorithm iterates over the points in P in random order, considering the possibility of re-

placing each point in a local-improvement step. Say the current point being considered is p1;
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Algorithm 9: Algorithm for (8 + ε)-approximation.
Data: A point set P , a set of disks D, a hitting set S ofH(P,D) with

|S| = O(OPT(H(P,D))), the size of the optimal hitting set OPT = OPT(H(P,D)), and
a parameter ε > 0.

1 For each disk D ∈ D compute ND = |D ∩ S| // takes O(n2) time

2 while t = |S| − 8 · OPT > ε · OPT do
3 Construct a range reporting data structure for S for disk ranges
4 For each s ∈ S compute D(s) = {D ∈ S : D ∩ s = {s}}// use range reporting

5 if D(s) = ∅ for some s ∈ S then
6 LocallyImprove({s}, ∅) // s is dropped from the hitting set

7 continue // with the next iteration of the while loop on line 2.

8 π = A random permutation of the points in P
9 for i = 1 to |P | do

10 p1 = πi
11 for each s ∈ S do
12 Compute: D′(s) = {D ∈ D(s) : p1 /∈ D}, R′(s) =

⋂
D∈D′(s)D

// The above loop takes O(n logn) time

13 LetR′ = {R′(s) : s ∈ S} // R′ is a set of pseudodisks

14 M = {s ∈ S : R′(s) = ∅}
15 for each p ∈ P do
16 Compute α(p) s.t. 0.9 · depth(p,R′) ≤ α(p) ≤ depth(p,R′)

// depth(p,R’) denotes the number of regions in R′ containing p

17 Let q = arg maxp∈P α(p)

18 Set β = max{
√
t, εt · OPT/n}

19 if |M |/5 + α(q) ≥ iβ
Cn logn then

20 Compute S′(q) = {s ∈ S : q ∈ R′(s)} // Note that |S′(q)| = depth(q,R′)
21 if |S′(q) ∪M | ≥ 9 then
22 Compute an independent set X ⊆ S′(q) ∪M in the Delaunay triangulation of

S′(q) of size at least 3 and Ω(|S′(q) ∪M |) // O(n logn) time

23 LocallyImprove(X, {p1, p2 = q})
24 break // exit for loop

25 else
26 For each p2 ∈ P , set S′(p2) = {s ∈ S : p2 ∈ R′(s)} // O(n logn) time

// Since |S′(q) ∪M | ≤ 8, |S′(p2) ∪M | ≤ b8/0.9c = 8 for all p2 ∈ P

27 Enumerate all pairs (X, p2) where p2 ∈ P , X ⊆ S′(p2) ∪M and |X| ≤ 3
28 if for any (X, p2) enumerated, (X, {p1, p2}) is a local improvement pair then
29 LocallyImprove(X, {p1, p2}))
30 break // exit for loop
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the goal is to find a point p2 so that {p1, p2} can replace a large set X , i.e., a local improvement

pair (X, {p1, p2}) of large profit. If we can find such a profitable local improvement, we make

the improvement, exit from the for loop, and continue with the next iteration of the while

loop. Otherwise, we continue with the next point in the random ordering. For any pair of points

Y = {p, q} ⊆ P , denote by ρ(Y ) the number of points in S all of whose personal disks are hit

by Y . For a point p ∈ P , we use ρ(p) to denote maxq∈P\S{ρ({p, q})}. Call a point p ∈ P

useful if there exists some q ∈ P so that for some X ⊆ S, (X, {p, q}) is a local improvement

pair.

Lemma 8.12. If p1 is useful, we can compute in O(n log2 n) time a local improvement of profit

Ω(ρ(p1)).

Proof. Let us start by considering how we could compute ρ(p1). In order to compute ρ(p1), we

need to find a point q so that the number of points s ∈ S whose personal disks are hit by {p1, q}
is maximized. To do this, we first compute for each s ∈ S, the set D′(s) of disks in D(s) that

are not hit by p1. For each s ∈ S, we then construct the region R′(s) by taking the intersection

of the disks in D′(s). Let R′ = {R′(s) : s ∈ S}. For some s ∈ S, D′(s) may be empty

and consequently some of the regions in R′ are empty. Let M = {s ∈ S : D′(s) = ∅}. The

personal disks of the points in M are hit by p1 alone. The regions in R′ define an arrangement

of pseudodisks (Lemma 8.8). In this arrangement we seek to find a point q ∈ P of the maximum

depth. However, instead of finding a point with the maximum depth, we find a point whose depth

is within a constant factor of the maximum. We construct, in O(n log n) time, an approximate

depth query data structure for the pseudodisks in R′ using Corollary 5.9 in [AHP08] with a

constant ε ≤ 0.1. This takes O(n log n) time. Then, for each point p ∈ P , we compute a value

α(p) s.t. 0.9 depth(p,R′) ≤ α(p) ≤ depth(p,R′) where depth(p,R′) denotes the depth of

p in the arrangement of regions in R′. This takes O(log2 n) time per point and so the overall

time taken is O(n log2 n). We then take the point p with the maximum α(p) as q. Observe that

|M |+ α(q) = Θ(ρ(p1)).

We first compute the set S′(q) = {s ∈ S : q ∈ R′(s)}. Note that |S′(q)| = depth(q,R′) ≥
α(q). There are two cases to consider:

Case 1: |S′(q) ∪M | > 8. In this case, we set p2 = q and let Y = {p1, p2}. Using Lemma 8.9,

we can find a subsetX ⊆ S′(q)∪M so thatX = Ω(|S′(q)∪M |) so that (X, {p1, p2}) is a local

improvement pair. Note that |X| is Ω(ρ(p1)). Thus in this case, we conclude that p1 is useful

and indeed we have found a local improvement that decreases the size of the current hitting set

by Ω(ρ(p1)).

