
211Training a convnet from scratch on a small dataset

In short, the reason to use downsampling is to reduce the number of feature-map
coefficients to process, as well as to induce spatial-filter hierarchies by making succes-
sive convolution layers look at increasingly large windows (in terms of the fraction of
the original input they cover).

 Note that max pooling isn’t the only way you can achieve such downsampling. As
you already know, you can also use strides in the prior convolution layer. And you can
use average pooling instead of max pooling, where each local input patch is trans-
formed by taking the average value of each channel over the patch, rather than the
max. But max pooling tends to work better than these alternative solutions. The rea-
son is that features tend to encode the spatial presence of some pattern or concept
over the different tiles of the feature map (hence the term feature map), and it’s more
informative to look at the maximal presence of different features than at their average
presence. The most reasonable subsampling strategy is to first produce dense maps of
features (via unstrided convolutions) and then look at the maximal activation of the
features over small patches, rather than looking at sparser windows of the inputs (via
strided convolutions) or averaging input patches, which could cause you to miss or
dilute feature-presence information.

 At this point, you should understand the basics of convnets—feature maps, convo-
lution, and max pooling—and you should know how to build a small convnet to solve
a toy problem such as MNIST digits classification. Now let’s move on to more useful,
practical applications.

8.2 Training a convnet from scratch on a small dataset
Having to train an image-classification model using very little data is a common situ-
ation, which you’ll likely encounter in practice if you ever do computer vision in a
professional context. A “few” samples can mean anywhere from a few hundred to a
few tens of thousands of images. As a practical example, we’ll focus on classifying
images as dogs or cats in a dataset containing 5,000 pictures of cats and dogs (2,500
cats, 2,500 dogs). We’ll use 2,000 pictures for training, 1,000 for validation, and
2,000 for testing.

 In this section, we’ll review one basic strategy to tackle this problem: training a new
model from scratch using what little data you have. We’ll start by naively training a
small convnet on the 2,000 training samples, without any regularization, to set a base-
line for what can be achieved. This will get us to a classification accuracy of about
70%. At that point, the main issue will be overfitting. Then we’ll introduce data aug-
mentation, a powerful technique for mitigating overfitting in computer vision. By using
data augmentation, we’ll improve the model to reach an accuracy of 80–85%.

 In the next section, we’ll review two more essential techniques for applying deep
learning to small datasets: feature extraction with a pretrained model (which will get us to
an accuracy of 97.5%) and fine-tuning a pretrained model (which will get us to a final accu-
racy of 98.5%). Together, these three strategies—training a small model from scratch,
doing feature extraction using a pretrained model, and fine-tuning a pretrained

212 CHAPTER 8 Introduction to deep learning for computer vision

model—will constitute your future toolbox for tackling the problem of performing
image classification with small datasets.

8.2.1 The relevance of deep learning for small-data problems

What qualifies as “enough samples” to train a model is relative—relative to the size
and depth of the model you’re trying to train, for starters. It isn’t possible to train a
convnet to solve a complex problem with just a few tens of samples, but a few hundred
can potentially suffice if the model is small and well regularized and the task is simple.
Because convnets learn local, translation-invariant features, they’re highly data-efficient
on perceptual problems. Training a convnet from scratch on a very small image data-
set will yield reasonable results despite a relative lack of data, without the need for any
custom feature engineering. You’ll see this in action in this section.

 What’s more, deep learning models are by nature highly repurposable: you can
take, say, an image-classification or speech-to-text model trained on a large-scale data-
set and reuse it on a significantly different problem with only minor changes. Specifi-
cally, in the case of computer vision, many pretrained models (usually trained on the
ImageNet dataset) are now publicly available for download and can be used to boot-
strap powerful vision models out of very little data. This is one of the greatest
strengths of deep learning: feature reuse. You’ll explore this in the next section.

 Let’s start by getting our hands on the data.

8.2.2 Downloading the data

The Dogs vs. Cats dataset that we will use isn’t packaged with Keras. It was made avail-
able by Kaggle as part of a computer vision competition in late 2013, back when conv-
nets weren’t mainstream. You can download the original dataset from www.kaggle
.com/c/dogs-vs-cats/data (you’ll need to create a Kaggle account if you don’t already
have one—don’t worry, the process is painless). You can also use the Kaggle API to
download the dataset in Colab (see the “Downloading a Kaggle dataset in Google
Colaboratory” sidebar).

Downloading a Kaggle dataset in Google Colaboratory
Kaggle makes available an easy-to-use API to programmatically download Kaggle-
hosted datasets. You can use it to download the Dogs vs. Cats dataset to a Colab
notebook, for instance. This API is available as the kaggle package, which is prein-
stalled on Colab. Downloading this dataset is as easy as running the following com-
mand in a Colab cell:

!kaggle competitions download -c dogs-vs-cats

However, access to the API is restricted to Kaggle users, so in order to run the pre-
ceding command, you first need to authenticate yourself. The kaggle package will
look for your login credentials in a JSON file located at ~/.kaggle/kaggle.json. Let’s
create this file.

213Training a convnet from scratch on a small dataset

The pictures in our dataset are medium-resolution color JPEGs. Figure 8.8 shows
some examples.

 Unsurprisingly, the original dogs-versus-cats Kaggle competition, all the way back
in 2013, was won by entrants who used convnets. The best entries achieved up to 95%
accuracy. In this example, we will get fairly close to this accuracy (in the next section),
even though we will train our models on less than 10% of the data that was available to
the competitors.

 This dataset contains 25,000 images of dogs and cats (12,500 from each class) and
is 543 MB (compressed). After downloading and uncompressing the data, we’ll create
a new dataset containing three subsets: a training set with 1,000 samples of each class,

First, you need to create a Kaggle API key and download it to your local machine. Just
navigate to the Kaggle website in a web browser, log in, and go to the My Account
page. In your account settings, you’ll find an API section. Clicking the Create New API
Token button will generate a kaggle.json key file and will download it to your machine.

