ECOLE SUPERIEURE D’INGENIEURS
EN ELECTRONIQUE
ET ELECTROTECHNIQUE

CITE DESCARTES - BP 99

93162 NOISY-LE-GRAND CEDEX

TEL.: 01 45 92 65 00 - FAX : 01 45 92 66 99
INTERNET : www.esiee.fr

Instruction Summary

Année scolaire : 2004-2005

fanenNY CHAMBRE DE COMMERCE ET D'INDUSTRIE DE PARIS

Instruction Summary

This appendix contains PPC403GC instructions summarized alphabetically and by opcode.

¢ Onpage A-1, Section A.1 lists all PPC403GC mnemonics, including extended
mnemonics, alphabetically. A short functional description is included for each
mnemonic.

* Onpage A-42, Section A.2 lists all PPC403GC instructions, sorted by primary and
secondary opcodes. Extended mnemonics are not included in the opcode list.

* On page A-50, Section A.3 illustrates the “Forms” (allowed arrangement of fields
within instructions) for PPC403GC instructions.

A.1 Instruction Set and Extended Mnemonics — Alphabetical

Table A-1 summarizes the PPC403GC instruction set, including required extended
mnemonics. All mnemonics are listed alphabetically, without regard to whether the
mnemonic is realized in hardware or software. When an instruction supports multiple
hardware mnemonics (for example, b, ba, bl, bla are all forms of b), the instruction is
alphabetized under the root form. The hardware instructions are described in detail in
Chapter 11 (Instruction Set) which is also alphabetized under the root form. Chapter 11 also
describes the instruction operands and notation.

Note the following for every Branch Conditional mnemonic:

Bit 4 of the BO field provides a hint about the most likely outcome of a conditional branch
(see Section 2.7.5 for a full discussion of Branch Prediction). Assemblers should set

BO,4 = 0 unless a specific reason exists otherwise. In the BO field values specified in the
table below, BO4 = 0 has always been assumed. The assembler must allow the
programmer to specify Branch Prediction. To do this, the assembler will support a suffix to
every conditional branch mnemonic, as follows:

+ Predict branch to be taken. “
— Predict branch not to be taken.

As specific examples, bc also could be coded as be+ or be—, and bne also could be coded
bne+ or bne-. These alternate codings set BO4 = 1 only if the requested prediction differs
from the Standard Prediction (see Section 2.7.5).

Instruction Summary A-1

Table A-1. PPC403GC Instruction Syntax Summary

Other
Mnemonic Operands Function Registers Page
Changed
add RT, RA, RB Add (RA) to (RB). 11-6
Place result in RT.
add. CRICRO0]
addo XER[SO, OV]
addo. CRICRO0]
XER[SO, OV]
addc RT, RA, RB Add (RA) to (RB). 11-7
Place result in RT.
adde. Place carry-out in XER[CA]. CRICRO]
addco XER[SO, OV]
addco. CRICROQ]
XER[SO, 0V]
adde RT, RA, RB Add XER[CA], (RA), (RB). 11-8
Place result in RT.
adde. Place carry-out in XER[CA]. CRICRO]
addeo XER[SO, OV]
addeo. CRICRO]
XER[SO, OV]
addi RT, RA, IM Add EXTS(IM) to (RAIO). 11-9
Place result in RT.
addic RT, RA, IM Add EXTS(IM) to (RAIO). 11-10
Place result in RT.
Place carry-out in XER[CA].
addic. RT, RA, IM Add EXTS(IM) to (RAIO). CRICRO] 11-11
Place result in RT.
Place carry-out in XER[CA].
addis RT, RA, IM Add (IM || 160) to (RAIO). 11-12
Place result in RT.
addme RT, RA Add XER[CA], (RA), (-1). 11-13
Place result in RT.
addme. Place carry-out in XER[CA]. CRICRO]
addmeo XER[SO, 0OV]
addmeo. CR[CROQ]
XER[SO, OV]
A-2 PPC403GC User's Manual

Table A-1

. PPC403GC Instruction Syntax Summary (cont.)

Other
Mnemonic Operands Function Registers Page
Changed
addze RT, RA Add XER[CA] to (RA). 11-14
Place result in RT.
addze. Place carry-out in XER[CA]. CRICRO]
addzeo XER[SO, OV]
addzeo. CRICRO0]
XER[SO, OV]
and RA, RS, RB AND (RS) with (RB). 11-15
Place result in RA.
and. CR[CRO0]
andc RA, RS, RB AND (RS) with —(RB). 11-16
Place result in RA.
andc. CRI[CRO0]
andi. RA, RS, IM AND (RS) with (160 || IM). CRICRO] 11-17
Place result in RA.
andis. RA, RS, IM AND (RS) with (IM || 60). CRICRO] 11-18
Place result in RA.
b target Branch unconditional relative. 11-19
LI « (target-— ClA)6:29
NIA « CIA + EXTS(LI || 20)
ba Branch unconditional absolute.
Ll « target&zg
NIA « EXTS(LI || 20)
bl Branch unconditional relative. (LR) « CIA + 4.
LI « (target— ClA)g.09
NIA « CIA + EXTS(L! || 20)
bla Branch unconditional absolute. (LR) « CIA + 4.
Ll « target6:29
NIA « EXTS(LI || 20)
Instruction Summary A-3

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Other
Mnemonic Operands Function Registers Page
Changed
bc BO, BI, target | Branch conditional relative. CTRif BO, = 0. 11-20
BD « (target— C|A)16:29
NIA « CIA + EXTS(BD || 20)
bca Branch conditional absolute. CTRifBO, =0.
BD « target16:29
NIA « EXTS(BD || 20)
bel Branch conditional relative. CTRifBO, =0.
BD « (target-— ClA)16;29 (LR) « CIA + 4.
NIA « CIA + EXTS(BD | 20)
bcla Branch conditional absolute. CTRif BO, =0.
BD « targetyg.09 (LR) « CIA + 4.
NIA « EXTS(BD | 20)
beetr BO, BI Branch conditional to address in CTR. CTRifBO, = 0. 11-27
Using (CTR) at exit from instruction, -
bcctrl NIA P CTRO'ZQ ” 20. CTR |f 802 = O
’ (LR) « CIA + 4.
belr BO, BI Branch conditional to address in LR. CTRif BO, =0. 11-31
Using (LR) at entry to instruction, -
bclrl NIA «— LRO~29 ” 20. CTR lf BOZ = O
’ (LR) «~ CIA + 4.
betr Branch unconditionally, 11-27
to address in CTR.
Extended mnemonic for
bcctr 20,0
betrl Extended mnemonic for (LR) « CIA + 4.
bectrl 20,0
bdnz target Decrement CTR. 11-20
Branch if CTR # 0.
Extended mnemonic for
bc 16,0,target
bdnza Extended mnemonic for
bca 16,0,target
bdnzl Extended mnemonic for (LR) « CIA + 4.
bel 16,0,target
bdnzla Extended mnemonic for (LR) « CIA + 4.
bcla 16,0,target
A-4 PPC403GC User's Manual

Table A-1

. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

bdnzir

bdnzirl

Decrement CTR.

Branch if CTR # 0,

to address in LR.
Extended mnemonic for
bclr 16,0

Extended mnemonic for
bcirl 16,0

(LR) « CIA + 4.

11-31

bdnzf

bdnzfa

bdnzfl

bdnzfla

cr_bit, target

Decrement CTR.

Branch if CTR # 0 AND CR; ;i = 0.
Extended mnemonic for
bc 0,cr_bit,target

Extended mnemonic for
bca 0,cr_bit,target

Extended mnemonic for
bcl 0,cr_bit,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 0,cr_bit,target

(LR) « CIA + 4.

11-20

bdnzfir

bdnzfirl

cr_bit

Decrement CTR.
Branch if CTR # 0 AND CR, pit = 0,
to address in LR.

Extended mnemonic for

belr 0,cr_bit

Extended mnemonic for
belrl 0,cr_bit

(LR) « CIA + 4.

11-31

bdnzt

bdnzta

bdnztl

bdnztla

cr_bit, target

Decrement CTR.

Branch if CTR # 0 AND CR; pj = 1.
Extended mnemonic for
bc 8,cr_bit,target

Extended mnemonic for
bca 8,cr_bit,target

Extended mnemonic for
bcel 8,cr_bit,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 8,cr_bit,target

(LR) < CIA + 4.

11-20

Instruction Summary

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands Function

Other
Registers
Changed

Page

bdnztir

cr_bit Decrement CTR.
Branch if CTR # 0 AND CR;, it =1,
to address in LR.

Extended mnemonic for

bclr 8,cr_bit

bdnztirl

Extended mnemonic for
bcelrl 8,cr_bit

(LR) « CIA + 4.

11-31

bdz

target Decrement CTR.

Branch if CTR = 0.
Extended mnemonic for
bc 18,0,target

bdza

Extended mnemonic for
bca 18,0,target

bdzl

Extended mnemonic for
bel 18,0,target

bdzla

(LR) < CIA + 4.

Extended mnemonic for
bcla 18,0,target

(LR) < CIA + 4.

11-20

bdzir

Decrement CTR.

Branch if CTR =0,

to address in LR.
Extended mnemonic for
bcir 18,0

bdzlrl

Extended mnemonic for
belrl 18,0

(LR) < CIA + 4.

11-31

bdzf

cr_bit, target Decrement CTR.

Branch if CTR = 0 AND CR¢; pi = 0.
Extended mnemonic for
bc 2,cr_bit,target

bdzfa

Extended mnemonic for
bca 2,cr_bit,target

bdzfl

Extended mnemonic for
bcl 2,cr_bit,target

bdzfla

(LR) < CIA + 4.

Extended mnemonic for
bcla 2,cr_bit,target

(LR) « CIA + 4.

11-20

PPC403GC User's Manual

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

bdzflr

bdzfirl

cr_bit

Decrement CTR.
Branch if CTR = 0 AND CR; pjt=0
to address in LR. N
Extended mnemonic for
belr 2,cr_bit

Extended mnemonic for
belrl 2,cr_bit

(LR) « CIA + 4.

11-31

bdzt

bdzta

bdztl

bdztla

cr_bit, target

Decrement CTR.

Branch if CTR = 0 AND CR¢; pit = 1.
Extended mnemonic for
bc 10,cr_bit,target

Extended mnemonic for
bca 10,cr_bit,target

Extended mnemonic for
bel 10,cr_bit,target

(LR) < CIA + 4.

Extended mnemonic for
bcla 10,cr_bit,target

(LR) < CIA + 4.

11-20

bdztir

bdztirl

cr_bit

Decrement CTR.
Branch if CTR =0 AND CRg, piy=1,
to address in LR.

Extended mnemonic for

belr 10,cr_bit

Extended mnemonic for
belrl 10,cr_bit

(LR) « CIA + 4.

11-31

beq

beqa

beql

beqgla

[cr_field,] tar-
get

Branch if equal.

Use CRO if cr_field is omitted.
Extended mnemonic for
bec 12,4+cr_field+2,target

Extended mnemonic for
bca 12,4+cr_field+2,target

Extended mnemonic for
bel 12,4+«cr_field+2,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 12,4+cr_field+2,target

(LR) < CIA + 4.

11-20

Instruction Summary

A-7

Table A-1

. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

beqctr

[cr_field]

beqctrl

Branch if equal,
to address in CTR.

Extended mnemonic for
beetr 12,4+cr_field+2

Use CRO if cr_field is omitted.

Extended mnemonic for
bcctrl 12,4+cr_field+2

(LR) < CIA + 4.

11-27

beqlr

[cr_field]

beqirl

Branch if equal,
to address in LR.

Extended mnemonic for
belr 12,4+cr_field+2

Use CRO if cr_field is omitted.

Extended mnemonic for
bcirl 12,4*cr_field+2

(LR) < CIA + 4.

11-31

bf

cr_bit, target

bfa

bfl

bfla

Branch if CR¢ pjt = 0.
Extended mnemonic for
be 4,cr_bit,target

Extended mnemonic for
bca 4,cr_bit,target

Extended mnemonic for
bcl 4,cr_bit,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 4,cr_bit,target

(LR) « CIA + 4.

11-20

bfctr

cr_bit

bfctrl

Branch if CR¢r pit = 0,

to address in CTR.
Extended mnemonic for
becetr 4,cr_bit

Extended mnemonic for
becetrl 4,cr_bit

(LR) < CIA + 4.

11-27

bfir

cr_bit

bfirl

Branch if CR¢; pit = 0,

to address in LR.
Extended mnemonic for
belr 4,cr_bit

Extended mnemonic for
belrl 4,cr_bit

(LR) « CIA + 4.

11-31

A-8

PPC403GC User's Manual

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

bge

bgea

bgel

bgela

[cr_field,] tar-
get

Branch if greater than or equal.
Use CRO if cr_field is omitted.
Extended mnemonic for
bc 4,4+cr_field+0,target

Extended mnemonic for
bca 4,4+cr_field+0,target

Extended mnemonic for
bcel 4,4+cr_field+0,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 4,4+cr_field+0,target

(LR) < CIA + 4.

11-20

bgectr

bgectrl

[cr_field]

Branch if greater than or equal,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
becetr 4,4+cr_field+0

Extended mnemonic for
becetrl 4,4+cr_field+0

(LR) <~ CIA + 4.

11-27

bgelr

bgelrl

[cr_field]

Branch if greater than or equal,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 4,4+cr_field+0

Extended mnemonic for
bcelrl 4,4xcr_field+0

(LR) « CIA + 4.

11-31

bgt

bgta

bgtl

bgtla

[cr_field,] tar-
get

Branch if greater than.

Use CRO if cr_field is omitted.
Extended mnemonic for
bec 12,4+cr_field+1,target

Extended mnemonic for
beca 12,4+cr_field+1,target

Extended mnemonic for
bel 12,4+cr_field+1,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 12,4+cr_field+1,target

(LR) «- CIA + 4.

11-20

Instruction Summary

A-9

Table A-1.

PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

bgtctr

[cr_field]

bgtctri

Branch if greater than,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
becetr 12,4+cr_field+1

Extended mnemonic for
bectrl 12,4+cr_field+1

(LR) « CIA + 4.

11-27

bgtir

[cr_field]

bgtlirl

Branch if greater than,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 12,4xcr_field+1

Extended mnemonic for
belrl 12,4xcr_field+1

(LR) < CIA + 4.

11-31

ble

[cr_field,] tar-
get

blea

blel

blela

Branch if less than or equal.
Use CRO if cr_field is omitted.
Extended mnemonic for

be 4,4xcr_field+1,target

Extended mnemonic for
bca 4,4xcr_field+1,target

Extended mnemonic for
bcel 4,4xcr_field+1,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 4,4+cr_field+1,target

(LR) < CIA + 4.

11-20

blectr

[cr_field]

blectrl

Branch if less than or equal,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
bcctr 4,4+cr_field+1

Extended mnemonic for
becetrl 4,4+«cr_field+1

(LR) « CIA + 4.

11-27

blelr

[cr_field]

blelrl

Branch if less than or equal,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
bclr 4,4+cr_field+1

Extended mnemonic for
belrl 4,4+cr_field+1

(LR) < CIA + 4.

11-31

A-10

PPC403GC User's Manual

Table A-1.

PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

bir

blirl

Branch unconditionally,

to address in LR.
Extended mnemonic for
belr 20,0

Extended mnemonic for
belri 20,0

(LR) < CIA + 4.

11-31

blt

blta

bltl

bitla

[cr_field,] tar-
get

Branch if less than.

Use CRO if cr_field is omitted.
Extended mnemonic for
bec 12,4+cr_field+0,target

Extended mnemonic for
bca 12,4+cr_field+0,target

Extended mnemonic for
bel 12,4+cr_field+0,target

(LR) < CIA + 4.

Extended mnemonic for
bcla 12,4+cr_field+0,target

(LR) « CIA + 4.

11-20

bltctr

bitctri

[cr_field]

Branch if less than,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
beetr 12,4xcr_field+0

Extended mnemonic for
bccetrl 12,4+cr_field+0

(LR) « CIA + 4.

11-27

bitir

bitirl

[cr_field]

Branch if less than,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 12,4+cr_field+0

Extended mnemonic for
belrl 12,4+cr_field+0

(LR) < CIA + 4.

11-31

Instruction Summary

A-11

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

bne

[cr_field,] tar-
get

bnea

bnel

bnela

Branch if not equal.

Use CRO if cr_field is omitted.
Extended mnemonic for
bc 4,4+cr_field+2,target

Extended mnemonic for
bca 4,4xcr_field+2,target

Extended mnemonic for
bel 4,4xcr_field+2,target

(LR) « CIA + 4.

Extended mnemonic for
bela 4,4+cr_field+2,target

(LR) « CIA + 4.

11-20

bnectr

[er_field]

bnectrl

Branch if not equal,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
becetr 4,4+cr_field+2

Extended mnemonic for
becetrl 4,4+cr_field+2

(LR) « CIA + 4.

11-27

bnelr

[cr_field]

bnelrl

Branch if not equal,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
bclr 4,4+cr_field+2

Extended mnemonic for
belrl 4,4xcr_field+2

(LR) « CIA + 4.

11-31

bng

[cr_field,] tar-
get

bnga

bngl

bngla

Branch if not greater than.
Use CRO if cr_field is omitted.
Extended mnemonic for

bc 4,4+cr_field+1,target

Extended mnemonic for
bca 4,4+cr_field+1,target

Extended mnemonic for
bel 4,4+cr_field+1,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 4,4xcr_field+1,target

(LR) « CIA + 4.

11-20

PPC403GC User's Manual

Table A-1.

PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

bngctr

bngctrl

[cr_field]

Branch if not greater than,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
becetr 4,4+cr_field+1

Extended mnemonic for
becetrl 4,4+cr_field+1

(LR) < CIA + 4.

11-27

bngir

bnglrl

[er_field]

Branch if not greater than,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 4,4*cr_field+1

Extended mnemonic for
belrl 4,4+cr_field+1

(LR) < CIA + 4.

11-31

bnl

bnla

bnll

bnlla

[cr_field,] tar-
get

Branch if not less than.

Use CRO if cr_field is omitted.
Extended mnemonic for
bc 4,4+cr_field+0,target

Extended mnemonic for
bca 4,4+cr_field+0,target

Extended mnemonic for
bel 4,4+cr_field+0,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 4,4+«cr_field+0,target

(LR) < CIA + 4.

11-20

bnictr

bnlctrl

[cr_field]

Branch if not less than,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
becetr 4,4+cr_field+0

Extended mnemonic for
becetrl 4,4+cr_field+0

(LR) < CIA + 4.

11-27

bnlir

bnlirl

[cr_field]

Branch if not less than,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 4,4+cr_field+0

Extended mnemonic for
belrl 4,4+cr_field+0

(LR) < CIA + 4.

11-31

Instruction Summary

A-13

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Other
Mnemonic Operands Function Registers Page
Changed

bns [cr_field,] tar- | Branch if not summary overflow. 11-20
get Use CRO if cr_field is omitted.
Extended mnemonic for
bc 4,4+cr_field+3,target

bnsa Extended mnemonic for
bca 4,4+cr_field+3,target

bnsl Extended mnemonic for (LR) « CIA + 4.
bel 4,4+cr_field+3,target

bnsla Extended mnemonic for (LR) « CIA + 4.
bcla 4,4+cr_field+3,target

bnsctr [er_field] Branch if not summary overflow, 11-27

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
bectr 4,4+cr_field+3

bnsctrl Extended mnemonic for (LR) « CIA + 4.
bcctrl 4,4xcr_field+3

bnslir [cr_field] Branch if not summary overflow, 11-31

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
bclr 4,4xcr_field+3

bnsirl Extended mnemonic for (LR) < CIA + 4.
belrl 4,4xcr_field+3

bnu [cr_field,] tar- | Branch if not unordered. 11-20
get Use CRO if cr_field is omitted.
Extended mnemonic for
bc 4,4+cr_field+3,target

bnua Extended mnemonic for
bca 4,4+cr_field+3,target

bnul Extended mnemonic for (LR) « CIA + 4.
bel 4,4+«cr_field+3,target

bnula Extended mnemonic for (LR) « CIA + 4.
bcla 4,4+cr_field+3,target

A-14 PPC403GC User's Manual

Table A-1.

PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

bnuctr

bnuctrl

[cr_field]

Branch if not unordered,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
becetr 4,4+cr_field+3

Extended mnemonic for
becetrl 4,4+cr_field+3

(LR) « CIA + 4.

11-27

bnulr

bnulrl

[cr_field]

Branch if not unordered,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 4,4+cr_field+3

Extended mnemonic for
belrl 4,4xcr_field+3

(LR) <~ CIA + 4.

11-31

bso

bsoa

bsol

bsola

[er_field,] tar-
get

Branch if summary overflow.
Use CRO if cr_field is omitted.
Extended mnemonic for

bc 12,4+cr_field+3,target

Extended mnemonic for
bca 12,4+cr_field+3,target

Extended mnemonic for
bel 12,4+«cr_field+3,target

(LR) < CIA + 4.

Extended mnemonic for
becla 12,4+cr_field+3,target

(LR) < CIA + 4.

11-20

bsoctr

bsoctrl

[cr_field]

Branch if summary overflow,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
beetr 12,4+cr_field+3

Extended mnemonic for
becetrl 12,4+cr_field+3

(LR) < CIA + 4.

11-27

bsolr

bsolrl

[er_field]

Branch if summary overflow,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 12,4xcr_field+3

Extended mnemonic for
belrl 12,4+cr_field+3

(LR) « CIA + 4.

11-31

Instruction Summary

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

bt

cr_bit, target

bta

btl

btla

Branch if CRg; piy = 1.
Extended mnemonic for
bec 12,cr_bit,target

Extended mnemonic for
bca 12,cr_bit,target

Extended mnemonic for
bel 12,cr_bit,target

(LR) « CIA + 4.

Extended mnemonic for
bela 12,cr_bit,target

(LR) <« CIA + 4.

11-20

btctr

cr_bit

btctrl

Branch if CR¢ pir =1,

to address in CTR.
Extended mnemonic for
beetr 12,cr_bit

Extended mnemonic for
becetrl 12,cr_bit

(LR) < CIA + 4.

11-27

btir

cr_bit

btirl

Branch if CRg pip =1,

to address in LR.
Extended mnemonic for
belr 12,cr_bit

Extended mnemonic for
belrl 12,cr_bit

(LR) <~ CIA + 4.

11-31

bun

[cr_field,] tar-
get

buna

bunl

bunla

Branch if unordered.

Use CRO if cr_field is omitted.
Extended mnemonic for
bc 12,4+cr_field+3,target

Extended mnemonic for

bca 12,4+cr_field+3,target

Extended mnemonic for
bcl 12,4+cr_field+3,target

(LR) <~ CIA + 4.

Extended mnemonic for

bcla 12,4+cr_field+3,target

(LR) < CIA + 4.

11-20

bunctr

[cr_field]

bunctrl

Branch if unordered,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
beetr 12,4xcr_field+3

Extended mnemonic for
becetrl 12,4xcr_field+3

(LR) « CIA + 4.

11-27

A-16

PPC403GC User's Manual

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

bunir

bunirl

[cr_field]

Branch if unordered,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
bclr 12,4xcr_field+3

Extended mnemonic for
belrl 12,4+cr_field+3

(LR) <~ CIA + 4.

11-31

clriwi

clriwi.

RA, RS, n

Clear left immediate. (n < 32)
(RA)O:n-1 « "0
Extended mnemonic for
rliwinm RA,RS,0,n,31

Extended mnemonic for
rlwinm. RA,RS,0,n,31

CRICRO]

11-130

clrislwi

clrislwi.

RA, RS, b, n

Clear left and shift left immediate.
(n<b<32)
(RA)p-n:31-n < (RS)p:34
(RA)32-n:31 < "o
(RA)obn-1 < >0
Extended mnemonic for
rlwinm RA,RS,n,b-n,31-n

Extended mnemonic for
rlwinm. RA,RS,n,b-n,31-n

CRI[CRO]

11-130

clrrwi

clrrwi.

RA, RS, n

Clear right immediate. (n < 32)
(RA)zp_na1 < "0
Extended mnemonic for
rlwinm RA,RS,0,0,31-n

Extended mnemonic for
rlwinm. RA,RS,0,0,31-n

CRICRO]

11-130

cmp

BF, 0, RA, RB

Compare (RA) to (RB), signed.
Results in CR[CRn], where n = BF.

11-36

cmpi

BF, 0, RA, IM

Compare (RA) to EXTS(IM), signed.
Results in CR[CRn], where n = BF.

11-37

cmpl

BF, 0, RA, RB

Compare (RA) to (RB), unsigned.
Results in CR[CRn], where n = BF.

11-38

cmpli

BF, 0, RA, IM

Compare (RA) to (180 Il IM), unsigned.
Results in CR[CRn], where n = BF.

11-39

Instruction Summary

A-17

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

cmplw

[BF,] RA, RB

Compare Logical Word.

Use CRO if BF is omitted.
Extended mnemonic for
cmpl BF,0,RA,RB

11-38

cmplwi

[BF.]RA, IM

Compare Logical Word Immediate.
Use CRO if BF is omitted.
Extended mnemonic for
cmpli BF,0,RA,IM

11-39

cmpw

[BF,] RA, RB

Compare Word.

Use CRO if BF is omitted.
Extended mnemonic for
cmp BF,0,RA,RB

11-36

cmpwi

[BF,] RA, IM

Compare Word Immediate.

Use CRO if BF is omitted.
Extended mnemonic for
cmpi BF,0,RA,IM

11-37

cntlzw

cntlzw.

RA, RS

Count leading zeros in RS.
Place result in RA.

CRICRO]

11-40

crand

BT, BA, BB

AND bit (CRgp) with (CRgg).
Place result in CRgr.

11-41

crandc

BT, BA, BB

AND bit (CRgp) with ~(CRgp).
Place result in CRgT.

11-42

crclr

bx

Condition register clear.
Extended mnemonic for
crxor bx,bx,bx

11-48

creqv

BT, BA, BB

Equivalence of bit CRga with CRpg.
CRBT — _‘(CRBA ® CRBB)

11-43

crmove

bx, by

Condition register move.
Extended mnemonic for
cror bx,by,by

11-46

crnand

BT, BA, BB

NAND bit (CRgp) with (CRgg).
Place result in CRgT.

11-44

crnor

BT, BA, BB

NOR bit (CRgp) with (CRgg).
Place result in CRgr.

11-45

crnot

bx, by

Condition register not.
Extended mnemonic for
crnor bx,by,by

11-45

A-18

PPC403GC User’'s Manual

Table A-1. PPC403GC Instruction Syntax Summary (cont.)
Other
Mnemonic Operands Function Registers Page
Changed
cror BT, BA, BB OR bit (CRga) with (CRgg). 11-46
Place result in CRgr.
crorc BT, BA, BB OR bit (CRgp) with —(CRgp). 11-47
Place result in CRgr.
crset bx Condition register set. 11-43
Extended mnemonic for
creqv bx,bx,bx
crxor BT, BA, BB XOR bit (CRgp) with (CRgp). 11-48
Place result in CRgr.
dcbf RA, RB Flush (store, then invalidate) the data 11-49
cache block which contains the effective
address (RAIO) + (RB).
dcbi RA, RB Invalidate the data cache block which con- 11-50
tains the effective address (RAIO) + (RB).
dcbst RA, RB Store the data cache block which contains 11-51
the effective address (RAIO) + (RB).
dcbt RA, RB Load the data cache block which contains 11-52
the effective address (RAIO) + (RB).
dcbtst RA,RB Load the data cache block which contains 11-54
the effective address (RAIO) + (RB).
dcbz RA, RB Zero the data cache block which contains 11-56
the effective address (RAIO) + (RB).
dccci RA, RB Invalidate the data cache congruence class 11-58
associated with the effective address
(RAIO) + (RB).
dcread RT, RA, RB Read either tag or data information from the 11-60
data cache congruence class associated
with the effective address (RAIO) + (RB).
Place the results in RT.
divw RT, RA, RB Divide (RA) by (RB), signed. 11-62
- Place result in RT.
divw. CR[CRO0]
divwo XER[SO, OV]
divwo. CRI[CRO0]
XER[SO, OV]
Instruction Summary A-19

Table A-1. PPC403GC Instruction Syntax Summary (cont.)
Other
Mnemonic Operands Function Registers Page
Changed
divwu RT, RA, RB Divide (RA) by (RB), unsigned. 11-63
Place result in RT.
divwu. CRICRO]
divwuo XERI[SO, 0V]
divwuo. CR[CRO0]
XER[SO, 0OV]
eieio Storage synchronization. All loads and 11-64
stores that precede the eieio instruction
complete before any loads and stores that
follow the instruction access main storage.
Implemented as syne, which is more
restrictive.
eqv RA, RS, RB Equivalence of (RS) with (RB). 11-65
(RA) « —((RS) @ (RB))
eqv. CRI[CRO]
extlwi RA, RS, n, b Extract and left justify immediate. (n > 0) 11-130
(RA)o:n-1 < (RS)p:pn—1
(RA)ngy < %70
Extended mnemonic for
rlwinm RA,RS,b,0,n-1
extlwi. Extended mnemonic for CRI[CRO0]
riwinm. RA,RS,b,0,n-1
extrwi RA, RS, n, b Extract and right justify immediate. (n > 0) 11-130
(RA)32-n:31 < (RS)ppen-1
(RA)gz1n < 270
Extended mnemonic for
rlwinm RA,RS,b+n,32-n,31
extrwi. Extended mnemonic for CR[CRO0]
riwinm. RA,RS,b+n,32-n,31
extsb RA, RS Extend the sign of byte (RS)4.31. 11-66
Place the result in RA.
extsb. CRICRO]
extsh RA, RS Extend the sign of halfword (RS)4¢.31. 11-67
Place the result in RA.
extsh. CRI[CRO0]
icbi RA, RB Invalidate the instruction cache block which 11-68
contains the effective address
(RAIO) + (RB).
icbt RA, RB Load the instruction cache block which con- 11-70
tains the effective address (RAIO) + (RB).
A-20 PPC403GC User's Manual

Table A-1

. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

iccci

RA, RB

Invalidate instruction cache congruence
class associated with the effective address
(RAIQ) + (RB).