Case 2: |S′(q) ∪M | ≤ 8. In this case S′(q) ≤ b8/0.9c = 8 for all p ∈ P . This means that

ρ(p1) = O(1) and we just need to find one set X of size 3 and a point p2 so that (X, {p1, p2})
is a local improvement pair. Using Lemma 8.11, we compute the set S′(p) for all p ∈ P in
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O(n log n) expected time. For each p2 ∈ P , we need to check if there is any subset X in

S′(p2)∪M of size 3 so that (X, {p1, p2}), is a local improvement pair. Since |S′(p2)∪M | ≤ 8,

there are at most a
(

8
3

)
subsets X ⊆ S′(p2) ∪M for which we need to check if (X, {p1, p2}) is

a local improvement pair. Thus there are O(n) pairs of the form (X, {p1, p2}), where |X| = 3,

that we need to check. For a particular pair of this form, we basically need to verify that all the

disks in D whose intersection with S is a subset of X are hit by either p1 or p2. To make things

simpler, we first remove from D all the disks that are hit by p1 and obtain a set D′ ⊆ D. Now,

we need to verify for all disks in D whose intersection with X is a subset of X that they are hit

by p2. All the O(n) pairs can be checked in O(n log n) time as follows.

We construct a data structure that will help us do the checking for all the O(n) pairs of the

form (X, {p1, p2}). We have already constructed a range reporting data structure on S for disk

ranges. Additionally, use a dictionary data structure (based on balanced binary trees) in which

the keys are subsets of S of size at most 3 and the value corresponding to a key U is a list of

disks D ∈ D′ s.t. D ∩ S = U . We start with an empty dictionary. We then go over each disk

D ∈ D′ one by one and if ND ≤ 3, we use the range reporting data structure to get U = D ∩ S
in O(log n) time. We search the dictionary for U and if it is found, we add D to its list. If no

entry is found, we create an entry for U with a single element d in its list. Note that since the

number of (≤ 3)-sets that can be obtained from set of n points by intersecting it with a set of

disks is linear in the number of points [Mat02], the number of distinct keys in the dictionary is

O(n). We go over each key U and construct the region R′(U) by taking the intersection of all

the disks in the list associated with U . Note that R′(U) can be constructed in O(m logm) time

wherem is the size of the list associated with U using Lemma 8.10. Since each disk is in the list

of at most one U , the overall time isO(n log n). In the same amount of time, for each key U , we

set up a data structure that allows us to check if a query point q is in R′(U) using Lemma 8.10.

Now, to check if a pair (X, {p1, p2}) is an improvement pair, we go over all subsets U ⊆ X and

check if p2 ∈ R′(U). The time spent for any pair is now O(log n). Therefore checking all the

O(n) pairs takes O(n log n) time.

If we find that none of the pairs we checked are local improvement pairs, then we can conclude

that p1 is not useful.

The following lemma will allow us to find a profitable local improvement quickly. Let β =

max{
√
t, εt · OPT/n}.

Lemma 8.13. There exists a k > 0 such that there are at least Ω(β/k) useful points p ∈ P with

ρ(p) ≥ k.

Proof. By Lemma 8.6, there exists Ω(t) local improvement pairs (X0, Y0), . . . where the Xi’s

are disjoint subsets of S but the Yi’s need not be disjoint. Each Xi is of size 3 and each Yi is of
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size 2. For any pair of points Y = {p1, p2} ⊆ P , if (Xi, Y ) is a local improvement pair among

the Ω(t) pairs, then we say that Xi is a triple assigned to the pair Y . Define the weight of Y as

the number of triples assigned to it and denote it by W (Y ). The total weight of all pairs is then

Ω(t).

Call a pair Y to be of type i if 2i−1 ≤ W (Y ) < 2i, for i = 1, . . . , O(log t). If W (Y ) = 0 then

we say that Y is of type 0. Since the total weight of all pairs is Ω(t), there must be some j > 0

so that the total weight of the pairs of type j is Ω(t/2j). Let Q =
⋃
Y {Y | Y is of type j}.

There are two lower bounds on the size of Q. First, since the total weight of the pairs of type

j is Ω(t/2j), and each pair has weight less than 2j , the number of pairs is Ω(t/22j), and hence

|Q| = Ω(
√
t/2j). On the other hand, for any local improvement pair (Xi, Y ) where Y is of type

j, take any point x ∈ Xi. Since D(x) is non-empty, any disk D ∈ D(x) contains at least one

point in Y . Therefore any such local improvement pair leads to an incidence between a point in

Q and a disk in D. Note that since the Xi’s are disjoint these are distinct incidences. Thus there

are Ω(t/2j) incidences. Since by assumption no point in P , and therefore no point in Q, is in

more than n/(ε · OPT) disks in D, we have that |Q| = Ω(εt · OPT/2jn).

Therefore, |Q| = Ω
(

max{εt · OPT/2jn,
√
t/2j}

)
= Ω(β/2j). Observe that each p ∈ Q is

useful and ρ(p) ≥ 3 · 2j . The lemma is therefore true for k = 2j .

We can now analyze the running time of our algorithm.

Running time: Preprocessing takes O(n2) time but this is dominated by the running time of

Algorithm 9. Consider a single iteration of the while loop in Algorithm 9. If we find some

point s ∈ S for which D(s) = ∅, we drop s from the current hitting set. This way we have

improved the size of the hitting set at the cost of O(n log n) time. The total time spent on such

improvements is at most O(OPT n log n) = O(n2 log n).

Otherwise, call a single iteration of the while loop lucky if the following is true:

∃i such that the point πi is useful and
i

ρ(πi)
≤ Cn

β

for some constant C.

Lemma 8.14. Probability that any iteration of the while loop is lucky is at least 1/2.

