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ABSTRACT

PRNU-based techniques guarantee a good forgery detection perfor-
mance irrespective of the specific type of forgery. The presence or
absence of the camera PRNU pattern is detected by a correlation test.
Given the very low power of the PRNU signal, however, the corre-
lation must be averaged over a pretty large window, reducing the
algorithm’s ability to reveal small forgeries. To improve resolution,
we estimate correlation with a spatially adaptive filtering technique,
with weights computed over a suitable pilot image. Implementation
efficiency is achieved by resorting to the recently proposed guided
filters. Experiments prove that the proposed filtering strategy allows
for a much better detection performance in the case of small forg-
eries.

Index Terms— Digital forensics, forgery detection, photo re-
sponse non-uniformity, guided filters.

1. INTRODUCTION

Image forgery detection and localization is a very challenging task
due to the large variety of manipulations a malicious user can per-
form by means of more and more sophisticated image editing tools
[1]. In recent years, research has focused especially on passive tech-
niques which retrieve traces of manipulations from the sole analy-
sis of the image content. The image acquisition phase, in particu-
lar, is a valuable source of information as it often leaves peculiar
traces, related to characteristics of the lens [2, 3], the color filter ar-
ray (CFA) pattern [4, 5], or the sensor array [6, 7]. Indeed, one of
the most promising approaches to date relies on the photo response
non-uniformity (PRNU) noise. The PRNU arises from tiny imper-
fections in the silicon wafer used to manufacture the imaging sensor
[8]. These physical differences generate a unique sensor pattern,
specific of each individual camera, constant in time, independent of
the scene, and fairly robust to several forms of image processing.
Therefore, this pattern can be considered as a sort of camera fin-
gerprint and used as such to accomplish forgery detection or image
identification tasks. Different types of tampering, like copy-move,
splicing, retouching, all remove the original PRNU from the target
area, enabling the detection of the forgery irrespective of the type of
attack.

An intense research activity began as soon as the potential of this
approach was recognized. In the first PRNU-based technique, pro-
posed in [6] in 2006, blocks extracted from the estimated PRNU of
the target image are compared with homologous blocks of the cam-
era PRNU (estimated in advance from a set of sample images) and
a tampering is declared whenever the normalized correlation falls
below a given threshold. However, since the PRNU is a very weak
signal, estimated by means of imperfect tools, its traces can be easily
overwhelmed by noise in some regions of the image characterized by

saturation or strong textures, leading to false alarms. Therefore, the
authors of [6] proposed themselves a new version in [7] to reduce
the false alarms by identifying the potentially troublesome regions
(through a predictor) and declaring them as genuine irrespective of
the observed correlation index. Similar considerations guide the al-
gorithm proposed in [9], where only regions with high signal quality
are used, discarding those heavily deteriorated by irrelevant noise.
In [10] a strategy to reduce the interference of scene details on the
PRNU is proposed, while in [11, 12, 13, 14] the suppression of non-
unique artifacts is considered. In [15], canonical correlation analy-
sis is used to increase the reliability of the decision variables. We
ourselves proposed several improvements to the basic algorithm of
[6, 7] concerning a better method for PRNU estimation based on
nonlocal filtering [16], the adoption of a variable-size analysis win-
dow to improve resolution [17] and, more recently, the reformulation
of PRNU-based forgery detection as a Bayesian estimation problem
[18, 19].

This work, following the path initiated in [17], aims at improv-
ing the resolution of PRNU-based algorithms. In fact, since the
PRNU pattern is a very weak signal, it can be reliably detected only
by jointly processing a large number of image samples, through a
sliding-window analysis. The size of the sliding-window dictates
therefore the effective resolution of the algorithm, causing forgeries
smaller than the analysis window to remain often undetected. In [17]
we resorted to a preliminary image segmentation to adapt the analy-
sis window to the shape of candidate forgeries. Segmentation, how-
ever, is itself a source of errors, and the experimental analysis proved
the heavy impact of such errors on performance. Here, we replace
hard segmentation with a more flexible soft-segmentation strategy,
using adaptive weights in the analysis window, computed on the ba-
sis of image content. A fast and effective implementation of this
concept is obtained by resorting to guided filters [20]. Experiments
prove the proposed algorithm to provide much better results on crit-
ical small-size forgeries, with a negligible increase in complexity.
In the following, Section II provides the necessary background ma-
terial, Section IIT describes the proposed algorithm and Section IV
analyzes its performance by numerical experiments.

