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Abstract

In this thesis, we present a convex optimization approach to address three
problems arising in multicomponent image recovery, supervised classification,
and image forgery detection. The common thread among these problems is the
presence of nonlinear convex constraints difficult to handle with state-of-the-art
methods. Therefore, we present a novel splitting technique to simplify the
management of such constraints. Relying on this approach, we also propose
some contributions that are tailored to the aforementioned applications.

The first part of the thesis presents the epigraphical splitting of nonlinear
convex constraints. The principle is to decompose the sublevel set of a block-
separable function into a collection of epigraphs. So doing, we reduce the
complexity of optimization algorithms when the above constraint involves the
sum of absolute values, distance functions to a convex set, Euclidean norms,
infinity norms, or max functions. We demonstrate through numerical simulations
that the proposed method can efficiently handle constraints based on functions
commonly used in image restoration or supervised learning, such as nonlocal
total variation, Kullback-Leibler divergence, and logistic regression.

The second part of the thesis presents three contributions grounded on the
epigraphical splitting. The first one is a novel regularization for multicomponent
images that extends the nonlocal total variation by taking advantage of the
structure tensor. The second one is a learning algorithm for efficiently and
exactly training a multiclass support vector machine with sparse regularization.
The third one is a variational approach to detect image forgeries by using the
photo response non-uniformity (a deterministic pattern noise that uniquely
identifies each individual camera). We carried out numerical experiments for
each application in order to illustrate the efficiency and the performance of the
proposed approaches with respect to state-of-the-art solutions.
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What is written without effort is
in general read without pleasure.

Samuel Johnson

Introduction

Convex optimization is a rich and thriving mathematical discipline. While
the theory of convex optimization has been largely explored for about a

century, a new interest in the topic has been recently stimulated by two important
developments. The first one is the emergence of efficient optimization methods,
such as proximal algorithms, which allow one to easily solve large-size non-smooth
convex problems. The second one is the discovery of the fact that many problems
of practical interest can be tackled by non-smooth convex optimization.

In this thesis, we build a convex optimization framework to address three
problems arising in image restoration, machine learning, and digital forensics.
The common thread among these applications is the fact that the corresponding
optimization problems involve nonlinear constraints difficult to handle with
state-of-the-art solutions. Therefore, in the first part of the thesis, we develop a
splitting technique to deal with a class of nonlinear convex constraints, whereas
in the second part we focus on the specific contributions brought in the above
applications. In the following, we summarize the content of the thesis.

Part I. Methodology
In the first part, we develop a technique to deal with a class of nonlinear convex
constraints [50, 51]. The topic is organized in the following four chapters.

chapter 1 – convex optimization In this chapter, we recall the main tools
provided by non-smooth convex optimization. We specifically focus on proximal
algorithms, for which the key tool is the so-called proximity operator. We highlight
the difficulty of proximal methods in addressing convex optimization problems
involving “sophisticated” constraints. Indeed, when a hard constraint is involved,
the proximity operator reverts to the projection onto the associated convex
set, which is available in few cases only. We thus review the state-of-the-art
approaches for computing the projection onto a convex set, and we motivate the
interest of considering the splitting technique presented in Chapter 2.

chapter 2 – epigraphical splitting In this chapter, we deal with con-
straints expressed as the sublevel set of a block-separable function composed
with a linear operator (e.g., the total variation penalty). Firstly, we present a
splitting technique that replaces the aforementioned constraint with a collection
of epigraphs. So doing, we trade the problem of computing the projection onto
the former constraint set with the problem of computing the projection onto
smaller epigraphs. Secondly, we enrich the list of functions for which the projec-

xi
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tion onto the associated epigraph can be efficiently computed. In this regard,
we provide some theoretical results concerning the epigraphical projection of
several functions of practical interest, such as the absolute value raised to a
power q ∈ ]1,+∞[, the distance function to a convex set, the Euclidean norm,
the infinity norm, and the max function.

chapter 3 – constraints based on mixed norms In this chapter, we
focus on constraints involving mixed norms, such as the total variation (TV)
and nonlocal total variation (NLTV) penalties. We illustrate the performance of
the epigraphical splitting technique through an example of image recovery from
blurred, noisy, and decimated pixels. Numerical simulations demonstrate that
constraints based on TV and NLTV measures can be efficiently handled by the
epigraphical splitting, with significant improvements in terms of execution time
w.r.t. standard numerical solutions.