Proof. By Lemma 8.13, there exists a k such that there are Ω(β/k) points, say the set U , with

ρ(p) ≥ k. Consider the smallest index i s.t. πi ∈ U . The expected value of i is O(nk/β).

Therefore, with probability at least 1
2 , i ≤ Cnk/β for some large enough C. Then,

i

ρ(πi)
≤ Ckn/β

k
=
Cn

β
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Lemma 8.15. For a lucky iteration of the while loop, let λ be the reduction in size of the

current hitting set, and σ the time spent in this iteration. Then σ/λ ≤ Cn2 log2 n/β.

Proof. As we go over the points in random over, for the current point ν = πi, we estimate

ρ(ν) which allows us to check if i/ρ(ν) ≤ Cn/β. If so, assuming that the point ν is useful,

we decrease the size of the current hitting set by Ω(ρ(ν)). If i/ρ(ν) > Cn/β or we discover

that ν is not useful we move to the next point in the random order. However, since the iteration

of the while loop is lucky, we will find some point ν = πi which is useful and for which

i/ρ(ν) ≤ Cn/β. For this point ν, we find a local improvement involving ν of value Ω(ρ(ν))

and the current iteration of the while loop ends. The total time spent in this iteration is σ =

O(i ·n log2 n) since we have seen i points so far and for each point we spend O(n log2 n) time.

The reduction in the size of the current hitting set is λ = Ω(ρ(ν)). Thus σ/λ ≤ i
ρ(ν) ·n log2 n ≤

Cn2 log2 n/β.

Since any iteration of the while loop is lucky with probaility at least 0.5 and we can assume

that all the iterations are lucky. This does not change the running time by more than a factor of

2.

Lemma 8.16. The expected time taken to halve t is O(n7/3 log2 nε−1/3).

Proof. Lemma 8.15 tells us that the amortized amount of time spent for the reducing the size

of the current hitting set by 1 is O(n2 log2 n/β). Since β is an increasing function of t, this

decreases with t. However, t does not change by more than a factor of 2 until it is halved. So,

the expected time for t to be halved isO(t/2 ·n2 log2 n/β). Now, t/β = min{
√
t, n/(ε ·OPT)}.

Since t = O(OPT), t/β = O(min{
√

OPT, n/(ε · OPT)} = O((n/ε)1/3). Thus the expected

time to halve t is O(n7/3 log2 nε−1/3).

Since the initial value of t is O(OPT), there are O(log 1/ε) halving rounds until t ≤ ε · OPT.

Thus, the expected running time of the Algorithm 9 is O(n7/3 log2 n ε−1/3 log (1/ε)). Fi-

nally, since we need to run Algorithm 9 for O(1/ log (1 + ε)) guesses for OPT, the overall

running time is O(n7/3 log2 n ε−1/3 log (1/ε)/ log (1 + ε)). For a fixed small value of ε, this is

O(n7/3 log2 n).



Chapter 9

Dynamic Convex Hull for Simple
Polygonal Chains

This chapter describes an algorithm that constructs a dynamic convex hull of points in a simple

polygonal chain. This chapter is based on the following paper.

Norbert Bus and Lilian Buzer. “Dynamic Convex Hull for Simple Polygonal Chains in Constant

Amortized Time per Update.” In: Proceedings of the 31th European Workshop on Computa-

tional Geometry (EUROCG). 2015

9.1 General Idea

There exist many algorithms for computing the convex hull in both the real-RAM and the word-

RAM model. If one considers the real-RAM model, an optimal output sensitive algorithm to

construct the convex hull of n points in a plane was published in [Cha96] having O(n log h)

time complexity where h is the output size. If the point set is a simple polygonal chain, the best

algorithm, a result of Melkman, runs in linear time [Mel87]. If one requires the data structure to

be dynamic, namely to handle insertions and deletions of arbitrary points an optimal algorithm

requiring O(log n) time for both operations was proposed in [BJ02]. For points in a polygonal

chain there has been no work on efficient deletion of points. Changing the computational model

to the word-RAM model and using Graham’s scan [Gra72] to construct a convex hull the running

time is essentially the time to sort the points, taking, e.g.,O(n log logn) time [Han02]. Dynamic

data structures supporting deletion and insertion in the word-RAM model require an optimal

O( logn
log logn) time for both operations assuming that word length is Θ(log n), see [DP07].

In this chapter we give an on-line algorithm to construct the dynamic convex hull of a simple

polygonal chain in the Euclidean plane supporting deletion of points from the back of the chain

121
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and insertion of points in the front of the chain. Both operations require amortized constant time

considering the real-RAM model. The main idea of the algorithm is to maintain two convex

hulls, for efficiently handling insertions and deletions. Implicitly these two hulls constitute the

convex hull of the polygonal chain.

9.2 Algorithm

Overview of our algorithm

Our algorithm works in phases. For a precise formulation let us first define some necessary

notations. A polygonal chain S in the Euclidean plane, with n vertices, is defined as an ordered

list of vertices S = (p1, p2, . . . , pn) such that any two consecutive vertices, pi and pi+1 are

connected by a line segment. A polygonal chain is called simple when it is not self-intersecting.

For simplicity, we assume that the points are in general position. Our algorithm handles insertion

and deletion of points into the current convex hull in the order induced by S. This results in the

fact that the current convex hull always contains a contiguous subchain of S, let us denote it by

Sji = (pi, · · · , pj) where i ≤ j and the points are effectively inserted/deleted in a FIFO manner.

Let us denote the convex hull of Sji with Cji . Therefore, given a convex hull Cji , inserting a

point results in Cj+1
i while removing the first point results in Cji+1.

At the beginning of each phase, we initialize a simple data structure called the phase convex hull

that maintains the representation of the convex hull of a subrange of the polygonal chain. Each

phase handles an arbitrary number of insertions and handles deleting the points that were present

when the phase started. Assuming that the phase convex hull first covered Sba this means we can

delete the points pa . . . pb. A phase ends, when we first delete a point that was not covered by

the initial convex hull. After that, a new phase starts and we initialize a new phase convex hull.