2. BACKGROUND

Lety € R" be a digital image observed at the camera output, where
y; indicates the value at site ¢, either as a single color band or the
composition of multiple color bands. Let us assume, in a simplified
model [7, 8], that y can be written as

yi =1+ ki)z: +6; = xiki + x5 + 0; (1)

where x is the ideal noise-free image, k£ the camera PRNU, and 6
an additive noise term which accounts for all types of disturbances.



The PRNU £ is by now our signal of interest, very weak w.r.t. both
additive noise ¢ and ideal image x. To increase the signal-to-noise
ratio, we subtract from (1) an estimate of the ideal image, T = f(y),
obtained by means of a denoising algorithm, obtaining the so-called
noise residual

i =Yi — T = Yiks + (xs —yi)ki + (v — T3) + 605
=yiki + 1 2)

where, for convenience, & multiplies the observed image y rather
than the unknown original z. and all disturbances have been col-
lected in a single noise term n.

When a section of the image is tampered with, for example by
replacing it with material drawn from other regions, the PRNU term
is cancelled. Therefore, to decide about a possible forgery, PRNU-
based techniques try to discover whether the PRNU term is present
or not. In the following we briefly describe the technique proposed
by Chen et al. [7], based on sliding-window analysis, referring the
reader to the original paper for more detail.

As a preliminary step, the true camera PRNU pattern, k, must
be reliably estimated, which requires that either the target camera,
or a large enough number of photos taken by it, are available. Note
that such an hypothesis is not always satisfied in practice, represent-
ing the main limitation of this approach. Given k, the detection is
formulated as a binary test between hypothesis Hy that the camera
PRNU is absent (i.e. the pixel has been tampered with) and hypoth-
esis H; that the PRNU is present (i.e. the pixel is genuine):

Hy :
H1:

with z; = y;k;. The decision is based on the normalized correlation
between 7, and z,, , namely, the restrictions of r and z, respec-
tively, to a window W; centered on the target pixel:

Ty = Ny
T =2zi +ng
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where © denotes inner product, and x indicates mean of z. The
algorithm then compares the correlation with a threshold 1

~ _ 0 pi<m
Wi _{ 1 otherwise )

where u; € {0, 1} is the algorithm output, O for forgery and 1 for
genuine pixel. The threshold is selected according to the Neyman-
Pearson criterion so as to guarantee a suitably small false acceptance
rate (FAR) Pr(u; =1 | u; =0), with u; € {0, 1} the true pixel class.
Once fixed the FAR, however, there is no guarantee that the other
type of error, the false rejection rate (FRR), remain reasonably small.
In fact, under hypothesis H, the decision statistic is influenced by
the image content. Even in the absence of forgery, the correlation
might happen to be very low when the image is dark, saturated, or
heavily textured. In [7] this problem is addresses by means of a pre-
dictor which, based on local images features, computes the expected
value p; of the correlation index under hypothesis Hi. When p; is
too low, indicating that no reliable decision can be made, the pixel is
always labeled as genuine, the less risky decision, irrespective of the
value of p;. Therefore, the test becomes

Q)

o~ 0 pPi < 71 AND Z)\i>’yz
U; = .
1 otherwise

with 2 chosen heuristically by the user. Better strategies are consid-
ered in [18] and [19] where decisions are made jointly on all pixels
based on a Bayesian/MRF modeling.

Although the above description remains necessarily at a concep-
tual level, it is worth going into some more detail for what concerns
the decision statistic of equation (4). Given the low, and spatially
varying, signal-to-noise ratio characterizing this problem, the two
conditional pdf’s p,|m,(-) and p,m, (-) can overlap significantly,
causing large probabilities of error. To obtain a reasonable sepa-
ration between them, one is forced to compute the correlation over
a large window, for example, 128x 128 pixels, as done in [7]. By
so doing, however, one is implicitly renouncing to detect forgeries
much smaller than the window size (or just much thinner). In these
cases, in fact, the analysis window comprises pixels of both types,
forged and genuine, providing a highly unreliable decision statistic.
In the original algorithm, in fact, detected forged regions smaller
than 64 x 64 pixels (one fourth of the window size) are canceled
right away, as they are more easily generated by random errors than
by actual forgeries. Low resolution is therefore a major problem of
this algorithm.