Second, go to your Colab notebook, and upload the API’s key JSON file to your Colab
session by running the following code in a notebook cell:

from google.colab import files
files.upload()

When you run this cell, you will see a Choose Files button appear. Click it and select
the kaggle.json file you just downloaded. This uploads the file to the local Colab run-
time.

Finally, create a ~/.kaggle folder (mkdir ~/.kaggle), and copy the key file to it
(cp kaggle.json ~/.kaggle/). As a security best practice, you should also make
sure that the file is only readable by the current user, yourself (chmod 600):

!mkdir ~/.kaggle
!cp kaggle.json ~/.kaggle/
!chmod 600 ~/.kaggle/kaggle.json

You can now download the data we’re about to use:

!kaggle competitions download -c dogs-vs-cats

The first time you try to download the data, you may get a “403 Forbidden” error.
That’s because you need to accept the terms associated with the dataset before you
download it—you’ll have to go to www.kaggle.com/c/dogs-vs-cats/rules (while
logged into your Kaggle account) and click the I Understand and Accept button. You
only need to do this once.

Finally, the training data is a compressed file named train.zip. Make sure you uncom-
press it (unzip) silently (-qq):

!unzip -qq train.zip

214 CHAPTER 8 Introduction to deep learning for computer vision

a validation set with 500 samples of each class, and a test set with 1,000 samples of each
class. Why do this? Because many of the image datasets you’ll encounter in your
career only contain a few thousand samples, not tens of thousands. Having more data
available would make the problem easier, so it’s good practice to learn with a small
dataset.

 The subsampled dataset we will work with will have the following directory structure:

cats_vs_dogs_small/
...train/
......cat/
......dog/
...validation/
......cat/
......dog/
...test/
......cat/
......dog/

Let’s make it happen in a couple calls to shutil.

import os, shutil, pathlib

original_dir = pathlib.Path("train")
new_base_dir = pathlib.Path("cats_vs_dogs_small")

Listing 8.6 Copying images to training, validation, and test directories

Figure 8.8 Samples from the Dogs vs. Cats dataset. Sizes weren’t modified: the samples come in
different sizes, colors, backgrounds, etc.

Contains 1,000 cat images

Contains 1,000 dog images

Contains 500 cat images

Contains 500 dog images

Contains 1,000 cat images

Contains 1,000 dog images

Path to the directory where the
original dataset was uncompressed

Directory where we will
store our smaller dataset

215Training a convnet from scratch on a small dataset

def make_subset(subset_name, start_index, end_index):
 for category in ("cat", "dog"):
 dir = new_base_dir / subset_name / category
 os.makedirs(dir)
 fnames = [f"{category}.{i}.jpg"
 for i in range(start_index, end_index)]
 for fname in fnames:
 shutil.copyfile(src=original_dir / fname,
 dst=dir / fname)

make_subset("train", start_index=0, end_index=1000)
make_subset("validation", start_index=1000, end_index=1500)
make_subset("test", start_index=1500, end_index=2500)

We now have 2,000 training images, 1,000 validation images, and 2,000 test images.
Each split contains the same number of samples from each class: this is a balanced
binary-classification problem, which means classification accuracy will be an appropri-
ate measure of success.

8.2.3 Building the model

We will reuse the same general model structure you saw in the first example: the conv-
net will be a stack of alternated Conv2D (with relu activation) and MaxPooling2D layers.

 But because we’re dealing with bigger images and a more complex problem, we’ll
make our model larger, accordingly: it will have two more Conv2D and MaxPooling2D
stages. This serves both to augment the capacity of the model and to further reduce the
size of the feature maps so they aren’t overly large when we reach the Flatten layer.
Here, because we start from inputs of size 180 pixels × 180 pixels (a somewhat arbitrary
choice), we end up with feature maps of size 7 × 7 just before the Flatten layer.

NOTE The depth of the feature maps progressively increases in the model
(from 32 to 256), whereas the size of the feature maps decreases (from 180 ×
180 to 7 × 7). This is a pattern you’ll see in almost all convnets.

Because we’re looking at a binary-classification problem, we’ll end the model with a
single unit (a Dense layer of size 1) and a sigmoid activation. This unit will encode the
probability that the model is looking at one class or the other.

 One last small difference: we will start the model with a Rescaling layer, which will
rescale image inputs (whose values are originally in the [0, 255] range) to the [0, 1] range.

from tensorflow import keras
from tensorflow.keras import layers

Listing 8.7 Instantiating a small convnet for dogs vs. cats classification

Utility function to copy cat (and dog) images from index
start_index to index end_index to the subdirectory
new_base_dir/{subset_name}/cat (and /dog). The
"subset_name" will be either "train", "validation", or "test".

Create the training
subset with the first
1,000 images of
each category.

Create the validation
subset with the next
500 images of each
category.

Create the test subset
with the next 1,000
images of each category.

216 CHAPTER 8 Introduction to deep learning for computer vision

inputs = keras.Input(shape=(180, 180, 3))
x = layers.Rescaling(1./255)(inputs)
x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = layers.Flatten()(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs=inputs, outputs=outputs)

Let’s look at how the dimensions of the feature maps change with every successive
layer:

>>> model.summary()
Model: "model_2"

Layer (type) Output Shape Param #
===
input_3 (InputLayer) [(None, 180, 180, 3)] 0

rescaling (Rescaling) (None, 180, 180, 3) 0

conv2d_6 (Conv2D) (None, 178, 178, 32) 896

max_pooling2d_2 (MaxPooling2 (None, 89, 89, 32) 0

conv2d_7 (Conv2D) (None, 87, 87, 64) 18496

max_pooling2d_3 (MaxPooling2 (None, 43, 43, 64) 0

conv2d_8 (Conv2D) (None, 41, 41, 128) 73856

max_pooling2d_4 (MaxPooling2 (None, 20, 20, 128) 0

conv2d_9 (Conv2D) (None, 18, 18, 256) 295168

max_pooling2d_5 (MaxPooling2 (None, 9, 9, 256) 0

conv2d_10 (Conv2D) (None, 7, 7, 256) 590080

flatten_2 (Flatten) (None, 12544) 0

dense_2 (Dense) (None, 1) 12545
===
Total params: 991,041
Trainable params: 991,041
Non-trainable params: 0

The model
expects

RGB images
of size

180 × 180.