chapter 4 – constraints based on piecewise-affine functions In
this chapter, we deal with constraints expressed as the sublevel set of a sum
of functions for which the associated epigraphical projection admits no closed-
form expression. In such a case, we propose to outer approximate the original
constraint by replacing each function involved in the sum with a piecewise-affine
lower-approximating function. So doing, the epigraphical splitting decomposes
the approximated constraint into a collection of convex polyhedrons. In order
to handle the resulting constrained convex optimization problem, we present
a primal-dual approach grounded on the epigraphical projection of the max
function derived in Chapter 2. In addition, we demonstrate through numerical
simulations that constraints based on Kullback-Leibler divergence and logistic
loss can be efficiently handled by the proposed approximation method.

Part II. Applications

In the second part, we present three problems arising in image restoration [53],
supervised classification [52], and image forgery detection [49], which we propose
to solve through the epigraphical splitting technique derived in Part I. The
proposed approach is thoroughly discussed in the following three chapters.

chapter 5 – nonlocal structure tensor In this chapter, we extend the
NLTV regularization to multicomponent images by taking advantage of the so-
called structure tensor (ST). More specifically, we propose to penalize the nonlocal
variations, jointly for the different components, through various mixed matrix
norms. To facilitate the choice of the hyperparameters, we adopt a constrained
formulation in which the data fidelity term is optimized over a constraint involving
the ST-NLTV regularization. We solve the resulting convex optimization problem
with the epigraphical splitting technique presented in Part I. Experiments carried
out for color, multispectral and hyperspectral images demonstrate the interest
of introducing a nonlocal structure tensor regularization, and show that the
proposed epigraphical splitting leads to significant improvements in terms of
execution time over current state-of-the-art methods.
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chapter 6 – sparse multiclass svm In this chapter, we propose a convex
optimization approach for efficiently and exactly solving the multiclass SVM
learning problem involving a sparse regularization and the multiclass hinge
loss formulated by Crammer and Singer. We consider two approaches: one
including the hinge loss as a penalty term, and the other one addressing the
case when the hinge loss is enforced as a constraint. We implement these
convex optimization problems through a primal-dual proximal algorithm and
the epigraphical splitting technique presented in Part I. Experiments carried out
for several datasets demonstrate the interest in considering the exact expression
of the hinge loss rather than a smooth approximation, and show the efficiency of
the proposed algorithms w.r.t. state-of-the-art methods.

chapter 7 – image forgery detection In this chapter, we propose a convex
variational approach to detect image forgeries by using the photo response non-
uniformity (PRNU), a deterministic pattern noise introduced by digital cameras
in captured photos due to manufacturing imperfections of the imaging sensor.
More specifically, we check the integrity of a photo by detecting the presence of
the PRNU associated with its camera, dealing successfully with forgeries that
elude most other detection strategies. Casting the problem in terms of Bayesian
estimation, we use a suitable Markov random field prior for modeling the strong
spatial dependencies of the source, and take decisions jointly on the whole image.
This leads to a convex optimization problem involving a `1-norm constraint,
which we efficiently solve through the epigraphical splitting technique presented
in Part I. Large-scale experiments on simulated and real forgeries show that the
proposed technique largely improves upon the current state-of-the-art, and that
it can be applied with success to a wide range of practical situations.
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Résumé

Dans cette thèse, nous proposons une approche d’optimisation con-
vexe pour aborder des problèmes en restauration d’images multi-
composantes, en apprentissage supervisé et en détection d’images
falsifiées. Le fil conducteur de ces problèmes est la présence de
contraintes convexes non linéaires qui sont difficiles à gérer avec les
méthodes de l’état-de-l’art. Par conséquent, nous avons élaboré une
technique d’éclatement épigraphique pour en simplifier la gestion.
En s’appuyant sur cette approche, nous avons également proposé
des contributions spécifiques pour les applications susmentionnées.