11-72

icread

RA, RB

Read either tag or data information from the
instruction cache congruence class associ-
ated with the effective address

(RAIO) + (RB).

Place the results in ICDBDR.

11-74

inslwi

inslwi.

RA, RS, n, b

Insert from left immediate. (n > 0)

(RA):bin-1 < (RS)o:n-1
Extended mnemonic for
rlwimi RA,RS,32-b,b,b+n-1

Extended mnemonic for
riwimi. RA,RS,32-b,b,b+n-1

CRICRO]

11-129

insrwi

insrwi.

RA, RS, n, b

Insert from right immediate. (n > 0)
(RA)o:psn-1 < (RS)32n:31
Extended mnemonic for
rlwimi RA,RS,32-b-n,b,b+n-1

Extended mnemonic for
rlwimi. RA,RS,32-b-n,b,b+n-1

CRI[CRO]

11-129

isync

Synchronize execution context by flushing
the prefetch queue.

la

RT, D(RA)

Load address. (RA # 0)
D is an offset from a base address that is
assumed to be (RA).
(RT) « (RA) + EXTS(D)
Extended mnemonic for
addi RT,RA,D

bz

RT, D(RA)

Load byte from EA = (RAIO) + EXTS(D)
and pad left with zeroes,
(RT) « 2%0 Il MS(EA,1).

11-77

lbzu

RT, D(RA)

Load byte from EA = (RAIO) + EXTS(D)
and pad left with zeroes,

(RT) « 2%0 Il MS(EA,1).

Update the base address,

(RA) « EA.

11-78

Instruction Summary

A-21

Table A-1

. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

Ibzux

RT, RA, RB

Load byte from EA = (RAIO) + (RB)
and pad left with zeroes,

(RT) « 2%0 Il MS(EA,1).

Update the base address,

(RA) « EA.

11-79

Ibzx

RT, RA, RB

Load byte from EA = (RAIO) + (RB)
and pad left with zeroes,
(RT) « 20 1| MS(EA,1).

11-80

lha

RT, D(RA)

Load halfword from EA = (RAIQ) + EXTS(D)
and sign extend,
(RT) « EXTS(MS(EA,2)).

11-81

Ilhau

RT, D(RA)

Load halfword from EA = (RAIO) + EXTS(D)
and sign extend,

(RT) « EXTS(MS(EA,2)).

Update the base address,

(RA) « EA.

11-82

lhaux

RT, RA, RB

Load halfword from EA = (RAIO) + (RB)
and sign extend,

(RT) « EXTS(MS(EA,2)).

Update the base address,

(RA) « EA.

11-83

lhax

RT, RA, RB

Load halfword from EA = (RAIO) + (RB)
and sign extend,
(RT) « EXTS(MS(EA,2)).

11-84

lhbrx

RT, RA, RB

Load halfword from EA = (RAIO) + (RB)
then reverse byte order and pad left with
zeroes,

(RT) « 160 1| MS(EA+1,1) I| MS(EA,1).

11-85

lhz

RT, D(RA)

Load halfword from EA = (RAIQ) + EXTS(D)
and pad left with zeroes,
(RT) « 60 II MS(EA,2).

11-86

lhzu

RT, D(RA)

Load halfword from EA = (RAIO) + EXTS(D)
and pad left with zeroes,

(RT) « 60 || MS(EA,2).

Update the base address,

(RA) « EA.

11-87

A-22

PPC403GC User’'s Manual

Table A-1

. PPC403GC Instruction Syntax Summary (cont.)

Other
Mnemonic Operands Function Registers Page
Changed
thzux RT, RA, RB Load halfword from EA = (RAIO) + (RB) 11-88
and pad left with zeroes,
(RT) « %0 Il MS(EA,2).
Update the base address,
(RA) « EA.
lhzx RT, RA, RB Load halfword from EA = (RAIO) + (RB) 11-89
and pad left with zeroes,
(RT) « '®0 Il MS(EA,2).
li RT, IM Load immediate. 11-9
(RT) « EXTS(IM)
Extended mnemonic for
addi RT,0,value
lis RT, IM Load immediate shifted. 11-12
(RT) « (M || "0)
Extended mnemonic for
addis RT,0,value
Imw RT, D(RA) Load multiple words starting from 11-90
EA = (RAIO) + EXTS(D).
Place into consecutive registers,
RT through GPR(31).
RA is not altered unless RA = GPR(31).
Iswi RT, RA, NB Load consecutive bytes from EA=(RAIO). 11-91
Number of bytes n=32 if NB=0, else n=NB.
Stack bytes into words in CEIL(n/4)
consecutive registers starting with RT, to
RFINAL «— ((RT + CEIL(n/4) - 1) % 32)
GPR(0) is consecutive to GPR(31).
RA is not altered unless RA = RgjyaL.
Iswx RT, RA, RB Load consecutive bytes from 11-93
EA=(RAI0)+(RB).
Number of bytes n=XER[TBC].
Stack bytes into words in CEIL(n/4)
consecutive registers starting with RT, to
RFlNAL — ((RT + CEIL(n/4) - 1) % 32)
GPR(0) is consecutive to GPR(31).
RA is not altered unless RA = RgjnaL-
RB is not altered unless RB = RgjnaL-
If n=0, content of RT is undefined.
lwarx RT, RA, RB Load word from EA = (RAIO) + (RB) 11-95
and place in RT,
(RT) « MS(EA4).
Set the Reservation bit.
Instruction Summary A-23

Table A-1

. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

lwbrx

RT, RA, RB

Load word from EA = (RAIO) + (RB)

then reverse byte order,

(RT) « MS(EA+3,1) Il MS(EA+2,1) I
MS(EA+1,1) | MS(EA,1).

11-96

lwz

RT, D(RA)

Load word from EA = (RAIOQ) + EXTS(D)
and place in RT,
(RT) « MS(EA4).

11-97

lwzu

RT, D(RA)

Load word from EA = (RAIO) + EXTS(D)
and place in RT,

(RT) « MS(EA4).

Update the base address,

(RA) « EA.

11-98

lwzux

RT, RA, RB

Load word from EA = (RAIO) + (RB)
and place in RT,

(RT) « MS(EA4).

Update the base address,

(RA) « EA.

11-99

Iwzx

RT, RA, RB

Load word from EA = (RAIQ) + (RB)
and place in RT,
(RT) « MS(EA,4).

11-100

mcerf

BF, BFA

Move CR field, (CR[CRn]) « (CR[CRm])
where m « BFA and n « BF.

11-101

mcrxr

BF

Move XERJ[0:3] into field CRn, where
n«BF.

CR[CRn] « (XER[SO, OV, CA]).
(XER[SO, OV, CA]) « °20.

11-102

mfcr

RT

Move from CR to RT,
(RT) « (CR).

11-103

A-24

PPC403GC User’'s Manual

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

mfbear
mfbesr
mfbr0
mfbri
mfbr2
mfbr3
mfbr4
mfbr5
mfbré
mfbr7
mfdmaccO
mfdmacci
mfdmacc2
mfdmacc3
mfdmacr0
mfdmacri
mfdmacr2
mfdmacr3
mfdmact0
mfdmacti
mfdmact2
mfdmact3
mfdmada0
mfdmadai
mfdmada2
mfdmada3
mfdmasa0
mfdmasai
mfdmasa2
mfdmasa3
mfdmasr
mfexisr
mfexier
mfiocr

RT

Move from device control register DCRN.

Extended mnemonic for
mfdcr RT,DCRN

See Table 12-3 on page 12-4 for listing of

valid DCRN values.

11-104

mfdcr

RT, DCRN

Move from DCR to RT,
(RT) « (DCR(DCRN)).

11-104

mfmsr

RT

Move from MSR to RT,
(RT) « (MSR).

11-106

Instruction Summary

A-25

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

mfcdbcer
mfctr
mfdaci
mfdac2
mfdbsr
mfdccr
mfdcwr
mfdear
mfesr
mfevpr
mfiac1
mfiac2
mficcr
mficdbdr
mflr
mfpbl1
mipbl2
mfpbut
mfpbu2
mfpid
mfpit
mfpvr
mfsgr
mfsprg0
mfsprg1
mfsprg2
mfsprg3
mfsrr0
mfsrri
mfsrr2
mfsrr3
mftbhi
miftbhu
mftblo
mftbiu
mftcr
mftsr
mfxer
mfzpr

RT

Move from special purpose register SPRN.
Extended mnemonic for
mfspr RT,SPRN

See Table 12-2 on page 12-2 for listing of
valid SPRN values.

11-107

mfspr

RT, SPRN

Move from SPR to RT,
(RT) « (SPR(SPRN)).

11-107

A-26

PPC403GC User’'s Manual

Table A-1

. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

mr

mr.

RT, RS

Move register.

(RT) « (RS)
Extended mnemonic for
or RT,RS,RS

Extended mnemonic for
or. RT,RS,RS

CRICRO]

11-123

mtcer

RS

Move to Condition Register.
Extended mnemonic for
mtcrf OXFF,RS

11-109

mtcrf

FXM, RS

Move some or all of the contents of RS into

CR as specified by FXM field,

mask « 4FXMp) || “(FXMy) || ... ||
YFXMg) 1l 4FXMy).

(CR)«—((RS) A mask) v (CR) A —mask).

11-109

Instruction Summary

A-27

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

mtbear
mtbesr
mtbro
mtbr1
mtbr2
mtbr3
mtbr4
mtbr5
mtbré
mtbr7
mtdmaccO
mtdmacci
mtdmacc2
mtdmacc3
mtdmacr0
mtdmacr1
mtdmacr2
mtdmacr3
mtdmact0
mtdmact1
mtdmact2
mtdmact3
mtdmada0
mtdmada1i
mtdmada2
mtdmada3
mtdmasa0
mtdmasai
mtdmasa2
mtdmasa3
mtdmasr
mtexisr
mtexier
mtiocr

RS

Move to device control register DCRN.
Extended mnemonic for
mtdcr DCRN,RS

See Table 12-3 on page 12-4 for listing of
valid DCRN values.

11-111

mtder

DCRN, RS

Move to DCR from RS,
(DCR(DCRN)) « (RS).

11-111

mtmsr

RS

Move to MSR from RS,
(MSR) « (RS).

11-113

A-28

PPC403GC User's Manual

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

mtcdber
mtctr
midac1
mtdac?2
mtdbsr
mtdccr
mtdcwr
mtesr
mtevpr
mtiac1
mtiac2
mticcr
mticdbdr
mtir
mtpbl1
mtpbl2
mtpbui
mtpbu2
mtpid
mtpit
mtsgr
mtsprg0
mtsprgi
mtsprg2
mtsprg3
mtsrr0
misrri
mtsrr2
mtsrr3
mttbhi
mttblo
mtter
mttsr
mtxer
mtzpr

RS

Move to special purpose register SPRN.
Extended mnemonic for
mtspr SPRN,RS

See Table 12-2 on page 12-2 for listing of
valid SPRN values.

11-114

mtspr

SPRN, RS

Move to SPR from RS,
(SPR(SPRN)) « (RS).

11-114

mulhw

mulhw.

RT, RA, RB

Multiply (RA) and (RB), signed.
Place hi-order result in RT.
prodg.gz < (RA) x (RB) (signed).
(RT) « prodg.31,

CRI[CRO]

11-116

Instruction Summary

A-29

Table A-1

. PPC403GC Instruction Syntax Summary (cont.)

Other
Mnemonic Operands Function Registers Page
Changed
mulhwu RT, RA, RB Multiply (RA) and (RB), unsigned. 11-117
Place hi-order result in RT.
mulhwu. prodgss « (RA)x (RB) (unsigned). CRICRO]
(RT) « prodps;.
mulli RT, RA, IM Multiply (RA) and 1M, signed. 11-118
Place lo-order result in RT.
prodg.47 < (RA) x IM (signed)
(RT) « prodig.47
mullw RT, RA, RB Multiply (RA) and (RB), signed. 11-119
Place lo-order result in RT.
mullw. prodggs < (RA)x (RB) (signed). CRICRO]
mullwo (RT) « prodss.gs. XER[SO, OV]
mullwo. CRICRO0]
XER[SO, OV]
nand RA, RS, RB NAND (RS) with (RB). 11-120
Place result in RA.
nand. CRI[CRO]
neg RT, RA Negative (two’s complement) of RA. 11-121
(RT) « =(RA) +1
neg. CRI[CRO0]
nego XER[SO, 0V]
nego. CRICRO]
XER[SO, 0OV]
nop Preferred no-op, 11-125
triggers optimizations based on no-ops.
Extended mnemonic for
ori 0,0,0
nor RA, RS, RB NOR (RS) with (RB). 11-122
Place result in RA.
nor. CRI[CROQ]
not RA, RS Complement register. 11-122
(RA) < —(RS)
Extended mnemonic for
nor RA,RS,RS
not. Extended mnemonic for CRI[CRO0]
nor. RA,RS,RS
or RA, RS, RB OR (RS) with (RB). 11-123
Place result in RA.
or. CRI[CRO0]
A-30 PPC403GC User's Manual

Table A-1

. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

orc

orc.

RA, RS, RB

OR (RS) with —(RB).
Place result in RA.

CR[CRO0]

11-124

ori

RA, RS, IM

OR (RS) with (60 || IM).
Place result in RA.

11-125

oris

RA, RS, IM

OR (RS) with (IM || 160).
Place result in RA.

11-126

rfci

Return from critical interrupt
(PC) « (SRR2).
(MSR) « (SRR3).

11-127

rfi

Return from interrupt.
(PC) « (SRRO).
(MSR) « (SRR1).

11-128

riwimi

rlwimi.

RA, RS, SH,
MB, ME

Rotate left word immediate, then insert
according to mask.

r « ROTL((RS), SH)

m « MASK(MB, ME)

(RA) < (rA m) v ((RA) A —m)

CRICRO]

11-129

riwinm

riwinm.

RA, RS, SH,
MB, ME

Rotate left word immediate, then AND with
mask.

r «— ROTL((RS), SH)

m « MASK(MB, ME)

(RA) « (rA m)

CRICRO]

11-130

rlwnm

rlwnm.

RA, RS, RB,
MB, ME

Rotate left word, then AND with mask.
r « ROTL((RS), (RB)27.31)

m « MASK(MB, ME)

(RA) « (rA m)

CR[CRO]

11-133

rotlw

rotiw.

RA, RS, RB

Rotate left.

(RA) — ROTL((RS), (RB)27:31)
Extended mnemonic for
riwnm RA,RS,RB,0,31

Extended mnemonic for
riwnm. RA,RS,RB,0,31

CR[CRO]

11-133

rotiwi

rotlwi.

RA, RS, n

Rotate left immediate.

(RA) « ROTL((RS), n)
Extended mnemonic for
rlwinm RA,RS,n,0,31

Extended mnemonic for
rlwinm. RA,RS,n,0,31

CRI[CRO0]

11-130

Instruction Summary

A-31

Table A-1

. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

rotrwi

RA, RS, n

rotrwi.

Rotate right immediate.

(RA) « ROTL((RS), 32-n)
Extended mnemonic for
rlwinm RA,RS,32-n,0,31

Extended mnemonic for
rlwinm. RA,RS,32-n,0,31

CRICRO]

11-130

SC

System call exception is generated.
(SRR1) « (MSR)

(SRR0) « (PC)

PC « EVPRO:15 |l x'0C00'
(MSRI[WE, PR, EE, PE, DR, IR]) « 0
(MSRILE]) « (MSRI[ILE])

11-134

slw

RA, RS, RB

slw.

Shift left (RS) by (RB)a7.51.

n « (RB)a7:31,

r « ROTL((RS), n).

if (RB)yg = Othenm « MASK(0, 31 - n)
else m « 320,

(RA) «r Am.

CRICRO]

11-135

slwi

RA, RS, n

slwi.

Shift left immediate. (n < 32)

(RA)o:31-n < (RS)n31

(RA)zp n3y « "0
Extended mnemonic for
rlwinm RA,RS,n,0,31-n

Extended mnemonic for
rlwinm. RA,RS,n,0,31-n

CRICRO]

11-130

sraw

RA, RS, RB

sraw.

Shift right algebraic (RS) by (RB)27.31-
n « (RB)27:31.

r « ROTL((RS), 32 —n).

if (RB)og = 0then m « MASK(n, 31)
elsem « °<0.

s « (RS)g

(RA) « (r Am) v (33s A —m).
XER[CA] < s A ((r A —m) = 0).

CR[CRO0]

11-136

srawi

RA, RS, SH

srawi.

Shift right algebraic (RS) by SH.
n « SH.

r « ROTL((RS), 32 -n).

m « MASK(n, 31).

s « (RS)o.

(RA) « (r Am) v (33s A —m).
XER[CA] < s A ((r A =m)z0).

CRICRO]

11-137

A-32

PPC403GC User’'s Manual

Table A-1

. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

srw

SIw.

RA, RS, RB

n « (RB)27.31.

r « ROTL((RS), 32-n).

if (RB)yg = Othenm « MASK(n, 31)
else m « 320.

(RA) «r A m.

CRICRO]

11-138

srwi

srwi.

RA, RS, n

Shift right immediate. (n < 32)
(RA)r:31 < (RS)o.31-n
(RA)oin-1 < "0
Extended mnemonic for
riwinm RA,RS,32-n,n,31

Extended mnemonic for
rlwinm. RA,RS,32-n,n,31

CRICRO]

11-130

stb

RS, D(RA)

Store byte (RS)o4.31 in memory at
EA = (RAIO) + EXTS(D).

11-139

stbu

RS, D(RA)

Store byte (RS),4.31 in memory at
EA = (RAIO) + EXTS(D).

Update the base address,

(RA) « EA.

11-140

stbux

RS, RA, RB

Store byte (RS)54.31 in memory at
EA = (RAIO) + (RB).

Update the base address,

(RA) « EA.

11-141

stbx

RS, RA, RB

Store byte (RS)4.31 in memory at
EA = (RAIO) + (RB).

11-142

sth

RS, D(RA)

Store halfword (RS)46.31 in memory at
EA = (RAIO) + EXTS(D).

11-143

sthbrx

RS, RA, RB

Store halfword (RS)46.31 byte-reversed in
memory at EA = (RAIO) + (RB).
MS(EA, 2) « (RS)24:31 Il (RS)16:23

11-144

sthu

RS, D(RA)

Store halfword (RS)46.31 in memory at
EA = (RAIO) + EXTS(D).

Update the base address,

(RA) « EA.

11-145

sthux

RS, RA, RB

Store halfword (RS)4g.31 in memory at
EA = (RAIO) + (RB).

Update the base address,

(RA) « EA.

11-146

Instruction Summary

A-33

Table A-1

. PPC403GC Instruction Syntax Summary (cont.)

Other
Mnemonic Operands Function Registers Page
Changed
sthx RS, RA, RB Store halfword (RS)4g.31 in memory at 11-147
EA = (RAIO) + (RB).
stmw RS, D(RA) Store consecutive words from 11-148
RS through GPR(31) in memory starting at
EA = (RAIO) + EXTS(D).
stswi RS, RA, NB Store consecutive bytes in memory starting 11-149
at EA=(RAIQ).
Number of bytes n=32 if NB=0, else n=NB.
Bytes are unstacked from CEIL(n/4)
consecutive registers starting with RS.
GPR(0) is consecutive to GPR(31).
stswx RS, RA, RB Store consecutive bytes in memory starting 11-150
at EA=(RAI0)+(RB).
Number of bytes n=XER[TBC].
Bytes are unstacked from CEIL(n/4)
consecutive registers starting with RS.
GPR(0) is consecutive to GPR(31).
stw RS, D(RA) Store word (RS) in memory at 11-152
EA = (RAIO) + EXTS(D).
stwbrx RS, RA, RB Store word (RS) byte-reversed in memory 11-153
at EA = (RAIO) + (RB).
MS(EA, 4) « (RS)24:31 Il (RS)16:23 |l
(RS)g.15 Il (RS)o.7
stwex. RS, RA, RB Store word (RS) in memory at 11-154
EA = (RAIO) + (RB)
only if reservation bit is set.
if RESERVE = 1 then
MS(EA, 4) « (RS)
RESERVE « 0
(CR[CRO]) « 20 || 1 || XERg,
else
(CR[CRO)) « 20 || 0 || XERg,,
stwu RS, D(RA) Store word (RS) in memory at 11-156
EA = (RAIO) + EXTS(D).
Update the base address,
(RA) « EA.
stwux RS, RA, RB Store word (RS) in memory at 11-157
EA = (RAIO) + (RB).
Update the base address,
(RA) « EA.
A-34 PPC403GC User’'s Manual

Table A-1. PPC403GC Instruction Syntax Summary (cont.)
Other
Mnemonic Operands Function Registers Page
Changed
stwx RS, RA, RB Store word (RS) in memory at 11-158
EA = (RAIO) + (RB).
sub RT, RA, RB Subtract (RB) from (RA). 11-159
(RT) « —(RB) + (RA) + 1.
Extended mnemonic for
subf RT,RB,RA
sub. Extended mnemonic for CRICRO]
subf. RT,RB,RA
subo Extended mnemonic for XER[SO, OV]
subfo RT,RB,RA
subo. Extended mnemonic for CRI[CRO0]
subfo. RT,RB,RA XER[SO, OV]
subc RT, RA, RB Subtract (RB) from (RA). 11-160
(RT) « —(RB) + (RA) + 1.
Place carry-out in XER[CA].
Extended mnemonic for
subfc RT,RB,RA
subc. Extended mnemonic for CRI[CRO0]
subfc. RT,RB,RA
subco Extended mnemonic for XER([SO, OV]
subfco RT,RB,RA
subco. Extended mnemonic for CRI[CRO0]
subfco. RT,RB,RA XER[SO, OV]
subf RT, RA, RB Subtract (RA) from (RB). 11-159
(RT) « —(RA) + (RB) + 1.
subf. CRICRO0]
subfo XER[SO, OV]
subfo. CRICRO]
XERI[SO, 0V]
subfc RT, RA, RB Subtract (RA) from (RB). 11-160
(RT) « —(RA) + (RB) + 1.
subfe. Place carry-out in XER[CA]. CRICRO]
subfco XER[SO, OV]
subfco. CRICRO]
XER[SO, OV]
Instruction Summary A-35

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Other
Mnemonic Operands Function Registers Page
Changed
subfe RT, RA, RB Subtract (RA) from (RB) with carry-in. 11-162
(RT) « —(RA) + (RB) + XERI[CA].
subfe. Place carry-out in XER[CA]. CRICRO]
subfeo XER[SO, 0V]
subfeo. CR[CRO]
XER[SO, OV]
subfic RT, RA, IM Subtract (RA) from EXTS(IM). 11-163
(RT) « —(RA) + EXTS(IM) + 1.
Place carry-out in XER[CA].
subfme RT, RA, RB Subtract (RA) from (—1) with carry-in. 11-164
(RT) « —(RA) + (-1) + XER[CA].
subfme. Place carry-out in XER[CA]. CRICRO]
subfmeo XERI[SO, OV]
subfmeo. CR[CRO]
XERI[SO, 0V]
subfze RT, RA, RB Subtract (RA) from zero with carry-in. 11-165
(RT) « —(RA) + XER[CAI.
subfze. Place carry-out in XER[CA]. CRICRO]
subfzeo XERI[SO, OV]
subfzeo. CR[CRO0]
XERI[SO, OV]
subi RT, RA, IM Subtract EXTS(IM) from (RAIO). 11-9
Place result in RT.
Extended mnemonic for
addi RT,RA,-IM
subic RT, RA, IM Subtract EXTS(IM) from (RA). 11-10
Place result in RT.
Place carry-out in XER[CA].
Extended mnemonic for
addic RT,RA,-IM
subic. RT, RA, IM Subtract EXTS(IM) from (RA). CR[CRO0] 11-11
Place result in RT.
Place carry-out in XER[CA].
Extended mnemonic for
addic. RT,RA,-IM
subis RT, RA, IM Subtract (IM || 160) from (RAIO). 11-12
Place result in RT.
Extended mnemonic for
addis RT,RA,-IM
A-36 PPC403GC User's Manual

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Other
Mnemonic Operands Function Registers Page
Changed
sync Synchronization. All instructions that pre- 11-166
cede sync complete before any instruc-
tions that follow sync begin.
When sync completes, all storage
accesses initiated prior to sync will have
completed.
tibia All of the entries in the TLB are invalidated 11-167
and become unavailable for transiation by
clearing the valid (V) bit in the TLBHI
portion of each TLB entry. The rest of the
fields in the TLB entries are unmodified.
tibre RT, RA,WS If WS =0: 11-168
Load TLBHI portion of the selected TLB
entry into RT.
Load the PID register with the contents of
the TID field of the selected TLB entry.
(RT) <= TLBHI[(RA)]
(PID) ¢~ TLB[(RA)lnp
If WS =1:
Load TLBLO portion of the selected TLB
entry into RT.
(RT) < TLBLO[(RA)]
tibrehi RT, RA Load TLBHI portion of the selected TLB 11-168
entry into RT.
Load the PID register with the contents of
the TID field of the selected TLB entry.
(RT) < TLBHI[(RA)]
(PID) < TLB[(RA)Itip
Extended mnemonic for
tibre RT,RA,0
tibrelo RT, RA Load TLBLO portion of the selected TLB 11-168
entry into RT.
(RT) < TLBLO[(RA)]
Extended mnemonic for
tibre RT,RA,1

Instruction Summary A-37

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

tibsx

RT,RA,RB

tibsx.

Search the TLB array for a valid entry which
translates the effective address
EA = (RAIO) + (RB).
If found,
(RT) < Index of TLB entry.
If not found,
(RT) Undefined.

If found,
(RT) ¢ Index of TLB entry.
CRICROJgq <« 1.
If not found,
(RT) Undefined.
CR[CROJgq ¢ 1.

CRI[CRO] T GgT,50

11-170

tibsync

tibsync does not complete until all previous
TLB-update instructions executed by this
processor have been received and
completed by all other processors.

For PPC403GC, tibsync is a no-op.

11-171

tibwe

RS, RAWS

If WS = 0:

Write TLBHI portion of the selected TLB
entry from RS.

Write the TID field of the selected TLB entry
from the PID register.

TLBHI[(RA)] < (RS)

TLB[(RA)lip ¢— (PID)24:31

IfWS = 1:

Write TLBLO portion of the selected TLB
entry from RS.

TLBLO[(RA)] < (RS)

11-172

tibwehi

RS, RA

Write TLBHI portion of the selected TLB
entry from RS.
Write the TID field of the selected TLB entry
from the PID register.
TLBHI[(RA)] < (RS)
TLB[(RA)Itip <= (PID)24:31

Extended mnemonic for

tibwe RS,RA,0

11-172

tibwelo

RS, RA

Write TLBLO portion of the selected TLB
entry from RS.
TLBLO[(RA)] < (RS)

Extended mnemonic for

tibwe RS,RA,1

11-172

A-38

PPC403GC User's Manual

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Other
Mnemonic Operands Function Registers Page
Changed
trap Trap unconditionally. 11-174
Extended mnemonic for tw 31,0,0
tweq RA, RB Trap if (RA) equal to (RB).
Extended mnemonic for tw 4,RA,RB
twge Trap if (RA) greater than or equal to (RB).
Extended mnemonic for tw 12,RA,RB
twgt Trap if (RA) greater than (RB).
Extended mnemonic for tw 8,RA,RB
twle Trap if (RA) less than or equal to (RB).
Extended mnemonic for tw 20,RA,RB
twige Trap if (RA) logically greater than or equal
to (RB).
Extended mnemonic for tw 5,RA,RB
twigt Trap if (RA) logically greater than (RB).
Extended mnemonic for tw 1,RA,RB
twlile Trap if (RA) logically less than or equal to
(RB).
Extended mnemonic for tw 6,RA,RB
twlit Trap if (RA) logically less than (RB).
Extended mnemonic for tw 2,RA,RB
twing Trap if (RA) logically not greater than (RB).
Extended mnemonic for tw 6,RA,RB
twinl Trap if (RA) logically not less than (RB).
Extended mnemonic for tw 5,RA,RB
twit Trap if (RA) less than (RB).
Extended mnemonic for tw 16,RA,RB
twne Trap if (RA) not equal to (RB).
Extended mnemonic for tw 24,RA,RB
twng Trap if (RA) not greater than (RB).
Extended mnemonic for tw 20,RA,RB
twnl Trap if (RA) not less than (RB).
Extended mnemonic for tw 12,RA,RB
tw TO, RA, RB Trap exception is generated if, comparing 11-174
(RA) with (RB), any condition specified by
TO is true.
Instruction Summary A-39

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

Page

twegqi

RA, IM

twgei

twgti

twlei

twigei

twigti

twllei

twilti

twingi

twinli

twiti

twnei

twngi

twnli

Trap if (RA) equal to EXTS(IM).
Extended mnemonic for twi 4,RA,IM

Trap if (RA) greater than or equal to
EXTS(IM).
Extended mnemonic for twi 12,RA,IM

Trap if (RA) greater than EXTS(IM).
Extended mnemonic for twi 8,RA,IM

Trap if (RA) less than or equal to EXTS(IM).
Extended mnemonic for twi 20,RA,IM

Trap if (RA) logically greater than or equal
to EXTS(IM).
Extended mnemonic for twi 5,RA,IM

Trap if (RA) logically greater than
EXTS(IM).
Extended mnemonic for twi 1,RA,IM

Trap if (RA) logically less than or equal to
EXTS(IM).
Extended mnemonic for twi 6,RA,IM

Trap if (RA) logically less than EXTS(IM).
Extended mnemonic for twi 2,RA,IM

Trap if (RA) logically not greater than
EXTS(IM).
Extended mnemonic for twi 6,RA,IM

Trap if (RA) logically not less than
EXTS(IM).
Extended mnemonic for twi 5,RA,IM

Trap if (RA) less than EXTS(IM).
Extended mnemonic for twi 16,RA,IM

Trap if (RA) not equal to EXTS(IM).
Extended mnemonic for twi 24,RA,IM

Trap if (RA) not greater than EXTS(IM).
Extended mnemonic for twi 20,RA,IM

Trap if (RA) not less than EXTS(IM).
Extended mnemonic for twi 12,RA,IM

11-177

twi

TO, RA, IM

Trap exception is generated if, comparing
(RA) with EXTS(IM), any condition speci-
fied by TO is true.