Rescale
inputs to the
[0, 1] range
by dividing
them by 255.

217Training a convnet from scratch on a small dataset

For the compilation step, we’ll go with the RMSprop optimizer, as usual. Because we
ended the model with a single sigmoid unit, we’ll use binary crossentropy as the loss
(as a reminder, check out table 6.1 in chapter 6 for a cheat sheet on which loss func-
tion to use in various situations).

model.compile(loss="binary_crossentropy",
 optimizer="rmsprop",
 metrics=["accuracy"])

8.2.4 Data preprocessing

As you know by now, data should be formatted into appropriately preprocessed floating-
point tensors before being fed into the model. Currently, the data sits on a drive as
JPEG files, so the steps for getting it into the model are roughly as follows:

1 Read the picture files.
2 Decode the JPEG content to RGB grids of pixels.
3 Convert these into floating-point tensors.
4 Resize them to a shared size (we’ll use 180 × 180).
5 Pack them into batches (we’ll use batches of 32 images).

It may seem a bit daunting, but fortunately Keras has utilities to take care of these steps
automatically. In particular, Keras features the utility function image_dataset_from_
directory(), which lets you quickly set up a data pipeline that can automatically turn
image files on disk into batches of preprocessed tensors. This is what we’ll use here.

 Calling image_dataset_from_directory(directory) will first list the subdirecto-
ries of directory and assume each one contains images from one of our classes. It will
then index the image files in each subdirectory. Finally, it will create and return a
tf.data.Dataset object configured to read these files, shuffle them, decode them to
tensors, resize them to a shared size, and pack them into batches.

from tensorflow.keras.utils import image_dataset_from_directory

train_dataset = image_dataset_from_directory(
 new_base_dir / "train",
 image_size=(180, 180),
 batch_size=32)
validation_dataset = image_dataset_from_directory(
 new_base_dir / "validation",
 image_size=(180, 180),
 batch_size=32)
test_dataset = image_dataset_from_directory(
 new_base_dir / "test",
 image_size=(180, 180),
 batch_size=32)

Listing 8.8 Configuring the model for training

Listing 8.9 Using image_dataset_from_directory to read images

218 CHAPTER 8 Introduction to deep learning for computer vision

Understanding TensorFlow Dataset objects
TensorFlow makes available the tf.data API to create efficient input pipelines for
machine learning models. Its core class is tf.data.Dataset.

A Dataset object is an iterator: you can use it in a for loop. It will typically return
batches of input data and labels. You can pass a Dataset object directly to the fit()
method of a Keras model.

The Dataset class handles many key features that would otherwise be cumbersome
to implement yourself—in particular, asynchronous data prefetching (preprocessing
the next batch of data while the previous one is being handled by the model, which
keeps execution flowing without interruptions).

The Dataset class also exposes a functional-style API for modifying datasets. Here’s
a quick example: let’s create a Dataset instance from a NumPy array of random num-
bers. We’ll consider 1,000 samples, where each sample is a vector of size 16:

import numpy as np
import tensorflow as tf
random_numbers = np.random.normal(size=(1000, 16))
dataset = tf.data.Dataset.from_tensor_slices(random_numbers)

At first, our dataset just yields single samples:

>>> for i, element in enumerate(dataset):
>>> print(element.shape)
>>> if i >= 2:
>>> break
(16,)
(16,)
(16,)

We can use the .batch() method to batch the data:

>>> batched_dataset = dataset.batch(32)
>>> for i, element in enumerate(batched_dataset):
>>> print(element.shape)
>>> if i >= 2:
>>> break
(32, 16)
(32, 16)
(32, 16)

More broadly, we have access to a range of useful dataset methods, such as

.shuffle(buffer_size)—Shuffles elements within a buffer

.prefetch(buffer_size)—Prefetches a buffer of elements in GPU memory
to achieve better device utilization.
.map(callable)—Applies an arbitrary transformation to each element of the
dataset (the function callable, which expects to take as input a single ele-
ment yielded by the dataset).

The from_tensor_slices() class method can be
used to create a Dataset from a NumPy array,

or a tuple or dict of NumPy arrays.

219Training a convnet from scratch on a small dataset

Let’s look at the output of one of these Dataset objects: it yields batches of 180 × 180
RGB images (shape (32, 180, 180, 3)) and integer labels (shape (32,)). There are
32 samples in each batch (the batch size).

>>> for data_batch, labels_batch in train_dataset:
>>> print("data batch shape:", data_batch.shape)
>>> print("labels batch shape:", labels_batch.shape)
>>> break
data batch shape: (32, 180, 180, 3)
labels batch shape: (32,)

Let’s fit the model on our dataset. We’ll use the validation_data argument in fit()
to monitor validation metrics on a separate Dataset object.

 Note that we’ll also use a ModelCheckpoint callback to save the model after each
epoch. We’ll configure it with the path specifying where to save the file, as well as the
arguments save_best_only=True and monitor="val_loss": they tell the callback to
only save a new file (overwriting any previous one) when the current value of the
val_loss metric is lower than at any previous time during training. This guarantees
that your saved file will always contain the state of the model corresponding to its best-
performing training epoch, in terms of its performance on the validation data. As a
result, we won’t have to retrain a new model for a lower number of epochs if we start
overfitting: we can just reload our saved file.

callbacks = [
 keras.callbacks.ModelCheckpoint(
 filepath="convnet_from_scratch.keras",
 save_best_only=True,
 monitor="val_loss")
]

The .map() method, in particular, is one that you will use often. Here’s an example.
We’ll use it to reshape the elements in our toy dataset from shape (16,) to shape
(4, 4):

>>> reshaped_dataset = dataset.map(lambda x: tf.reshape(x, (4, 4)))
>>> for i, element in enumerate(reshaped_dataset):
>>> print(element.shape)
>>> if i >= 2:
>>> break
(4, 4)
(4, 4)
(4, 4)

You’re about to see more map() action in this chapter.