La première partie de la thèse décrit l’éclatement épigraphique de
contraintes non-linéaires. Plus précisément, il s’agit de décomposer
l’ensemble de sous-niveau d’une fonction séparable en une collection
d’épigraphes. Ceci se traduit par une réduction de la complexité
des algorithmes d’optimisation lorsque les épigraphes sont définis en
termes de fonctions telles que la valeur absolue, la fonction distance,
la norme euclidienne, la norme infinie, ou la fonction max. Nous
démontrerons au travers de simulations numériques que la méthode
proposée peut efficacement gérer des contraintes basées sur des
fonctions répandues en restauration d’image et en apprentissage
supervisé, comme la variation totale non-locale, la divergence de
Kullback-Leibler ou la régression logistique.

La deuxième partie de la thèse apporte trois contributions fondées
sur l’éclatement épigraphique. La première contribution concerne une
nouvelle régularisation d’images multi-composants qui généralise la
variation totale non-locale en prenant en compte le tenseur de struc-
ture. La seconde contribution fournit un algorithme d’apprentissage
supervisé permettant d’apprendre efficacement et exactement une
machine à vecteurs de support multi-classe avec une contrainte de
parcimonie. Enfin, la troisième contribution porte sur une approche
variationnelle pour la détection d’images falsifiées à travers la non-
uniformité de la réponse photonique (bruit propre à chaque caméra).
Au travers d’expériences numériques menées pour chaque application,
nous démontrerons l’efficacité et la performance de notre approche
par rapport aux méthodes de l’état-de-l’art.
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xvi Résumé

Optimisation convexe

Les problèmes inverses peuvent rarement être résolus en manière
exacte, à cause du fait qu’ils sont mal posés. L’objectif est donc
de trouver une solution inexacte qui est optimale selon un critère
statistique (ou dépendant de l’application), entrainant un problème
d’optimisation comme dans la célèbre méthode des moindre carrées.

La résolution d’un problème d’optimisation est généralement basée
sur des méthodes itératives qui calculent numériquement une solution
du problème. Parmi ces méthodes, une grosse partie est consacrée
aux problèmes convexes, qui sont le sujet centrale de cette thèse.
En particulier, nous sommes intéressés à la résolution de problèmes
d’optimisation convexe sous contrainte, dans la forme suivante:

minimize
x∈RN

f0(x) s. t. (∀r ∈ {1, . . . , R}) fr(x) ≤ ηr.

L’intérêt dans ce type de problèmes vient du fait que les paramètres
(ηr)1≤r≤R peuvent être facilement fixés s’ils sont en relation directe
avec certains propriétés de la solution ou des données observées.

Un nouveau type de méthodes d’optimisation a été récemment
proposé pour résoudre efficacement une large classe de problèmes con-
vexes. Ces méthodes sont basées sur la notion d’opérateur proximal
d’une fonction convexe semi-continue inférieurement f ∈ Γ0(RN):

(∀x ∈ RN) proxf (x) = arg min
u∈RN

1
2‖u− x‖

2
2 + f(u).

Quand f est la fonction indicatrice d’un ensemble convexe fermé non
vide C ⊂ RN , c’est-à-dire

(∀x ∈ RN) ιC(x) =

0, if x ∈ C,
+∞, otherwise,

l’opérateur proximal n’est rien d’autre que la projection orthogonale
sur C, dans le sens que:

(∀x ∈ RN) proxιC (x) = PC(x) = arg min
u∈C

‖u− x‖2
2.

Cela permet aux méthodes proximales de gérer soit des contraintes
dures soit des fonctions non-lisses.

L’opérateur proximal constitue la brique de base de nombreux
schémas d’éclatement tels que l’algorithme Forward-Backward ou
les approches primaires-duales (deux exemples sont reportés dans
les algorithmes 0.1 et 0.2). L’efficacité des méthodes d’éclatement
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dépend donc de la capacité à calculer efficacement les opérateurs
proximaux impliqués. Malheureusement, il existe de nombreux cas
de projections pour lesquels la réponse est négative, ce qui explique
l’intérêt de la méthode proposée dans cette thèse.