See Figure 9.1.

Cba → Cb+1
a → Cb+1

a+1 → · · · → Ccb −→ Ccb+1 → Ccb+2 → · · · → Cdc

phase starting with Sba phase starting with Scb+1

initialize new
phase convex hull

FIGURE 9.1: Example of two phases

We state the main result of our algorithm in Theorem 9.1.

Theorem 9.1. The amortized time complexity of insertion and deletion of points in a convex

hull of a simple polygonal chain is constant.
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Proof. Assume that each point has been inserted and later removed. In Section 24 we show that

the i-th phase runs in O(ki + li) time where ki is the number of insertions in the phase and li is

the number of deletions. During the whole algorithm each point has been inserted and deleted

exactly once hence there have been n insertions and n deletions overall. Therefore the overall

running time of the phases is O(n), yielding the desired result.

Definitions

In this section we introduce notations, definitions and data-structures used in our algorithms.

We start with the phase convex hull representing the convex hull of the polygonal chain at any

step of the algorithm. Then we describe two other data-structures representing convex hulls

that are maintained during the phase. These two objects’ purpose is to enable that insertion

and deletion of points for the phase convex hull run in constant amortized time. Each of these

data-structures have to be initialized at the beginning of the phase, details can be found at the

description of them. We suggest that the reader is familiar with the Melkman algorithm [Mel87]

as our method builds heavily on it. Briefly, it constructs the convex hull of a polygonal chain

by iteratively (in the proper order) adding the points to the convex hull and modifying it as

necessary. This operation is based on checking a simple configuration of points.

At the beginning of the phase let Sba be the current polygonal chain while at the end let it be

Scb . Let us denote by Sji the polygonal chain at an arbitrary step during the phase and Cji the

corresponding convex hull.

The phase convex hull denoted by C∗ is the data structure representing the convex hull Cji ,

containing all of its points in two dequeues. Every point is contained in exactly one of the two

dequeues except for two: the front of both dequeues refer to the same point of the subchain,

the one contained in Cji with highest index and similarly, the back of both dequeues refer to the

same point of the subchain, the one contained in Cji with lowest index. We refer to the front of

both dequeues as front opening and to the back as back opening. Connecting the two dequeues

gives the ordered circular list of points inCji . See Figure 9.2 for an illustration. Moreover, if one

considers the back opening to be closed (i.e., as if being glued together, removing the duplicate

copy of the back point), one has the data structure used in the Melkman algorithm. On the other

hand, if the front opening is considered to be closed one has again the Melkman data structure

but now points can be added at the other end of the chain.

Note that connecting the two dequeues is a constant time operation as there is no copy of data

happening in order to create one dequeue, it is enough to virtually handle them as one dequeue.
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At the beginning of the phase C∗ is built for Sba. This initializing step can be carried out by

using the Melkman algorithm to build a convex hull of Sba and then creating the two dequeues

by splitting up the result of the Melkman algorithm at the point with the lowest index.

pi

pb pj−1pj

deque

deque

FIGURE 9.2: The two dequeues constituting C∗ with corresponding points in blue and yellow.
In green and red we depict C+ and C− respectively.

The incremental convex hull is the data-structure representing the convex hull of the points in

the polygonal chain added after the initialization of the phase. The data-structure is a dequeue

as in the Melkman algorithm and it is used the same way, namely we iteratively add the inserted

points to it. Let us denote it by C+, see Figure 9.2. At any state Sji , C+ represents Cjb+1. It is

initialized to the empty set.

The decremental convex hull is a data-structure representing the convex hull of the points that

can be deleted during the phase. It is initially built with the Melkman algorithm for the points

present at the beginning of the phase but according to the reverse order of the points. Let us

denote it by C−, see Figure 9.2. At each deletion a point is removed from C−. At any state Sji ,

C− represents the convex hull of the points Sbi , note that the data-structure corresponds to the

Melkman data-structure for the subchain in reverse order. This data structure has to maintain

additional information that will be used for efficient deletion of points.

First, while initializingC−, for each point pk in Sba, the list of points that were removed from the

previous convex hull Cbk+1 in the Melkman algorithm should be kept. Let us call these points

the history of a point and denote it by H(p) for a point p. This enables one to ‘rewind’ the

algorithm, i.e, the points of C− can be deleted in a LIFO order while the convex hull of the

current points can be maintained easily. As C− was built in the reverse order this is exactly the

deletion order we need.

Second, certain details of the polygonal regions defined by Cbk\Cbk+1 for a ≤ k < b, in other

words the difference between consecutive convex hulls in the Melkman algorithm for building

C−, have to be kept. Clearly, some of these regions are empty as the convex hull might not

change during its construction. For simplicity, let us denote non-empty regions by Rm such that

m starts from 0 and corresponds to the order the regions appear. This way, R0 is a simple edge,
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R1 is the first triangle, etc. In Figure 9.3 we show the regions where the red polygonal chain is

Sba. The green line corresponds to the polygonal chain of the points inserted during the phase.

Maintaining a complete description of a region is not required for our algorithm, instead, for

each region only the edges (at most two) that are shared with a higher ordered region have to

be kept, e.g., in Figure 9.3 R5 has two neighboring higher ordered regions, R6 and R7. Let

us denote the set of these edges by E(Rm) and with each edge we store the two regions it

belongs to. Setting up these edges for the regions can be done during the Melkman algorithm

for constructing C− and all regions have at most two such edges. As a consequence of the

Melkman algorithm, these two edges are always those that contain the point pk whose insertion

(during the Melkman algorithm) created the region itself.

R7

R6

R5

R4

R3

R2

R1

R0

pa

pb
pj

FIGURE 9.3: Regions.