Listing 8.10 Displaying the shapes of the data and labels yielded by the Dataset

Listing 8.11 Fitting the model using a Dataset

220 CHAPTER 8 Introduction to deep learning for computer vision

history = model.fit(
 train_dataset,
 epochs=30,
 validation_data=validation_dataset,
 callbacks=callbacks)

Let’s plot the loss and accuracy of the model over the training and validation data
during training (see figure 8.9).

import matplotlib.pyplot as plt
accuracy = history.history["accuracy"]
val_accuracy = history.history["val_accuracy"]
loss = history.history["loss"]
val_loss = history.history["val_loss"]
epochs = range(1, len(accuracy) + 1)
plt.plot(epochs, accuracy, "bo", label="Training accuracy")
plt.plot(epochs, val_accuracy, "b", label="Validation accuracy")
plt.title("Training and validation accuracy")
plt.legend()
plt.figure()
plt.plot(epochs, loss, "bo", label="Training loss")
plt.plot(epochs, val_loss, "b", label="Validation loss")
plt.title("Training and validation loss")
plt.legend()
plt.show()

These plots are characteristic of overfitting. The training accuracy increases linearly
over time, until it reaches nearly 100%, whereas the validation accuracy peaks at 75%.
The validation loss reaches its minimum after only ten epochs and then stalls, whereas
the training loss keeps decreasing linearly as training proceeds.

 Let’s check the test accuracy. We’ll reload the model from its saved file to evaluate
it as it was before it started overfitting.

Listing 8.12 Displaying curves of loss and accuracy during training

Figure 8.9 Training and validation metrics for a simple convnet

221Training a convnet from scratch on a small dataset

test_model = keras.models.load_model("convnet_from_scratch.keras")
test_loss, test_acc = test_model.evaluate(test_dataset)
print(f"Test accuracy: {test_acc:.3f}")

We get a test accuracy of 69.5%. (Due to the randomness of neural network initializa-
tions, you may get numbers within one percentage point of that.)

 Because we have relatively few training samples (2,000), overfitting will be our
number one concern. You already know about a number of techniques that can help
mitigate overfitting, such as dropout and weight decay (L2 regularization). We’re now
going to work with a new one, specific to computer vision and used almost universally
when processing images with deep learning models: data augmentation.

8.2.5 Using data augmentation

Overfitting is caused by having too few samples to learn from, rendering you unable
to train a model that can generalize to new data. Given infinite data, your model
would be exposed to every possible aspect of the data distribution at hand: you would
never overfit. Data augmentation takes the approach of generating more training data
from existing training samples by augmenting the samples via a number of random
transformations that yield believable-looking images. The goal is that, at training time,
your model will never see the exact same picture twice. This helps expose the model
to more aspects of the data so it can generalize better.

 In Keras, this can be done by adding a number of data augmentation layers at the
start of your model. Let’s get started with an example: the following Sequential model
chains several random image transformations. In our model, we’d include it right
before the Rescaling layer.

data_augmentation = keras.Sequential(
 [
 layers.RandomFlip("horizontal"),
 layers.RandomRotation(0.1),
 layers.RandomZoom(0.2),
]
)

These are just a few of the layers available (for more, see the Keras documentation).
Let’s quickly go over this code:

RandomFlip("horizontal")—Applies horizontal flipping to a random 50% of
the images that go through it
RandomRotation(0.1)—Rotates the input images by a random value in the range
[–10%, +10%] (these are fractions of a full circle—in degrees, the range would
be [–36 degrees, +36 degrees])

Listing 8.13 Evaluating the model on the test set

Listing 8.14 Define a data augmentation stage to add to an image model

222 CHAPTER 8 Introduction to deep learning for computer vision

RandomZoom(0.2)—Zooms in or out of the image by a random factor in the
range [-20%, +20%]

Let’s look at the augmented images (see figure 8.10).

plt.figure(figsize=(10, 10))
for images, _ in train_dataset.take(1):
 for i in range(9):
 augmented_images = data_augmentation(images)
 ax = plt.subplot(3, 3, i + 1)
 plt.imshow(augmented_images[0].numpy().astype("uint8"))
 plt.axis("off")

If we train a new model using this data-augmentation configuration, the model will
never see the same input twice. But the inputs it sees are still heavily intercorrelated

Listing 8.15 Displaying some randomly augmented training images

We can use take(N) to only sample
N batches from the dataset. This is
equivalent to inserting a break in
the loop after the Nth batch.

Apply the
augmentation

stage to the
batch of
images. Display the first image in the output batch.

For each of the nine iterations, this is a
different augmentation of the same image.

Figure 8.10 Generating variations of a very good boy via random data augmentation

223Training a convnet from scratch on a small dataset

because they come from a small number of original images—we can’t produce new
information; we can only remix existing information. As such, this may not be enough
to completely get rid of overfitting. To further fight overfitting, we’ll also add a Dropout
layer to our model right before the densely connected classifier.

 One last thing you should know about random image augmentation layers: just
like Dropout, they’re inactive during inference (when we call predict() or evaluate()).
During evaluation, our model will behave just the same as when it did not include
data augmentation and dropout.

inputs = keras.Input(shape=(180, 180, 3))
x = data_augmentation(inputs)
x = layers.Rescaling(1./255)(x)
x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = layers.Flatten()(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs=inputs, outputs=outputs)

model.compile(loss="binary_crossentropy",
 optimizer="rmsprop",
 metrics=["accuracy"])

Let’s train the model using data augmentation and dropout. Because we expect over-
fitting to occur much later during training, we will train for three times as many
epochs—one hundred.

callbacks = [
 keras.callbacks.ModelCheckpoint(
 filepath="convnet_from_scratch_with_augmentation.keras",
 save_best_only=True,
 monitor="val_loss")
]
history = model.fit(
 train_dataset,
 epochs=100,
 validation_data=validation_dataset,
 callbacks=callbacks)

Let’s plot the results again: see figure 8.11. Thanks to data augmentation and drop-
out, we start overfitting much later, around epochs 60–70 (compared to epoch 10 for

Listing 8.16 Defining a new convnet that includes image augmentation and dropout

Listing 8.17 Training the regularized convnet

224 CHAPTER 8 Introduction to deep learning for computer vision

the original model). The validation accuracy ends up consistently in the 80–85% range—
a big improvement over our first try.