11-177

A-40

PPC403GC User's Manual

Table A-1. PPC403GC Instruction Syntax Summary (cont.)

Other
Mnemonic Operands Function Registers Page
Changed

wrtee RS Write value of RSg to the External Enable 11-180
bit (MSR[EE])).

wrteei E Write value of E to the External Enable 11-181
bit (MSRI[EE]).

xor RA, RS, RB XOR (RS) with (RB). 11-182
Place result in RA.

xor. CRICRO0]

xori RA, RS, IM XOR (RS) with (160 || IM). 11-183
Place result in RA.

xoris RA, RS, IM XOR (RS) with (IM || 0). 11-184
Place result in RA.

Instruction Summary A-41

A.2

All instructions are four bytes long and word aligned. All instructions have a primary opcode
field (shown as field OPCD in Figure A-1 through Figure A-9 beginning on page A-52) in
bits 0:5. Some instructions also have a seconday opcode field (shown as field XO in

Figure A-1 through Figure A-9). PPC403GC instructions sorted by primary and secondary

opcode may be found in Table A-2 below.

The “Form” indicated in the table refers to the arrangement of valid field combinations within
the four-byte instruction. See Section A.3 (Instruction Formats) on page A-50 for illustration
of the field layouts associated with each form.

Form X has a 10-bit secondary opcode field, while form XO uses only the low-order 9-bits of
that field. Form XO uses the high-order secondary opcode bit (the tenth bit) as a variable;
therefore, every form XO instruction really consumes two secondary opcodes from the 10-

Instructions Sorted by Opcode

bit secondary-opcode space. The implicitly consumed secondary opcode is listed in
parentheses for form XO instructions in the table below.

Table A-2. PPC403GC Instructions by Opcode

g';?:;g Sgc;'::::y Form Mnemonic Operands Page

3 D twi TO, RA, IM 11-177
7 D mulli RT, RA, IM 11-118
8 D subfic RT, RA, IM 11-163
10 D cmpli BF,0,RA, IM | 11-39
11 D cmpi BF,0,RA, IM | 11-37
12 D addic RT, RA, IM 11-10
13 D addic. RT, RA, IM 11-11
14 D addi RT, RA, IM 11-9
15 D addis RT, RA, IM 11-12
16 B be BO, BI, target | 11-20

bca

bel

bcla
17 SC sC 11-134

A-42

PPC403GC User's Manual

Table A-2. PPC403GC Instructions by Opcode (cont.)

gg?:;: Sgcpc::)c‘ija;y Form Mnemonic Operands Page
18 | b target 11-19
ba
bl
bla
19 0 XL mcerf BF, BFA 11-101
19 16 XL belr BO, Bl 11-31
belrl
19 33 XL crnor BT, BA, BB 11-45
19 50 XL rfi 11-128
19 51 XL rfci 11-127
19 129 XL crandc BT, BA, BB 11-42
19 150 XL isync 11-76
19 193 XL crxor BT, BA, BB 11-48
19 225 XL crnand BT, BA, BB 11-44
19 257 XL crand BT, BA, BB 11-41
19 289 XL creqv BT, BA, BB 11-43
19 417 XL crorc BT, BA, BB 11-47
19 449 XL cror BT, BA, BB 11-46
19 528 XL beetr BO, BI 11-27
beetrl
20 M riwimi RA, RS, SH, 11-129
rlwimi. ME, ME
21 M riwinm RA, RS, SH, 11-130
rlwinm. B, ME
23 M riwnm RA, RS, RB, 11-133
rlwnm. MB, ME
24 D ori RA, RS, IM 11-125
25 D oris RA, RS, IM 11-126
26 D xori RA, RS, IM 11-183

Instruction Summary

A-43

Table A-2. PPC403GC Instructions by Opcode (cont.)

g';r::ég Sgcl:::r:;a;y Form Mnemonic Operands Page
27 D xoris RA, RS, IM 11-184
28 D andi. RA, RS, IM 1117
29 D andis. RA, RS, IM 11-18
31 0 X cmp BF, 0, RA,RB | 11-36
31 4 X tw TO, RA, RB 11-174
31 8 (520) XO subfc RT, RA, RB 11-160
subfc.
subfco
subfco.
31 10 (522) X0 addc RT, RA, RB 11-7
addc.
addco
addco.
31 11 (523) X0 mulhwu RT, RA, RB 11-117
mulhwu.
31 19 X mfcr RT 11-103
31 20 X lwarx RT, RA, RB 11-95
31 23 X lwzx RT, RA, RB 11-100
31 24 X slw RA, RS, RB 11-135
slw.
31 26 X cntizw RA, RS 11-40
cntlzw.
31 28 X and RA, RS, RB 11-15
and.
31 32 X cmpl BF, 0, RA,RB | 11-38
31 40 (552) X0 subf RT, RA, RB 11-159
subf.
subfo
subfo.

A-44 PPC403GC User’'s Manual

Table A-2. PPC403GC Instructions by Opcode (cont.)

Primary

Secondary

Opcode Opcode Form Mnemonic Operands Page
31 54 X dcbst RA, RB 11-51
31 55 lwzux RT, RA, RB 11-99
31 60 X andc RA, RS, RB 11-16

andc.
31 75 (587) X0 mulhw RT, RA, RB 11-116
mulhw.
31 83 X mfmsr RT 11-106
31 86 X dcbf RA, RB 11-49
31 87 X Ibzx RT, RA, RB 11-80
31 104 (616) XO neg RT, RA 11-121
neg.
nego
nego.
31 119 Ibzux RT, RA, RB 11-79
31 124 nor RA, RS, RB 11-122
nor.
31 131 X wrtee RS 11-180
31 136 (648) X0 subfe RT, RA, RB 11-162
subfe.
subfeo
subfeo.
31 138 (650) X0 adde RT, RA, RB 11-8
adde.
addeo
addeo.
31 144 XFX mtcrf FXM, RS 11-109
31 146 X mtmsr RS 11-113
31 150 stwex. RS, RA, RB 11-154
31 151 X stwx RS, RA, RB 11-158

Instruction Summary

A-45

Table A-2. PPC403GC Instructions by Opcode (cont.)

Z’;?:;‘e' Sgc:cr:)c;a;y Form Mnemonic Operands Page
31 163 wrteei E 11-181
31 183 stwux RS, RA, RB 11-157
31 200 (712) XO subfze RT, RA, RB 11-165

subfze.
subfzeo
subfzeo.
31 202 (714) XO addze RT, RA 11-14
addze.
addzeo
addzeo.
31 215 X stbx RS, RA, RB 11-142
31 232 (744) X0 subfme RT, RA, RB 11-164
subfme.
subfmeo
subfmeo.
31 234 (746) X0 addme RT, RA 11-13
addme.
addmeo
addmeo.
31 235 (747) XO mullw RT, RA, RB 11-119
mullw.
mullwo
mullwo.
31 246 X dcbtst RA,RB 11-54
31 247 stbux RS, RA, RB 11-141
31 262 X icbt RA, RB 11-70

PPC403GC User’'s Manual

Table A-2. PPC403GC Instructions by Opcode (cont.)

Primary

Secondary

Opcode Opcode Form Mnemonic Operands Page
31 266 (778) XO add RT, RA, RB 11-6
add.
addo
addo.
31 278 dcbt RA, RB 11-52
31 279 lhzx RT, RA, RB 11-89
31 284 eqv RA, RS, RB 11-65
eqv.
31 311 lhzux RT, RA, RB 11-88
31 316 xor RA, RS, RB 11-182
Xor.
31 323 XFX mfdcr RT, DCRN 11-104
31 339 XFX mfspr RT, SPRN 11-107
31 343 X lhax RT, RA, RB 11-84
31 370 X tibia 11-167
31 375 X lhaux RT, RA, RB 11-83
31 407 X sthx RS, RA, RB 11-147
31 412 X orc RA, RS, RB 11-124
orc.
31 439 sthux RS, RA, RB 11-146
31 444 X or RA, RS, RB 11-123
or.
31 451 XFX mtdcer DCRN, RS 11-111
31 454 X dccci RA, RB 11-58
31 459 (971) X0 divwu RT, RA, RB 11-63
divwu.
divwuo
divwuo.
31 467 XFX mtspr SPRN, RS 11-114

Instruction Summary

A-47

Table A-2. PPC403GC Instructions by Opcode (cont.)

g':?:;g Sgcpzr;cg::y Form Mnemonic Operands Page
31 470 dcbi RA, RB 11-50
31 476 nand RA, RS, RB 11-120

nand.
31 486 X dcread RT, RA, RB 11-60
31 491 (1003) X0 divw RT, RA, RB 11-62
divw.
divwo
divwo.
31 512 X mcrxr BF 11-102
31 533 X Iswx RT, RA, RB 11-93
31 534 X lwbrx RT, RA, RB 11-96
31 536 X Srw RA, RS, RB 11-138
srw.
31 566 X tibsync 11-171
31 597 X Iswi RT, RA, NB 11-91
31 598 X sync 11-166
31 661 X stswx RS, RA, RB 11-150
31 662 X stwbrx RS, RA, RB 11-153
31 725 X stswi RS, RA, NB 11-149
31 790 X Ihbrx RT, RA, RB 11-85
31 792 X sraw RA, RS, RB 11-136
sraw.
31 824 X srawi RA, RS, SH 11-137
srawi.
31 854 eieio 11-64
31 914 X tibsx RT,RA,RB 11-170
tibsx.
31 918 X sthbrx RS, RA, RB 11-144

PPC403GC User's Manual

Table A-2. PPC403GC Instructions by Opcode (cont.)

Primary

Secondary

Opcode Opcode Form Mnemonic Operands Page

31 922 X extsh RA, RS 11-67
extsh.
31 946 X tibre RT, RAWS 11-168
31 954 extsb RA, RS 11-66
extsb.

31 966 X iccci RA, RB 11-72
31 978 X tibwe RS, RA,WS 11-172
31 982 X icbi RA, RB 11-68
31 998 X icread RA, RB 11-74
31 1014 X dcbz RA, RB 11-56
32 D lwz RT, D(RA) 11-97
33 D lwzu RT, D(RA) 11-98
34 D Ibz RT, D(RA) 11-77
35 D Ibzu RT, D(RA) 11-78
36 D stw RS, D(RA) 11-152
37 D stwu RS, D(RA) 11-156
38 D stb RS, D(RA) 11-139
39 D stbu RS, D(RA) 11-140
40 D lhz RT, D(RA) 11-86
41 D Ihzu RT, D(RA) 11-87
42 D Iha RT, D(RA) 11-81
43 D Ihau RT, D(RA) 11-82
44 D sth RS, D(RA) 11-143
45 D sthu RS, D(RA) 11-145
46 D Imw RT, D(RA) 11-90
47 D stmw RS, D(RA) 11-148

Instruction Summary

A-49

A.3 Instruction Formats
Instructions are four bytes long. Instruction addresses are always word-aligned.

Instruction bits 0 through 5 always contain the primary opcode. Many instructions have an
extended opcode in another field. The remaining instruction bits contain additional fields. All
instruction fields belong to one of the following categories:

¢ Defined

These instructions contain values, such as opcodes, that cannot be altered. The
instruction format diagrams specify the values of defined fields.

¢ Variable

These fields contain operands, such as general purpose register selectors and immediate
values, that may vary from execution to execution. The instruction format diagrams
specify the operands in variable fields.

* Reserved

Bits in a reserved field should be set to 0. In the instruction format diagrams, reserved
fields are shaded.

If any bit in a defined field does not contain the expected value, the instruction is illegal and
an illegal instruction exception occurs. If any bit in a reserved field does not contain 0, the
instruction form is invalid and its result is architecturally undefined. The PPC403GC
executes all invalid instruction forms without causing an illegal instruction exception.

A.3.1 Instruction Fields

PPC403GC instructions contain various combinations of the following fields, as indicated in
the instruction format diagrams. The numbers, enclosed in parentheses, that follow the field
names indicate the bit positions; bit fields are indicated by starting and stopping bit positions
separated by colons.

AA (30) Absolute address bit.

0 The immediate field represents an address relative to the current
instruction address (CIA). The effective address (EA) of the branch is
either the sum of the LI field sign-extended to 32 bits and the branch
instruction address, or the sum of the BD field sign-extended to 32 bits
and the branch instruction address.

1 The immediate field represents an absolute address. The EA of the
branch is either the Ll field or the BD field, sign-extended to 32 bits.

BA (11:15) Specifies a bit in the condition register (CR) used as a source of a
CR-Logical instruction.

BB (16:20) Specifies a bit in the CR used as a source of a CR-Logical instruction.

A-50 PPC403GC User's Manual

BD (16:29)

BF (6:8)

BFA (11:13)
Bl (11:15)

BO (6:10)
BT (6:10)

D (16:31)

DCRN (11:20)
FXM (12:19)

IM (16:31)

LI (6:29)

LK (31)

MB (21:25)

ME (26:30)

NB (16:20)
OPCD (0:5)

OE (21)

An immediate field specifying a 14-bit signed twos complement branch
displacement. This field is concatenated on the right with Ob00 and sign-
extended to 32 bits.

Specifies a field in the CR used as a target in a compare or mcrf
instruction.

Specifies a field in the CR used as a source in a merf instruction.

Specifies a bit in the CR used as a source for the condition of a conditional
branch instruction.

Specifies options for conditional branch instructions. See Section 2.7 4.

Specifies a bit in the CR used as a target as the result of a CR-Logical
instruction.

Specifies a 16-bit signed two’s-complement integer displacement for load/
store instructions.

Specifies a device control register (DCR).

Field mask used to identify CR fields to be updated by the mtcrf
instruction.

An immediate field used to specify a 16-bit value (either signed integer or
unsigned).

An immediate field specifying a 24-bit signed twos complement branch
displacement; this field is concatenated on the right with b'00' and sign-
extended to 32 bits.

Link bit.

0 Do not update the link register (LR).
1 Update the LR with the address of the next instruction.

Mask begin.

Used in rotate-and-mask instructions to specify the beginning bit of a
mask.

Mask end.
Used in rotate-and-mask instructions to specify the ending bit of a mask.
Specifies the number of bytes to move in an immediate string load or store.

Primary opcode. Primary opcodes, in decimal, appear in the instruction
format diagrams presented with individual instructions. The OPCD field
name does not appear in instruction descriptions.

Enables setting the OV and SO fields in the fixed-point exception register
(XER) for extended arithmetic.

Instruction Summary A-51

RA (11:15)
RB (16:20)
Rc (31)

RS (6:10)

RT (6:10)

SH (16:20)
SPRF (11:20)
TO (6:10)

XO (21:30)

XO (22:30)

A GPR used as a source or target.
A GPR used as a source.
Record bit.

0 Do not set the CR.
1 Set the CR to reflect the result of an operation.

See Section 2.3.3 on page 2-13 for a further discussion of how the CR bits
are set.

A GPR used as a source.

A GPR used as a target.

Specifies a shift amount.

Specifies a special purpose register (SPR).

Specifies the conditions on which to trap, as described under tw and twi
instructions.

Extended opcode for instructions without an OE field. Extended opcodes,
in decimal, appear in the instruction format diagrams presented with
individual instructions. The XO field name does not appear in instruction
descriptions.

Extended opcode for instructions with an OE field. Extended opcodes, in
decimal, appear in the instruction format diagrams presented with
individual instructions. The XO field name does not appear in instruction
descriptions.

A.3.2 Instruction Format Diagrams

The “Forms” shown in Figure A-1 through Figure A-9 are valid combinations of instruction
fields for the PPC403GC. Table A-2 on page A-42 indicates which “Form” is utilized by each
PPC403GC opcode. Fields indicated by slashes (/, //, or ///) are reserved. These figures
have been adapted from the PowerPC User Instruction Set Architecture.

I-Form

\ OPCD | LI |AA|LK|

0

6 3031

Figure A-1. | Instruction Format

A-52 PPC403GC User's Manual

B-Form

[opcD | BO | B BD lpaLK]
0 6 11 16 3031
Figure A-2. B Instruction Format

SC-Form
| oPcD | /I 17 I 1]/]
0 6 11 16 3031
Figure A-3. SC Instruction Format
D-Form
OPCD RT RA D
OPCD RT RA Sl
OPCD RS RA D
OPCD RS RA Ul
OPCD BF |[/|L RA Si
OPCD BF |/|L RA ul
OPCD TO RA Si

11

16

31

Figure A-4. D Instruction Format

Instruction Summary

A-53

A-54

X-Form

OPCD RT RA RB X0 Ao
OPCD RT RA RB XO /
OPCD RT RA NB XO /
OPCD RT RA WS XO /
OPCD - RT /" RB XO /
OPCD RT i 7 XO /
OPCD RS RA RB X0 Re
OPCD RS RA RB XO 1
OPCD RS RA RB XO /
OPCD RS RA NB XO /
OPCD RS RA WS XO /
OPCD RS RA SH XO Re
OPCD RS RA 7 XO Re
OPCD RS i RB XO /
OPCD RS 7 /1 XO /
OPCD BF /[L RA RB XO /
OPCD BF | // |BFA |/ " X0 /
OPCD BF | / 7 U XO Re
OPCD BF | // 7 7 XO /
OPCD TO RA RB XO /
OPCD BT i /1 XO Re
OPCD 7 RA RB XO /
OPCD /il 7 RB XO /
OPCD /I /1 7 XO /
OPCD /i mlEl XO /

PPC403GC User’'s Manual

Figure A-5. X Instruction Format

11

16

21

XL-Form

OPCD BT BA BB XO /
OPCD BO Bl " XO LK
OPCD BF | // BFAJ 1 " XO /
OPCD I " " XO /
0 11 16 21 31
Figure A-6. XL Instruction Format
XFX-Form
OPCD RT SPRF XO /
OPCD RT DCRF XO /
OPCD RT / FXM XO /
OPCD RS SPRF XO /
OPCD RS DCRF XO /
0 11 21 31
Figure A-7. XFX Instruction Format
XO-Form
OPCD RT RA RB 0 XO Rc
E
OPCD RT RA RB / XO Re
OPCD RT RA /i Cé XO Re
0 11 16 2122 31
Figure A-8. XO Instruction Format
M-Form
OPCD RS RA RB MB ME |re
OPCD RS RA SH MB ME |re

11

16

21

Figure A-9. M Instruction Format

26

31

Instruction Summary

A-55

A-56 PPC403GC User's Manual

Instruction Set

Descriptions of the PPC403GC instructions follow. Each description contains these
elements:

¢ Instruction names (mnemonic and full)

¢ Instruction syntax

¢ [nstruction format diagram specific to the individual instruction

* Pseudocode description of the instruction operation

* Prose description of the instruction operation

¢ Registers altered

* Architecture notes identifying the associated PowerPC Architecture component

Where appropriate, instruction descriptions list invalid instruction forms and provide
programming notes.

11.1 Instruction Formats

For a more complete discussion of instruction formats, including a summary of instruction
field usage and a compilation of general instruction format diagrams appropriate to the
PPC403GC, see Section A.3 on page A-50.

Instructions are four bytes long. Instruction addresses are always word-aligned.

Instruction bits 0 through 5 always contain the primary opcode. Many instructions have an
extended opcode in another field. The remaining instruction bits contain additional fields. All
instruction fields belong to one of the following categories:

¢ Defined

These instructions contain values, such as opcodes, that cannot be altered. The
instruction format diagrams specify the values of defined fields.

* Variable

These fields contain operands, such as general purpose register selectors and immediate
values, that may vary from execution to execution. The instruction format diagrams
specify the operands in variable fields.

Instruction Set 11-1

¢ Reserved

Bits in a reserved field should be set to 0. In the instruction format diagrams, reserved

fields are shaded.

If any bit in a defined field does not contain the expected value, the instruction is illegal and
an illegal instruction exception occurs. If any bit in a reserved field does not contain 0, the
instruction form is invalid and its result is architecturally undefined. The PPC403GC
executes all invalid instruction forms without causing an illegal instruction exception.

11.2 Pseudocode

The pseudocode that appears in the instruction descriptions provides a semi-formal
language for describing instruction operations.

The pseudocode uses the following notation:

é—

A

-

Ac
Ve

if...then...else...

do

Assignment

AND logical operator

NOT logical operator

OR logical operator

Exclusive-OR (XOR) logical operator

Twos complement addition

Twos complement subtraction, unary minus
Multiplication

Division yielding a quotient

Remainder of an integer division; (33 % 32) = 1.
Concatenation

Equal, not equal relations

Signed comparison relations

Unsigned comparison relations

Conditional execution; if condition then a else b, where a and b
represent one or more pseudocode statements. Indenting indicates
the ranges of a and b. If b is null, the else does not appear.

Do loop. “to” and “by” clauses specify incrementing an iteration
variable; “while” and “until” clauses specify terminating conditions.
Indenting indicates the range of the loop.

11-2 PPC403GC User’'s Manual

leave Leave innermost do loop or do loop specified in a leave statement.

n A decimal number

x'n' A hexadecimal number

b'n' A binary number

FLD An instruction field

FLDy A bit in an instruction field

FLDy.p A range of bits in an instruction field

FLDpp, . .. A list of bits, by number or name, in a named field

REGy A bit in a named register

REGp.p A range of bits in a named register

REGpp, . . A list of bits, by number or name, in a named register

REGI[FLD] A field in a named register

REGI[FLD, FLD] Alist of fields in a named register

GPR(r) General Purpose Register r, where 0 < r < 31.

(GPR(r)) The contents of General Purpose Register r, where 0 <r < 31.

DCR(DCRN) A DCR specified by the DCRF field in a mfdecr or mtdcr instruction

SPR(SPRN) An SPR specified by the SPRF field in a mfspr or mtspr instruction

RA,RB, GPRs

(Rx) The contents of a GPR, where xis A, B, S, or T

(RAIO) The contents of the register RA or 0, if the RA field is 0. m

Cos A four-bit object used to store condition results in compare
instructions.

o) The bit or bit value b is replicated n times.

XX Bit positions which are don’t-cares.

CEIL(x) Least integer > x.

EXTS(x) The result of extending x on the left with sign bits.

PC Program counter.

RESERVE Reserve bit; indicates whether a process has reserved a block of
storage.

Instruction Set 11-3

CIA Current instruction address; the 32-bit address of the instruction
being described by a sequence of pseudocode. This address is used
to set the next instruction address (NIA). Does not correspond to any

architected register.

NIA Next instruction address; the 32-bit address of the next instruction to
be executed. In pseudocode, a successful branch is indicated by
assigning a value to NIA. For instructions that do not branch, the NIA

is CIA +4.

MS(addr, n) The number of bytes represented by n at the location in main storage

represented by addr.

EA Effective address; the 32-bit address, derived by applying indexing or
indirect addressing rules to the specified operand, that specifies an

location in main storage.

ROTL((RS),n) Rotate left; the contents of RS are shifted left the number of bits

specified by n.

MASK(MB,ME) Mask having 1’s in positions MB through ME (wrapping if MB > ME)

and O’s elsewhere.

instruction(EA) An instruction operating on a data or instruction cache block

associated with an effective address.

The following table lists the pseudocode operators and their associativity in descending

order of precedence:

Table 11-1. Operator Precedence

Operators Associativity

REG,,, REG[FLD], function evaluation | Left to right
b Right to left
—, — (unary minus) Right to left
X, + Left to right
+ - Left to right
I Left to right
= %< > 4,5 Left to right
A, @ Left to right
Y Left to right
— None

11-4 PPC403GC User’s Manual

11.3 Register Usage

Each instruction description lists the registers altered by the instruction. Some register
changes are explicitly detailed in the instruction description (for example, the target register
of a load instruction). Other registers are changed, with the details of the change not
included in the instruction description. This category frequently includes the Condition
Register (CR) and the Fixed-point Exception Register (XER). For discussion of CR, see
Section 2.3.3 on page 2-13. For discussion of XER, see Section 2.3.2.5 on page 2-10.

Instruction Set 11-5

add

Add

add RT,RA,RB (OE=0, Rc=0)

add. RT,RARB (OE=0, Rc=1)

addo RT,RA,RB (OE=1, Rc=0)

addo. RT,RARB (OE=1, Re=1)

l 31 | RT RA RB |OE‘ 266 | Rc\

6 11

(RT) < (RA) + (RB)

16

21

22

31

The sum of the contents of register RA and the contents of register RB is placed into register

RT.

Registers Altered

* RT

* CRI[CRO],, g, eq, so if Rc contains 1
« XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-6

PPC403GC User’s Manual

addc

Add Carrying
addc RT,RA,RB (OE=0, Rc=0)
addc. RT,RA,RB (OE=0, Rc=1)
addco RT,RA,RB (OE=1, Rc=0)
addco. RT,RA,RB (OE=1, Rc=1)
I 31 | AT RA | =s |of] 10 |Re|
0 6 11 16 21 22 31

(RT) « (RA) + (RB)

if (RA) + (RB) 3 232 _ 1 then
XER[CA] ¢« 1

else
XER[CA] <0

The sum of the contents of register RA and register RB is placed into register RT.

XERI[CA] is set to a value determined by the unsigned magnitude of the result of the add
operation.

Registers Altered

« RT

¢ XER[CA]

* CRI[CRO].t ar, eq, so if Rc contains 1
» XER[SO, OV] if OE contains 1
Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-7

adde

Add Extended

adde RT,RA,RB (OE=0, Rc=0)
adde. RT,RA,RB (OE=0, Re=1)
addeo RT,RA,RB (OE=1, Rc=0)
addeo. RT,RA,RB (OE=1, Re=1)
‘ 31 | RT ‘ RA [RB 'OE‘ 138 |Rcl
0 6 11 16 21 22 31

(RT) < (RA) + (RB) + XER[CA]

if (RA) + (RB) + XER[CA] 4 2%2_1 then
XER[CA] <1

else
XER[CA] <0

The sum of the contents of register RA, register RB, and XER[CA] is placed into register RT.

XERI[CA] is set to a value determined by the unsigned magnitude of the result of the add
operation.

Registers Altered

« RT

+ XER[CA]

» CRICRO]1 g eq so if Rc contains 1
 XER[SO, OV] if OE contains 1
Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-8 PPC403GC User’s Manual

addi

Add Immediate
addi RT,RA,IM

14 RT RA M
0 6 11 16 31

(RT) < (RAI0) + EXTS(IM)
if the RA field is 0, the IM field, sign-extended to 32 bits, is placed into register RT.

If the RA field is nonzero, the sum of the contents of register RA and the contents of the IM
field, sign-extended to 32 bits, is placed into register RT.

Registers Altered
« RT

Programming Note

To place an immediate, sign-extended value into the GPR specified by the RT field, set the
RA field to 0.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-2. Extended Mnemonics for addi

Other
Mnemonic Operands Function Registers
Changed

la RT, D(RA) Load address. (RA = 0)
D is an offset from a base address that is
assumed to be (RA).
(RT) <~ (RA) + EXTS(D)
Extended mnemonic for
addi RT,RA,D

li RT, IM Load immediate.

(RT) <— EXTS(IM)
Extended mnemonic for
addi RT,0,IM

subi RT, RA, IM Subtract EXTS(IM) from (RAIO).
Place result in RT.
Extended mnemonic for
addi RT,RA,~IM

Instruction Set 11-9

addic

Add Immediate Carrying
addic RT,RA,IM

12 RT RA IM
0 6 11 16 31

(RT) < (RA) + EXTS(IM)

if (RA) + EXTS(IM) $ 232 — 1 then
XER[CA] <1

else
XER[CA] <0

The sum of the contents of register RA and the contents of the IM field, sign-extended to 32
bits, is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add
operation.

Registers Altered

* RT
» XER[CA]

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-3. Extended Mnemonics for addic

Other
Mnemonic Operands Function Registers
) Changed

subic RT, RA, IM Subtract EXTS(IM) from (RA).

Place result in RT.

Place carry-out in XER[CA].
Extended mnemonic for
addic RT,RA,-IM

11-10 PPC403GC User’'s Manual

addic.

Add Immediate Carrying and Record
addic. RT,RA,IM

13 RT RA M
0 6 11 16 31

(RT) < (RA) + EXTS(IM)

if (RA) + EXTS(IM) $ 232 — 1 then
XER[CA] <1

else
XER[CA] <0

The sum of the contents of register RA and the contents of the IM field, sign-extended to 32
bits, is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add
operation.

Registers Altered

e RT

 XER[CA]

* CRI[CROl.r ar.Eq so
Programming Note

addic. is one of three instructions that implicitly update CR[CRO] without having an RC field.
The other instructions are andi. and andis..

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-4. Extended Mnemonics for addic.

Other
Mnemonic Operands Function Registers
Changed
subic. RT, RA, IM Subtract EXTS(IM) from (RA). CRI[CRO]

Place result in RT.

Place carry-out in XER[CA].
Extended mnemonic for
addic. RT,RA,-IM

Instruction Set 11-11

addis

Add Immediate Shifted
addis RT,RA,IM

15 RT RA M

0 . 6 11 16 31
(RT) < (RAIO) + (IM || '€0)

If the RA field is 0, the IM field is concatenated on its right with sixteen 0-bits and placed into
register RT.

If the RA field is nonzero, the contents of register RA are added to the contents of the
extended IM field. The sum is stored into register RT.

Registers Altered
e RT

Programming Note

An addi instruction stores a sign-extended 16-bit value in a GPR. An addis instruction
followed by an ori instruction stores an arbitrary 32-bit value in a GPR, as shown in the
following example:

addis RT, 0, high 16 bits of value
ori RT, RT, low 16 bits of value
Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-5. Extended Mnemonics for addis

Other
Mnemonic Operands Function Registers
Changed

lis RT, IM Load immediate shifted.

(RT) <= (M || *®0)
Extended mnemonic for
addis RT,0,IM

subis RT, RA, IM Subtract (IM || ®0) from (RAI0).
Place result in RT.
Extended mnemonic for
addis RT,RA,-IM

11-12 PPC403GC User’s Manual

addme
Add to Minus One Extended

addme RT,RA (OE=0, Rc=0)
addme. RT,RA (OE=0, Rc=1)
addmeo RT,RA (OE=1, Rc=0)
addmeo. RT,RA (OE=1, Rc=1)
31 RT f RA l ;]oé 234 ‘Rcl
0 6 11 16 21 22 31

(RT) « (RA) + XER[CA] + (-1)

if (RA) + XER[CA] + OxFFFF FFFF J 2321 then
XER[CA] <1

else
XER[CA] <0

The sum of the contents of register RA, XER[CA], and —1 is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add
operation.