We will need a simple property of the regions, namely that they form an ordered partitioning of

the plane that enables a certain operation. See Lemma 9.3.

Lemma 9.2. While initializing C− for Sba one can create the ordered list of regions in O(b− a)

time.

Proof. The statement is a simple consequence of the Melkman algorithm.

Lemma 9.3. For each phase, the ordered list of regions enables the maintenance of the highest

ordered region that contains any point inserted during that phase. This operation takesO(c−a)

time for a phase.

Proof. As an illustration for the lemma see Figure 9.3. The highest ordered region containing

a point inserted in the phase is region no.7. The proof is by induction. Suppose we know the

highest ordered region Rm containing a point of C+. When inserting a new point pj+1 into C+,

one can check if this point is located in a higher ordered region by checking if the line segment

between pj and pj+1 intersects an edge in E(Rm). If the line segment intersects one then we

recursively carry out the same process for the region that shares this edge with Rm. If it does

not intersect any of the edges in E(Rm) then the current region is the one that is highest ordered
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and contains pj+1 Checking if a point exits one region is a constant time operation. The total

number of times this operation is carried out in a phase is at most the number of regions in C−

and points in C+ which is together linear in the number of points inserted or deleted during the

phase. Proving that this method actually finds the highest ordered region is a consequence of

the Melkman algorithm.

To complete our proof we have to show how to find the region of the first point pb+1 of C+. In

order to facilitate this search we create a list of the regions containing pb as a vertex (this can be

done during the construction of C−). Assume we add an additional point on the line segment

(pb, pb+1) infinitesimally close to pb. Finding the region containing this point is now reduced

to searching for the region whose two edges connected to pb define the sector containing this

additional point. Given this region we can find the region of pb by applying the inductive step.

Searching for the region of the additional point has O(b− a) complexity.

Insertion

The main steps to insert points in amortized constant time is to add the point to C∗ and to C+.

The latter is necessary for efficient deletions since points of C+ might appear later on C∗ after

deleting a point.

In order to insert the point pj+1 into C∗ it is sufficient to do one step of the Melkman algorithm.

For that, consider the back opening of C∗ to be closed, i.e., the two dequeues behave like one.

One has to be cautious when the Melkman algorithm deletes the point being the back opening as

the new back opening should be by our definition the point in Cji with least index. Indeed, this

is the neighbor of the deleted opening. In order to show this, suppose that it is not true and let

px, pw be the back and front opening, the neighbor of the back opening py (the one that has not

been deleted) and the new back opening pz where pz 6= py. If z < y there were two polygonal

chains Szx and Sjy inside the convex hull that have to intersect, contradicting the simplicity of

the chain. After C∗ is updated, pj+1 has to be inserted into C+ as well, which is done using the

Melkman algorithm.

Moreover, as long as the front opening is one of the points in C− i.e., C+ ⊂ C− one has to

update the highest ordered region of C− containing any inserted point. We introduce states

corresponding to the points’ distribution in C∗ (with respect to whether they belong to C+ or

C−) in order to detect when is the update of the highest ordered region necessary. The following

lemma describes how the points’ distribution changes during the execution of the operations in

a phase. It states that there cannot be arbitrary distributions, e.g., points from C+ and C− in an

alternating order.
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Lemma 9.4. The points in C∗ are partitioned into contiguous ranges according to whether they

belong toC− orC+. At any step in a phase there are at most two such partitions, one containing

points of C+ and one containing points of C−. The partitioning changes in a specific pattern

during a phase: at the beginning there are only points from C− in C∗; then two partitions;

finally only points from C+ are located in C∗. Let us call this the state of the algorithm and

denote them by decremental, mixed or incremental respectively.

Proof. The fact thatC∗ is partitioned into at most two parts is a consequence of the simplicity of

the polygonal chain. Indeed, suppose the contrary. Clearly in this case there are at least 4 points

A,B,C,D in C∗. Assume that A,C ∈ C+ and B,D ∈ C−. This implies that there is a simple

polygonal chain that belongs to C+ and connects A with C. Similarly for B, D and C−. Since

both chains are inside C∗ they must intersect which contradicts the simplicity assumption of

the complete chain. The strict ordering also follows easily since C+ is monotonically growing

while C− is monotonically shrinking.

Determining the state can be done by checking which convex hull (C− or C+) do the two

openings of C∗ belong to. Using this notation we can say that updating the highest ordered

region has to be done only in the decremental state. For the pseudo code of inserting the next

point see Algorithm 10.

Algorithm 10: Algorithm for a inserting the next point.
Data: R∗ highest ordered region containing a point of C+

1 Procedure Insert(pj+1)
2 Insert pj+1 into C+ // Melkman

3 Insert pj+1 into C∗ // Melkman

4 if state == decremental then
5 while (pi, pj+1) exits R∗ into higher ordered region do
6 Update R∗

Deletion

The main idea to delete a point from the convex hull is to remove it from both C∗ and C− and

reconstruct the convex hull in this area. To delete the point pi there are several scenarios that

have to be handled differently. As a common point in all cases, pi has to be removed from C−

and its history has to be added to C− (‘rewinding’ the Melkman algorithm). For a point p in

C− let us denote the set of its two neighbor vertices in the convex hull by N−(p). Similarly

for the other hulls we use N+(p) and N∗(p). Let us first group the different cases according

to Lemma 9.4 for an illustration see Figure 9.4. There is only one case when the algorithm is
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nontrivial and we show that the method results in the desired convex hull. The running time

analysis is left for Section 24.

pi

pbpj

Case 1

pi
pbpj

Case 2

pi
pb pj

Case 3

FIGURE 9.4: The three different cases for deleting the point pi. C+ and C− is depicted green
and red respectively. C∗ is not illustrated.