 Let’s check the test accuracy.

test_model = keras.models.load_model(
 "convnet_from_scratch_with_augmentation.keras")
test_loss, test_acc = test_model.evaluate(test_dataset)
print(f"Test accuracy: {test_acc:.3f}")

We get a test accuracy of 83.5%. It’s starting to look good! If you’re using Colab, make
sure you download the saved file (convnet_from_scratch_with_augmentation.keras),
as we will use it for some experiments in the next chapter.

 By further tuning the model’s configuration (such as the number of filters per
convolution layer, or the number of layers in the model), we might be able to get an
even better accuracy, likely up to 90%. But it would prove difficult to go any higher
just by training our own convnet from scratch, because we have so little data to work
with. As a next step to improve our accuracy on this problem, we’ll have to use a pre-
trained model, which is the focus of the next two sections.

8.3 Leveraging a pretrained model
A common and highly effective approach to deep learning on small image datasets is
to use a pretrained model. A pretrained model is a model that was previously trained on
a large dataset, typically on a large-scale image-classification task. If this original data-
set is large enough and general enough, the spatial hierarchy of features learned by
the pretrained model can effectively act as a generic model of the visual world, and
hence, its features can prove useful for many different computer vision problems,
even though these new problems may involve completely different classes than those
of the original task. For instance, you might train a model on ImageNet (where classes

Listing 8.18 Evaluating the model on the test set

Figure 8.11 Training and validation metrics with data augmentation

225Leveraging a pretrained model

are mostly animals and everyday objects) and then repurpose this trained model for
something as remote as identifying furniture items in images. Such portability of
learned features across different problems is a key advantage of deep learning com-
pared to many older, shallow learning approaches, and it makes deep learning very
effective for small-data problems.

 In this case, let’s consider a large convnet trained on the ImageNet dataset (1.4
million labeled images and 1,000 different classes). ImageNet contains many animal
classes, including different species of cats and dogs, and you can thus expect it to per-
form well on the dogs-versus-cats classification problem.

 We’ll use the VGG16 architecture, developed by Karen Simonyan and Andrew
Zisserman in 2014.1 Although it’s an older model, far from the current state of the art
and somewhat heavier than many other recent models, I chose it because its architec-
ture is similar to what you’re already familiar with, and it’s easy to understand without
introducing any new concepts. This may be your first encounter with one of these
cutesy model names—VGG, ResNet, Inception, Xception, and so on; you’ll get used
to them because they will come up frequently if you keep doing deep learning for
computer vision.

 There are two ways to use a pretrained model: feature extraction and fine-tuning.
We’ll cover both of them. Let’s start with feature extraction.

8.3.1 Feature extraction with a pretrained model

Feature extraction consists of using the representations learned by a previously
trained model to extract interesting features from new samples. These features are
then run through a new classifier, which is trained from scratch.

 As you saw previously, convnets used for image classification comprise two parts:
they start with a series of pooling and convolution layers, and they end with a densely
connected classifier. The first part is called the convolutional base of the model. In the
case of convnets, feature extraction consists of taking the convolutional base of a pre-
viously trained network, running the new data through it, and training a new classifier
on top of the output (see figure 8.12).

 Why only reuse the convolutional base? Could we reuse the densely connected
classifier as well? In general, doing so should be avoided. The reason is that the repre-
sentations learned by the convolutional base are likely to be more generic and, there-
fore, more reusable: the feature maps of a convnet are presence maps of generic
concepts over a picture, which are likely to be useful regardless of the computer vision
problem at hand. But the representations learned by the classifier will necessarily be
specific to the set of classes on which the model was trained—they will only contain
information about the presence probability of this or that class in the entire picture.
Additionally, representations found in densely connected layers no longer contain any

1 Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recogni-
tion,” arXiv (2014), https://arxiv.org/abs/1409.1556.

226 CHAPTER 8 Introduction to deep learning for computer vision

information about where objects are located in the input image; these layers get rid of
the notion of space, whereas the object location is still described by convolutional fea-
ture maps. For problems where object location matters, densely connected features
are largely useless.

 Note that the level of generality (and therefore reusability) of the representations
extracted by specific convolution layers depends on the depth of the layer in the
model. Layers that come earlier in the model extract local, highly generic feature
maps (such as visual edges, colors, and textures), whereas layers that are higher up
extract more-abstract concepts (such as “cat ear” or “dog eye”). So if your new dataset
differs a lot from the dataset on which the original model was trained, you may be bet-
ter off using only the first few layers of the model to do feature extraction, rather than
using the entire convolutional base.

 In this case, because the ImageNet class set contains multiple dog and cat
classes, it’s likely to be beneficial to reuse the information contained in the densely
connected layers of the original model. But we’ll choose not to, in order to cover
the more general case where the class set of the new problem doesn’t overlap the
class set of the original model. Let’s put this into practice by using the convolu-
tional base of the VGG16 network, trained on ImageNet, to extract interesting fea-
tures from cat and dog images, and then train a dogs-versus-cats classifier on top of
these features.

 The VGG16 model, among others, comes prepackaged with Keras. You can import
it from the keras.applications module. Many other image-classification models (all
pretrained on the ImageNet dataset) are available as part of keras.applications:

Prediction

Input

Trained

classifier

Trained

convolutional

base

Prediction

Input

Trained

classifier

Trained

convolutional

base

Prediction

Input

New classifier

(randomly initialized)

Trained

convolutional

base

(frozen)

Figure 8.12 Swapping classifiers while keeping the same convolutional base

227Leveraging a pretrained model

Xception
ResNet
MobileNet
EfficientNet
DenseNet
etc.