Registers Altered

* RT

* XERI[CA]

* CRI[CRO].t g eq so if Rc contains 1
» XER[SO, OV] if OE contains 1
Invalid Instruction Forms

¢ Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-13

addze
Add to Zero Extended

addze RT,RA (OE=0, Rc=0)
addze. RT,RA (OE=0, Rc=1)
addzeo RT,RA (OE=1, Rc=0)
addzeo. RT,RA (OE=1, Rc=1)
[31 \ RT \ RA | | 0E| 202 | Rcl
0 6 11 16 21 22 3

(RT) « (RA) + XERI[CA]

if (RA) + XER[CA] 3 2% — 1 then
XER[CA] « 1

else
XER[CA] < 0

The sum of the contents of register RA and XER[CA] is placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the add
operation.

Registers Altered

e RT

e XER[CA]

* CRI[CRO].t gt Eq, so if Rc contains 1
e XER[SO, OV] if OE contains 1
Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-14 PPC403GC User's Manual

and

AND
and RA,RS,RB (Rc=0)
and. RA,RS,RB (Re=1)
{ 31 \ RS RA J RB [28 \Rcl
0 6 11 16 21 31

(RA) < (RS) A (RB)

The contents of register RS is ANDed with the contents of register RB and the result is
placed into register RA.

Registers Altered

* RA
* CRICRO].t, a1 eq, so if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

“Instruction Set 11-15

andc
AND with Complement

andc RA,RS,RB (Rc=0)
andc. RA,RS,RB (Re=1)
I | ms | Ra RB | 60 |Re|
0 6 11 16 21 31

(RA) « (RS) A —(RB)

The contents of register RS is ANDed with the ones complement of the contents of register
RB; the result is placed into register RA.

Registers Altered

* RA
* CR[CRO].r, g, eq, so if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-16 PPC403GC User's Manual

andi.
AND Immediate

andi. RA,RS,IM

28 RS RA M
0 6 11 16 31

(RA) < (RS) A (%0 || IM)

The IM field is extended to 32 bits by concatenating 16 0-bits on its left. The contents of
register RS is ANDed with the extended IM field; the result is placed into register RA.

Registers Altered

* RA

¢ CR[CRO].r, a1 ea, s0
Programming Note

The andi. instruction can test whether any of the 16 least-significant bits in a GPR are 1-
bits.

andi. is one of three instructions that implicitly update CR[CRO0] without having an Rc field.
The other instructions are addic. and andis..

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-17

andis.
AND Immediate Shifted

andis. RA,RS,IM

29 RS RA M

0 6 11 16 31
(RA) < (RS) A (IM || ®0)

The IM field is extended to 32 bits by concatenating 16 0-bits on its right. The contents of
register RS are ANDed with the extended IM field; the result is placed into register RA.

Registers Altered

* RA

* CRICROl.+, a7 £q so
Programming Note

The andis. instruction can test whether any of the 16 most-significant bits in a GPR are 1-
bits.

andis. is one of three instructions that implicitly update CR[CRO] without having an Rc field.
The other instructions are addic. and andi..

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-18 PPC403GC User’'s Manual

b

Branch
b target (AA=0, LK=0)
ba target (AA=1, LK=0)
bl target (AA=0, LK=1)
bla target (AA=1, LK=1)

18 LI AA LK

0 6 30 31

If AA = 1 then

LI <« targetg.og

NIA « EXTS(LI || 20)
else

LI ¢« (target — ClA)g.09

NIA < CIA + EXTS(LI || %0)
if LK = 1 then

(LR) <« CIA + 4
PC < NIA

The next instruction address (NIA) is the effective address of the branch. The NIA is formed
by adding a displacement to a base address. The displacement is obtained by
concatenating two 0-bits to the right of the LI field and sign-extending the result to 32 bits.

If the AA field contains 0, the base address is the address of the branch instruction, which is
also the current instruction address (CIA). If the AA field contains 1, the base address is 0.

Program flow is transferred to the NIA.
If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
* LR if LK contains 1 m

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-19

bc

Branch Conditional

bc BO,Bl target (AA=0, LK=0)
bca BO,Bl target (AA=1, LK=0)
bcl BO,Bl target (AA=0, LK=1)
bcla BO,Bl target (AA=1, LK=1)
16 BO BI BD AA | LK
0 6 11 16 30 31
if BO, = 0then

CTR « CTR - 1
if (BO, =1 v ((CTR = 0) = BOg)) A(BOy, = 1 v (CRg = BO,)) then
it AA =1 then
BD <« targetis.q
NIA « EXTS(BD || 20)
else
BD < (target — ClA)g.09
NIA « CIA + EXTS(BD || 20)
else
NIA < CIA + 4
if LK = 1 then
(LR) « CIA + 4
PC < NIA

If bit 2 of the BO field contains 0, the CTR is decremented.
The Bl field specifies a bit in the CR to be used as the condition of the branch.

The next instruction address (NIA) is the effective address of the branch. The NIA is formed
by adding a displacement to a base address. The displacement is obtained by
concatenating two 0-bits to the right of the BD field and sign-extending the result to 32 bits.

If the AA field contains 0, the base address is the address of the branch instruction, which is
also the current instruction address (CIA). If the AA field contains 1, the base address is 0.

The BO field controls options that determine when program flow is transferred to the NIA.
The BO field also controls Branch Prediction, a performance-improvement feature. See
Section 2.7.4 and Section 2.7.5 for a complete discussion.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered

* CTRif BO, contains 0
* LR if LK contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-20 PPC403GC User’s Manual

bc

Branch Conditional

Table 11-6. Extended Mnemonics for bc, beca, bcel, bcla

Mnemonic

Operands

Function

Other
Registers
Changed

bdnz

bdnza

bdnzl

bdnzla

target

Decrement CTR.
Branch if CTR # 0.

Extended mnemonic for
bc 16,0,target

Extended mnemonic for
bca 16,0,target

Extended mnemonic for
bcl 16,0,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 16,0,target

(LR) « CIA + 4.

bdnzf

bdnzfa

bdnzfl

bdnzfla

cr_bit, target

Decrement CTR.
Branch if CTR # 0 AND CR, ;; = 0.

Extended mnemonic for
be 0,cr_bit,target

Extended mnemonic for
bea 0,cr_bit,target

Extended mnemonic for
bel 0,cr_bit,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 0,cr_bit,target

(LR) « CIA + 4.

bdnzt

bdnzta

bdnztl

bdnztla

cr_bit, target

Decrement CTR.
Branch if CTR # 0 AND CR¢; i = 1.

Extended mnemonic for
be 8,cr_bit,target

Extended mnemonic for
bca 8,cr_bit,target

Extended mnemonic for
bel 8,cr_bit,target

(LR) « CIA + 4.

Extended mnemonic for
bela 8,cr_bit,target

(LR) < CIA + 4.

Instruction Set

11-21

bc

Branch Conditional

11-22

Table 11-6. Extended Mnemonics for be, bca, bel, bela (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

bdz

bdza

bdzl

bdzla

target

Decrement CTR.

Branch if CTR = 0.
Extended mnemonic for
be 18,0,target

Extended mnemonic for
bca 18,0,target

Extended mnemonic for
bel 18,0,target

(LR) < CIA + 4.

Extended mnemonic for
bcla 18,0,target

(LR) < CIA + 4.

bdzf

bdzfa

bdzfl

bdzfla

cr_bit, target

Decrement CTR.

Branch if CTR = 0 AND CRy, p; = 0.

Extended mnemonic for
be 2,cr_bit,target

Extended mnemonic for
bca 2,cr_bit,target

Extended mnemonic for
bel 2,cr_bit,target

(LR) < CIA + 4.

Extended mnemonic for
bcla 2,cr_bit,target

(LR) « CIA + 4.

bdzt

bdzta

bdztl

bdztla

cr_bit, target

Decrement CTR.

Branch if CTR = 0 AND CR¢, b = 1.

Extended mnemonic for
bc 10,cr_bit,target

Extended mnemonic for
bca 10,cr_bit,target

Extended mnemonic for
bel 10,cr_bit,target

(LR) « CIA + 4.

Extended mnemonic for
bela 10,cr_bit,target

(LR) < CIA + 4.

beq

beqga

beql

beqgla

[cr_field,] target

Branch if equal.

Use CRO if cr_field is omitted.
Extended mnemonic for
be 12,4+cr_field+2,target

Extended mnemonic for
beca 12,4+cr_field+2,target

Extended mnemonic for
bel 12,4+cr_field+2,target

(LR) « CIA + 4.

Extended mnemonic for
bela 12,4+cr_field+2,target

(LR) < CIA + 4.

PPC403GC User’s Manual

bc

Branch Conditional
Table 11-6. Extended Mnemonics for bc, bea, bel, becla (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

bf

bfa

bfl

bfla

cr_bit, target

Branch if CRcr_bit =0.
Extended mnemonic for
be 4,cr_bit,target

Extended mnemonic for
bca 4,cr_bit,target

Extended mnemonic for
bel 4,cr_bit,target

LR

Extended mnemonic for
bcela 4,cr_bit,target

LR

bge

bgea

bgel

bgela

[cr_field,] target

Branch if greater than or equal.
Use CRO if cr_field is omitted.
Extended mnemonic for
bc 4,4+cr_field+0,target

Extended mnemonic for
bca 4,4+cr_field+0,target

Extended mnemonic for
bel 4,4+cr_field+0,target

LR

Extended mnemonic for
bela 4,4+cr_field+0,target

LR

bgt

bgta

bgtl

bgtla

[cr_field,] target

Branch if greater than.

Use CRO if cr_field is omitted.
Extended mnemonic for
be 12,4+cr_field+1,target

Extended mnemonic for
bca 12,4+cr_field+1,target

Extended mnemonic for
bel 12,4+cr_field+1,target

LR

Extended mnemonic for
bela 12,4+cr_field+1,target

LR

ble

blea

blel

blela

[cr_field,] target

Branch if less than or equal.
Use CRO if cr_field is omitted.
Extended mnemonic for

be 4,4+cr_field+1,target

Extended mnemonic for
bca 4,4+cr_field+1,target

Extended mnemonic for
bel 4,4+«cr_field+1,target

LR

Extended mnemonic for
bcla 4,4+cr_field+1,target

LR

Instruction Set

11-23

bc

Branch Conditional

11-24

Table 11-6. Extended Mnemonics for bc, bca, bel, bela (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

bit

bita

bitl

bitla

[cr_field,] target

Branch if less than.

Use CRO if cr_field is omitted.
Extended mnemonic for
be 12,4+cr_field+0,target

Extended mnemonic for
beca 12,4+cr_field+0,target

Extended mnemonic for
bel 12,4+cr_field+0,target

(LR) « CIA + 4.

Extended mnemonic for
bela 12,4+cr_field+0,target

(LR) « CIA + 4.

bne

bnea

bnel

bnela

[cr_field,] target

Branch if not equal.

Use CRO if cr_field is omitted.
Extended mnemonic for
be 4,4+cr_field+2,target

Extended mnemonic for
bca 4,4+cr_field+2,target

Extended mnemonic for
bel 4,4+cr_field+2,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 4,4+cr_field+2,target

(LR) « CIA + 4.

bng

bnga

bngl

bngla

[cr_field,] target

Branch if not greater than.
Use CRO if cr_field is omitted.
Extended mnemonic for

bc 4,4+cr_field+1,target

Extended mnemonic for
bca 4,4+cr_field+1,target

Extended mnemonic for
bel 4,4+cr_field+1,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 4,4+cr_field+1,target

(LR) « CIA + 4.

bnl

bnla

bnli

bnlla

[cr_field,] target

Branch if not less than.

Use CRO if cr_field is omitted.
Extended mnemonic for
bc 4,4+cr_field+0,target

Extended mnemonic for
bca 4,4+cr_field+0,target

Extended mnemonic for
bel 4,4+cr_field+0,target

(LR) « CIA + 4.

Extended mnemonic for
becla 4,4+cr_field+0,target

(LR) « CIA + 4.

PPC403GC User’s Manual

bc

Branch Conditional
Table 11-6. Extended Mnemonics for bc, bea, bcel, bcla (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

bns

bnsa

bnsl

bnsla

[cr_field,] target

Branch if not summary overflow.

Use CRO if cr_field is omitted.
Extended mnemonic for
be 4,4+cr_field+3,target

Extended mnemonic for
bca 4,4+cr_field+3,target

Extended mnemonic for
bcel 4,4+cr_field+3,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 4,4+cr_field+3,target

(LR) < CIA + 4.

bnu

bnua

bnul

bnula

[cr_field,] target

Branch if not unordered.

Use CRO if cr_field is omitted.
Extended mnemonic for
bc 4,4+cr_field+3,target

Extended mnemonic for
bca 4,4+cr_field+3,target

Extended mnemonic for
bcl 4,4:cr_field+3,target

(LR) < CIA + 4.

Extended mnemonic for
bcla 4,4+cr_field+3,target

(LR) « CIA + 4.

bso

bsoa

bsol

bsola

[cr_field,] target

Branch if summary overflow.
Use CRO if cr_field is omitted.
Extended mnemonic for

be 12,4+cr_field+3,target

Extended mnemonic for
bca 12,4+cr_field+3,target

Extended mnemonic for
bel 12,4+cr_field+3,target

(LR) < CIA + 4.

Extended mnemonic for
bela 12,4+cr_field+3,target

(LR) < CIA + 4.

bt

bta

btl

btla

cr_bit, target

Branch if CR¢; pjy = 1.
Extended mnemonic for
bec 12,cr_bit,target

Extended mnemonic for
bca 12,cr_bit,target

Extended mnemonic for
bel 12,cr_bit,target

(LR) « CIA + 4.

Extended mnemonic for
bcla 12,cr_bit,target

(LR) « CIA + 4.

Instruction Set

11-25

bc

Branch Conditional
Table 11-6. Extended Mnemonics for be, bca, bel, bela (cont.)

Other
Mnemonic Operands Function Registers
Changed
bun [cr_field,] target | Branch if unordered.
Use CRO if cr_field is omitted.
Extended mnemonic for
be 12,4+cr_field+3,target
buna Extended mnemonic for
bca 12,4+cr_field+3,target
bunl Extended mnemonic for (LR) « CIA + 4.
bel 12,4+cr_field+3,target
bunla Extended mnemonic for (LR) « CIA + 4.
bela 12,4+cr_field+3,target

11-26 PPC403GC User’s Manual

becetr

Branch Conditional to Count Register

becetr BO,BI (LK=0)
becetrl BO,BI (LK=1)
19 BO BI I 528 ‘LKI
0 6 11 16 21 31
if BO, = 0 then

CTR <« CTR - 1
if (BO, =1 v ((CTR = 0) = BO3g)) A(BOy, = 1 v (CRg = BO,)) then
NIA < CTRg. || 20
else
NIA < CIA + 4
if LK = 1 then
(LR) « CIA + 4
PC < NIA

The Bl field specifies a bit in the CR to be used as the condition of the branch.

The next instruction address (NIA) is the target address of the branch. The NIA is formed by
concatenating the 30 most significant bits of the CTR with two 0-bits on the right.

The BO field controls options that determine when program flow is transferred to the NIA.
The BO field also controls Branch Prediction, a performance-improvement feature. See
Section 2.7.4 and Section 2.7.5 for a complete discussion.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered
* CTRif BO, contains 0

« LRif LK contains 1 m

Invalid Instruction Forms

* Reserved fields

* [f bit 2 of the BO field contains 0, the instruction form is invalid, but the pseudocode
applies. If the branch condition is true, the branch is taken; the NIA is the contents of the
CTR after it is decremented.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-27

bccetr

Branch Conditional to Count Register

11-28

Table 11-7. Extended Mnemonics for bcctr, bectrl

Mnemonic

Operands

Function

Other
Registers
Changed

betr

betrl

Branch unconditionally,

to address in CTR.
Extended mnemonic for
becetr 20,0

Extended mnemonic for
becetrl 20,0

(LR) « CIA + 4.

beqctr

beqctri

[cr_field]

Branch if equal,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
beetr 12,4+cr_field+2

Extended mnemonic for
becetrl 12,4xcr_field+2

(LR) < CIA + 4.

bfctr

bfctrl

cr_bit

Branch if CRgy pit =0,

to address in CTR.
Extended mnemonic for
becetr 4,cr_bit

Extended mnemonic for
becetrl 4,cr_bit

(LR) « CIA + 4.

bgectr

bgectrl

[cr_field]

Branch if greater than or equal,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
becetr 4,4xcr_field+0

Extended mnemonic for
bectrl 4,4+cr_field+0

(LR) « CIA + 4.

bgtctr

bgtctrl

[cr_field]

Branch if greater than,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
beetr 12,4+cr_field+1

Extended mnemonic for
beetrl 12,4+cr_field+1

(LR) < CIA + 4.

blectr

blectrl

[cr_field]

Branch if less than or equal,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
bectr 4,4+cr_field+1

Extended mnemonic for
bectrl 4,4+cr_field+1

(LR) « CIA + 4.

PPC403GC User's Manual

bccetr

Branch Conditional to Count Register
Table 11-7. Extended Mnemonics for bectr, beetrl (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

bitctr

bltctrl

[cr_field)

Branch if less than,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
becetr 12,4+cr_field+0

Extended mnemonic for
becetrl 12,4xcr_field+0

(LR) « CIA + 4.

bnectr

bnectrl

[cr_field]

Branch if not equal,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
beetr 4,4+cr_field+2

Extended mnemonic for
becetrl 4,4+cr_field+2

(LR) « CIA + 4.

bngctr

bngctrl

[cr_field)

Branch if not greater than,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
becetr 4,4+cr_field+1

Extended mnemonic for
becetrl 4,4+cr_field+1

(LR) « CIA + 4.

bnlctr

bnlctrl

[cr_field]

Branch if not less than,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
becetr 4,4+cr_field+0

Extended mnemonic for
becetrl 4,4xcr_field+0

(LR) « CIA + 4.

bnsctr

bnsctrl

[cr_field]

Branch if not summary overflow,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
bectr 4,4+cr_field+3

Extended mnemonic for
becetrl 4,4xcr_field+3

(LR) « CIA + 4.

bnuctr

bnuctrl

[cr_field]

Branch if not unordered,

to address in CTR.

Use CRO if cr_field is omitted.
Extended mnemonic for
beetr 4,4+cr_field+3

Extended mnemonic for
bectrl 4,4+cr_field+3

(LR) « CIA + 4.

Instruction Set

11-29

becetr

Branch Conditional to Count Register
Table 11-7. Extended Mnemonics for becetr, beetrl (cont.)

11-30

Mnemonic

Operands

Function

Other
Registers
Changed

bsoctr

bsoctrl

[cr_field]

Branch if summary overflow,
to address in CTR.

Use CRO if cr_field is omitted.

Extended mnemonic for
becetr 12,4+cr_field+3

Extended mnemonic for
becetrl 12,4+cr_field+3

(LR) «CIA + 4.

btctr

btctrl

cr_bit

Branch if CRy, pir =1,

to address in CTR.
Extended mnemonic for
becetr 12,cr_bit

Extended mnemonic for
becetrl 12,cr_bit

(LR) « CIA + 4.

bunctr

bunctrl

[cr_field]

Branch if unordered,
to address in CTR.

Use CRQO if cr_field is omitted.

Extended mnemonic for
beetr 12,4xcr_field+3

Extended mnemonic for
beetrl 12,4xcr_field+3

(LR) « CIA + 4.

PPC403GC User’s Manual

belr

Branch Conditional to Link Register

belr BO,BI (LK=0)
belrl BO,BI (LK=1)
19 BO Bl 16 LK
0 6 11 16 21 31
if BO, = 0then

CTR < CTR - 1

if (BO, =1 v ((CTR = 0) = BOy)) A (BO, = 1 v (CRg = BO,)) then

NIA ¢ LRgz || 2
else

NIA < CIA + 4
if LK = 1 then

(LR) <« CIA + 4
PC < NIA

0

If bit 2 of the BO field contains 0, the CTR is decremented.

The BI field specifies a bit in the CR to be used as the condition of the branch.

The next instruction address (NIA) is the target address of the branch. The NIA is formed by
concatenating the 30 most significant bits of the LR with two 0-bits on the right.

The BO field controls options that determine when program fiow is transferred to the NIA.
The BO field also controls Branch Prediction, a performance-improvement feature. See
Section 2.7.4 and Section 2.7.5 for a complete discussion.

If the LK field contains 1, then (CIA + 4) is placed into the LR.

Registers Altered

* CTRif BO, contains O

¢ LR if LK contains 1

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set

11-31

belr

Branch Conditional to Link Register

Table 11-8. Extended Mnemonics for bclr, belrl

Other
Mnemonic Operands Function Registers

Changed

blr Branch unconditionally,

to address in LR.
Extended mnemonic for
belr 20,0

blrl Extended mnemonic for (LR) « CIA + 4.
belrl 20,0

bdnzir Decrement CTR.

Branch if CTR # 0,

to address in LR.
Extended mnemonic for
bclr 16,0

bdnzirl Extended mnemonic for (LR) « CIA + 4.
belrl 16,0

bdnzfir cr_bit Decrement CTR.
Branch if CTR # 0 AND CRg, it =0,
to address in LR.

Extended mnemonic for

belr 0,cr_bit

bdnzfirl Extended mnemonic for (LR) « CIA + 4.
belrl 0,cr_bit

bdnztir cr_bit Decrement CTR.
Branch if CTR # 0 AND CR, it =1,
to address in LR.

Extended mnemonic for

belr 8,cr_bit

bdnztirl Extended mnemonic for (LR) « CIA + 4.
belrl 8,cr_bit

bdzir Decrement CTR.

Branch if CTR =0,

to address in LR.
Extended mnemonic for
belr 18,0

bdzirl Extended mnemonic for (LR) < CIA + 4.
belrl 18,0

11-32 PPC403GC User's Manual

belr

Branch Conditional to Link Register
Table 11-8. Extended Mnemonics for belr, belrl (cont.)

Other
Mnemonic Operands Function Registers
Changed

bdzflr cr_bit Decrement CTR.
Branch if CTR = 0 AND CR, ,; =0
to address in LR.

Extended mnemonic for

belr 2,cr_bit

bdzfirl Extended mnemonic for (LR) « CIA + 4.
belrl 2,cr_bit

bdztir cr_bit Decrement CTR.
Branch if CTR = 0 AND CR, ,; =1,
to address in LR.

Extended mnemonic for

belr 10,cr_bit

bdztirl Extended mnemonic for (LR) « CIA + 4.
belrl 10,cr_bit

beqir [cr_field] Branch if equal,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 12,4+cr_field+2

beqlrl Extended mnemonic for (LR) « CIA + 4.
bclrl 12,4+cr_field+2

bfir cr_bit Branch if CR¢, pit =0,

to address in LR.
Extended mnemonic for
belr 4,cr_bit

bfirl Extended mnemonic for (LR) « CIA + 4.
belrl 4,cr_bit

bgelr [cr_field] Branch if greater than or equal,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 4,4xcr_field+0

bgelrl Extended mnemonic for (LR) « CIA + 4.
belrl 4,4+cr_field+0

bgtlr [cr_field] Branch if greater than,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 12,4+cr_field+1

bgtir! Extended mnemonic for (LR) « CIA + 4.
beirl 12,4+cr_field+1

Instruction Set 11-33

belr

Branch Conditional to Link Register
Table 11-8. Extended Mnemonics for bclir, belrl (cont.)

11-34

Mnemonic

Operands

Function

Other
Registers
Changed

blelr

blelrl

[cr_field]

Branch if less than or equal,
to address in LR.

Use CRO if cr_field is omitted.

Extended mnemonic for
belr 4,4+cr_field+1

Extended mnemonic for
belrl 4,4+cr_field+1

(LR) « CIA + 4.

bltir

bltirl

[cr_field]

Branch if less than,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
beir 12,4+cr_field+0

Extended mnemonic for
belrl 12,4xcr_field+0

(LR) « CIA + 4.

bnelr

bnelrl

[cr_field]

Branch if not equal,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 4,4xcr_field+2

Extended mnemonic for
belrl 4,4+cr_field+2

(LR) « CIA + 4.

bnglr

bngirl

[cr_field)

Branch if not greater than,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 4,4xcr_field+1

Extended mnemonic for
belrl 4,4+cr_field+1

(LR) < CIA + 4.

bnlir

bnlirl

[cr_field]

Branch if not less than,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 4,4xcr_field+0

Extended mnemonic for
belrl 4,4+cr_field+0

(LR) < CIA + 4.

bnsir

bnsirl

[cr_field]

Branch if not summary overflow,

to address in LR.

Use CRO if cr_field is omitted.
Extended mnemonic for
belr 4,4+cr_field+3

Extended mnemonic for
belrl 4,4+cr_field+3

(LR) « CIA + 4.

PPC403GC User’'s Manual

Table 11-8. Extended Mnemonics for bclr, belrl (cont.)

Mnemonic

Operands

Function

Other
Registers
Changed

bnulr

bnulrl

[cr_field]

Branch if not unordered,
to address in LR.

Use CRO if cr_field is omitted.

Extended mnemonic for
belr 4,4+cr_field+3

Extended mnemonic for
belrl 4,4+cr_field+3

(LR) < CIA + 4.

bsolr

bsolrl

[cr_field]

Branch if summary overflow,
to address in LR.

Use CRO if cr_field is omitted.

Extended mnemonic for
belr 12,4+cr_field+3

Extended mnemonic for
belrl 12,4+cr_field+3

(LR) « CIA + 4.

btir

btirl

cr_bit

Branch if CRg, pip =1,

to address in LR.
Extended mnemonic for
belr 12,cr_bit

Extended mnemonic for
belrl 12,cr_bit

(LR) « CIA + 4.

bunlr

bunilrl

[cr_field]

Branch if unordered,
to address in LR.

Use CRO if cr_field is omitted.

Extended mnemonic for
belr 12,4xcr_field+3

Extended mnemonic for
belrl 12,4+cr_field+3

(LR) « CIA + 4.

Instruction Set

belr

Branch Conditional to Link Register

11-35

cmp

Compare
cmp BF,0,RA,RB
31 BF RA RB 0 I ‘J
0 6 9 11 16 21 31
Cog < 40

if (RA) < (RB) then ¢y ¢ 1
if (RA) > (RB)thency ¢ 1
if (RA) = (RB)thenc, <1
c; < XERI[SO]

n < BF

CRI[CRn] ¢ cg.3

The contents of register RA are compared with the contents of register RB using a 32-bit
signed compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the
value of XER[SO] is placed into the same CR field.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
* CR[CRn] where nis specified by the BF field

Invalid Instruction Forms

* Reserved fields

Programming Note

The PowerPC Architecture defines this instruction as cmp BF,L,RA,RB, where L selects
operand size for 64-bit PowerPC implementations. For all 32-bit PowerPC implementations,
L = 0 is required (L = 1 is an invalid form); hence for PPC403GC, use of the extended
mnemonic cmpw BF,RA,RB is recommended.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-9. Extended Mnemonics for cmp

Other
Mnemonic Operands Function Registers
Changed
cmpw [BF,] RA, RB Compare Word.
Use CRO if BF is omitted.
Extended mnemonic for
cmp BF,0,RA,RB

11-36 PPC403GC User's Manual

cmpi
Compare Immediate
cmpi BF,0,RA,IM

11 BF RA M

Cos < “0

if (RA) < EXTS(IM) then ¢y < 1
if (RA) > EXTS(IM) then ¢, < 1
if (RA) = EXTS(IM) then c, < 1
c3 «— XER[SO]

n < BF

CRICRN] ¢« cq3

The IM field is sign-extended to 32 bits. The contents of register RA are compared with the
extended IM field, using a 32-bit signed compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the
value of XER[SO] is placed into the same CR field.

Registers Altered
e CR[CRn] where nis specified by the BF field

Invalid Instruction Forms

¢ Reserved fields

Programming Note

The PowerPC Architecture defines this instruction as empi BF,L,RA,IM, where L selects
operand size for 64-bit PowerPC implementations. For all 32-bit PowerPC implementations,
L = 0 is required (L = 1 is an invalid form); hence for PPC403GC, use of the extended
mnemonic cmpwi BF,RA,IM is recommended.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-10. Extended Mnemonics for cmpi

Other
Mnemonic Operands Function Registers
Changed
cmpwi [BF,] RA, IM Compare Word Immediate.
Use CRO if BF is omitted.
Extended mnemonic for

cmpi BF,0,RA,IM

Instruction Set 11-37

cmpl

Compare Logical

cmpl BF,0,RA,RB

31 BF RA RB 32 i l

Cos ¢ 40

if (RA) < (RB)thency ¢ 1
if (RA) > (RB)thencq -1
if (RA) = (RB)thenc, <1
c3 ¢~ XER[SO]

n < BF

CRICRN] < cy3

u
<
u
>

The contents of register RA are compared with the contents of register RB, using a 32-bit
unsigned compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the
value of XER[SO] is placed into the same CR field.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
* CR[CRn] where n is specified by the BF field

Invalid Instruction Forms

* Reserved fields

Programming Notes

The PowerPC Architecture defines this instruction as cmpl BF,L,RA,RB, where L selects
operand size for 64-bit PowerPC implementations. For all 32-bit PowerPC implementations,
L = 0 is required (L = 1 is an invalid form); hence for PPC403GC, use of the extended
mnemonic cmpiw BF,RA,RB is recommended.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-11. Extended Mnemonics for cmpl

Other
Mnemonic Operands Function Registers
Changed
cmplw [BF,] RA, RB Compare Logical Word.
Use CRO if BF is omitted.
Extended mnemonic for

cmpl BF,0,RA,RB

11-38 PPC403GC User's Manual

cmpli
Compare Logical Immediate
cmpli BF,0,RA,IM

10 BF RA IM
0 6 9 11 16 31

Coz < %0

it (RA) < (160 Il IM) then co < 1
if (RA) > (%60 11 IM) then c; < 1
if (RA) = (160 Il IM) then c, < 1
cs < XER[SO]

n < BF

CRICRN] « Cqs

The IM field is extended to 32 bits by concatenating 16 0-bits to its left. The contents of
register RA are compared with IM using a 32-bit unsigned compare.