Case 1 (decremental): If the phase convex hull contains only points from C− then there are

two possibilities, namely whether a point of C+ has to be added to C∗ or not. This can be

simply checked since the highest ordered region is maintained exactly for this purpose. If there

is no point of C+, then one can simply remove pi from C∗ and add the points in H(pi) to C∗

using the Melkman algorithm. If there is then an expensive operation is required, namely to add

all the points of C+ to C∗. This can be done with the Melkman algorithm considering the back

opening to be closed. Even though this operation might require linear time in the number of

insertions it can happen only once for each phase (due to Lemma 9.4) therefore its amortized

time complexity is constant.

Case 2 (mixed): If the phase convex hull contains points from both C+ and C−, we have the

most complicated case. Obviously the point pi to be removed is in C−. Let us denote the points

in N∗(pi) by x and y. The edge between x and y would become an edge of C∗ if there are no

points in the triangle defined by pi, x and y. Let us denote this triangle by ∆. If this is not the

case one has to create new edges of C∗ that correspond to the vertices located in ∆. Adding

these vertices is done as follows. We further categorize this case into three sub cases depending

on the neighbors of pi.

Case 2a: If both x and y belong to C− then clearly C∗ can only be modified by the points from

the history of the currently deleted point pi. In such a situation using the Melkman algorithm

one can add the ordered history of pi to C∗.

Case 2b: If one point, e.g., x belongs to C+ then there might be points of C+ that have to be

inserted into C∗. In this case first the history of pi and the point q such that q ∈ N−(pi), q /∈ C∗

should be inserted into C∗ and then starting from x we shall add the vertices of C+ in the

circular order (starting with the point in N+(x) not being a vertex of C∗) using the Melkman

algorithm. Adding points should be continued only as long as they create new vertices on C∗.



Chapter 9 Dynamic Convex Hull for Simple Polygonal Chains 129

Case 2c: If both x and y belong to C+ then a similar process has to be carried out namely first

inserting the points of the history (with the points in N−(pi)) and then the vertices of C+ in

the proper circular order starting from x and y. Note that x and y define two different parts

of C+ that have to be inserted into C∗ and to maintain a low running time one has to insert

points from these two parts in an alternating order (one cannot proceed with points from the

part of x after finishing the points starting from y). Denote these two parts by Ax and Ay. In

order to be able to utilize the Melkman algorithm the added points have to belong to a simple

polygonal chain, otherwise using Melkman would be impossible. This can be ensured by first

creating the part of C∗ within ∆ and adding it to C∗ by simply copying it. See Figure 9.5 for a

schematic illustration of this setup. The details are as follows. We use the same double queue

implementation of the Melkman algorithm as for C∗. This enables us to add points on both

ends of the polygonal chain. Let us denote the points in N−(pi) by x′ and y′ such that x′ is

on the ‘side’ of x. Add points in this structure in the following order x′, H(pi), y
′ and then in

an alternating order points from C+ starting from x and y. The process continues until a new

point is inside the convex hull. If one is inside we stop adding points from its part (e.g. Ax) and

continue with points from the other part as long as an added point is inside the convex hull.

Proof. In Case 2a, after the removal of the point pi, only points of C− can be added to C∗

otherwise it would contradict Lemma 9.4. It is trivial that these new points are exactly the

history of pi. In Case 2b and Case 2c we need a simple fact, namely that after deleting pi only

points of its history and N−(pi) can become part of C∗ in other words no other point of C− can

appear in C∗. This is implied by the fact that C− is in the cone defined by pi and N−(pi) which

is inside the cone defined by pi, x and y (with pi as apex in both cones). In Case 2b and Case 2c

one has to argue that it is valid to apply the Melkman algorithm. This is trivial as the parts of the

polygonal chains that are actually inserted are always simple since only the point located inside

the convex hull could cause a self-intersection but at this point the algorithm stops.

pi pjpb

y

x

FIGURE 9.5: Deleting the point pi. Solid blue lines denote the convex hull after deleting pi.
Gray arrows denote the points that have to be inserted into C∗.
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Case 3 (incremental): If C∗ contains only points of C+ than C− is inside C+ therefore there

is no change in C∗.

The pseudo code for deleting the next point is presented in Algorithm 11.

Algorithm 11: Algorithm for a deleting the next point.

1 Procedure Delete(pi)
2 Delete pi from C−and insert H(pi) into C− using Melkman

// checking the state is based on whether the front and back openings

belong to C+ or C−

3 if state == decremental then // Case 1

4 if R(pi) not empty then
5 Insert Sj+1

b+1 into C∗ using Melkman
6 else
7 Insert H(pi) into C∗ using Melkman

8 if state == mixed then // Case 2

9 x, y ←N∗(pi)
10 if x ∈ C+ and y ∈ C− then swap(x,y) // for Case 2b

11 if x ∈ C− and y ∈ C− then // Case 2a

12 Insert H(pi) into C∗

13 else if x ∈ C− and y ∈ C+ then // Case 2b

14 Insert first q ∈ N−(pi)/{x} and then H(pi) into C∗

15 do
16 Insert points from C+ not in C∗ starting with y
17 while C∗ changes
18 else // Case 2c

19 T ← empty convex hull with two dequeues
20 Insert x′, H(pi), y

′ into T
21 do
22 Insert points from C+ (not in C∗) starting from y or x in alternating order
23 while T changes
24 Copy T into C∗

Complexity

In this section we show that each phase takes time linear in the number of insertions and dele-

tions. Let us denote them by k and l respectively.

Initialization: Clearly, initializing C∗, C+ and C− is linear in the number of points present at

the beginning of the phase since we only utilize a modified Melkman algorithm. This indeed is

the same as the number of points deleted in the phase. Therefore the complexity of initialization

is O(l).
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Insertion: For all insertion using the Melkman algorithm for both the phase convex hull and the

incremental convex hull takes O(k) time. During insertion of points one has to also maintain

the highest ordered region containing any point of C+. This can be done in O(k) time as well.