Let’s instantiate the VGG16 model.

conv_base = keras.applications.vgg16.VGG16(
 weights="imagenet",
 include_top=False,
 input_shape=(180, 180, 3))

We pass three arguments to the constructor:

weights specifies the weight checkpoint from which to initialize the model.
include_top refers to including (or not) the densely connected classifier on
top of the network. By default, this densely connected classifier corresponds to
the 1,000 classes from ImageNet. Because we intend to use our own densely
connected classifier (with only two classes: cat and dog), we don’t need to
include it.
input_shape is the shape of the image tensors that we’ll feed to the network.
This argument is purely optional: if we don’t pass it, the network will be able to
process inputs of any size. Here we pass it so that we can visualize (in the follow-
ing summary) how the size of the feature maps shrinks with each new convolu-
tion and pooling layer.

Here’s the detail of the architecture of the VGG16 convolutional base. It’s similar to
the simple convnets you’re already familiar with:

>>> conv_base.summary()
Model: "vgg16"

Layer (type) Output Shape Param #
===
input_19 (InputLayer) [(None, 180, 180, 3)] 0

block1_conv1 (Conv2D) (None, 180, 180, 64) 1792

block1_conv2 (Conv2D) (None, 180, 180, 64) 36928

block1_pool (MaxPooling2D) (None, 90, 90, 64) 0

block2_conv1 (Conv2D) (None, 90, 90, 128) 73856

Listing 8.19 Instantiating the VGG16 convolutional base

228 CHAPTER 8 Introduction to deep learning for computer vision

block2_conv2 (Conv2D) (None, 90, 90, 128) 147584

block2_pool (MaxPooling2D) (None, 45, 45, 128) 0

block3_conv1 (Conv2D) (None, 45, 45, 256) 295168

block3_conv2 (Conv2D) (None, 45, 45, 256) 590080

block3_conv3 (Conv2D) (None, 45, 45, 256) 590080

block3_pool (MaxPooling2D) (None, 22, 22, 256) 0

block4_conv1 (Conv2D) (None, 22, 22, 512) 1180160

block4_conv2 (Conv2D) (None, 22, 22, 512) 2359808

block4_conv3 (Conv2D) (None, 22, 22, 512) 2359808

block4_pool (MaxPooling2D) (None, 11, 11, 512) 0

block5_conv1 (Conv2D) (None, 11, 11, 512) 2359808

block5_conv2 (Conv2D) (None, 11, 11, 512) 2359808

block5_conv3 (Conv2D) (None, 11, 11, 512) 2359808

block5_pool (MaxPooling2D) (None, 5, 5, 512) 0
===
Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

The final feature map has shape (5, 5, 512). That’s the feature map on top of which
we’ll stick a densely connected classifier.

 At this point, there are two ways we could proceed:

Run the convolutional base over our dataset, record its output to a NumPy array
on disk, and then use this data as input to a standalone, densely connected clas-
sifier similar to those you saw in chapter 4 of this book. This solution is fast and
cheap to run, because it only requires running the convolutional base once for
every input image, and the convolutional base is by far the most expensive part
of the pipeline. But for the same reason, this technique won’t allow us to use
data augmentation.
Extend the model we have (conv_base) by adding Dense layers on top, and run
the whole thing from end to end on the input data. This will allow us to use
data augmentation, because every input image goes through the convolutional
base every time it’s seen by the model. But for the same reason, this technique is
far more expensive than the first.

229Leveraging a pretrained model

We’ll cover both techniques. Let’s walk through the code required to set up the first
one: recording the output of conv_base on our data and using these outputs as inputs
to a new model.

FAST FEATURE EXTRACTION WITHOUT DATA AUGMENTATION

We’ll start by extracting features as NumPy arrays by calling the predict() method of
the conv_base model on our training, validation, and testing datasets.

 Let’s iterate over our datasets to extract the VGG16 features.

import numpy as np

def get_features_and_labels(dataset):
 all_features = []
 all_labels = []
 for images, labels in dataset:
 preprocessed_images = keras.applications.vgg16.preprocess_input(images)
 features = conv_base.predict(preprocessed_images)
 all_features.append(features)
 all_labels.append(labels)
 return np.concatenate(all_features), np.concatenate(all_labels)

train_features, train_labels = get_features_and_labels(train_dataset)
val_features, val_labels = get_features_and_labels(validation_dataset)
test_features, test_labels = get_features_and_labels(test_dataset)

Importantly, predict() only expects images, not labels, but our current dataset yields
batches that contain both images and their labels. Moreover, the VGG16 model expects
inputs that are preprocessed with the function keras.applications.vgg16.prepro-
cess_input, which scales pixel values to an appropriate range.

 The extracted features are currently of shape (samples, 5, 5, 512):

>>> train_features.shape
(2000, 5, 5, 512)

At this point, we can define our densely connected classifier (note the use of dropout
for regularization) and train it on the data and labels that we just recorded.

inputs = keras.Input(shape=(5, 5, 512))
x = layers.Flatten()(inputs)
x = layers.Dense(256)(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)

Listing 8.20 Extracting the VGG16 features and corresponding labels

Listing 8.21 Defining and training the densely connected classifier

Note the use of the Flatten
layer before passing the
features to a Dense layer.

230 CHAPTER 8 Introduction to deep learning for computer vision

model.compile(loss="binary_crossentropy",
 optimizer="rmsprop",
 metrics=["accuracy"])

callbacks = [
 keras.callbacks.ModelCheckpoint(
 filepath="feature_extraction.keras",
 save_best_only=True,
 monitor="val_loss")
]
history = model.fit(
 train_features, train_labels,
 epochs=20,
 validation_data=(val_features, val_labels),
 callbacks=callbacks)

Training is very fast because we only have to deal with two Dense layers—an epoch
takes less than one second even on CPU.