The CR field specified by the BF field is updated to reflect the results of the compare and the
value of XER[SO] is placed into the same CR field.

Registers Altered
* CRI[CRn] where nis specified by the BF field

Invalid Instruction Forms

¢ Reserved fields

Programming Note

The PowerPC Architecture defines this instruction as ecmpli BF,L,RA,IM, where L selects
operand size for 64-bit PowerPC implementations. For all 32-bit PowerPC implementations,
L =0 is required (L = 1 is an invalid form); hence for PPC403GC, use of the extended
mnemonic cmplwi BF,RA,IM is recommended.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-12. Extended Mnemonics for cmpli

Other
Mnemonic Operands Function Registers
Changed
cmplwi [BF,]RA, IM Compare Logical Word Immediate.
Use CRO if BF is omitted.
Extended mnemonic for

cmpli BF,0,RA,IM

Instruction Set 11-39

cntlzw
Count Leading Zeros Word

cntlzw RA,RS (Rc=0)
cntlzw. RA,RS (Re=1)
31 RS RA v 26 Rc
0 6 11 16 21 31
n«<o

do while n < 32
if (RS), = 1 then leave
n<n+1

(RA) < n

The consecutive leading 0 bits in register RS are counted; the count is placed into register

RA.

The count ranges from 0 through 32, inclusive.

Registers Altered
* RA

* CRICRO],t gt eq so if Rc contains 1

Invalid Instruction Forms

¢ Reserved fields

11-40 PPC403GC User’s Manual

crand
Condition Register AND

crand BT,BA,BB

19 BT BA BB 257
0 6 11 16 21 31

The CR bit specified by the BA field is ANDed with the CR bit specified by the BB field; the
result is placed into the CR bit specified by the BT field.

Registers Altered
* CR

Invalid Instruction Forms

¢ Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-41

crandc
Condition Register AND with Complement

crandc BT,BA,BB

19 BT BA BB 129 '
0 6 11 16 21

[N
pard

CRBT — CRBA A —'ICRBB

The CR bit specified by the BA field is ANDed with the ones complement of the CR bit
specified by the BB field; the result is placed into the CR bit specified by the BT field.

Registers Altered
* CR

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-42 PPC403GC User's Manual

creqv

Condition Register Equivalent

creqv BT,BA,BB

19 BT BA BB 289
0 6 11 16 21 31

CRBT — ﬂ(CRBA @ CRBB)

The CR bit specified by the BA field is XORed with the CR bit specified by the BB field; the
ones complement of the result is placed into the CR bit specified by the BT field.

Registers Altered
* CR

Invalid Instruction Forms

¢ Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-13. Extended Mnemonics for creqv

Other
Mnemonic Operands Function Registers
Changed
crset bx Condition register set.
Extended mnemonic for

creqv bx,bx,bx

Instruction Set 11-43

crnand
Condition Register NAND

crnand BT,BA,BB

19 BT BA BB 225 T
0 6 11 16 21 31

CRBT — _|(CRBA A CRBB)

The CR bit specified by the BA field is ANDed with the CR bit specified by the BB field; the
ones complement of the result is placed into the CR bit specified by the BT field.

Registers Altered
e CR

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-44 PPC403GC User's Manual

crnor
Condition Register NOR

crnor BT,BA,BB

19 BT BA BB 33
0 6 11 16 21 31.

CRBT — ﬁ(CRBA \Y CRBB)

The CR bit specified by the BA field is ORed with the CR bit specified by the BB field; the
ones complement of the result is placed into the CR bit specified by the BT field.

Registers Altered
* CR

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-14. Extended Mnemonics for crnor

Other
Mnemonic Operands Function Registers
Changed
crnot bx, by Condition register not.
Extended mnemonic for

crnor bx,by,by

Instruction Set 11-45

cror
Condition Register OR

cror BT,BA,BB

19 BT BA BB 449

0 6 11 16 21
CRgr < CRgs V CRgg

The CR bit specified by the BA field is ORed with the CR bit specified by the BB field; the
result is placed into the CR bit specified by the BT field.

Registers Altered
* CR

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-15. Extended Mnemonics for cror

Other
Mnemonic Operands Function Registers
Changed

crmove bx, by Condition register move.
Extended mnemonic for
cror bx,by,by

11-46 PPC403GC User’s Manual

crorc
Condition Register OR with Complement

crorc BT,BA,BB

19 BT BA BB 417
0 6 11 16 21 31

CRgr < CRga vV —CRgg

The condition register (CR) bit specified by the BA field is ORed with the ones complement
of the CR bit specified by the BB field; the result is placed into the CR bit specified by the BT
field.

Registers Altered
e CR
Invalid Instruction Forms

¢ Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-47

crxor

Condition Register XOR
crxor BT,BA,BB

19

BT

BA

BB

193

0 6

CRgr < CRga @ CRgg
The CR bit specified by the BA field is XORed with the CR bit specified by the BB field; the

result is placed into the CR bit specified by the BT field.

Registers Altered
* CR

Invalid Instruction Forms

¢ Reserved fields

Architecture Note

11

16

21

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-16. Extended Mnemonics for crxor

Extended mnemonic for
crxor bx,bx,bx

Other
Mnemonic Operands Function Registers
Changed
crclr bx Condition register clear.

11-48 PPC403GC User’'s Manual

31

dcbf

Data Cache Block Flush

dcbf RA,RB
31 RA RB 86
0 6 11 16 21 31
EA < (RAIO) + (RB)
DCBF(EA)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

If the data block corresponding to the effective address is in the data cache and marked as
modified (stored into), the data block is copied back to main storage and then marked invalid
in the data cache. If the data block is not marked as modified, it is simply marked invalid in

the data cache. The operation is performed whether or not the effective address is marked

as cacheable.

If the data block at the effective address is not in the data cache, no operation is performed.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* None

Invalid Instruction Forms

* Reserved fields

Exceptions

This instruction is considered a “load” with respect to Data Storage exceptions. See
Section 9.4.3 (Access Protection for Cache Instructions) on page 9-20 for further discussion.

This instruction is considered a “store” with respect to data address compare (DAC) debug
exceptions. See Section 10.6.3.1 (DAC Applied to Cache Instructions) on page 10-12 for
further discussion.

Architecture Note

This instruction is part of the PowerPC Virtual Environment Architecture.

Instruction Set 11-49

dcbi

Data Cache Block Invalidate

dcbi RA,RB
31 . RA RB 470
0 6 11 16 21 31
EA « (RAIO) + (RB)
DCBI(EA)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

If the data block at the effective address is in the data cache, the data block is marked
invalid, regardless of whether or not the effective address is marked as cacheable. If
modified data existed in the data block prior to the operation of this instruction, that data is
lost.

If the data block at the effective address is not in the data cache, no operation is performed.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* None

Invalid Instruction Forms

* Reserved fields

Programming Notes

Execution of this instruction is privileged.

Exceptions

This instruction is considered a “store” with respect to Data Storage exceptions. See
Section 9.4.3 (Access Protection for Cache Instructions) on page 9-20 for further discussion.

This instruction is considered a “store” with respect to data address compare (DAC) debug
exceptions. See Section 10.6.3.1 (DAC Applied to Cache Instructions) on page 10-12 for
further discussion.

Architecture Note

This instruction is part of the PowerPC Operating Environment Architecture.

11-50 PPC403GC User’s Manual

dcbst

Data Cache Block Store

dcbst RA,RB
31 RA RB 54
0 6 11 16 21 31
EA < (RAIO) + (RB)
DCBST(EA)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is O if the RA field is 0, and is the contents of

register RA otherwise.

If the data block at the effective address is in the data cache and marked as modified, the
data block is copied back to main storage and marked as unmodified in the data cache.

If the data block at the effective address is in the data cache, and is not marked as modified,
or if the data block at the effective address is not in the data cache, no operation is

performed.

The operation specified by this instruction is performed whether or not the effective address

is marked as cacheable.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

¢ None

Invalid Instruction Forms

¢ Reserved fields

Exceptions

This instruction is considered a “load” with respect to Data Storage exceptions. See
Section 9.4.3 (Access Protection for Cache Instructions) on page 9-20 for further discussion.

This instruction is considered a “store” with respect to data address compare (DAC) debug
exceptions. See Section 10.6.3.1 (DAC Applied to Cache Instructions) on page 10-12 for

further discussion.

Architecture Note

This instruction is part of the PowerPC Virtual Environment Architecture.

Instruction Set

11-51

dcbt

Data Cache Block Touch

dcbt RA,RB
31 RA RB 278 I]
0 6 11 16 21 31
EA < (RAIO) + (RB)
DCBT(EA)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 when the RA field is 0, and is the contents of
register RA otherwise.

If the data block at the effective address is not in the data cache and the effective address is
marked as cacheable, the block is read from main storage into the data cache.

If the data block at the effective address is in the data cache, or if the effective address is
marked as non-cacheable, no operation is performed.

This instruction is not allowed to cause Data Storage Exceptions or Data TLB Miss
Exceptions. If execution of the instruction would otherwise cause such an exception, then no
operation is performed, and no exception occurs.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* None

Invalid Instruction Forms

* Reserved fields

Programming Notes

The dcbt instruction allows a program to begin a cache block fetch from main storage
before the program needs the data. The program can later load data from the cache into
registers without incurring the latency of a cache miss.

11-52 PPC403GC User’s Manual

dcbt

Data Cache Block Touch
Exceptions

This instruction is considered a “load” with respect to Data Storage exceptions. See
Section 9.4.3 (Access Protection for Cache Instructions) on page 9-20 for further discussion.

This instruction is considered a “load” with respect to data address compare (DAC) debug
exceptions. See Section 10.6.3.1 (DAC Applied to Cache Instructions) on page 10-12 for
further discussion.

Architecture Note

This instruction is part of the PowerPC Virtual Environment Architecture.

Instruction Set 11-53

dcbtst

Data Cache Block Touch for Store
dcbtst RA,RB

31 RA RB 246 ‘
0 6 5] 16 21 31

EA < (RAIO) + (RB)
DCBTST(EA)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

If the data block at the effective address is not in the data cache and the effective address is
marked as cacheable, the data block is loaded into the data cache.

If the effective address is marked as non-cacheable, or if the data block at the effective
address is in the data cache, no operation is performed.

This instruction is not allowed to cause Data Storage Exceptions or Data TLB Miss
Exceptions. If execution of the instruction would otherwise cause such an exception, then no
operation is performed, and no exception occurs.

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

Registers Altered

* None

Invalid Instruction Forms

* Reserved fields

Programming Notes

The dcbtst instruction allows a program to begin a cache block fetch from main storage
before the program needs the data. The program can later store data from GPRs into the
cache block, without incurring the latency of a cache miss.

Architecturally, debtst brings data into the cache in “Exclusive” mode, which allows the
program to alter the cached data. “Exclusive” mode is part of the MESI protocol for multi-
processor systems, and is not implemented on the PPC403GC. The implementation of the
dcbtst instruction on the PPC403GC is identical to the implementation of the dcbt
instruction.

11-54 PPC403GC User's Manual

dcbtst

Data Cache Block Touch for Store
Exceptions

This instruction is considered a “load” with respect to Data Storage exceptions. See
Section 9.4.3 (Access Protection for Cache Instructions) on page 9-20 for further discussion.

This instruction is considered a “load” with respect to data address compare (DAC) debug
exceptions. See Section 10.6.3.1 (DAC Applied to Cache Instructions) on page 10-12 for
further discussion.

Architecture Note

This instruction is part of the PowerPC Virtual Environment Architecture.

Instruction Set 11-55

dcbz

Data Cache Block Set to Zero

dcbz RA,RB
31 ' RA RB 1014 —]
0 6 1 16 21 31
EA < (RAIO) + (RB)
DCBZ(EA)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

If the data block at the effective address is in the data cache and the effective address is
marked as cacheable and non-write-through, the data in the cache block is set to 0.

If the data block at the effective address is not in the data cache and the effective address is
marked as cacheable and non-write-through, a cache block is established and set to 0. Note
that nothing is read from main storage, as described in the programming note below.

If the effective address is marked as non-cacheable or as write-through, an alignment
exception occurs.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

¢ None

Invalid Instruction Forms

m * Reserved fields

11-56 PPC403GC User's Manual

dcbz

Data Cache Block Set to Zero
Programming Notes

Because the dcbz instruction can establish an address in the data cache without copying
the contents of that address from main storage, the address established may be invalid with
respect to the storage subsystem. A subsequent operation may cause the address to be
copied back to main storage to make room for a new data block. A machine check exception
could result.

If dcbz is attempted to an effective address which is marked as non-cacheable, the software
alignment exception handler should emulate the instruction by storing zeros to the block in
main storage. Note: if a data block corresponding to the effective address exists in the
cache, but the effective address is non-cacheable, dcbz to that address is considered a
programming error (see Section 8.2.3 on page 8-8).

If dcbz is attempted to an effective address which is marked as write-through, the software
alignment exception handler should emulate the instruction by storing zeros to the block in
main storage. An effective address which is marked as write-through should also be marked
as cacheable; when dcbz is attempted to such an address, the alignment exception handler
should maintain coherency of cache and memory.

Exceptions

If dcbz is attempted to an effective address which is marked as non-cacheable or as write-
through, an alignment exception occurs.

This instruction is considered a “store” with respect to Data Storage exceptions. See
Section 9.4.3 (Access Protection for Cache Instructions) on page 9-20 for further discussion.

This instruction is considered a “store” with respect to data address compare (DAC) debug
exceptions. See Section 10.6.3.1 (DAC Applied to Cache Instructions) on page 10-12 for
further discussion.

Architecture Note

This instruction is part of the PowerPC Virtual Environment Architecture.

Instruction Set 11-57

This instruction is specific to the PowerPC Embedded Controller family

dccci
Data Cache Congruence Class Invalidate
dccci RA,RB
31 » v RA RB 454
0 6 11 16 21 31
EA < (RAIO) + (RB)
DCCCI(EA)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is O and is the contents of
register RA otherwise.

Both cache lines in the congruence class specified by EA,3.o7 are invalidated, whether or
not they match the effective address. If modified data existed in the cache congruence class
prior to the operation of this instruction, that data is lost.

The operation specified by this instruction is performed whether or not the effective address
is marked as cacheable.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* None

Invalid Instruction Forms

* Reserved fields

Programming Note
Execution of this instruction is privileged.

This instruction is intended for use in the power-on reset routine to invalidate the entire data
cache tag array before enabling the data cache. A series of decci instruction should be
executed, one for each congruence class. Cacheability can then be enabled.

11-58 PPC403GC User’s Manual

This instruction is specific to the PowerPC Embedded Controller family

dccci

Data Cache Congruence Class Invalidate
Exceptions

The execution of a dccci instruction can cause a Data TLB Miss Exception, at the specified
effective address, in spite of the non-specific intent of that effective address.

This instruction is considered a “store” with respect to Data Storage exceptions. See
Section 9.4.3 (Access Protection for Cache Instructions) on page 9-20 for further discussion.

This instruction will not cause data address compare (DAC) debug exceptions. See
Section 10.6.3.1 (DAC Applied to Cache Instructions) on page 10-12 for further discussion.

Architecture Note

This instruction is specific to the PowerPC Embedded Controller family; it is not described in
PowerPC Architecture. Programs using this instruction may not be portable to other
PowerPC implementations.

Instruction Set 11-59

This instruction is specific to the PowerPC Embedded Controller family

dcread
Data Cache Read
dcread RT,RA,RB
31 RT RA RB 486
0 6 11 16 21 31

EA « (RAIO) + (RB)

if ((CDBCRICIS] = 0) A (CDBCRI[CSS] = 0)) then (RT) « (d-cache data, side A)
if ((CDBCRICIS] = 0) A (CDBCRI[CSS] = 1)) then (RT) « (d-cache data, side B)
if ((CDBCRICIS] = 1) A (CDBCRI[CSS] = 0)) then (RT) « (d-cache tag, side A)
if ((CDBCRICIS] = 1) A (CDBCRI[CSS] = 1)) then (RT) « (d-cache tag, side B)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

This instruction is a debugging tool for reading the data cache entries for the congruence
class specified by EA,3.07. The cache information will be read into the General Purpose
Register RT.

If (CDBCR[CIS] = 0), the information will be one word of data-cache data from the
addressed congruence class. The word is specified by EAsg.og (EAq.25 are ignored; an
alignment exception will result if EAzq.31 # 00). If (CDBCR[CSS] = 0), the data will be from
the A-side, otherwise from the B-side.

If (CDBCR[CIS] = 1), the information will be a cache tag from the addressed congruence
class (EAg.0o and EAsg.og are ignored; an alignment exception will result if EAgp.51 # 00). If
(CDBCRI[CSS] = 0), the tag will be from the A-side, otherwise from the B-side. Data cache
tag information is placed into register RT as follows:

0:22 TAG Cache Tag
23:25 reserved
26 D Cache Line Dirty
0 - Not dirty
1 - Dirty
27 \" Cache Line Valid
0 - Not valid
1 - Valid
28:30 reserved
31 LRU Least Recently Used
0 - A side least-recently-used
1 - B side least-recently-used

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

11-60 PPC403GC User's Manual

This instruction is specific to the PowerPC Embedded Controller family

dcread

Data Cache Read
Registers Altered

* RT

Invalid Instruction Forms

* Reserved fields

Programming Note

Execution of this instruction is privileged.

Exceptions
An alignment exception will result if EAzg.31 # 00.

The execution of a dcread instruction can cause a Data TLB Miss Exception, at the
specified effective address, in spite of the non-specific intent of that effective address.

This instruction is considered a “load” with respect to Data Storage exceptions. See
Section 9.4.3 (Access Protection for Cache Instructions) on page 9-20 for further discussion.

This instruction is considered a “load” with respect to data address compare (DAC) debug
exceptions. See Section 10.6.3.1 (DAC Applied to Cache Instructions) on page 10-12 for
further discussion.

Architecture Note

This instruction is specific to the PowerPC Embedded Controller family; it is not described in
PowerPC Architecture. Programs using this instruction may not be portable to other
PowerPC implementations.

Instruction Set 11-61

divw

Divide Word

divw RT,RA,RB (OE=0, Rc=0)

divw. RT,RA,RB (OE=0, Rc=1)

divwo RT,RA,RB (OE=1, Rc=0)

divwo. RT.RA.RB (OE=1, Re=1)

| 31 ‘ RT RA | RB |oE] 491 IRl
0 5 T 76 57 2 3

(RT) <« (RA) + (RB)

The contents of register RA are divided by the contents of register RB. The quotient is

placed into register RT.

Both the dividend and the divisor are interpreted as signed integers. The quotient is the

unique signed integer that satisfies:

dividend = (quotient x divisor) + remainder

where the remainder has the same sign as the dividend and its magnitude is less than that

of the divisor.

If an attempt is made to perform (x'8000 0000' + —1) or (n+ 0), the contents of register RT

are undefined; if the Rc also contains 1, the contents of CR[CRO0] are undefined. Either

invalid division operation sets XER[OV, SO] to 1 if the OE field contains 1.

Registers Altered

e RT
e CR[CRO].r gt eq, so if Rc contains 1
* XER[OV, SOJ if OE contains 1

Programming Note

The 32-bit remainder can be calculated using the following sequence of instructions:

divw RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient x divisor
subf RT,RT,RA # RT = remainder

The sequence does not calculate correct results for the invalid divide operations.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-62 PPC403GC User's Manual

divwu
Divide Word Unsigned

divwu RT,RA,RB (OE=0, Rc=0)
divwu. RT,RA,RB (OE=0, Re=1)
divwuo RT,RA,RB (OE=1, Rc=0)
divwuo. RT,RA,RB (OE=1, Rc=1)
[31 | mr | ra] RB | o] 459 |Re
0 6 11 16 21 22 3

(RT) « (RA) + (RB)

The contents of register RA are divided by the contents of register RB. The quotient is
placed into register RT.

The dividend and the divisor are interpreted as unsigned integers. The quotient is the
unique unsigned integer that satisfies

dividend = (quotient x divisor) + remainder

If an attempt is made to perform (n+ 0), the contents of register RT are undefined; if the Rc
also contains 1, the contents of CR[CRO] are also undefined. The invalid division operation
also sets XER[OV, SO] to 1 if the OE field contains 1.

Registers Altered

* RT

* CR[CRO]t, T, eq, so if Rc contains 1
« XER[OV, SOJ if OE contains 1
Programming Note

The 32-bit remainder can be calculated using the following sequence of instructions

divwu RT,RA,RB # RT = quotient
mullwu RT,RT,RB # RT = quotient x divisor
subf RT,RT,RA # RT = remainder

This sequence does not calculate the correct result if the divisor is zero.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-63

eieio
Enforce In Order Execution of I/O

eieio

31 854
0 6 21 31

The eieio instruction ensures that all loads and stores preceding an eieio instruction
complete with respect to main storage before any loads and stores following the eieio
instruction access main storage.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* None

Invalid Instruction Forms

* Reserved fields

Programming Note

Architecturally, eieio orders storage access, not instruction completion. Therefore, non-
storage operations after eieio could complete before storage operations that were before
eieio. The sync instruction guarantees ordering of both instruction completion and storage
access. For the PPC403GC, the eieio instruction is implemented to behave as a sync
instruction. To write code which is portable between various PowerPC implementations,
programmers should use the mnemonic which corresponds to the desired behavior.

Architecture Note

This instruction is part of the PowerPC Virtual Environment Architecture.

11-64 PPC403GC User's Manual

eqv

Equivalent
eqv RA,RS,RB (Rc=0)
eqv. RA,RS,RB (Re=1)
(31 r RS } RA RB L 284]Rﬂ
0 6 1 16 21 31

(RA) < —((RS) @ (RB))

The contents of register RS are XORed with the contents of register RB; the ones
complement of the result is placed into register RA.

Registers Altered

* RA

¢ CRI[CRO].t, g, eq so if Rc contains 1
Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-65

extsb
Extend Sign Byte

extsb RA,RS (Rc=0)
extsb. RA,RS (Re=1)
[31 | &s RA [954 |re]
0 3 T 16 o1 3

(RA) <~ EXTS(RS)4.31

The least significant byte of register RS is sign-extended to 32 bits by replicating bit 24 of
the register into bits 0 through 23 of the result. The result is placed into register RA.

Registers Altered

* RA
* CRI[CRO].t, a1, eq so if Rc contains 1

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-66 PPC403GC User's Manual

extsh
Extend Sign Halfword

extsh RA,RS (Rc=0)
extsh. RA,RS (Re=1)
[31 \ RS 1 RA] 922 [Rc]
0 6 EE 16 21 31

(RA) < EXTS(RS)4g.31

The least significant halfword of register RS is sign-extended to 32 bits by replicating bit 16
of the register into bits 0 through 15 of the result. The result is placed into register RA.

Registers Altered

* RA

* CRI[CRO].t ar eq so if Rc contains 1
Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-67

icbi

Instruction Cache Block Invalidate

icbi RA,RB
31 ; RA RB 982
0 6 11 16 21 31
EA <« (RAIO) + (RB)
ICBI(EA)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

If the instruction block at the effective address is in the instruction cache, the cache block is
marked invalid.

If the instruction block at the effective address is not in the instruction cache, no operation is
performed.

The operation specified by this instruction is performed whether or not the effective address
is marked as cacheable.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

e None

Invalid Instruction Forms

* Reserved fields

Programming Note

Instruction cache ops use MSR[DR], not MSR]IR], to determine translation of their
operands.

When data translation is disabled, cacheability for the effective address of the operand of
instruction cache ops is determined by the ICCR, not the DCCR.

11-68 PPC403GC User’s Manual

icbi
Instruction Cache Block Invalidate
Exceptions

Instruction Storage Exceptions and Instruction-side TLB Miss Exceptions are associated
with the fetching of instructions, not with the execution of instructions. Exceptions that occur
during the execution of instruction cache ops cause data-side exceptions (Data Storage
Exceptions and Data TLB Miss Exceptions).

This instruction is considered a “load” with respect to Data Storage exceptions. See
Section 9.4.3 (Access Protection for Cache Instructions) on page 9-20 for further discussion.

This instruction is considered a “load” with respect to data address compare (DAC) debug
exceptions. See Section 10.6.3.1 (DAC Applied to Cache Instructions) on page 10-12 for
further discussion.

Architecture Note

This instruction is part of the PowerPC Virtual Environment Architecture.

Instruction Set 11-69

This instruction is specific to the PowerPC Embedded Controller family

icbt

Instruction Cache Block Touch

icbt RA,RB

31 L RA RB 262 \
0 6 11 16 21 31

EA <« (RAIO) + (RB)
ICBT(EA)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

If the instruction block at the effective address is not in the instruction cache, and is marked
as cacheable, the instruction block is loaded into the instruction cache.

If the instruction block at the effective address is already in the instruction cache, or if the
effective address is marked as non-cacheable, no operation is performed.

This instruction is not allowed to cause Data Storage Exceptions or Data TLB Miss
Exceptions. If execution of the instruction would otherwise cause such an exception, then no
operation is performed, and no exception occurs.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* None

Invalid Instruction Forms

¢ Reserved fields

Programming Notes
Execution of this instruction is privileged.

This instruction allows a program to begin a cache block fetch from main storage before the
program needs the instruction. The program can later branch to the instruction address and
fetch the instruction from the cache without incurring the latency of a cache miss.

Instruction cache ops use MSR[DR], not MSRJIR], to determine translation of their
operands.

When data translation is disabled, cacheability for the effective address of the operand of
instruction cache ops is determined by the ICCR, not the DCCR.

11-70 PPC403GC User’'s Manual

This instruction is specific to the PowerPC Embedded Controller family

icbt
Instruction Cache Block Touch
Exceptions

Instruction Storage Exceptions and Instruction-side TLB Miss Exceptions are associated
with the fetching of instructions, not with the execution of instructions. Exceptions that occur
during the execution of instruction cache ops cause data-side exceptions (Data Storage
Exceptions and Data TLB Miss Exceptions).

This instruction is not allowed to cause Data TLB Miss Exceptions. If execution of the
instruction would otherwise cause such an exception, then no operation is performed, and
no exception occurs.

This instruction is considered a “load” with respect to Data Storage exceptions. See
Section 9.4.3 (Access Protection for Cache Instructions) on page 9-20 for further discussion.

This instruction is considered a “load” with respect to data address compare (DAC) debug
exceptions. See Section 10.6.3.1 (DAC Applied to Cache Instructions) on page 10-12 for
further discussion.

Architecture Note

This instruction is specific to the PowerPC Embedded Controller family; it is not described in
PowerPC Architecture. Programs using this instruction may not be portable to other
PowerPC implementations.

Instruction Set 11-71

This instruction is specific to the PowerPC Embedded Controller family

ICCCI
Instruction Cache Congruence Class Invalidate
iccci RA,RB
31 RA RB 966
0 6 11 16 21 31
EA < (RAIO) + (RB)
ICCCI(EA)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

Both cache lines in the congruence class specified by EA»5.57 are invalidated, whether or
not they match the effective address.

The operation specified by this instruction is performed whether or not the effective address
is marked cacheable.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* None

Invalid Instruction Forms

¢ Reserved fields

Programming Notes
Execution of this instruction is privileged.

This instruction is intended for use in the power-on reset routine to invalidate the entire
instruction cache tag array before enabling the instruction cache. A series of iccci
instructions should be executed, one for each congruence class. Cacheability can then be
enabled.

Instruction cache ops use MSR[DR], not MSR][IR], to determine translation of their
operands.

When data translation is disabled, cacheability for the effective address of the operand of
instruction cache ops is determined by the ICCR, not the DCCR.

11-72 PPC403GC User's Manual

This instruction is specific to the PowerPC Embedded Controller family

iccci
Instruction Cache Congruence Class Invalidate
Exceptions

Instruction Storage Exceptions and Instruction-side TLB Miss Exceptions are associated
with the fetching of instructions, not with the execution of instructions. Exceptions that occur
during the execution of instruction cache ops cause data-side exceptions (Data Storage
Exceptions and Data TLB Miss Exceptions).

The execution of an iccci instruction can cause a Data TLB Miss Exception, at the specified
effective address, in spite of the non-specific intent of that effective address.

This instruction is considered a “load” with respect to Data Storage exceptions. See
Section 9.4.3 (Access Protection for Cache Instructions) on page 9-20 for further discussion.

This instruction is considered a “load” with respect to data address compare (DAC) debug
exceptions. See Section 10.6.3.1 (DAC Applied to Cache Instructions) on page 10-12 for
further discussion.

Architecture Note

This instruction is specific to the PowerPC Embedded Controller family; it is not described in
PowerPC Architecture. Programs using this instruction may not be portable to other
PowerPC implementations.

Instruction Set 11-73

This instruction is specific to the PowerPC Embedded Controller family

icread
Instruction Cache Read
icread RA,RB
31 . RA RB 998 l
0 6 11 16 21 31

EA < (RAIO) + (RB)
if ((CDBCR{CIS] = 0) A (CDBCR[CSS] = 0)
if ((CDBCRICIS] = 0) A (CDBCR[CSS] = 1)
if ((CDBCR{CIS] = 1) A (CDBCR[CSS] = 0)
if ((CDBCRICIS] = 1) A (CDBCR[CSS] = 1)

then (ICDBDR) «

) i-cache data, side A)
) then (ICDBDR) «

)

)

i-cache data, side B)
i-cache tag, side A)
i-cache tag, side B)

then (ICDBDR) «
then (ICDBDR) «

—~ o~~~

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

This instruction is a debugging tool for reading the instruction cache entries for the
congruence class specified by EAs.57. The cache information will be read into the
Instruction Cache Debug Data Register (ICDBDR), from where it can be read into a GPR via
mficdbdr.

If (CDBCRI[CIS] = 0), the information will be one word of instruction cache data from the
addressed congruence class. The word is specified by EA,g.09 (EAp.01 and EAzq.31 are
ignored). If (CDBCR[CSS] = 0), the data will be from the A-side, otherwise from the B-side.