Deletion: Clearly, during executing the deletions, the number of points inserted into C∗ using

the Melkman algorithm is not more than a constant times the points in C− which is O(l) (this

follows since the a point can appear as history only once) and the points of C+ added to C∗

which is less than O(k) as no point can be added more than once to C∗ due to the monotonicity

of the operations.

This results in the following theorem.

Theorem 9.5. The running time of one phase is O(k + l) given that there are k insertions and

l deletions.
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Software

In our work we have introduced efficient algorithms for computing ε-nets and hitting sets for

disks. In this section we will describe our code. Our methods rely on the Delaunay triangulation.

Instead of implementing an algorithm to construct Delaunay triangulations we have decided to

use the well-known CGAL library [The15]. It provides a rich source of efficient and reliable

geometric algorithms and data structures written in C++. One of the unique features it provides

is the possibility to carry out exact computations i.e., without numerical errors.

The source code can be found on the author’s website. All of our code relies on the data struc-

tures and algorithms provided by CGAL, therefore it is necessary to use our software. We will

here highlight some decisions and crucial parts of the algorithms. The code contained in this

document is a subset of the real code only for presentation purposes.

The enet library

The library enet provides the implementation of our algorithm to construct small sized ε-nets

for disks. In Listing 10.1 we give the interface of the algorithm. The comments describe the

function of the parameters. We have defined a global variable eps_c for setting the probability

with which the random sample is created. Setting it to 12 results in the smallest ε-nets theo-

retically while according to our experiments it worth lowering it to 7, resulting in even smaller

ε-nets in practice. The parameter counter holds the number of points in the ε-net resulting

from subproblems with ε′ > 0.5. The algorithms proposed for this case are not implemented

(due to the lack of software for calculating centerpoints) therefore temporarily the same sam-

pling algorithm is applied recursively instead of the more advanced constructions.

1 e x t e r n d ou b l e eps_c ; / / p r o b a b i l i t y c o n s t a n t ( e p s c / eps ) f o r random sample ←↩
i n t h e eps−n e t a l g o
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2

3 /∗ !

4 ∗ \ b r i e f C o n s t r u c t eps−n e t w i th random s a m p l i n g .

5 ∗ \param i n p u t p o i n t s The i n p u t p o i n t s .

6 ∗ \param [ in , o u t ] w e i g h t s The w e i g h t s o f i n p u t p o i n t s .

7 ∗ \param e p s i l o n The e p s i l o n .

8 ∗ \param [ o u t ] e p s n e t The e p s n e t .

9 ∗ \param [ o u t ] c o u n t e r The c o u n t e r f o r e p s n e t p o i n t s r e s u l t i n g ←↩
from subprob l ems wi th e p s i l o n >0 .5 .

10 ∗ \param [ i n ] c u r r e n t P o i n t s The c u r r e n t p o i n t s , t o d e n o t e t h a t on ly a ←↩
s u b s e t o f p o i n t s s h o u l d be used ( r e c u r s i v e l y c a l l i n g t h e a l g o r i t h m ) .

11 ∗ r e t u r n s i z e o f f i r s t random sample

12 ∗ /

13 size_t randomSampleEpsnet (

14 c o n s t std : : vector<Point> & input_points ,

15 c o n s t std : : vector<double> & weights ,

16 c o n s t d ou b l e epsilon ,

17 std : : vector<size_t>& epsnet ,

18 size_t& counter ,

19 std : : vector<size_t>& currentPoints = std : : vector<size_t>()

20 ) ;

LISTING 10.1: enet interface

The algorithm only relies on CGAL for computing the Delaunay triangulation and locating the

disks containing each point.

The dnet library

The library dnet provides the implementation of our algorithm to construct small sized hitting

sets od disks. In Listing 10.2 we give the interface of the algorithm. The comments describe the

function of the parameters. We have defined global variables controlling the different parameters

of our algorithm, the best setting that we have applied was to set bg_c1=30, bg_c2=12,

bg_c3=2, bg_c4=2, bg_c5=0.6.

1 e x t e r n d ou b l e bg_c1 ; / / s i z e o f g l o b a l e p s n e t i s w i th eps = bg c1 / OPT .

2 e x t e r n d ou b l e bg_c2 ; / / s i z e o f p h a s e e p s n e t i s w i th eps = bg c2 / OPT .

3 e x t e r n d ou b l e bg_c3 ; / / r ewe igh a d i s k on ly i f we i gh t < bg c3 / OPT

4 e x t e r n d ou b l e bg_c4 ; / / r e w e i g h i n g f a c t o r

5 e x t e r n d ou b l e bg_c5 ; / / f i n i s h a l g o r i t h m i f r e m a i n i n g h i t t i n g s e t . s i z e < ←↩
bg c5 ∗OPT .

6

7 /∗ !
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8 ∗ \ b r i e f Computes t h e h i t t i n g s e t w i th o u t s i m p l i f i e d Bronnimann−Goodr ich ←↩
i m p l e m e n t a t i o n

9 ∗ \param [ in , o u t ] i n p u t p o i n t s The i n p u t p o i n t s .

10 ∗ \param i n p u t d i s k s The i n p u t d i s k s .

11 ∗ \param [ in , o u t ] H i t t i n g s e t The h i t t i n g s e t ( i n d i c e s ) .

12 ∗ \param OPT The o p t i m a l v a l u e i f known ( i f z e r o t h e ←↩
a l g o w i l l g u e s s ) .