 Let’s look at the loss and accuracy curves during training (see figure 8.13).

import matplotlib.pyplot as plt
acc = history.history["accuracy"]
val_acc = history.history["val_accuracy"]
loss = history.history["loss"]
val_loss = history.history["val_loss"]
epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, "bo", label="Training accuracy")
plt.plot(epochs, val_acc, "b", label="Validation accuracy")
plt.title("Training and validation accuracy")
plt.legend()
plt.figure()
plt.plot(epochs, loss, "bo", label="Training loss")

Listing 8.22 Plotting the results

Figure 8.13 Training and validation metrics for plain feature extraction

231Leveraging a pretrained model

plt.plot(epochs, val_loss, "b", label="Validation loss")
plt.title("Training and validation loss")
plt.legend()
plt.show()

We reach a validation accuracy of about 97%—much better than we achieved in the
previous section with the small model trained from scratch. This is a bit of an unfair
comparison, however, because ImageNet contains many dog and cat instances, which
means that our pretrained model already has the exact knowledge required for the
task at hand. This won’t always be the case when you use pretrained features.

 However, the plots also indicate that we’re overfitting almost from the start—
despite using dropout with a fairly large rate. That’s because this technique doesn’t
use data augmentation, which is essential for preventing overfitting with small image
datasets.

FEATURE EXTRACTION TOGETHER WITH DATA AUGMENTATION

Now let’s review the second technique I mentioned for doing feature extraction,
which is much slower and more expensive, but which allows us to use data augmenta-
tion during training: creating a model that chains the conv_base with a new dense
classifier, and training it end to end on the inputs.

 In order to do this, we will first freeze the convolutional base. Freezing a layer or set of
layers means preventing their weights from being updated during training. If we don’t
do this, the representations that were previously learned by the convolutional base will
be modified during training. Because the Dense layers on top are randomly initialized,
very large weight updates would be propagated through the network, effectively
destroying the representations previously learned.

 In Keras, we freeze a layer or model by setting its trainable attribute to False.

conv_base = keras.applications.vgg16.VGG16(
 weights="imagenet",
 include_top=False)
conv_base.trainable = False

Setting trainable to False empties the list of trainable weights of the layer or model.

>>> conv_base.trainable = True
>>> print("This is the number of trainable weights "
 "before freezing the conv base:", len(conv_base.trainable_weights))
This is the number of trainable weights before freezing the conv base: 26
>>> conv_base.trainable = False
>>> print("This is the number of trainable weights "
 "after freezing the conv base:", len(conv_base.trainable_weights))
This is the number of trainable weights after freezing the conv base: 0

Listing 8.23 Instantiating and freezing the VGG16 convolutional base

Listing 8.24 Printing the list of trainable weights before and after freezing

232 CHAPTER 8 Introduction to deep learning for computer vision

Now we can create a new model that chains together

1 A data augmentation stage
2 Our frozen convolutional base
3 A dense classifier

data_augmentation = keras.Sequential(
 [
 layers.RandomFlip("horizontal"),
 layers.RandomRotation(0.1),
 layers.RandomZoom(0.2),
]
)

inputs = keras.Input(shape=(180, 180, 3))
x = data_augmentation(inputs)
x = keras.applications.vgg16.preprocess_input(x)
x = conv_base(x)
x = layers.Flatten()(x)
x = layers.Dense(256)(x)
x = layers.Dropout(0.5)(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs, outputs)
model.compile(loss="binary_crossentropy",
 optimizer="rmsprop",
 metrics=["accuracy"])

With this setup, only the weights from the two Dense layers that we added will be
trained. That’s a total of four weight tensors: two per layer (the main weight matrix
and the bias vector). Note that in order for these changes to take effect, you must first
compile the model. If you ever modify weight trainability after compilation, you
should then recompile the model, or these changes will be ignored.

 Let’s train our model. Thanks to data augmentation, it will take much longer for
the model to start overfitting, so we can train for more epochs—let’s do 50.

NOTE This technique is expensive enough that you should only attempt it if
you have access to a GPU (such as the free GPU available in Colab)—it’s
intractable on CPU. If you can’t run your code on GPU, then the previous
technique is the way to go.

callbacks = [
 keras.callbacks.ModelCheckpoint(
 filepath="feature_extraction_with_data_augmentation.keras",
 save_best_only=True,
 monitor="val_loss")
]

Listing 8.25 Adding a data augmentation stage and a classifier to the convolutional base

Apply data
augmentation.

Apply input
value scaling.

233Leveraging a pretrained model

history = model.fit(
 train_dataset,
 epochs=50,
 validation_data=validation_dataset,
 callbacks=callbacks)

Let’s plot the results again (see figure 8.14). As you can see, we reach a validation
accuracy of over 98%. This is a strong improvement over the previous model.

Let’s check the test accuracy.

test_model = keras.models.load_model(
 "feature_extraction_with_data_augmentation.keras")
test_loss, test_acc = test_model.evaluate(test_dataset)
print(f"Test accuracy: {test_acc:.3f}")

We get a test accuracy of 97.5%. This is only a modest improvement compared to the
previous test accuracy, which is a bit disappointing given the strong results on the vali-
dation data. A model’s accuracy always depends on the set of samples you evaluate it
on! Some sample sets may be more difficult than others, and strong results on one set
won’t necessarily fully translate to all other sets.

Listing 8.26 Evaluating the model on the test set

Figure 8.14 Training and validation metrics for feature extraction with data augmentation

234 CHAPTER 8 Introduction to deep learning for computer vision

8.3.2 Fine-tuning a pretrained model

Another widely used technique for model reuse,
complementary to feature extraction, is fine-tuning
(see figure 8.15). Fine-tuning consists of unfreezing
a few of the top layers of a frozen model base used
for feature extraction, and jointly training both the
newly added part of the model (in this case, the
fully connected classifier) and these top layers. This
is called fine-tuning because it slightly adjusts the
more abstract representations of the model being
reused in order to make them more relevant for the
problem at hand.