If (CDBCRI[CIS] = 1), the information will be a cache tag from the addressed congruence
class (EAg.o1 and EAyg.3q are ignored). If (CDBCR[CSS] = 0), the tag will be from the A-
side, otherwise from the B-side. Instruction cache tag information is placed in the ICDBDR
as follows:

0:21 TAG Cache Tag
22:26 reserved
27 \ Cache Line Valid
0 - Not valid
1 - Valid
28:30 reserved
31 LRU Least Recently Used
0 - A side least-recently-used
1 - B side least-recently-used

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
- ICDBDR

11-74 PPC403GC User's Manual

This instruction is specific to the PowerPC Embedded Controller family

icread

Instruction Cache Read
Invalid Instruction Forms

¢ Reserved fields

Programming Note
Execution of this instruction is privileged.

The instruction pipeline will not automatically wait for data from icread to arrive at ICDBDR
before attempting to use the contents of that register. Therefore, insert at least one
instruction between icread and mficdbdr:

icread r5,r6 # read cache information
nop # minimum separation
mficdbdr r7 # move information to GPR

Instruction cache ops use MSR[DRY], not MSRJIR], to determine translation of their
operands.

When data translation is disabled, cacheability for the effective address of the operand of
instruction cache ops is determined by the ICCR, not the DCCR.

Exceptions

Instruction Storage Exceptions and Instruction-side TLB Miss Exceptions are associated
with the fetching of instructions, not with the execution of instructions. Exceptions that occur
during the execution of instruction cache ops cause data-side exceptions (Data Storage
Exceptions and Data TLB Miss Exceptions).

The execution of an iccci instruction can cause a Data TLB Miss Exception, at the specified
effective address, in spite of the non-specific intent of that effective address.

This instruction is considered a “load” with respect to Data Storage exceptions. See
Section 9.4.3 (Access Protection for Cache Instructions) on page 9-20 for further discussion.

This instruction is considered a “load” with respect to data address compare (DAC) debug
exceptions. See Section 10.6.3.1 (DAC Applied to Cache Instructions) on page 10-12 for
further discussion.

Architecture Note

This instruction is specific to the PowerPC Embedded Controller family; it is not described in
PowerPC Architecture. Programs using this instruction may not be portable to other
PowerPC implementations.

Instruction Set 11-75

isync

Instruction Synchronize

isync

19 : - 150 L
5 5 2 37

The isync instruction is a context synchronizing instruction.

The isync instruction provides an ordering function for the effects of all instructions
executed by the processor. Executing isync insures that all instructions preceding the isync
instruction have completed before the isync instruction completes, except that storage
accesses caused by those instructions need not have completed. No subsequent
instructions are initiated by the processor until after the isync instruction completes. Finally,
execution of isync causes the processor to discard any prefetched instructions, with the
effect that subsequent instructions will be fetched and executed in the context established
by the instructions preceding the isync instruction.

The isync instruction has no effect on caches.

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

Registers Altered

* None

Invalid Instruction Forms

* Reserved fields

Programming Note
See the discussion of context synchronizing instructions in Section 2.10.1 on page 2-37.

The following code example illustrates the necessary steps for self-modifying code. This
example assumes that addr1 is both data and instruction cacheable.

stw regN, addr1 # the data in regN is to become an instruction at addr1
dcbst addr1 # forces data from the data cache to memory

sync # wait until the data actually reaches the memory

icbi addr1 # the previous value at addr1 might already be in

the instruction cache; invalidate in the cache

isync # the previous value at addr1 might already have been
pre-fetched into the queue; invalidate the queue
so that the instruction will be re-fetched

Architecture Note

This instruction is part of the PowerPC Virtual Environment Architecture.

11-76 PPC403GC User’'s Manual

Ibz

Load Byte and Zero
Ibz RT,D(RA)

34 RT RA D
0 6 11 16 31

EA « (RAIO) + EXTS(D)
(RT) « 240 Il MS(EA,1)

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 if the RA field is 0 and is the contents of register RA otherwise.

The byte at the effective address is extended to 32 bits by concatenating 24 0-bits to its left.
The result is placed into register RT.

Registers Altered
* RT

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-77

Ibzu
Load Byte and Zero with Update

Ibzu RT,D(RA)
35 RT RA D
0 6 11 16 31
EA « (RAIO) + EXTS(D)
(RA) « EA

(RT) < 240 || MS(EA,1)

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 if the RA field is 0 and is the contents of register RA otherwise. The effective address is
placed into register RA.

The byte at the effective address is extended to 32 bits by concatenating 24 0-bits to its left.
The result is placed into register RT.

Registers Altered

* RA

* RT

Invalid Instruction Forms
« RA=RT

* RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-78 PPC403GC User’'s Manual

Ibzux
Load Byte and Zero with Update Indexed

Ibzux RT,RA,RB
31 RT RA RB 119
0 6 11 16 21 31
EA « (RAIO) + (RB)
(RA) < EA

(RT) < 240 Il MS(EA,1)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise. The effective address is placed into register RA.

The byte at the effective address is extended to 32 bits by concatenating 24 0-bits to its left.
The result is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* RA

* RT

Invalid Instruction Forms

* Reserved fields
e RA=RT
e RA=0

Architecture Note m
This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-79

Ibzx
Load Byte and Zero Indexed

Ibzx RT,RA,RB

31 RT RA RB 87

0 6 11 16 21 31

EA « (RAIO) + (RB)
(RT) « 240 || MS(EA,1)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

The byte at the effective address is extended to 32 bits by concatenating 24 0-bits to its left.
The result is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
« RT

Invalid Instruction Forms

¢ Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-80 PPC403GC User's Manual

lha

Load Halfword Algebraic
lha RT,D(RA)

42 RT RA D
0 6 11 16 31

EA <« (RAIO) + EXTS(D)
(RT) < EXTS(MS(EA,2))

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 if the RA field is 0 and is the contents of register RA otherwise. The EA must be halfword-
aligned (a multiple of 2). If it is not, it will cause an alignment exception.

The halfword at the effective address is sign-extended to 32 bits and placed into register RT.

Registers Altered
« RT

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-81

lhau
Load Halfword Algebraic with Update

lhau RT,D(RA)
43 RT RA D
0 6 11 16 31
EA < (RAIO) + EXTS(D)
(RA) « EA

(RT) « EXTS(MS(EA,2))

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 when the RA field is 0 and is the contents of register RA otherwise. The EA must be
halfword-aligned (a multiple of 2). If it is not, it will cause an alignment exception. The
effective address is placed into register RA.

The halfword at the effective address is sign-extended to 32 bits and placed into register RT.

Registers Altered

 RA

e RT

Invalid Instruction Forms
o RA=RT

« RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-82 PPC403GC User's Manual

lhaux
Load Halfword Algebraic with Update Indexed

lThaux RT,RA,RB
31 RT RA RB 375
0 6 11 16 21 31
EA « (RAIO) + (RB)
(RA) «— EA

(RT) ¢« EXTS(MS(EA,2))

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise. The EA must be halfword-aligned (a multiple of 2). If it is not, it will
cause an alignment exception. The effective address is placed into register RA.

The halfword at the effective address is sign-extended to 32 bits and placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* RA

* RT

Invalid Instruction Forms

* Reserved fields
* RA=RT
* RA=0

Architecture Note m
This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-83

Ihax
Load Halfword Algebraic Indexed

lhax RT,RA,RB

31 RT RA RB 343 ‘
0 6 11 16 21 31

EA « (RAIO) + (RB)
(RT) < EXTS(MS(EA,2))

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise. The EA must be halfword-aligned (a multiple of 2). If it is not, it will
cause an alignment exception.

The halfword at the effective address is sign-extended to 32 bits and placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
¢ RT

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-84 PPC403GC User's Manual

Ihbrx

Load Halfword Byte-Reverse Indexed

Ihbrx RT,RA,RB

31 RT RA RB 790
0 6 11 16 21 31

EA < (RAIO) + (RB)
(RT) < ™60 Il MS(EA +1,1) Il MS(EA,1)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise. The EA must be halfword-aligned (a multiple of 2). If it is not, it will
cause an alignment exception.

The halfword at the effective address is byte-reversed. The resulting halfword is extended to
32 bits by concatenating 16 0-bits to its left. The result is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
 RT
Invalid Instruction Forms

e Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-85

lhz

Load Halfword and Zero

lhz RT,D(RA)

40 RT RA D
0 6 11 16 31

EA « (RAIO) + EXTS(D)
(RT) < 160 I MS(EA,2)

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 if the RA field is 0 and is the contents of register RA otherwise. The EA must be halfword-
aligned (a multiple of 2). If it is not, it will cause an alignment exception.

The halfword at the effective address is extended to 32 bits by concatenating 16 0-bits to its
left. The result is placed into register RT.

Registers Altered
e RT

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-86 PPC403GC User's Manual

lhzu
Load Halfword and Zero with Update

Ihzu RT,D(RA)
a1 RT RA D
0 6 11 16 31
EA < (RAIO) + EXTS(D)
(RA) « EA

(RT) < %60 Il MS(EA,2)

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 if the RA field is 0 and is the contents of register RA otherwise. The EA must be halfword-
aligned (a multiple of 2). If it is not, it will cause an alignment exception. The effective
address is placed into register RA.

The halfword at the effective address is extended to 32 bits by concatenating 16 0-bits to its
left. The result is placed into register RT.

Registers Altered

* RA

« RT

Invalid Instruction Forms

* RA=RT

* RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture. m

Instruction Set 11-87

Ihzux
Load Halfword and Zero with Update Indexed

lhzux RT,RA,RB
31 RT RA RB 311 ‘
0 6 1 16 21 31
EA < (RAIO) + (RB)
(RA) « EA

(RT) « 80 Il MS(EA,2)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise. The EA must be halfword-aligned (a multiple of 2). If it is not, it will
cause an alignment exception. The effective address is placed into register RA.

The halfword at the effective address is extended to 32 bits by concatenating 16 0-bits to its
left. The result is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* RA

« RT

Invalid Instruction Forms

* Reserved fields
* RA=RT
* RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-88 PPC403GC User's Manual

lhzx

Load Halfword and Zero Indexed

thzx RT,RARB

31 RT RA RB 279
0 6 11 16 21 31

EA < (RAIO) + (RB)
(RT) < 160 Il MS(EA,2)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise. The EA must be halfword-aligned (a multiple of 2). If it is not, it will
cause an alignment exception.

The halfword at the effective address is extended to 32 bits by concatenating 16 0-bits to its
left. The result is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
e RT
Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-89

Imw
Load Multiple Word

Imw RT,D(RA)
46 RT RA D
0 6 11 16 31
EA < (RAIO) + EXTS(D)
r < RT

do while r < 31
if ((r#RA)V (r=231))then
(GPR(r)) <~ MS(EA,4)
r<r+1
EA <« EA + 4

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field in the instruction to 32 bits. The
base address is 0 if the RA field is 0 and is the contents of register RA otherwise. The EA
must be word-aligned (a multiple of 4). If it is not, it will cause an alignment exception.

A series of consecutive words starting at the effective address are loaded into a set of
consecutive GPRs, starting with register RT and continuing to and including GPR(31).
Register RA is not altered by this instruction (unless RA is GPR(31), which is an invalid form
of this instruction). The word which would have been placed into register RA is discarded.

Registers Altered
¢ RT through GPR(31).

Invalid Instruction Forms

* RA s in the range of registers to be loaded, including the case where RA = RT = 0.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-90 PPC403GC User’'s Manual

Iswi RT,RANB

Load String Word Immediate

Iswi

31 RT RA NB

597

EA < (RAIO)
if NB = 0 then
CNT « 32
else
CNT « NB
n < CNT
RFlNAL — ((RT + CE”—(CNT/4) - 1) % 32)
r < RT -1
i< 0
do while n > 0
if i = 0 then
ré—r+1
if r = 32 then
r< o0
if ((r#RA)V (r=Rgpnay) then
(GPR(r)) < 0O
if ((r * RA) \Y (r = RF|NAL)) then
(GPR(M)ij,7) < MS(EA,1)
i<—i+8
if i = 32then
i< 0
EA < EA + 1
né&<n-1

21

31

An effective address is determined by the RA field. If the RA field contains 0, the effective
address is 0. Otherwise, the effective address is the contents of register RA.

A byte count CNT is determined by examining the NB field. If the NB field is O, the byte

count is CNT = 32. Otherwise, the byte count is CNT = NB.

A series of CNT consecutive bytes in main storage, starting with the byte at the effective
address, are loaded into CEIL(CNT/4) consecutive GPRs, four bytes per GPR, until the byte
count is exhausted. Bytes are placed into GPRs with the byte having the lowest address
loaded into the most significant byte. Bit positions to the right of the last byte loaded in the

last GPR used are set to O.

The set of consecutive registers loaded starts at register RT, continues through GPR(31)
and wraps to register 0, loading until the byte count is exhausted, which occurs in register
ReinaL- Register RA is not altered (unless RA = RgyaL, which is an invalid form of this

instruction). Bytes which would have been loaded into register RA are discarded.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Instruction Set

11-91

Iswi

Load String Word Immediate
Registers Altered

* RT and subsequent GPRs as described above.

Invalid Instruction Forms

* Reserved fields
¢ RA s in the range of registers to be loaded
e RA=RT=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-92 PPC403GC User's Manual

Iswx RT,RA,RB

Iswx

Load String Word Indexed

31

RT

RA

RB

533

0 6

EA < (RAIO) + (RB)

CNT &—XER[TBC]
n <« CNT

RenaL < ((RT + CEIL(CNT/4) — 1) % 32)

r < RT -1
i< 20
do while n > 0
if i = 0 then
ré—r+1
if r = 32 then
r<o

if ((r #RA) A (r#RB)) V (r = Rgyal)) then
(GPR(r)) « 0
if ((r #RA) A (r#RB)) V (r = Rgnal)) then

11

(GPR(r)i;7) <= MS(EA,1)

i<—i+8

if i = 32then
i< 0

EA < EA + 1

né&n-1

16

21

31

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of

register RA otherwise.

A byte count CNT is obtained from XER[TBC].

A series of CNT consecutive bytes in main storage, starting with the byte at the effective
address, are loaded into CEIL(CNT/4) consecutive GPRs, four bytes per GPR, until the byte
count is exhausted. Bytes are placed into GPRs with the byte having the lowest address
loaded into the most significant byte. Bit positions to the right of the last byte loaded in the

last register used are set to 0.

The set of consecutive GPRs loaded starts at register RT, continues through GPR(31), and
wraps to register 0, loading until the byte count is exhausted, which occurs in register
ReinaL- Register RA is not altered (unless RA = RgyaL, Which is an invalid form of this
instruction). Register RB is not altered (unless RB = RgjyaL, Which is an invalid form of this
instruction). Bytes which would have been loaded into registers RA or RB are discarded.

If XER[TBC] is 0, the byte count is 0 and the contents of register RT are undefined.

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

Instruction Set

11-93

Iswx

Load String Word Indexed
Registers Altered

e RT and subsequent GPRs as described above.

Invalid Instruction Forms

* Reserved fields
* RA or RB is in the range of registers to be loaded.
* RA=RT=0

Programming Note

If XER[TBC] is 0 the contents of register RT are undefined.

The PowerPC Architecture states that, if XER[TBC] = 0 and if accessing the EA would
otherwise cause a precise data exception (if not for the zero length), then Iswx will be
treated as a no-op and the exception will not occur. Data Storage Exceptions and Data TLB
Miss Exceptions are examples of precise data exceptions.

However, the architecture makes no statement regarding imprecise exceptions related to
Iswx with XER[TBC] = 0. The PPC403GC will generate an imprecise exception (Machine
Check) on this instruction under these circumstances:

The instruction passes all protection checking; and

the address is cacheable; and

the address misses in the D-cache (resulting in a line fill request to the BIU); and

the address encounters some form of memory subsystem error (non-configured, etc).

Architecture Note
m This instruction is part of the PowerPC User Instruction Set Architecture.

11-94 PPC403GC User’'s Manual

lwarx

Load Word and Reserve Indexed

lwarx RT,RA,RB

31 RT RA RB 20
0 6 11 16 21 31

EA < (RAIO) + (RB)
RESERVE <« 1
(RT) <~ MS(EA4)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise. The EA must be word-aligned (a multiple of 4). If it is not, it will cause
an alignment exception.

The word at the effective address is placed into register RT.
If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Execution of the lwarx instruction sets the reservation bit.

Registers Altered
* RT

Invalid Instruction Forms

* Reserved fields

Programming Note

The reservation bit can be set to 1 only by the execution of the lwarx instruction. When
execution of the stwex. instruction completes, the reservation bit will be 0, independent of
whether or not the stwex. instruction sent (RS) to memory. CR[CRO]gq must be examined
to determine if (RS) was sent to memory. It is intended that lwarx and stwcx. be used in
pairs in a loop, to create the effect of an atomic operation to a memory area which is a
semaphore between asynchronous processes.

loop: Iwarx # read the semaphore from memory; set reservation
“alter’ # change the semaphore bits in register as required
stwcex. # attempt to store semaphore; reset reservation
bne loop # an asynchronous process has intervened; try again

All usage of lwarx and stwex. (including usage within asynchronous processes) should be
paired as shown in this example. If the asynchronous process in this example had paired
lwarx with any store other than stwex. then the reservation bit would not have been cleared
in the asynchronous process, and the code above would have overwritten the semaphore.

Architecture Note
This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-95

Iwbrx
Load Word Byte-Reverse Indexed

lwbrx RT,RA,RB

31 RT RA RB 534

0 6 11 16 21 31

EA « (RAIO) + (RB)
(RT) <« MS(EA+3,1) || MS(EA+2,1) || MS(EA+1,1) || MS(EA,1)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is O if the RA field is 0 and is the contents of
register RA otherwise. The EA must be word-aligned (a multiple of 4). If it is not, it will cause
an alignment exception.

The word at the effective address is byte-reversed: the least significant byte becomes the
most significant byte, the next least significant byte becomes the next most significant byte,
and so on. The resulting word is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
* RT

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-96 PPC403GC User's Manual

lwz
Load Word and Zero

Iwz RT,D(RA)

32 RT RA D
0 6 11 16 31

EA <« (RAIO) + EXTS(D)
(RT) « MS(EA,4)

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 if the RA field is 0 and is the contents of register RA otherwise. The EA must be word-
aligned (a multiple of 4). If it is not, it will cause an alignment exception.

The word at the effective address is placed into register RT.

Registers Altered
« RT

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-97

lwzu
Load Word and Zero with Update

Iwzu RT,D(RA)
33 RT RA D
0 6 iR | 16 31
EA « (RAIO) + EXTS(D)
(RA) « EA

(RT) < MS(EA,4)

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 if the RA field is 0 and is the contents of register RA otherwise. The EA must be word-
aligned (a multiple of 4). If it is not, it will cause an alignment exception. The effective
address is placed into register RA.

The word at the effective address is placed into register RT.

Registers Altered

* RA

* RT

Invalid Instruction Forms
* RA=RT

* RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-98 PPC403GC User’s Manual

lwzux
Load Word and Zero with Update Indexed

lwzux RT,RA,RB
31 RT RA RB 55
0 6 11 16 21 31
EA < (RAIO) + (RB)
(RA) « EA

(RT) < MS(EA 4)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise. The EA must be word-aligned (a multiple of 4). If it is not, it will cause
an alignment exception. The effective address is placed into register RA.

The word at the effective address is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* RA

* RT

Invalid Instruction Forms

* Reserved fields
e RA=RT
e RA=0

Architecture Note m
This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-99

lwzx
Load Word and Zero Indexed

lwzx RT,RA,RB

31 RT RA RB 23

0 6 11 16 21 31

EA < (RAIO) + (RB)
(RT) < MS(EA,4)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise. The EA must be word-aligned (a multiple of 4). If it is not, it will cause
an alignment exception.

The word at the effective address is placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

Registers Altered
* RT

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-100 PPC403GC User’'s Manual

mcrf
Move Condition Register Field

mecrf BF,BFA
19 BF BFA : 0
0 6 9 11 14 21 31
m < BFA
n < BF

(CRICRn]) « (CR[CRm])

The contents of the CR field specified by the BFA field are placed into the CR field specified
by the BF field.

Registers Altered
e CR[CRn] where nis specified by the BF field.

Invalid Instruction Forms

¢ Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-101

mcrxr
Move to Condition Register from XER

mcerxr BF

31 BF | ' 512

n < BF
(CRICRn]) <~ XERqg.3
XERg.3 < “0

The contents of XER(.5 are placed into the CR field specified by the BF field. XER.3 are
then setto 0.

This transfer is positional, by bit number, so the mnemonics associated with each bit are
changed. See the following table for clarification.

Bit XER Usage CR Usage
0 SO LT
1 oV GT
2 CA EQ
3 reserved SO

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

e CR[CRn] where nis specified by the BF field.
* XER[SO, OV, CA]

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-102 PPC403GC User's Manual

mfcr

Move From Condition Register

mfcr RT

31 RT 19

(RT) « (CR)
The contents of the CR are placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
« RT
Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-103

This instruction is specific to the PowerPC Embedded Controller family

mfdcr
Move from Device Control Register
mfdcr RT,DCRN
31 | mr] DCRF 323]]
0 6 11 21 31

DCRN ¢« DCRFs, || DCRFy,
(RT) « (DCR(DCRN))

The contents of the DCR specified by the DCRF field are placed into register RT. See
Table 12-3 (PPC403GC Device Control Registers) on page 12-4 for a listing of DCR
mnemonics and corresponding DCRN and DCRF values.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
« RT

Invalid Instruction Forms

* Reserved fields

* Invalid DCRF values

Programming Note

Execution of this instruction is privileged.

The DCR number (DCRN) specified in the assembler language coding of the mfdecr
instruction refers to an actual DCR number (see Table 12-3 on page 12-4). The assembler
handles the unusual DCR number encoding to generate the DCRF field.

Architecture Note

This instruction is specific to the PowerPC Embedded Controller family; it is not described in
PowerPC Architecture. Programs using this instruction may not be portable to other
PowerPC implementations.

11-104 PPC403GC User’'s Manual

This instruction is specific to the PowerPC Embedded Controller family

mfdcr

Move from Device Control Register

Table 11-17. Extended Mnemonics for mfdcr

Mnemonic

Operands

Function

Other
Registers
Changed

mfbear
mfbesr
mfbr0
mfbri
mfbr2
mfbr3
mfbr4
mfbr5
mfbré
mfbr7
mfdmaccO
mfdmacci
mfdmacc2
mfdmacc3
mfdmacr0
mfdmacri
mfdmacr2
mfdmacr3
mfdmact0
mfdmacti
mfdmact2
mfdmact3
mfdmada0
mfdmada1i
mfdmada2
mfdmada3
mfdmasa0
mfdmasai
mfdmasa2
mfdmasa3
mfdmasr
mfexisr
mfexier
mfiocr

RT

Move from device control register DCRN.
Extended mnemonic for
mfdcr RT,DCRN

See Table 12-3 on page 12-4 for listing of
valid DCRN values.

Instruction Set 11-105

mfmsr

Move From Machine State Register

mfmsr RT

{ 31 RT

83

0 6 iB] 21
(RT) « (MSR)
The contents of the MSR are placed into register RT.

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

Registers Altered
* RT

Invalid Instruction Forms

* Reserved fields

Programming Note

Execution of this instruction is privileged.

Architecture Note

This instruction is part of the PowerPC Operating Environment Architecture.

11-106 PPC403GC User's Manual

31

mfspr

Move From Special Purpose Register

mfspr RT,SPRN

l 31 [RT] SPRF 339 [1
0 6 11 21 31

SPRN ¢« SPRFs, || SPRF;.
(RT) « (SPR(SPRN))

The contents of the SPR specified by the SPRF field are placed into register RT. See
Table 12-2 (PPC403GC Special Purpose Registers) on page 12-2 for a listing of SPR
mnemonics and corresponding SPRN and SPRF values.

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

Registers Altered
* RT

Invalid Instruction Forms

* Reserved fields
¢ Invalid SPRF values

Programming Note

Execution of this instruction is privileged if instruction bit 11 is “1*. See Section 2.9.4
(Privileged SPRs) on page 2-36 for further discussion.

The SPR number (SPRN) specified in the assembler language coding of the mfspr
instruction refers to an actual SPR number (see Table 12-2 on page 12-2). The assembler
handles the unusual SPR number encoding to generate the SPRF field. Also, see

Section 2.9.4 for a discussion of the encoding of Privileged SPRs.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-107

mfspr

Move From Special Purpose Register

Table 11-18. Extended Mnemonics for mfspr

Other
Mnemonic Operands Function Registers
Changed

mfcdber RT Move from special purpose register SPRN.
mfctr Extended mnemonic for

mfdac1 mfspr RT,SPRN
mfdac2

mfdbsr
mfdccr
mfdcwr
mfdear
mfesr
mfevpr
mfiac1
mfiac2
mficcr
mficdbdr
mfir
mfpbl1
mfpbl2
mfpbui
mfpbu2
mfpid
mfpit
mfpvr
mfsgr
mfsprg0
mfsprg1
mfsprg2
mfsprg3
mfsrr0
mfsrri
mfsrr2
mfsrr3
mftbhi
mftbhu
mftblo
mftblu
mftcr
mftsr
mfxer
mfzpr

See Table 12-2 on page 12-2 for listing of
valid SPRN values.

11-108 PPC403GC User’s Manual

mtcrf

Move to Condition Register Fields

mtcrf FXM,RS
31 RS : FXM _ 144 ‘
0 6 12 20 21 31
mask < 4(FXMy) || “(FXMy) || ... || “(FXMs) || “(FXM-)

(CR) « ((RS) A mask) v ((CR) A —mask)

Some or all of the contents of register RS are placed into the CR as specified by the FXM

field.

Each bit in the FXM field controls the copying of 4 bits in register RS into the corresponding
bits in the CR. The correspondence between the bits in the FXM field and the bit copying

operation is shown in the following table:

FXM Bit Number

Bits Controlled

0

0:3

1

4:7

8:11

12:15

16:19

20:23

24:27

N ol o) M| WO DN

28:31

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

Registers Altered
e CR

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set

11-109

mtcrf

Move to Condition Register Fields

Table 11-19. Extended Mnemonics for mtcrf

Other
Mnemonic Operands Function Registers
Changed
mter RS Move to Condition Register.
Extended mnemonic for

mtcrf OxFF,RS

11-110 PPC403GC User’'s Manual

This instruction is specific to the PowerPC Embedded Controller family

mtdcr

Move To Device Control Register

mtdcr DCRN,RS

31 RS DCRF T 451 [J

6 11 21 31

DCRN « DCRF, Il DCRF,,
(DCR(DCRN)) « (RS)

o

The contents of register RS are placed into the DCR specified by the DCRF field. See
Table 12-3 (PPC403GC Device Control Registers) on page 12-4 for a listing of DCR
mnemonics and corresponding DCRN and DCRF values.

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

Registers Altered
* DCR(DCRN)

Invalid Instruction Forms

* Reserved fields

* Invalid DCRF values

Programming Note

Execution of this instruction is privileged.

The DCR number (DCRN) specified in the assembler language coding of the mtder
instruction refers to an actual DCR number (see Table 12-3 on page 12-4). The assembler
handles the unusual DCR number encoding to generate the DCREF field.

Architecture Note m

This instruction is specific to the PowerPC Embedded Controller family; it is not described in
PowerPC Architecture. Programs using this instruction may not be portable to other
PowerPC implementations.

Instruction Set 11-111

This instruction is specific to the PowerPC Embedded Controller family

mtdcr

Move To Device Control Register

Table 11-20. Extended Mnemonics for mtdcr

Other
Mnemonic Operands Function Registers
Changed

mtbear RS Move to device control register DCRN.
mtbesr Extended mnemonic for

mtbr0 mtdcr DCRN,RS

mtbr1
mtbr2 See Table 12-3 on page 12-4 for listing of
mtbr3 valid DCRN values.

mtbrd
mtbr5
mtbré
mtbr7
mtdmacc0
mtdmacci
mtdmacc2
mtdmacc3
mtdmacr0
mtdmacri
mtdmacr2
mtdmacr3
mtdmact0
mtdmactt
mtdmact2
mtdmact3
mtdmada0
mtdmadai
mtdmada2
mtdmada3
mtdmasa0
mtdmasai
mtdmasa2
mtdmasa3
mtdmasr
mtexisr
mtexier
mtiocr

11-112 PPC403GC User's Manual

mtmsr

Move To Machine State Register

mtmsr RS

31 RS

” B

0 6 11 21
(MSR) « (RS)
The contents of register RS are placed into the MSR.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
e MSR

Invalid Instruction Forms

¢ Reserved fields

Programming Note

The mtmsr instruction is privileged and execution synchronizing.

Architecture Note

This instruction is part of the PowerPC Operating Environment Architecture.

Instruction Set 11-113

mtspr

Move To Special Purpose Register

mtspr SPRN,RS

{ 31 l RS ' SPRF 467 []
0 6 1 21 31

SPRN <« SPRFs, || SPRF;.
(SPR(SPRN)) « (RS)

The contents of register RS are placed into the SPR specified by the SPRF field. See
Table 12-2 (PPC403GC Special Purpose Registers) on page 12-2 for a listing of SPR
mnemonics and corresponding SPRN and SPRF values.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
e SPR(SPRN)

Invalid Instruction Forms
e Reserved fields

¢ Invalid SPRF values
Programming Note

Execution of this instruction is privileged if instruction bit 11 is “1‘. See Section 2.9.4
(Privileged SPRs) on page 2-36 for further discussion.

The SPR number (SPRN) specified in the assembler language coding of the mtspr
instruction refers to an actual SPR number (see Table 12-2 on page 12-2). The assembler
handles the unusual SPR number encoding to generate the SPRF field. Also, see

Section 2.9.4 for a discussion of the encoding of Privileged SPRs.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-114 PPC403GC User’s Manual

mtspr

Move To Special Purpose Register

Table 11-21. Extended Mnemonics for mtspr

Mnemonic

Operands

Function

Other
Registers
Changed

mtcdbcr
mtctr
mtdac1
mtdac2
mtdbsr
mtdccer
mtdcwr
mtesr
mtevpr
mtiac1
mtiac2
mticcr
mticdbdr
mtir
mtpbl1
mtpbl2
mtpbu1
mtpbu2
mtpid
mtpit
mtsgr
mtsprg0
mtsprgi
mtsprg2
mtsprg3
mtsrr0
mtsrr1
mtsrr2
mtsrr3
mttbhi
mttblo
mttcr
mttsr
mtxer
mtzpr

RS

Move to special purpose register SPRN.
Extended mnemonic for
mtspr SPRN,RS

See Table 12-2 on page 12-2 for listing of
valid SPRN values.