Algorithm 0.1 Méthode FBPD

Initialization
choose

(
x[0], y[0]

)
∈ RN × RM

set τ > 0 and σ > 0 such that
τ
(
β/2 + σ‖F‖2

)
< 1

For i = 0, 1, . . .
x̂[i] = ∇g(x[i])− w + F>y[i]

x[i+1] = proxτf
(
x[i] − τ x̂[i])

ŷ[i] = F
(
2x[i+1] − x[i])

y[i+1] = proxσh∗
(
y[i] + σ ŷ[i])

Algorithm 0.2 Méthode M+LFBF

Initialization choose
(
x[0], y[0]

)
∈ RN × RM

set γ ∈
]
0, (β + ‖F‖)−1[

For i = 0, 1, . . .

x̂[i] = ∇g(x[i])− w + F>y[i]

p[i] = proxγf
(
x[i] − γ x̂[i]

)
v[i] = proxγh∗

(
y[i] + γ Fx[i]

)
y[i+1] = v[i] + γF

(
p[i] − x[i]

)
x̃[i] = ∇g(p[i])− w + F>v[i]

x[i+1] = p[i] − γ
(
x̃[i] − x̂[i]

)
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Éclatement épigraphique

Plusieurs contraintes souvent impliquées dans la formulation de prob-
lèmes inverses sont basées sur une fonction décomposable, comme la
divergence de Kullback-Leibler, la fonction « hinge » ou les normes
mixtes. Nous proposons une nouvelle méthode pour traiter efficace-
ment ce type de contraintes. En particulier, nous sommes intéressés à
la classe suivante de problème d’optimisation convexe sous contrainte:

minimize
x∈RN

R∑
r=1

fr(Tr x) s. t.
L∑
`=1

h`(F` x) ≤ η,

où η ∈ R et

• Tr ∈ RKr×N et fr ∈ Γ0(RKr) pour chaque r ∈ {1, . . . , R},

• F` ∈ RM`×N et h` ∈ Γ0(RM`) pour chaque ` ∈ {1, . . . , L}.

Notre idée consiste à introduire un vecteur auxiliaire ζ ∈ RL dans
le problème d’optimisation, afin d’éclater la contrainte originale dans
une collection d’épigraphes et un demi-espace fermé :

minimize
(x,ζ)∈RN×RL

R∑
r=1

fr(Tr x) s. t.



h1 (F1 x) ≤ ζ(1)

. . .

hL (FL x) ≤ ζ(L)

L∑
`=1

ζ(`) ≤ η.

Le problème obtenu peut être efficacement résolu par les méthodes
proximales de type primaire-duale, à condition que les projections
épigraphiques (Pepih`)1≤`≤L soient rapidement calculables. Nous
avons démontré que la projection épigraphique peut se ramener à
l’opérateur proximale d’une fonction composée, comme illustré dans
la proposition suivante.

Proposition 0.0.1. Soit H un espace réel de Hilbert et soit H× R
équipé avec le produit scalaire standard. Soit ϕ une fonction de Γ0(H)
telle que domϕ est ouvert. Pour chaque (y, ζ) ∈ H×R, la projection
dans epiϕ est égale à

Pepiϕ(y, ζ) =
(
p, max{ϕ(p), ζ}

)
,

où
p = prox 1

2 (max{ϕ−ζ,0})2(y).
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A partir de ce résultat, nous avons dérivé une expression explicite
de la projection épigraphique pour plusieurs fonctions d’intérêt,
comme la valeur absolue, la fonction distance, la norme Euclidienne,
la norme infinie et la fonction max. Ces nouvelles expressions sont
présentées dans les propositions suivantes.

Proposition 0.0.2. Soit τ ∈ ]0,+∞[ et

(∀y ∈ R) ϕ(y) = τ |y|.

Pour chaque (y, ζ) ∈ R× R, il résulte que

prox 1
2 (max{ϕ−ζ,0})2(y) =


y, if τ |y| ≤ ζ,

sign(y)
1 + τ 2 max{|y|+ τζ, 0}, otherwise.

Proposition 0.0.3. Soit q ∈ [1,+∞[, τ ∈ ]0,+∞[ et

(∀y ∈ R) ϕ(y) = τ |y|q.