3. PROPOSED METHOD

To gain a better insight into our estimation problem let us elaborate
some more on equation (4) introducing some simplifications. First
of all, we neglect the means (which are typically negligible) and,
considering that the terms at the denominator serve only to normal-
ize the correlation, focus on the scalar product on the numerator.
Remember that z = yk is the camera PRNU multiplied point-wise
by the input image and, likewise, » = hy + n is the noise resid-
ual, with A the observed PRNU which might or might not coincide
with k. Therefore, if we divide all terms point-wise by y, we obtain
eventually the quantity

1 Qﬁ_l
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By defining a new noise field » = nk/y, and introducing generic
weights w;;, eq.(7) becomes

mi=»_ wij(hik; +n;) ®)

JEW;

which can be interpreted as the linear filtering of the image hk af-
fected by the additive noise n. In [7] the weights are all equals to
one 1/|W;|, hence, a simple boxcar filtering is carried out.

Assuming that the whole analysis window is homogeneous, ei-
ther genuine (h = k) or forged (h # k) and, for the sake of simplic-
ity, that y is constant over the window, so that E[n;] = af,, we can
characterize the random variable 7

2y _
e ={ O 2k ©
VAR[7] = o}, waj (10)

J

where (k?) is the power of the camera PRNU estimated over W;. In
this condition, using uniform weights w;; = 1/|W;| is indeed opti-
mal, as it minimizes the variance of the estimate, and maximizes the
probability of deciding correctly. However, if some of the predictor
pixels are not homogeneous with the target, that is, forged instead
of genuine or viceversa, the estimate will suffer a systematic bias,



Fig. 1. Sample results. From left to right, original and forged image, correlation field predicted, and computed by boxcar and guided filtering.

namely, the means will not be O or (k2> anymore, but some interme-
diate values, heavily affecting the decision performance. In this case,
the uniform weights are no more optimal, in general, and one should
instead reduce the influence of heterogeneous pixels by associating
a small or even null weight with them.

This is exactly the problem of small-size forgeries. By using a
large analysis window with fixed weights we happen to include pix-
els of different nature, and the decision variable becomes strongly
biased and basically useless, even in favourable (bright, smooth, un-
saturated) areas of the image. If we could find and include in the
estimation only predictors homogeneous with the target, all biases
would disappear, at the cost of an increased estimation variance.

The bias / variance trade-off is indeed well-known in the denois-
ing literature. This problem has received a great deal of attention, re-
cently, in the context of nonlocal filtering, the current state of the art
in denoising [21, 22], where predictor pixels are weighted based on
their expected similarity with the target. The similarity, in its turn, is
typically computed by comparing patches of pixels centered on the
target and the predictor pixels respectively. This approach cannot
work with our noise-like input image, rz, as it lacks the structures
necessary to compute a meaningful similarity measure. However,
we can take advantage of the original observed image y, using it as a
“pilot” (again a well-known concept in denoising) to compute sim-
ilarities, and applying the resulting weights in the actual filtering of
the 7z field.

Interestingly, this conceptual path has lead to an approach pretty
similar to that followed in [17]. In both cases we use the origi-
nal image to drive the filtering process emphasizing predictors that
are likely to belong to the same object as the target. This happens
through a preliminary segmentation in [17], by means of a more flex-
ible adaptive filtering, here. It is worth underlining that our changes
will concern only the correlation computation, while the decision
process remains the same as in [7].

3.1. Implementation by guided filtering

Adaptive space-variant filters are typically characterized by high
computational complexity and this is certainly the case with non-
local filtering, where intensive patch-based processing is required.
Considering, in addition, that the weak PRNU signal calls for large
filtering windows, conventional nonlocal filters [21, 22] become
unacceptably complex for this application. We resort therefore to
guided filters, a recently proposed technique, which implements
nonlocal filtering by leveraging heavily on the use of a pilot image
associated with the target image.