13 ∗ /

14 vo id bg_solve (

15 std : : vector<Point> & input_points ,

16 c o n s t std : : vector<Circle> & input_disks ,

17 std : : vector<size_t> & Hittingset ,

18 size_t OPT = 0

19 ) ;

LISTING 10.2: enet interface

This library relies on enet and the Delanuay triangulation provided by CGAL along the locat-

ing the disks in the Delanuay triangulation that contain certain points.





Conclusion

We have presented algorithms for various problems that have sometimes seemingly little con-

nection to each other. But they all share one component, namely that determining exact solutions

seem to be currently unfeasible therefore good approximation algorithms are highly desired. We

have presented several improvements relying on the study of the geometric and combinatorial

structures of them. Even for problems like global illumination, it turns out that with a suit-

able formulation, like the many-lights framework that discretizes the problem, geometric and

combinatorial structures become a key tool for efficient algorithms delivering state-of-the-art

performance. Besides the theoretical aspects of designing efficient algorithms we have empiri-

cally validated our results by implementing them and testing them on various data. Most of the

software written is published online.
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erson. “On the Discrete Unit Disk Cover Problem.” In: International Journal on

Computational Geometry and Applications 22 (5), 2012, pp. 407–419.
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Radiosity.” In: Computer Graphics Forum 26 (3), 2007, pp. 425–434.

[SPA07] E. A. Silva, K. Panetta, and S. S. Agaian. “Quantifying image similarity using

measure of enhancement by entropy.” In: Society of Photo-Optical Instrumenta-

tion Engineers (SPIE) Conference Series. Vol. 6579. 2007.

[Tat09] Natalya Tatarchuk. “Advances in Real-time Rendering in 3D Graphics and Games

I.” In: ACM SIGGRAPH 2009 Courses. 2009.

[VG95] Eric Veach and Leonidas Guibas. “Bidirectional Estimators for Light Transport.”

English. In: Photorealistic Rendering Techniques. 1995, pp. 145–167.

[VG97] Eric Veach and Leonidas J. Guibas. “Metropolis light transport.” In: SIGGRAPH

’97: Proceedings of the 24th annual conference on Computer graphics and inter-

active techniques. 1997, pp. 65–76.

[VØ00] Staal Vinterbo and Aleksander Øhrn. “Minimal approximate hitting sets and rule

templates.” In: International Journal of Approximate Reasoning 25 (2), 2000,

pp. 123 –143.

[WAB+06] Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. “Multidi-

mensional lightcuts.” In: ACM SIGGRAPH 2006 Papers. 2006, pp. 1081–1088.

[Wal07] Ingo Wald. “On Fast Construction of SAH-based Bounding Volume Hierarchies.”

In: Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing. 2007,

pp. 33–40.

[WBK+08] Bruce Walter, Kavita Bala, Milind Kulkarni, and Keshav Pingali. Fast Agglomer-

ative Clustering for Rendering. 2008.

[WC13] Yu-Ting Wu and Yung-Yu Chuang. “VisibilityCluster: Average Directional Vis-

ibility for Many-Light Rendering.” In: Visualization and Computer Graphics,

IEEE Transactions on 19 (9), 2013, pp. 1566–1578.

[WFA+05] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian,

and Donald P. Greenberg. “Lightcuts: a scalable approach to illumination.” In:

ACM Trans. Graph. 24 (3), 2005, pp. 1098–1107.



Bibliography 147

[WFW+13] Sven Woop, Louis Feng, Ingo Wald, and Carsten Benthin. “Embree Ray Tracing

Kernels for CPUs and the Xeon Phi Architecture.” In: ACM SIGGRAPH 2013

Talks. 2013, 44:1–44:1.

[WKB12] Bruce Walter, Pramook Khungurn, and Kavita Bala. “Bidirectional Lightcuts.”

In: ACM Trans. Graph. 31 (4), 2012, 59:1–59:11.

[WPS+03] Ingo Wald, Timothy J. Purcell, Joerg Schmittler, Carsten Benthin, and Philipp

Slusallek. “Realtime Ray Tracing and its use for Interactive Global Illumination.”

In: Eurographics State of the Art Reports. 2003.

[WWB+14] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred

Ernst. “Embree: A Kernel Framework for Efficient CPU Ray Tracing.” In: ACM

Trans. Graph. 33 (4), 2014, 143:1–143:8.

[WXW11] Guangwei Wang, Guofu Xie, and Wencheng Wang. “Efficient Search of Light-

cuts by Spatial Clustering.” In: SIGGRAPH Asia 2011 Sketches. 2011, 26:1–26:2.

[The15] The CGAL Project. CGAL User and Reference Manual. 4.6. CGAL Editorial

Board, 2015.


	Publications of the Author
	A Detailed Overview: Problems, Techniques and Results
	I Computer Graphics: Rendering Photo-Realistic Images
	1 Introduction to Many-Lights Methods
	2 Global Illumination Using Well-Separated Pair Decomposition
	2.1 General Idea
	2.2 Algorithm
	2.3 Additional Structures for Illumination Computation
	2.4 Results and Discussion
	2.5 Limitations

	3 IlluminationCut
	3.1 General Idea
	3.2 Algorithm
	3.3 Results and Discussion
	3.4 Limitations

	4 Software

	II Combinatorial Optimization
	5 Overview of the Hitting Set Problem
	6 Tighter Estimates for epsilon-nets for Disks
	6.1 A Near Linear Time Algorithm for Computing epsilon-nets for Disks in the Plane
	6.2 Implementation and Experimental Evaluation

	7 Engineering the Agarwal-Pan Algorithm
	7.1 General Idea
	7.2 Algorithm
	7.3 Implementation and Experimental Evaluation

	8 Local Search
	8.1 General Idea
	8.2 Analysis of Quality for Local Search
	8.3 An Efficient Algorithm for Local Search

	9 Dynamic Convex Hull for Simple Polygonal Chains
	9.1 General Idea
	9.2 Algorithm

	10 Software

	Conclusion
	Bibliography