Instruction Set

11-115

mulhw
Multiply High Word

mulhw RT,RA,RB (Rc=0)
mulhw. RT,RA,RB (Re=1)

31 RT RA RB ‘ 75 TRC[
0 6 11 16 21 31

prodges <— (RA) X (RB) (signed)
(RT) < prodg.s

The 64-bit signed product of registers RA and RB is formed. The most significant 32 bits of
the result is placed into register RT.

Registers Altered

* RT

* CR[CRO].r ar eq so if Rc contains 1
Programming Note

The most significant 32 bits of the product, unlike the least significant 32 bits, may differ
depending on whether the registers RA and RB are interpreted as signed or unsigned
quantities. The mulhw instruction generates the correct result when these operands are
interpreted as signed quantities. The mulhwu instruction generates the correct result when
these operands are interpreted as unsigned quantities.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-116 PPC403GC User's Manual

mulhwu
Multiply High Word Unsigned

mulhwu RT,RA,RB (Rc=0)
mulhwu. RT,RA,RB (Re=1)
(31 ‘ RT \ RA RB \ 1 |Rcl
0 6 11 16 21 31

prodges <— (RA) X (RB) (unsigned)
(RT) < prodg.,

The 64-bit unsigned product of registers RA and RB is formed. The most significant 32 bits
of the result are placed into register RT.

Registers Altered

* RT

* CRI[CRO].7 ar,kq so if Rc contains 1
Programming Note

The most significant 32 bits of the product, unlike the least significant 32 bits, may differ
depending on whether the registers RA and RB are interpreted as signed or unsigned
quantities. The mulhw instruction generates the correct result when these operands are
interpreted as signed quantities. The mulhwu instruction generates the correct result when
these operands are interpreted as unsigned quantities.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-117

mulli

Multiply Low Immediate

mulli RT,RA,IM

0 6 11 16

prody.s; <= (RA) X IM
(RT) < prodig.s;

The 48-bit product of register RA and the IM field is formed. Both register RA and the IM
field are interpreted as signed quantities. The least significant 32 bits of the product are
placed into register RT.

Registers Altered
* RT

Programming Note

The least significant 16 bits of the product are correct, regardless of whether register RA
and field IM are interpreted as signed or unsigned numbers.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-118 PPC403GC User’'s Manual

31

mullw
Multiply Low Word

muliw RT,RA,RB (OE=0, Rc=0)
mullw. RT,RA,RB (OE=0, Rc=1)
muliwo RT,RA,RB (OE=1, Rc=0)
mullwo. RT,RA,RB (OE=1, Rc=1)
I 31 | RT | RA | RB \0E| 235 lEI
0 6 11 16 21 22 31

prodges <— (RA) X (RB) (signed)
(RT) < prodspes

The 64-bit signed product of register RA and register RB is formed. The least significant 32
bits of the result is placed into register RT.

If all bits in positions 0 through 31 of the 64 bit product do not equal bit 0 of the result in
register RT and OE=1, XER[SO, OV] are set to 1.

Registers Altered

* RT

* CR[CRO] g, eq so if Rc contains 1
« XER[SO, OV] if OE=1
Programming Note

The least significant 32 bits of the product are correct, regardless of whether register RA
and register RB are interpreted as signed or unsigned numbers.

Architecture Note
This instruction is part of the PowerPC User Instruction Set Architecture. m

Instruction Set 11-119

nand

NAND
nand RA,RS,RB (Rc=0)
nand. RA,RS,RB (Re=1)
31 | RS | RA T RB | 476 |Rc‘
0 6 11 16 21 31

(RA) - —((RS) A (RB))

The contents of register RS is ANDed with the contents of register RB; the ones
complement of the result is placed into register RA.

Registers Altered

* RA
* CRI[CRO].t g, eq so if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-120 PPC403GC User’'s Manual

neg

Negate
neg RT,RA (OE=0, Rc=0)
neg. RT,RA (OE=0, Re=1)
nego RT,RA (OE=1, Rc=0)
nego. RT,RA (OE=1, Re=1)
| 31 | mT RA e |oE| 104 IRe|
0 6 5] 16 o1 22 31

(RT) < =(RA) +1
The twos complement of the contents of register RA are placed into register RT.

Registers Altered

* RT
* CRI[CRO].t, a1 eq so if Rec contains 1
e XERI[CA, SO, OV] if OE=1

Invalid Instruction Forms

¢ Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-121

nor

NOR

nor RA,RS,RB (Rc=0)

nor. RA,RS,RB (Re=1)

‘ 31 ; RS ‘ RA RB 1 124 |Rc|
0 3 11 16 51 3

(RA) < —((RS) v (RB))

The contents of register RS is ORed with the contents of register RB; the ones complement
of the result is placed into register RA.

Registers Altered

* RA
* CRI[CRO]t a1, Eq, so if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-22. Extended Mnemonics for nor, nor.

Other
Mnemonic Operands Function Registers
Changed
not RA, RS Complement register.
(RA) <— —(RS)

Extended mnemonic for

nor RA,RS,RS
not. Extended mnemonic for CR[CRO]

nor. RA,RS,RS

11-122 PPC403GC User’'s Manual

or

OR
or RA,RS,RB (Rc=0)
or. RA,RS,RB (Re=1)

31 ‘ RS ‘ RA RB J 444 Llﬂ
0 6 11 16 21 31

(RA) « (RS) v (RB)

The contents of register RS is ORed with the contents of register RB; the result is placed
into register RA.

Registers Altered

* RA
* CR[CRO].t, a1 eq, so if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-23. Extended Mnemonics for or, or.

Other
Mnemonic Operands Function Registers
Changed
mr RT, RS Move register.
(RT) <~ (RS)
Extended mnemonic for
or RT,RS,RS
mr. Extended mnemonic for CR[CRO0]
or. RT,RS,RS

Instruction Set 11-123

orc
OR with Complement

orc RA,RS,RB (Rc=0)
orc. RA,RS,RB (Re=1)
r 31 L RS RA RB] 412 ch]
0 6 11 16 21 3

(RA) < (RS) v —(RB)

The contents of register RS is ORed with the ones complement of the contents of register
RB; the result is placed into register RA.

Registers Altered
* RA

* CRI[CRO].r ar, eq so if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-124 PPC403GC User's Manual

ori

OR Immediate

ori RA,RS,IM

24 RS RA M
0 6 11 16 31

(RA) < (RS) v (%0 Il IM)

The IM field is extended to 32 bits by concatenating 16 0-bits on the left. Register RS is
ORed with the extended IM field; the result is placed into register RA.

Registers Altered
* RA

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-24. Extended Mnemonics for ori

Other
Mnemonic Operands Function Registers
Changed
nop Preferred no-op,
triggers optimizations based on no-ops.
Extended mnemonic for
ori 0,0,0

Instruction Set 11-125

oris
OR Immediate Shifted
oris RA,RS,IM

25 RS RA M

0 6 1 16 31
(RA) < (RS) v (IM || '60)

The IM Field is extended to 32 bits by concatenating 16 O-bits on the right. Register RS is
ORed with the extended IM field and the result is placed into register RA.

Registers Altered
* RA

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-126 PPC403GC User’'s Manual

This instruction is specific to the PowerPC Embedded Controller family

rfci

Return From Critical Interrupt

rfci

[19 l 51 ‘ ‘
o 3 o7 37
(PC) <« (SRR2)
(MSR) < (SRR3)

The program counter (PC) is restored with the contents of SRR2 and the MSR is restored
with the contents of SRR3.

Instruction execution returns to the address contained in the PC.

Registers Altered
« MSR

Programming Note

Execution of this instruction is privileged.

Architecture Note

This instruction is specific to the PowerPC Embedded Controller family; it is not described in
PowerPC Architecture. Programs using this instruction may not be portable to other
PowerPC implementations.

Instruction Set 11-127

rfi

Return From Interrupt

rfi

e] 50 []

6 2T 31

(PC) <« (SRRO)
(MSR) < (SRR1)

The program counter (PC) is restored with the contents of SRR0O and the MSR is restored
with the contents of SRR1.

Instruction execution returns to the address contained in the PC.

Registers Altered
* MSR

Invalid Instruction Forms

* Reserved fields

Programming Note

Execution of this instruction is privileged.

Architecture Note

This instruction is part of the PowerPC Operating Environment Architecture.

11-128 PPC403GC User's Manual

rilwimi
Rotate Left Word Immediate then Mask Insert

rlwimi RA,RS,SH,MB,ME (Rec=0)
riwimi. RA,RS,SH,MB,ME (Re=1)
20 RS RA SH MB ME Re

0 6 11 16 21 26 31

r <~ ROTL((RS), SH)
m < MASK(MB, ME)
(RA) < (rA m) v ((RA) A —m)

The contents of register RS are rotated left by the number of bit positions specified in the SH
field. A mask is generated, having 1-bits starting at the bit position specified in the MB field
and ending in the bit position specified by the ME field, with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the 1-bits
portion of the mask wraps from the highest bit position back around to the lowest. The
rotated data is inserted into register RA, in positions corresponding to the bit positions in the
mask that contain a 1-bit.

Registers Altered

* RA
* CRI[CRO].r, s, £, so if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-25. Extended Mnemonics for riwimi, rlwimi.

Other
Mnemonic Operands Function Registers
Changed

inslwi RA,RS,n, b Insert from left immediate. (n > 0)

(RA)o:bsn-1 € (RS)o:n-1
Extended mnemonic for
rlwimi RA,RS,32-b,b,b+n-1

inslwi. Extended mnemonic for CRI[CRO]
rlwimi. RA,RS,32-b,b,b+n-1

insrwi RA, RS, n, b Insert from right immediate. (n > 0)
(RA)o:psn-1 <= (RS)32-n:31
Extended mnemonic for
rlwimi RA,RS,32-b-n,b,b+n-1

insrwi. Extended mnemonic for CRI[CRO]
rlwimi. RA,RS,32-b-n,b,b+n-1

Instruction Set 11-129

riwinm
Rotate Left Word Immediate then AND with Mask

rlwinm RA,RS,SH,MB,ME (Rc=0)
rlwinm. RA,RS,SH,MB,ME (Re=1)

21 RS RA SH MB ME Rc
0 6 11 16 21 26 31

r < ROTL((RS), SH)
m < MASK(MB, ME)
(RA) <~ rAm

The contents of register RS is rotated left by the number of bit positions specified in the SH
field. A mask is generated, having 1-bits starting at the bit position specified in the MB field
and ending in the bit position specified by the ME field with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the 1-bits
portion of the mask wraps from the highest bit position back around to the lowest. The
rotated data is ANDed with the generated mask; the result is placed into register RA.

Registers Altered

* RA
* CRI[CROl.t ar.eq so if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-26. Extended Mnemonics for rlwinm, riwinm.

Other
Mnemonic Operands Function Registers
Changed
clriwi RA, RS, n Clear left immediate. (n < 32)
(RA)g:n-1 ¢— "0
Extended mnemonic for
rlwinm RA,RS,0,n,31
clrlwi. Extended mnemonic for CR[CRO]
rlwinm. RA,RS,0,n,31

11-130 PPC403GC User's Manual

riwinm

Rotate Left Word Immediate then AND with Mask
Table 11-26. Extended Mnemonics for riwinm, rlwinm. (cont.)

Other
Mnemonic Operands Function Registers

Changed

clrislwi RA, RS, b, n Clear left and shift left immediate.
(n<b<32)
(RA)p_n:31-n €= (RS)p:31
(RA)32n31 <= "0
(RA)o:p-n-1 €= 0
Extended mnemonic for
riwinm RA,RS,n,b-n,31-n

clrislwi. Extended mnemonic for CRI[CRO0]
riwinm. RA,RS,n,b-n,31-n

clrrwi RA, RS, n Clear right immediate. (n < 32)
(HA)32—n:31 < "o
Extended mnemonic for
rlwinm RA,RS,0,0,31-n

clrrwi. Extended mnemonic for CR[CRO0]
riwinm. RA,RS,0,0,31-n

extiwi RA, RS, n, b Extract and left justify immediate. (n > 0)
(RA)O:n—1 — (Rs)b:b+n—1
(RA)ng1 < %70

Extended mnemonic for

rlwinm RA,RS,b,0,n-1

extiwi. Extended mnemonic for CR[CRO0]
riwinm. RA,RS,b,0,n-1

extrwi RA, RS, n, b Extract and right justify immediate. (n > 0)
(RA)32_n:a1 €= (RS)pipen-1
(RA)o31-n < %70

Extended mnemonic for

riwinm RA,RS,b+n,32-n,31

extrwi. Extended mnemonic for CR[CRO]
rlwinm. RA,RS,b+n,32-n,31

rotlwi RA, RS, n Rotate left immediate.

(RA) ¢<— ROTL((RS), n)
Extended mnemonic for
rlwinm RA,RS,n,0,31

rotlwi. Extended mnemonic for CR[CRO]
rlwinm. RA,RS,n,0,31

rotrwi RA, RS, n Rotate right immediate.

(RA) ¢— ROTL((RS), 32-n)
Extended mnemonic for
rlwinm RA,RS,32-n,0,31

rotrwi. Extended mnemonic for CR[CRO0]
rlwinm. RA,RS,32-n,0,31

Instruction Set 11-131

rlwinm

Rotate Left Word Immediate then AND with Mask
Table 11-26. Extended Mnemonics for riwinm, rilwinm. (cont.)

Other
Mnemonic Operands Function Registers
Changed

slwi RA, RS, n Shift left immediate. (n < 32)

(RA)o:31-n €~ (RS)n:34

(RA)32 nay €= "0
Extended mnemonic for
rlwinm RA,RS,n,0,31-n

slwi. Extended mnemonic for CRI[CRO]
rlwinm. RA,RS,n,0,31-n

srwi RA, RS, n Shift right immediate. (n < 32)
(RA)na1 €= (RS)o31-n
(RA)g:n-y €= "0
Extended mnemonic for
rlwinm RA,RS,32-n,n,31

Srwi. Extended mnemonic for CRI[CRO0]
rlwinm. RA,RS,32-n,n,31

11-132 PPC403GC User's Manual

rlwnm
Rotate Left Word then AND with Mask

rlwnm RA,RS,RB,MB,ME (Rc=0)
rlwnm. RA,RS,RB,MB,ME (Re=1)

23 RS RA RB MB ME Rc
0 6 1 16 21 26 31

r <= ROTL((RS), (RB)27.31)
m < MASK(MB, ME)
(RA) <= rAm

The contents of register RS is rotated left by the number of bit positions specified by the
contents of register RB bits 27 through 31. A mask is generated having 1-bits starting at the
bit position specified in the MB field and ending in the bit position specified by the ME field
with 0-bits elsewhere.

If the starting point of the mask is at a higher bit position than the ending point, the ones
portion of the mask wraps from the highest bit position back around to the lowest. The
rotated data is ANDed with the generated mask and the result is placed into register RA.

Registers Altered

* RA
* CR[CRO]t &, eq, so if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-27. Extended Mnemonics for riwnm, rlwnm.

Other
Mnemonic Operands Function Registers
Changed
rotiw RA, RS, RB Rotate left.
(RA) <= ROTL((RS), (RB)27:31)

Extended mnemonic for

rlwnm RA,RS,RB,0,31
rotiw. Extended mnemonic for CRI[CRO]

rlwnm. RA,RS,RB,0,31

Instruction Set 11-133

SC

System Call

sc

e | 1]
0 6 30 31

(SRR1) « (MSR)

(SRR0) « (PC)

PC « EVPR0:15 Il x'0C00’
(MSRIWE, EE, PR, PE, DR, IR]) < 0
(MSR[LE]) « (MSRIILE])

A system call exception is generated. The contents of the MSR are copied into SRR1 and
(4 + address of sc instruction) is placed into SRRO.

The PC is then loaded with the exception vector address. The exception vector address is
calculated by concatenating the high halfword of the Exception Vector Prefix Register
(EVPRY) to the left of 0x0CO00.

The MSR[WE, PR, EE, PE, DR, IR] bits are set to 0, and MSR[ILE] is copied to MSRI[LE].
Program execution continues at the new address in the PC.

The sc instruction is context synchronizing.

Registers Altered

* SRRO
* SRR1
» MSRI[WE, EE, PR, PE, DR, IR, LE]

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-134 PPC403GC User's Manual

slw

Shift Left Word

slw RA,RS,RB (Re=0)
siw. RA,RS,RB (Re=1)
31 RS RA RB 24 Rc
0 6 1 16 21 31
n ¢ (RB)y7a

r « ROTL((RS), n)
|f (RB)26 = 0 then
m < MASK(0, 31 ~-n)

else
m ¢ 320

(RA) <~ r A m

The contents of register RS are shifted left by the number of bits specified by bits 27 through
31 of register RB. Bits shifted left out of the most significant bit are lost, and 0-bits are

supplied to fill vacated bit positions on the right. The result is placed into register RA.

If bit 26 of register RB contains a one, register RA is set to zero.

Registers Altered

* RA

* CRI[CRO],t ar, eq, so if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set

11-135

sraw
Shift Right Algebraic Word

sraw RA,RS,RB (Rc=0)
sraw. RA,RS,RB (Re=1)
31 RS RA RB 792 Rc
0 6 11 16 21 31
n < (RB)y7.3

r ¢~ ROTL((RS), 32 —n)
if (RB),¢ = O then
m ¢ MASK(n, 31)
else
m « %20
s < (RS),
(RA) « (r Am) v (s A —m)
XER[CA] <~ s A ((r A —m) #0)

The contents of register RS are shifted right by the number of bits specified by bits 27
through 31 of register RB. Bits shifted out of the least significant bit are lost. Bit O of register
RS is replicated to fill the vacated positions on the left. The result is placed into register RA.

If register RS contains a negative number and any 1-bits were shifted out of the least
significant bit position, XER[CA] is set to 1; otherwise, it is set to 0.

If bit 26 of register RB contains 1, register RA and XER[CA] are set to bit O of register RS.

Registers Altered

* RA
 XERI[CA]
* CR[CRO].t, a1 eq so if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-136 PPC403GC User’s Manual

srawi
Shift Right Algebraic Word Immediate

srawi RA,RS,SH (Rc=0)
srawi. RA,RS,SH (Re=1)
31 RS RA SH 824 Rc
0 6 11 16 21 31
n <~ SH

r < ROTL((RS), 32 —n)

m < MASK(n, 31)

s « (RS),

(RA) < (r Am) v (3s A —m)
XER[CA] <~ s A ((r A —m)#0)

The contents of register RS are shifted right by the number of bits specified in the SH field.
Bits shifted out of the least significant bit are lost. Bit O of register RS is replicated to fill the
vacated positions on the left. The result is placed into register RA.

If register RS contains a negative number and any 1-bits were shifted out of the least
significant bit position, XER[CA] is set to 1; otherwise, it is set to 0.

Registers Altered

* RA
e XERI[CA]
* CR[CRO]t ar, eq, so if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-137

Srw
Shift Right Word

srw RA,RS,RB (Rc=0)
Srw. RA,RS,RB (Re=1)

31 RS RA RB 536 Re
0 6 11 16 21 3

n < (RB)273
r < ROTL((RS), 32 -n)
if (RB),g = O then

m < MASK(n, 31)
else

m < %0
(RA) <r A m

The contents of register RS are shifted right by the number of bits specified by bits 27
through 31 of register RB. Bits shifted right out of the least significant bit are lost, and 0-bits
are supplied to fill the vacated bit positions on the left. The result is placed into register RA.

If bit 26 of register RB contains a one, register RA is set to 0.

Registers Altered

* RA
* CRICRO].t ar,Eq, s0 if Rc contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-138 PPC403GC User’s Manual

stb

Store Byte
stb RS,D(RA)

‘ 38 ‘ RS ‘ RA D
0 6 11 16 31

EA < (RAI0O) + EXTS(D)
MS(EA, 1) < (RS),43

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 when the RA field is 0, and is the contents of register RA otherwise.

The least significant byte of register RS is stored into the byte at the effective address in
main storage.

Registers Altered

* None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-139

stbu

Store Byte with Update
stbu RS,D(RA)

‘ 39 ‘ RS ’ RA D
0 6 11 16 31
EA < (RAIO) + EXTS(D)

MS(EA, 1) < (RS),4.31
(RA) « EA

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 when the RA field is 0, and is the contents of register RA otherwise.

The least significant byte of register RS is stored into the byte at the effective address in
main storage.

The effective address is placed into register RA.

Registers Altered
* RA

Invalid Instruction Forms
RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-140 PPC403GC User's Manual

stbux RS,RA,RB

stbux

Store Byte with Update Indexed

31

RS

RA

RB

247

0 6

EA < (RAIO) + (RB)

MS(EA, 1) < (RS),4.34

(RA) « EA

11

16

21

31

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 when the RA field is 0, and is the contents of

register RA otherwise.

The least significant byte of register RS is stored into the byte at the effective address in

main storage.

The effective address is placed into register RA.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
* RA

Invalid Instruction Forms

* Reserved fields
e RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set

11-141

stbx

Store Byte Indexed
stbx RS,RA,RB

31 RS RA RB 215
0 6 11 16 21 31

EA < (RAIO) + (RB)
MS(EA, 1) < (RS)s4.31

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 when the RA field is 0, and is the contents of
register RA otherwise.

The least significant byte of register RS is stored into the byte at the effective address in
main storage.

If instruction bit 31 contains 1, the contents of CR[CROQ] are undefined.

Registers Altered

* None

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-142 PPC403GC User’s Manual

sth

Store Halfword
sth RS,D(RA)

44 T RS ’ RA D
6 11 16 31

EA < (RAIO) + EXTS(D)
MS(EA, 2) < (RS)1g.31

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 when the RA field is 0 and is the contents of register RA otherwise. The EA must be
halfword-aligned (a multiple of 2). If it is not, it will cause an alignment exception.

The least significant halfword of register RS is stored into the halfword at the effective
address in main storage.

Registers Altered

¢ None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-143

sthbrx

Store Halfword Byte-Reverse Indexed

sthbrx RS,RA,RB

31 RS RA RB 918
0 6 11 16 21 31

EA <« (RAIO) + (RB)
MS(EA, 2) ¢ (RS)431 Il (RS)1625

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 when the RA field is 0, and is the contents of
register RA otherwise. The EA must be halfword-aligned (a multiple of 2). If it is not, it will
cause an alignment exception.

The least significant halfword of register RS is byte-reversed. The result is stored into the
halfword at the effective address in main storage.

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

Registers Altered

* None

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-144 PPC403GC User’'s Manual

sthu

Store Halfword with Update
sthu RS,D(RA)

45 l RS L RA D
0 6 11 16 31
EA « (RAIO) + EXTS(D)

MS(EA, 2) < (RS)46.1
(RA) « EA

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 when the RA field is 0, and is the contents of register RA otherwise. The EA must be
halfword-aligned (a multiple of 2). If it is not, it will cause an alignment exception.

The least significant halfword of register RS is stored into the halfword at the effective
address in main storage.

The effective address is placed into register RA.

Registers Altered
* RA

Invalid Instruction Forms
e RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

instruction Set 11-145

sthux
Store Halfword with Update Indexed

sthux RS,RA,RB

31 RS RA RB 439
0 6 11 16 21 31

EA < (RAIO) + (RB)
MS(EA, 2) < (RS)yg.31
(RA) < EA

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 when the RA field is 0, and is the contents of
register RA otherwise. The EA must be halfword-aligned (a multiple of 2). If it is not, it will
cause an alignment exception.

The least significant halfword of register RS is stored into the halfword at the effective
address in main storage.

The effective address is placed into register RA.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
* RA

Invalid Instruction Forms

* Reserved fields
e RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-146 PPC403GC User's Manual

sthx

Store Halfword Indexed
sthx RS,RA,RB

31 RS RA RB 407
0 6 11 16 21 31

EA <« (RAIO) + (RB)
MS(EA, 2) < (RS)1g:31

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 when the RA field is 0, and is the contents of
register RA otherwise. The EA must be halfword-aligned (a multiple of 2). If it is not, it will
cause an alignment exception.

The least significant halfword of register RS is stored into the halfword at the effective
address in main storage.

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

Registers Altered

* None

Invalid Instruction Forms

¢ Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-147

stmw
Store Multiple Word

stmw RS,D(RA)
47 | RS \ RA D
0 6 1 16 31
EA < (RAIO) + EXTS(D)
r < RS

do while r £ 31
MS(EA, 4) < (GPR(r))
r<r+1
EA < EA + 4

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 when the RA field is 0, and is the contents of register RA otherwise. The EA must be word-
aligned (a multiple of 4). If it is not, it will cause an alignment exception.

The contents of a series of consecutive registers, starting with register RS and continuing
through GPR(31), are stored into consecutive words in main storage starting at the effective
address.

Registers Altered

* None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-148 PPC403GC User’'s Manual

stswi
Store String Word Immediate

stswi RS,RA,NB

31 RS RA NB 725

EA <« (RAIO)
if NB = 0then
n « 32
else
n < NB
r < RS -1
i< 20
do while n > 0
if i = 0 then
r—r+1
if r = 32 then
r—2o0
MS(EA,1) < (GPR(r)i.7)
i<—i+8
if i = 32 then
i< 0
EA <« EA + 1
n<n-1

An effective address is determined by the RA field. If the RA field contains 0, the effective
address is 0; otherwise, the effective address is the contents of register RA.

A byte count is determined by the NB field. If the NB field contains 0, the byte count is 32;
otherwise, the byte count is the NB field.

The contents of a series of consecutive GPRs (starting with register RS, continuing through
GPR(31), wrapping to GPR(0), and continuing to the final byte count) are stored into main
storage starting at the effective address. The bytes in each GPR are accessed starting with
the most significant byte. The byte count determines the number of transferred bytes.

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

Registers Altered

* None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-149

stswx
Store String Word Indexed

stswx RS,RA,RB

31 RS RA RB 661
0 6 11 16 21 31

EA < (RAIO) + (RB)
n <— XER[TBC]
r < RS -1
i—0
do while n > 0
if i = 0 then
r<r+1
if r = 32 then
r<2o0
MS(EA, 1) < (GPR()i.7)
i—i+8
if i = 32 then
i< 20
EA <« EA + 1
né&<n-1

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 when the RA field is 0, and is the contents of
register RA otherwise.

A byte count is contained in XER[TBC].

The contents of a series of consecutive GPRs (starting with register RS, continuing through
GPR(31), wrapping to GPR(0), and continuing to the final byte count) are stored starting at
the effective address. The bytes in each GPR are accessed starting with the most significant
byte. The byte count determines the number of transferred bytes.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

e None

Invalid Instruction Forms

* Reserved fields

11-150 PPC403GC User's Manual

stswx

Store String Word Indexed
Programming Note

If XER[TBC] contains 0, the stswx instruction transfers no bytes; the instruction will be
treated as a no-op.

The PowerPC Architecture states that, if XER[TBC] = 0 and if accessing the EA would
otherwise cause a precise data exception (if not for the zero length), then stswx will be
treated as a no-op and the exception will not occur. Data Storage Exceptions and Data TLB
Miss Exceptions are examples of precise data exceptions.

However, the architecture makes no statement regarding imprecise exceptions related to
stswx with XER[TBC] = 0. The PPC403GC will generate an imprecise exception (Machine
Check) on this instruction under these circumstances:

The instruction passes all protection checking; and

the address is cacheable; and

the address misses in the D-cache (resulting in a line fill request to the BIU); and

the address encounters some form of memory subsystem error (non-configured, etc).

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-151

stw

Store Word
stw RS,D(RA)
36 | RS | RA D
0 6 11 16 31

EA <« (RAIO) + EXTS(D)
MS(EA, 4) < (RS)

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 when the RA field is 0, and is the contents of register RA otherwise. The EA must be word-
aligned (a multiple of 4). If it is not, it will cause an alignment exception.

The contents of register RS are stored at the effective address.

Registers Altered

¢ None

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-152 PPC403GC User's Manual

stwbrx

Store Word Byte-Reverse Indexed
stwbrx RS,RA,RB

31 RS RA RB 662
0 6 11 16 21 31

EA <« (RAIO) + (RB)
MS(EA, 4) <= (RS)z431 Il (RS)1g23 Il (RS)g5 || (RS)or

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 when the RA field is 0, and is the contents of
register RA otherwise. The EA must be word-aligned (a multiple of 4). If it is not, it will cause
an alignment exception.

The contents of register RS are byte-reversed: the least significant byte becomes the most
significant byte, the next least significant byte becomes the next most significant byte, and
so on. The result is stored into word at the effective address.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

¢ None

Invalid Instruction Forms

¢ Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-153

stwcx.

Store Word Conditional Indexed

stwex. RS,RA,RB

31 RS RA RB 150 1
0 6 11 16 21 31

EA < (RAIO) + (RB)
if RESERVE = 1 then
MS(EA, 4) < (RS)
RESERVE « 0
(CRICRO]) « 20 || 1 || XERs,
else
(CR[CRO0]) < 20 || 0 || XERs,

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 when the RA field is 0, and is the contents of
register RA otherwise. The EA must be word-aligned (a multiple of 4). If it is not, it will cause
an alignment exception.

If the reservation bit contains 1 when the instruction is executed, the contents of register RS
are stored into the word at the effective address and the reservation bit is cleared. If the
reservation bit contains 0 when the instruction is executed, no store operation is performed.

CR[CRO] is set as follows:

* CR[CRO], or are cleared
* CRI[CRO]., is set to the state of the reservation bit at the start of the instruction
* CR[CRO0]q, is set to the contents of the XER[SO] bit.