Here, we follow closely the development and notation used in
[20], referring the reader to the original paper for a more detailed
treatment. Let p be the image to be filtered, g the filter output, and I a
pilot image assumed to bear valuable information on p. We consider
linear filtering, in the form

G =Y wip (11
J

Then, we assume that, locally to each pixel ¢, ¢ depends linearly on
I, that is

q; =a;l; +b;, Vje Q; (12)
where §2; is a square window of radius 7 centered on i. The pa-

rameters a; and b; are chosen to minimize over €2; the squared error
between observed image and model

ai,b;) = arg min ail; +b; — ‘2—|—6a$ 13
(s, bi) g(u,b)j;[( j P;) ] (3)

with € a regularizing parameter that penalizes large values of a. The
optimal values are

a; =

Z JPJ—IPz (14)

|Q| ol +4¢

b; =p; — aiIi (15)
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Fig. 2. ROCs obtained with boxcar and guided filtering with forgeries of size: 48 x48, 64x64, 96x96, and 128 x 128 pixels.

where Z; indicated average of x over €2; and O'Z~2 is the variance of [
over (2;. By substituting the optimal values back into (12) we obtain
an estimate of g; for all output pixels in the window €2;. Each of
these pixels, however, falls in several such windows, and hence, to
obtain the final filtered value, we average all such estimates

1

sziz(aifj—‘rbi):(_llj"-l_) (16)
1€

i€Q;

which is the final expression of the linear filtering process of p
guided by the pilot image I under the local linear model (12). The
main reason for reporting all intermediate expression is to point out
that all computations amount to a few boxcar filtering, applied to
p, I, I?, a, and b, carried out by integral image techniques with
negligible complexity.

For our algorithm, of course, the input image is the product rz,
the output is the decision statistic p, while the pilot (scalar) image
can be a combination of the color bands of the original image vy, its
denoised version x, or any suitable field of features extracted from
these images. By tuning the two parameters of the filter, the window
radius  and the regularizing parameter ¢, the influence of the pilot
image in the filtering process can be modulated at will.

4. EXPERIMENTAL RESULTS

To prove the potential of the proposed approach we begin by show-
ing, in Fig.1, a few sample images and the corresponding correlation
fields. The image on the first row presents a large forgery, easily
detectable in both the correlation fields (last two columns) as the
region is much darker than in the predicted field (middle column).
On the second and third row, instead, we have quite small forgeries,

which leave little or no trace in the field computed by boxcar fil-
tering, while are clearly detectable in the field obtained by guided
filtering. Although these last examples are very favourable for the
guided filtering approach, due to the high contrast between forgeries
and background, they make clear that the original image can help
making a better decision.

More convincing results are presented in Fig.2, showing the re-
ceiver operating curves (ROC) obtained using the original algorithm
[7] and three implementations of the proposed method using differ-
ent pilots (grayscale image, image in RGB, and some features ex-
tracted from the image). We use a test set of 200 768 x 1024-pixel
images with a square forgery at the center, drawn at random from
a different image. The camera (a Canon EOS-450D) PRNU is es-
timated off-line on a separate training set, used also to design the
predictor. Each ROC is the upper envelope of pixel-level (Pp, Pra)
points obtained as the algorithm parameters vary. For guided filter-
ing we used 7 = 32 and ¢ = 0.16, while the usual 128 x 128 window
(r = 64) is used for boxcar filtering, and in all cases, to allow a fair
comparison, the minimum size of acceptable detected forgeries was
lowered to 32x32 pixels. Comparison is carried out separately for
very-small, small, medium and large forgeries. With forgeries of di-
mension 48 x48 pixels and 64 x 64 pixels (first two graphs), guided
filtering guarantees a large performance improvement over boxcar
filtering, synthesized by the area under curve (AUC) figure which
grows from 0.63 to 0.78 in the first case and from 0.71 to over 0.85
in the second. With medium-size forgeries, 9696 pixels, the per-
formance gain is much more limited, with the AUC growing from
0.85 t0 0.90, and becomes almost negligible, as expected, with larger
128 x 128 forgeries. No significant difference is observed, instead, as
the pilot image changes, with the RGB pilot only slightly preferable
to the others.
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