Pour chaque (y, ζ) ∈ R× R, il résulte que

prox 1
2 (max{ϕ−ζ,0})2(y) =

{
y, if τ |y|q ≤ ζ,

sign(y)χ, otherwise,

où χ est la solution unique sur [(max{ζ, 0}/τ)1/q,+∞[ de l’équation

qτ 2χ2q−1 − qτζχq−1 + χ = |y|.

Proposition 0.0.4. Soit C un sous-ensemble convexe (non vide) de
H. Soit q ∈ [1,+∞[, τ ∈ ]0,+∞[, ζ ∈ R et

(∀y ∈ H) ϕ(y) = τd qC(y).

Pour chaque (y, ζ) ∈ H × R, il résulte que

prox 1
2 (max{ϕ−ζ,0})2(y) =

{
y, if y ∈ C,
αy + (1− α)PC(y), otherwise,

où

α =
prox 1

2 (max{τ |·|q−ζ,0})2

(
dC(y)

)
dC(y) .
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Corollary 0.0.5. Soit τ ∈ ]0,+∞[, ζ ∈ R, z ∈ H et

(∀y ∈ H) ϕ(y) = τ ‖y − z‖2.

Pour chaque (y, ζ) ∈ H × R, il résulte que

prox 1
2 (max{ϕ−ζ,0})2(y) =


z, if y = z,

y, if τ‖y − z‖2 ≤ ζ,

z + α(y − z), otherwise,

où
α = 1

1 + τ 2 max
{

1 + τζ

‖y − z‖2
, 0
}
.

Les derniers résultats concernent la projection épigraphique de la
fonction max et de la norme infini. La preuve de ces propositions
est basée sur l’opérateur proximale introduit dans le lemme suivant.

Lemma 0.0.6. Soit (τm)1≤m≤M ∈ RM , ν = (ν(m))1≤m≤M ∈ RM et

(∀y ∈ R) ϕ(y) = 1
2

M∑
m=1

(
max{τm (ν(m) − y), 0}

)2
,

avec les valeurs (ν(m))1≤m≤M`
triés en ordre croissant. Il résulte que

ϕ ∈ Γ0(R) et

(∀y ∈ R) proxϕ(y) =
y +

m−1∑
m=1

ν(m)(τ−m)2 +
M∑

m=m
ν(m)(τ+

m)2

1 +
m−1∑
m=1

(τ−m)2 +
M∑

m=m
(τ+
m)2

,

où τ−m = min{τm, 0} et τ+
m = max{τm, 0} pour chaque m ∈ {1, . . . ,M},

alors que m est l’unique entier dans {1, . . . ,M + 1} tel que

ν(m−1) <

y +
m−1∑
m=1

ν(m)(τ−m)2 +
M∑

m=m
ν(m)(τ+

m)2

1 +
m−1∑
m=1

(τ−m)2 +
M∑

m=m
(τ+
m)2

≤ ν(m),

avec la convention ν(0) = −∞, ν(M+1) = +∞ et
0∑

m=1
· =

M∑
m=M+1

· = 0.



Résumé xxi

Proposition 0.0.7. Soit (τm)1≤m≤M ∈ ]0,+∞[M et

(∀y ∈ RM) ϕ(y) = max
1≤m≤M

τm |y(m)|,

avec les valeurs
(
ν(m) = τm |y(m)|

)
1≤m≤M

triés en ordre croissant.
Pour chaque (y, ζ) ∈ RM × R, la projection Pepiϕ(y, ζ) = (p, θ) est

p =
[

sign(y(m)) min
{
|y(m)|, θ/τm

}]
1≤m≤M

et

θ = max

0,
(

1 +
M∑

m=m
τ−2
m

)−1 (
ζ +

M∑
m=m

τ−2
m ν(m)

) ,
où m est l’unique entier dans {1, . . . ,M + 1} tel que

ν(m−1) <

(
1 +

M∑
m=m

τ−2
m

)−1 (
ζ +

M∑
m=m

τ−2
m ν(m)

)
≤ ν(m),

avec les conventions ν(0) = −∞, ν(M+1) = +∞ et ∑M
m=M+1 · = 0.