 I stated earlier that it’s necessary to freeze the
convolution base of VGG16 in order to be able to
train a randomly initialized classifier on top. For the
same reason, it’s only possible to fine-tune the top
layers of the convolutional base once the classifier on
top has already been trained. If the classifier isn’t
already trained, the error signal propagating
through the network during training will be too
large, and the representations previously learned by
the layers being fine-tuned will be destroyed. Thus
the steps for fine-tuning a network are as follows:

1 Add our custom network on top of an
already-trained base network.

2 Freeze the base network.
3 Train the part we added.
4 Unfreeze some layers in the base network.

(Note that you should not unfreeze “batch
normalization” layers, which are not relevant
here since there are no such layers in VGG16.
Batch normalization and its impact on fine-
tuning is explained in the next chapter.)

5 Jointly train both these layers and the part we
added.

You already completed the first three steps when
doing feature extraction. Let’s proceed with step 4:
we’ll unfreeze our conv_base and then freeze indi-
vidual layers inside it.

Dense

Dense

Flatten

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

MaxPooling2D

Convolution2D

Convolution2D

Conv block 1:
frozen

Conv block 2:
frozen

Conv block 3:
frozen

Conv block 4:
frozen

We fine-tune
conv block 5.

We fine-tune
our own fully
connected
classifier.

Figure 8.15 Fine-tuning the last
convolutional block of the VGG16
network

235Leveraging a pretrained model

 As a reminder, this is what our convolutional base looks like:

>>> conv_base.summary()
Model: "vgg16"

Layer (type) Output Shape Param #
===
input_19 (InputLayer) [(None, 180, 180, 3)] 0

block1_conv1 (Conv2D) (None, 180, 180, 64) 1792

block1_conv2 (Conv2D) (None, 180, 180, 64) 36928

block1_pool (MaxPooling2D) (None, 90, 90, 64) 0

block2_conv1 (Conv2D) (None, 90, 90, 128) 73856

block2_conv2 (Conv2D) (None, 90, 90, 128) 147584

block2_pool (MaxPooling2D) (None, 45, 45, 128) 0

block3_conv1 (Conv2D) (None, 45, 45, 256) 295168

block3_conv2 (Conv2D) (None, 45, 45, 256) 590080

block3_conv3 (Conv2D) (None, 45, 45, 256) 590080

block3_pool (MaxPooling2D) (None, 22, 22, 256) 0

block4_conv1 (Conv2D) (None, 22, 22, 512) 1180160

block4_conv2 (Conv2D) (None, 22, 22, 512) 2359808

block4_conv3 (Conv2D) (None, 22, 22, 512) 2359808

block4_pool (MaxPooling2D) (None, 11, 11, 512) 0

block5_conv1 (Conv2D) (None, 11, 11, 512) 2359808

block5_conv2 (Conv2D) (None, 11, 11, 512) 2359808

block5_conv3 (Conv2D) (None, 11, 11, 512) 2359808

block5_pool (MaxPooling2D) (None, 5, 5, 512) 0
===
Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

We’ll fine-tune the last three convolutional layers, which means all layers up to block4_
pool should be frozen, and the layers block5_conv1, block5_conv2, and block5_conv3
should be trainable.

236 CHAPTER 8 Introduction to deep learning for computer vision

 Why not fine-tune more layers? Why not fine-tune the entire convolutional base?
You could. But you need to consider the following:

Earlier layers in the convolutional base encode more generic, reusable features,
whereas layers higher up encode more specialized features. It’s more useful to
fine-tune the more specialized features, because these are the ones that need
to be repurposed on your new problem. There would be fast-decreasing returns
in fine-tuning lower layers.
The more parameters you’re training, the more you’re at risk of overfitting.
The convolutional base has 15 million parameters, so it would be risky to
attempt to train it on your small dataset.

Thus, in this situation, it’s a good strategy to fine-tune only the top two or three layers
in the convolutional base. Let’s set this up, starting from where we left off in the previ-
ous example.

conv_base.trainable = True
for layer in conv_base.layers[:-4]:
 layer.trainable = False

Now we can begin fine-tuning the model. We’ll do this with the RMSprop optimizer,
using a very low learning rate. The reason for using a low learning rate is that we want to
limit the magnitude of the modifications we make to the representations of the three
layers we’re fine-tuning. Updates that are too large may harm these representations.

model.compile(loss="binary_crossentropy",
 optimizer=keras.optimizers.RMSprop(learning_rate=1e-5),
 metrics=["accuracy"])

callbacks = [
 keras.callbacks.ModelCheckpoint(
 filepath="fine_tuning.keras",
 save_best_only=True,
 monitor="val_loss")
]
history = model.fit(
 train_dataset,
 epochs=30,
 validation_data=validation_dataset,
 callbacks=callbacks)

We can finally evaluate this model on the test data:

model = keras.models.load_model("fine_tuning.keras")
test_loss, test_acc = model.evaluate(test_dataset)
print(f"Test accuracy: {test_acc:.3f}")

Listing 8.27 Freezing all layers until the fourth from the last

Listing 8.28 Fine-tuning the model

237Summary

Here, we get a test accuracy of 98.5% (again, your own results may be within one per-
centage point). In the original Kaggle competition around this dataset, this would
have been one of the top results. It’s not quite a fair comparison, however, since we
used pretrained features that already contained prior knowledge about cats and dogs,
which competitors couldn’t use at the time.

 On the positive side, by leveraging modern deep learning techniques, we managed
to reach this result using only a small fraction of the training data that was available
for the competition (about 10%). There is a huge difference between being able to
train on 20,000 samples compared to 2,000 samples!

 Now you have a solid set of tools for dealing with image-classification problems—in
particular, with small datasets.

Summary
Convnets are the best type of machine learning models for computer vision
tasks. It’s possible to train one from scratch even on a very small dataset, with
decent results.
Convnets work by learning a hierarchy of modular patterns and concepts to
represent the visual world.
On a small dataset, overfitting will be the main issue. Data augmentation is a
powerful way to fight overfitting when you’re working with image data.
It’s easy to reuse an existing convnet on a new dataset via feature extraction.
This is a valuable technique for working with small image datasets.
As a complement to feature extraction, you can use fine-tuning, which adapts to
a new problem some of the representations previously learned by an existing
model. This pushes performance a bit further.