Programming Note

The reservation bit can be set to 1 only by the execution of the Iwarx instruction. When
execution of the stwex. instruction completes, the reservation bit will be 0, independent of
whether or not the stwex. instruction sent (RS) to memory. CR[CRO]gq must be examined
to determine if (RS) was sent to memory. It is intended that Iwarx and stwex. be used in
pairs in a loop, to create the effect of an atomic operation to a memory area which is a
semaphore between asynchronous processes.

loop: Ilwarx # read the semaphore from memory; set reservation
“alter’ # change the semaphore bits in register as required
stwex. # attempt to store semaphore; reset reservation
bne loop # an asynchronous process has intervened; try again

All usage of lwarx and stwex. (including usage within asynchronous processes) should be
paired as shown in this example. If the asynchronous process in this example had paired
Iwarx with any store other than stwcx. then the reservation bit would not have been cleared
in the asynchronous process, and the code above would have overwritten the semaphore.

11-154 PPC403GC User's Manual

stwcex.

Store Word Conditional Indexed
Registers Altered

* CR[CRO].+, e eq, s0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-155

stwu
Store Word with Update

stwu RS,D(RA)

37 ' RS l RA D
0 6 11 16 31
EA < (RAIO) + EXTS(D)

MS(EA, 4) < (RS)
(RA) « EA

An effective address is formed by adding a displacement to a base address. The
displacement is obtained by sign-extending the 16-bit D field to 32 bits. The base address is
0 when the RA field is 0, and is the contents of register RA otherwise. The EA must be word-
aligned (a multiple of 4). If it is not, it will cause an alignment exception.

The contents of register RS are stored into the word at the effective address.

The effective address is placed into register RA.

Registers Altered
* RA

Invalid Instruction Forms
e RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-156 PPC403GC User’s Manual

stwux RS,RA,RB

stwux

Store Word with Update Indexed

31

RS

RA

RB

183

0 6

EA <« (RAIO) + (RB)
MS(EA, 4) < (RS)
(RA) « EA

11

16

21

31

An effective address is formed by adding an index to a base address. The index is the

contents of register RB. The base address is 0 when the RA field is 0, and is the contents of
register RA otherwise. The EA must be word-aligned (a multiple of 4). If it is not, it will cause
an alignment exception.

The contents of register RS are stored into the word at the effective address.

The effective address is placed into register RA.

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

Registers Altered
* RA

Invalid Instruction Forms

* Reserved fields
e RA=0

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set

11-157

stwx
Store Word Indexed

stwx RS,RA,RB

31 RS RA RB 151 _1
0 6 11 16 21 31

EA <« (RAIO) + (RB)
MS(EA,4) <« (RS)

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 when the RA field is 0, and is the contents of
register RA otherwise. The EA must be word-aligned (a multiple of 4). Ifit is not, it will cause
an alignment exception.

The contents of register RS are stored into the word at the effective address.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* None

Invalid Instruction Forms

¢ Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-158 PPC403GC User's Manual

subf

Subtract From

subf RT,RA,RB (OE=0, Rc=0)
subf. RT,RA,RB (OE=0, Rc=1)
subfo RT,RA,RB (OE=1, Rc=0)
subfo. RT,RA,RB (OE=1, Rc=1)
[31 l RT RA RB]oﬂ 40 [ncJ
0 6 21 31

(RT) <~ —(RA) + (RB) + 1

The sum of the ones complement of register RA, register RB, and 1 is stored into register

RT.

Registers Altered

* RT

* CRI[CRO].r, T, Eq, so If Rc contains 1

e XER[SO, OV] if OE contains 1

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-28. Extended Mnemonics for subf, subf., subfo, subfo.

Other
Mnemonic Operands Function Registers
Changed
sub RT, RA, RB Subtract (RB) from (RA).
(RT) <= —(RB) + (RA) +1.
Extended mnemonic for
subf RT,RB,RA
sub. Extended mnemonic for CR[CRO]
subf. RT,RB,RA
subo Extended mnemonic for XER[SO, OV]
subfo RT,RB,RA
subo. Extended mnemonic for CR[CRO0]
subfo. RT,RB,RA XER[SO, OV]

Instruction Set

11-159

subfc
Subtract From Carrying

subfc RT,RA,RB (OE=0, Rc=0)
subfe. RT,RA,RB (OE=0, Rc=1)
subfco RT,RA,RB (OE=1, Rc=0)
subfco. RT,RA,RB (OE=1, Rc=1)
l 31 | AT | ra | rs o] 8 ||
0 6 11 16 21 22 31

(RT) <~ —(RA) + (RB) + 1

if =(RA) + (RB) + 1 3 232 — 1 then
XER[CA] <1

else
XER[CA] <0

The sum of the ones complement of register RA, register RB, and 1 is stored into register
RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the
subtract operation.

Registers Altered

* RT

* XER[CA]

* CRICRO].r, g, eq, so if Rc contains 1
e XER[SO, OV] if OE contains 1

11-160 PPC403GC User’'s Manual

subfc

Subtract From Carrying
Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Table 11-29. Extended Mnemonics for subfc, subfc., subfco, subfco.

Other
Mnemonic Operands Function Registers
Changed
subc RT, RA, RB Subtract (RB) from (RA).
(RT) ¢— —(RB) + (RA) + 1.
Place carry-out in XER[CA].
Extended mnemonic for
subfc RT,RB,RA
subc. Extended mnemonic for CR[CRO0]
subfc. RT,RB,RA
subco Extended mnemonic for XER[SO, OV]
subfco RT,RB,RA
subco. Extended mnemonic for CR[CRO]
subfco. RT,RB,RA XER[SO, OV]

Instruction Set 11-161

subfe
Subtract From Extended

subfe RT,RA,RB (OE=0, Rc=0)
subfe. RT,RA,RB (OE=0, Re=1)
subfeo RT,RA,RB (OE=1, Re=0)
subfeo. RT,RA,RB (OE=1, Re=1)
\ 31 | RT | RA ‘ RB IOE‘ 136 iRc‘
0 6 11 16 21 22 31

(RT) <« —(RA) + (RB) + XER[CA]

if =(RA) + (RB) + XER[CA] 5 2%2—1 then
XER[CA] < 1

else
XER[CA] <0

The sum of the ones complement of register RA, register RB, and XER[CA] is placed into
register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the
subtract operation.

Registers Altered

e RT

 XERI[CA]

* CR[CRO].t ar eq, so if Rc contains 1
 XER[SO, OV] if OE contains 1

Architecture Note
This instruction is part of the PowerPC User Instruction Set Architecture.

11-162 PPC403GC User’'s Manual

subfic

Subtract From Immediate Carrying

subfic RT,RA,IM

0 6 11 16 31

(RT) <~ —(RA) + EXTS(IM) + 1

if =(RA) + EXTS(IM) + 1 5 232 —1 then
XER[CA] ¢« 1

else
XER[CA] <0

The sum of the ones complement of RA, the IM field sign-extended to 32 bits, and 1 is
placed into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the
subtract operation.

Registers Altered

« RT
« XER[CA]

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-163

subfme

Subtract from Minus One Extended

subfme RT,RA (OE=0, Rc=0)
subfme. RT,RA (OE=0, Rc=1)
subfmeo RT,RA (OE=1, Rc=0)
subfmeo. RT,RA (OE=1, Rc=1)
| 31 | mr | Ra | , |ok] 232 ||
0 6 11 16 21 22 31

(RT) <« —(RA) -1+ XER[CA]

if —(RA) + OXFFFF FFFF + XER[CA] 3 232 — 1 then
XER[CA] <1

else
XER[CA] <0

The sum of the ones complement of register RA, —1, and XER[CA] is placed into register
RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the
subtract operation.

Registers Altered

e RT

* CR[CRO].1, ar eq so if Rec contains 1
* XER[SO, OV] if OE contains 1

* XER[CA]

Invalid Instruction Forms

* Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-164 PPC403GC User’'s Manual

subfze

Subtract from Zero Extended

subfze RT,RA (OE=0, Rc=0)
subfze. RT,RA (OE=0, Rc=1)
subfzeo RT,RA (OE=1, Rc=0)
subfzeo. RT,RA (OE=1, Rc=1)

e | AT | ra I |og] 200 ||

0 6 11 16 21 22 31

(RT) <« —(RA) + XER[CA]

if =(RA) + XER[CA] 5 2%2—1 then
XER[CA] <1

else
XER[CA] <0

The sum of the ones complement of register RA and XER[CA] is stored into register RT.

XER[CA] is set to a value determined by the unsigned magnitude of the result of the
subtract operation.

Registers Altered

e RT

* XER[CA]

* CRI[CRO]t gr, eq, so If Rc contains 1
« XER[SO, OV] if OE contains 1
Invalid Instruction Forms

¢ Reserved fields

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11-165

sync

Synchronize

sync

31 J ' 598 ! l
o 6 21 3

Synchronize System

The sync instruction guarantees that all instructions initiated by the processor preceding the
sync instruction will complete before the sync instruction completes, and that no
subsequent instructions will be initiated by the processor until after syne completes. When
sync completes, all storage accesses initiated by the processor prior to sync will have been
completed with respect to all mechanisms that access storage.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

e None.

Invalid Instruction Forms

¢ Reserved fields

Programming Note

Architecturally, eieio orders storage access, not instruction completion. Therefore, non-
storage operations after eieio could complete before storage operations that were before
eieio. The sync instruction guarantees ordering of both instruction completion and storage
access. For the PPC403GC, the eieio instruction is implemented to behave as a sync
instruction. To write code which is portable between various PowerPC implementations,
programmers should use the mnemonic which corresponds to the desired behavior.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-166 PPC403GC User’'s Manual

tibia

TLB Invalidate All
tibia

31 - : . 370

All of the entries in the TLB are invalidated and become unavailable for translation by
clearing the valid (V) bit in the TLBHI portion of each TLB entry. The rest of the fields in the
TLB entries are unmodified.

Registers Altered

* None.

Invalid Instruction Forms

* None.

Programming Note

This instruction is privileged. Translation is not required to be active during the execution of
this instruction. The effects of the invalidation are not guaranteed to be visible to the
programming model until the completion of a context synchronizing operation.

Architecture Note

This instruction is part of the PowerPC Operating Environment Architecture.

Instruction Set 11-167

This instruction is specific to the PowerPC Embedded Controller family

tibre

TLB Read Entry
tibre RT, RA, WS

31 RT

RA

ws

946

if WS, = 1
(RT) ¢~ TLBLO[(RA)26:31]
else
(RT) ¢ TLBHI[(RA)26.31]
(PID) < TID from TLB[(RA)s.51]

16

21

31

The contents of the selected TLB entry are placed into register RT (and possibly into PID).

Bits 26:31 of the contents of RA are used as an index into the TLB.

The WS field specifies which portion (TLBHI or TLBLO) of the entry is loaded into RT. If

TLBHI is being accessed, the PID SPR is set to the value of the TID field in the TLB entry.

If the WS field is not 0 or 1, the instruction form is invalid and the result is undefined.
If (RA)g.05 # O, the results are undefined.

If instruction bit 31 contains 1, the contents of CR[CRO] are undefined.

Registers Altered

« RT
« PID (if WS =0)

Invalid Instruction Forms

* Reserved fields
m e Invalid WS value

11-168 PPC403GC User’'s Manual

This instruction is specific to the PowerPC Embedded Controller family

tibre

TLB Read Entry
Programming Notes

This instruction is privileged. Translation is not required to be active during the execution of
this instruction.

The contents of RT after the execution of this instruction are interpreted as follows:
If WS =0 (TLBHI):
RT[0:21] «~ EPNJ[0:21]
RT[22:24] « SIZE[0:2]
RT[25] «V
RT[26:31] <0
PID[24:31] « TID[0:7]; (note that the TID is copied to the PID, not to RT)
If WS =1 (TLBLO):

RT[0:21] « RPN[0:21]
RT[22:23] < EX,WR
RT[24:27] < ZSEL[0:3]
RT[28:31] « WIMG

Architecture Note

This instruction is specific to the PowerPC Embedded Controller family; it is not described in
PowerPC Architecture. Programs using this instruction may not be portable to other
PowerPC implementations.

Table 11-30. Extended Mnemonics for tlbre

Other
Mnemonic Operands Function Registers
’ Changed
tibrehi RT, RA Load TLBHI portion of the selected TLB
entry into RT.

Load the PID register with the contents of
the TID field of the selected TLB entry.
(RT) ¢— TLBHI[(RA)]
(PID) <= TLB[(RA)Irp

Extended mnemonic for

tibre RT,RA,0

tibrelo RT, RA Load TLBLO portion of the selected TLB
entry into RT.
(RT) €— TLBLOJ[(RA)]

Extended mnemonic for

tibre RT,RA,1

Instruction Set 11-169

This instruction is specific to the PowerPC Embedded Controller family

tibsx

TLB Search Indexed

tibsx RT,RA,RB (Rc=0)
tibsx. RT,RA,RB (Re=1)

31 | RT I RA RB | 914 |Rc|
0 6 11 16 21 31

EA < (RAIO) + (RB)
if Rc =1
CR[CROQ] <0
CR[CRO]gr ¢~ 0
CR[CRO]go <~ XER[SO}
if Valid TLB entry matching EA and PID is in the TLB then
(RT) < Index of matching TLB Entry
if Rc =1
CR[CRO]gq ¢ 1
else
(RT) Undefined
if Rc=1
CR[CRO]gq <0

An effective address is formed by adding an index to a base address. The index is the
contents of register RB. The base address is 0 if the RA field is 0 and is the contents of
register RA otherwise.

The TLB is searched for a valid entry which translates EA and PID. See Section 9.2.3.1
(Page ldentification Fields) on page 9-8 for details. The record bit (Rc) specifies whether the
results of the search will affect CR[CRO0] as shown above. The intention is that CR[CROJgq
can be tested after a tlbsx. instruction if there is a possibility that the search may fail.

Registers Altered
* CRICRO].r, a1 eq, so if Rc contains 1

Invalid Instruction Forms

* None.

Programming Note

This instruction is privileged. Translation is not required to be active during the execution of
this instruction.

Architecture Note

This instruction is specific to the PowerPC Embedded Controller family; it is not described in
PowerPC Architecture. Programs using this instruction may not be portable to other
PowerPC implementations.

11-170 PPC403GC User's Manual

tibsync

TLB Synchronize
tibsync

31 . 566

The tlbsync instruction is provided in the PowerPC architecture to support synchronization
of TLB operations among the processors of a multi-processor system. On PPC403GC, this
instruction performs no operation, and is provided to facilitate code portability.

Registers Altered

¢ None.

Invalid Instruction Forms

* None.

Programming Notes

This instruction is privileged. Translation is not required to be active during the execution of
this instruction.

Since PPC403GC does not support tightly-coupled multi-processor systems, tlbsync
performs no operation.

Architecture Note

This instruction is part of the PowerPC Operating Environment Architecture.

Instruction Set 11-171

This instruction is specific to the PowerPC Embedded Controller family

tibwe

TLB Write Entry
tibwe RS, RA, WS

31 RS RA ws 978

lf WS4 = 1
TLBLO[(RA)26:31] <= (RS)
else
TLBHI[(RA)26:31] < (RS)
TID of TLB[(RA)26:31] <= (PID)24:34

The contents of the selected TLB entry are replaced with the contents of register RS (and
possibly PID).

Bits 26:31 of the contents of RA are used as an index into the TLB.

The WS field specifies which portion (TLBHI or TLBLO) of the entry is replaced from RS. For
instructions that specify TLBHI, the TID field in the TLB entry is supplied from PID,,.;.

If the WS field is not 0 or 1, the instruction form is invalid and the result is undefined.
If (RA)q.05 # O, the results are undefined.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* None.

Invalid Instruction Forms

* Reserved fields

¢ [nvalid WS value

11-172 PPC403GC User’'s Manual

This instruction is specific to the PowerPC Embedded Controller family

Programming Notes

tibwe

TLB Write Entry

This instruction is privileged. Translation is not required to be active during the execution of

this instruction.

The effects of the update are not guaranteed to be visible to the programming model until
the completion of a context synchronizing operation. For example, updating a zone
selection field within the TLB while in supervisor code should be followed by an isync
instruction (or other context synchronizing operation) to guarantee that the desired
translation and protection domains are used.

The TLB fields are written from RS by this instruction as follows:
If WS = 0 (TLBHI):

EPN[0:21] «~ RS[0:21]
SIZE[0:2] < RS[22:24]
V « RS[25]
TID[0:7] <« PID[24:31]; (note that the TID is written from the PID, not RS)

If WS = 1 (TLBLO):
RPN[0:21] < RS[0:21]

EX,WR « RS[22:23]

ZSEL[0:3] « RS[24:27]

WIMG« RS[28:31]

Architecture Note

This instruction is specific to the PowerPC Embedded Controller family; it is not described in
PowerPC Architecture. Programs using this instruction may not be portable to other
PowerPC implementations.

Table 11-31. Extended Mnemonics for tibwe

Mnemonic

Operands

Function

Other
Registers
Changed

tibwehi

RS, RA

Write TLBHI portion of the selected TLB
entry from RS.
Write the TID field of the selected TLB entry
from the PID register.
TLBHI[(RA)] <— (RS)
TLB[(RA)Itip ¢~ (PID)24:31

Extended mnemonic for

tibwe RS,RA,0

tibwelo

RS, RA

Write TLBLO portion of the selected TLB
entry from RS.
TLBLO[(RA)] <— (RS)

Extended mnemonic for

tibwe RS,RA,1

Instruction Set

11-173

tw

Trap Word
tw TO,RA,RB
31 TO RA RB 4
0 6 11 16 21 31
if (((RA) < RB)ATO, =1) v
(RA) > (RB)ATO, = 1) v
(RA) = (RB)ATO, = 1) v
(RA) < (RB)ATO; = 1) v
(RA) ¢ (RB) ATO, = 1)) then TRAP (see details below)

Register RA is compared with register RB. If any comparison condition selected by the TO
field is true, a TRAP occurs. The behavior of a TRAP depends upon the Debug Mode of the
processor, as described below:

If TRAP is not enabled as a debug event (DBCR[TDE] = 0 or DBCR[EDM,IDM] = 0,0):

TRAP will cause a Program interrupt. See Section 6.9 (Program Exceptions) on
page 6-32 and Section 6.2.5 (Exception Syndrome Register (ESR)) on page 6-12 for
further information.

(SRRO0) < address of tw instruction
(SRR1) < (MSR)

(ESR[PTR]) « 1

(MSR[WE, EE, PR, PE, DR, IR]) <0
(MSRILE]) < (MSRI[ILE})

PC < EVPR(.y5 Il x'0700'

If TRAP is enabled as an External debug event (DBCR[TDE] = 1 and DBCR[EDM] = 1):
TRAP will go to the Debug Stop state, to be handled by an external debugger with
hardware control over the PPC403GC.

(DBSR[TIE]) « 1

In addition, if TRAP is also enabled as an Internal debug event (DBCR[IDM] = 1)
and Debug Exceptions are disabled (MSR[DE] = 0), then an imprecise event will
be reported by setting (DBSR[IDE]) < 1

PC <« address of tw instruction

If TRAP is enabled as an Internal debug event and not an External debug event
(DBCR[TDE] = 1 and DBCR[EDM,IDM] = 0,1) and Debug Exceptions are enabled
(MSRI[DE] = 1):

TRAP will cause a Debug interrupt. See Section 6.16 (Debug Exception Handling) on
page 6-38 for further information.

11-174 PPC403GC User's Manual

tw

Trap Word

(SRR2) < address of tw instruction

(SRR3) <« (MSR)

(DBSRITIE]) «— 1

(MSR[WE, EE, PR, PE, CE, DE, DR, IR]) <0
(MSR[LE]) ¢~ (MSRJILE])

PC « EVPRO:15 Il x'2000'

* If TRAP is enabled as an Internal debug event and not an External debug event
(DBCRI[TDE] = 1 and DBCR[EDM,IDM] = 0,1) and Debug Exceptions are disabled
(MSR[DE] = 0):

TRAP will report the debug event as an imprecise event and will cause a Program
interrupt. See Section 6.9 (Program Exceptions) on page 6-32 and Section 6.2.5
(Exception Syndrome Register (ESR)) on page 6-12 for further information.

(SRR0O) <« address of tw instruction
(SRR1) <~ (MSR)

(ESR[PTR]) « 1

(DBSRI[TIE,IDE]) < 1,1

(MSRI[WE, EE, PR, PE, DR, IR]) <~ 0
(MSRILE]) < (MSRJ[ILE])

PC < EVPRg.15 Il x'0700'

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered

* None

Invalid Instruction Forms

¢ Reserved fields

Programming Note

This instruction is inserted into the execution stream by a debugger to implement
breakpoints, and is not typically used by application code.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

Instruction Set 11175

tw

Trap Word
Table 11-32. Extended Mnemonics for tw
Other
Mnemonic Operands Function Registers
Changed
trap Trap unconditionally.
Extended mnemonic for tw 31,0,0
tweq RA, RB Trap if (RA) equal to (RB).
Extended mnemonic for tw 4,RA,RB
twge Trap if (RA) greater than or equal to (RB).
Extended mnemonic for tw 12,RA,RB
twgt Trap if (RA) greater than (RB).
Extended mnemonic for tw 8,RA,RB
twle Trap if (RA) less than or equal to (RB).
Extended mnemonic for tw 20,RA,RB
twige Trap if (RA) logically greater than or equal to
(RB).
Extended mnemonic for tw 5,RA,RB
twigt Trap if (RA) logically greater than (RB).
Extended mnemonic for tw 1,RA,RB
twlle Trap if (RA) logically less than or equal to
(RB).
Extended mnemonic for tw 6,RA,RB
twlit Trap if (RA) logically less than (RB).
Extended mnemonic for tw 2,RA,RB
twing Trap if (RA) logically not greater than (RB).
Extended mnemonic for tw 6,RA,RB
twini Trap if (RA) logically not less than (RB).
Extended mnemonic for tw 5,RA,RB
twlit Trap if (RA) less than (RB).
Extended mnemonic for tw 16,RA,RB
twne Trap if (RA) not equal to (RB).
Extended mnemonic for tw 24,RA,RB
twng Trap if (RA) not greater than (RB).
Extended mnemonic for tw 20,RA,RB
twnl Trap if (RA) not less than (RB).
Extended mnemonic for tw 12,RA,RB

11-176 PPC403GC User's Manual

TO,RA,IM

twi

Trap Word Immediate

RA

6

Ve Ac

1

) < EXTS(IM) A TO,
) > EXTS(IM) A TO,
) = EXTS(IM) A TO,
) £ EXTS(IM) A TO,
) 3 EXTS(IM) A TO,

1

16

1
1
1
1

~— N N

—~ < < < <L

1)) then TRAP (see details below)

31

Register RA is compared with the IM field, which has been sign-extended to 32 bits. If any
comparison condition selected by the TO field is true, a TRAP occurs. The behavior of a
TRAP depends upon the Debug Mode of the processor, as described below:

If TRAP is not enabled as a debug event (DBCR[TDE] = 0 or DBCR[EDM,IDM] = 0,0):

TRAP will cause a Program interrupt. See Section 6.9 (Program Exceptions) on
page 6-32 and Section 6.2.5 (Exception Syndrome Register (ESR)) on page 6-12 for

further information.

(SRR0) <« address of twi instruction

(SRR1) < (MSR)
(ESR[PTR]) < 1

(MSR[WE, EE, PR, PE, DR, IR]) < 0

(MSRILE]) « (MSR]ILE])

PC < EVPRg.5 Il X0700'

If TRAP is enabled as an External debug event (DBCR[TDE] = 1 and DBCR[EDM] = 1):

TRAP will go to the Debug Stop state, to be handled by an external debugger with
hardware control over the PPC403GC.

(DBSRITIE]) « 1

In addition, if TRAP is also enabled as an Internal debug event (DBCR[IDM] = 1)
and Debug Exceptions are disabled (MSR[DE] = 0), then an imprecise event will
be reported by setting (DBSR[IDE]) < 1

PC <« address of twi instruction

If TRAP is enabled as an Internal debug event and not an External debug event
(DBCRI[TDE] = 1 and DBCR[EDM,IDM] = 0,1) and Debug Exceptions are enabled

(MSR[DE] = 1):

TRAP will cause a Debug interrupt. See Section 6.16 (Debug Exception Handling) on
page 6-38 for further information.

Instruction Set

11177

twi

Trap Word Immediate

(SRR2) ¢« address of twi instruction

(SRR3) <— (MSR)

(DBSRI[TIE]) < 1

(MSRI[WE, EE, PR, PE, CE, DE, DR, IR]) <~ 0
(MSR[LE]) < (MSRJ[ILE])

PC < EVPR(.15 Il x'2000'

If TRAP is enabled as an Internal debug event and not an External debug event
(DBCR[TDE] = 1 and DBCR[EDM,IDM] = 0,1) and Debug Exceptions are disabled
(MSR[DE] = 0):

TRAP will report the debug event as an imprecise event and will cause a Program
interrupt. See Section 6.9 (Program Exceptions) on page 6-32 and Section 6.2.5
(Exception Syndrome Register (ESR)) on page 6-12 for further information.

(SRR0) <« address of twi instruction
(SRR1) <~ (MSR)

(ESR[PTR]) « 1

(DBSRITIE,IDE]) < 1,1

(MSRI[WE, EE, PR, PE, DR, IR]) <~ 0
(MSRI[LE]) ¢~ (MSR][ILE])

PC < EVPRg.5 Il x'0700'

Registers Altered

None

Programming Note

This instruction is inserted into the execution stream by a debugger to implement
breakpoints, and is not typically used by application code.

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-178 PPC403GC User's Manual

twi

Trap Word Immediate

Table 11-33. Extended Mnemonics for twi

Other
Mnemonic Operands Function Registers
Changed
tweqi RA, IM Trap if (RA) equal to EXTS(IM).
Extended mnemonic for twi 4,RA,IM
twgei Trap if (RA) greater than or equal to
EXTS(IM).
Extended mnemonic for twi 12,RA,IM
twgti Trap if (RA) greater than EXTS(IM).
Extended mnemonic for twi 8,RA,IM
twlei Trap if (RA) less than or equal to EXTS(IM).
Extended mnemonic for twi 20,RA,IM
twlgei Trap if (RA) logically greater than or equal to
EXTS(IM).
Extended mnemonic for twi 5,RA,IM
twigti Trap if (RA) logically greater than EXTS(IM).
Extended mnemonic for twi 1,RA,IM
twllei Trap if (RA) logically less than or equal to
EXTS(IM).
Extended mnemonic for twi 6,RA,IM
twliiti Trap if (RA) logically less than EXTS(IM).
Extended mnemonic for twi 2,RA,IM
twingi Trap if (RA) logically not greater than
EXTS(IM).
Extended mnemonic for twi 6,RA,IM
twinli Trap if (RA) logically not less than
EXTS(IM).
Extended mnemonic for twi 5,RA,IM
twiti Trap if (RA) less than EXTS(IM).
Extended mnemonic for twi 16,RA,IM
twnei Trap if (RA) not equal to EXTS(IM).
Extended mnemonic for twi 24,RA,IM
twngi Trap if (RA) not greater than EXTS(IM).
Extended mnemonic for twi 20,RA,IM
twnli Trap if (RA) not less than EXTS(IM).

Extended mnemonic for twi 12,RA,IM

Instruction Set

11-179

This instruction is specific to the PowerPC Embedded Controller family

wrtee

Write External Enable

wrtee RS

‘ 31] RS J , 131 }]
0 6 11 21 31

MSRIEE] < (RS)ys
The MSRIEE] is set to the value specified by bit 16 of register RS.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.

Registers Altered
* MSRIEE]

Invalid Instruction Forms:

* Reserved fields

Programming Note

Execution of this instruction is privileged.

This instuction is used to provide atomic update of MSR[EE]. Typical usage is:

mfmsr Rn #save EE in Rn[16]
wrteei 0 #turn off EE
cecccs e #code with EE disabled
wrtee Rn #restore EE without affecting other MSR changes

that may have occurred during the disabled code

Architecture Note

This instruction is specific to the PowerPC Embedded Controller family; it is not described in

PowerPC Architecture. Programs using this instruction may not be portable to other

PowerPC implementations.

11-180 PPC403GC User's Manual

This instruction is specific to the PowerPC Embedded Controller family

wrteei

Write External Enable Immediate

wrteei E

31 . el 163
0 6 16 17 21 31
MSR[EE] « E

The MSRIEE] is set to the value specified by the E field.

If instruction bit 31 contains 1, the contents of CR[CRO0] are undefined.
Registers Altered

» MSRIEE]

Invalid Instruction Forms:

* Reserved fields

Programming Note
Execution of this instruction is privileged.

This instuction is used to provide atomic update of MSR[EE]. Typical usage is:

mfmsr Rn #save EE in Rn[16]
wrteei 0 #turn off EE
L #code with EE disabled
wrtee Rn #restore EE without affecting other MSR changes

that may have occurred during the disabled code

Architecture Note

This instruction is specific to the PowerPC Embedded Controller family; it is not described in
PowerPC Architecture. Programs using this instruction may not be portable to other
PowerPC implementations.

Instruction Set 11-181

XOor

XOR

xor RA,RS,RB (Rc=0)

xor. RA,RS,RB (Re=1)

r 31 RS RA 1 RB | 316 |Rc‘
5 3 T 16 21 31

(RA) < (RS) @ (RB)

The contents of register RS are XORed with the contents of register RB; the result is placed
into register RA.

Registers Altered

* CRI[CRO].t ar,q, so if Rc contains 1
 RA

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-182 PPC403GC User's Manual

XOri
XOR Immediate

XOri RA,RS,IM

26 RS RA IM
0 6 11 16 31

(RA) <« (RS) @ (60 Il IM)

The IM field is extended to 32 bits by concatenating 16 0-bits on the left. The contents of
register RS are XORed with the extended IM field; the result is placed into register RA.

Registers Altered
* RA

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

« Instruction Set 11-183

Xoris
XOR Immediate Shifted

Xoris RA,RS,IM

27 RS RA M

0 6 11 16 31
(RA) < (RS) @ (IM Il '60)

The IM field is extended to 32 bits by concatenating 16 0-bits on the right. The contents of
register RS are XORed with the extended IM field; the result is placed into register RA.

Registers Altered
* RA

Architecture Note

This instruction is part of the PowerPC User Instruction Set Architecture.

11-184 PPC403GC User’'s Manual

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