Proposition 0.0.8. Soit (rm)1≤m≤M ∈ RM , (τm)1≤m≤M ∈ ]0,+∞[M ,
(εm)1≤m≤M ∈ {1,−1}M et

(∀y ∈ RM) ϕ(y) = max
1≤m≤M

εm y
(m) + rm
τm

,

avec les valeurs
(
ν(m) = εmy(m)+rm

τm

)
1≤m≤M

triés en ordre croissant.
Pour chaque (y, ζ) ∈ RM × R, la projection Pepiϕ(y, ζ) = (p, θ) est

p =
[
εm min

{
εm y

(m), τm θ − rm
}]

1≤m≤M
,

et

θ =
(

1 +
M∑

m=m
τ 2
m

)−1 (
ζ +

M∑
m=m

τ 2
m ν

(m)
)
,

où m est l’unique entier dans {1, . . . ,M + 1} tel que

ν(m−1) <

(
1 +

M∑
m=m

τ 2
m

)−1 (
ζ +

M∑
m=m

τ 2
m ν

(m)
)
≤ ν(m),

avec les conventions ν(0) = −∞, ν(M+1) = +∞ et ∑M
m=M+1 · = 0.
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Contraintes basées sur les normes mixtes

L’éclatement épigraphique trouve une application immédiate aux
contraintes basées sur les normes mixtes, lesquelles sont souvent
utilisées en restauration d’images. Dans ce scénario, l’objectif est
de retrouver une image x ∈ RN à partir d’une observation z ∈ RK

bruitée par un modèle linéaire

z = Ax+ b,

où A ∈ RK×N (avec K ≤ N) est un opérateur connu, et b ∈ RK est
une réalisation de bruit Gaussien à moyenne nulle.

Une approche usuelle pour estimer x à partir de z consiste à
résoudre un problème d’optimisation convexe du type:

minimize
x∈[0,255]N

‖Ax− z‖2
2 s. t.

N∑
`=1
‖F` x‖p ≤ η,

où η ≥ 0 et p ≥ 1. Pour la contrainte de régularisation, nous utilisons
la variation totale non-locale, qui corresponde à choisir un F` tel que

F` x =
[
ω`,n(x(`) − x(n))

]
n∈N`

,

où N` ⊂ {1, . . . , N} \ {`} contient des positions autour de `, et
(ω`,n)n∈N` sont des poids positifs qui mesurent la similarité entre x(`)

et ses voisins (x(n))n∈N` .
L’éclatement épigraphique permet de résoudre le problème sus-

mentionné sans boucles internes (contrairement aux approches stan-
dards), grâce au fait que la contrainte originale est décomposée en
épigraphes de la norme `p (pour lesquelles nous avons dérivé une
expression explicite de la projection) :

minimize
(x,ζ)∈[0,255]N×RN

‖Ax− z‖2
2 s. t.



(
F1 x, ζ

(1)
)
∈ epi ‖ · ‖p

. . .(
FL x, ζ

(L)
)
∈ epi ‖ · ‖p

L∑
`=1

ζ(`) ≤ η.

Cela permet d’obtenir un algorithme rapide qui peut traiter effi-
cacement des images multi-canal dégradées par un opérateur de
flou, un bruit additif gaussien, et une perte d’une partie des pixels,
comme illustré dans les figures 1-2. Également, la figure 3 montre
que l’algorithme épigraphique est plus rapide (en temps d’exécution)
que celui basé sur l’approche standard.
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(a) Image originelle (zoom). (b) Degradée.

(c) TV1: 19.79–0.838. (d) TV2: 20.80–0.855.

(e) TV∞: 20.25–0.853. (f) NLTV1,1: 20.93–0.865.

(g) NLTV1,2: 22.62–0.897. (h) NLTV1,∞: 22.38–0.897.

Figure 1 SNR (dB) et SSIM d’une image (en niveaux de gris) dégradée avec un flou
uniforme de taille 3× 3, un bruit de variance 102, et 60% de décimation.
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(a) Image originelle (zoom). (b) Degradée.

(c) TV1: 17.78–0.787. (d) TV2: 18.36–0.821.

(e) TV∞: 18.91–0.824. (f) NLTV1,1: 18.93–0.828.

(g) NLTV1,2: 19.47–0.839. (h) NLTV1,∞: 20.17–0.847.

Figure 2 SNR (dB) et SSIM d’une image (en couleurs) dégradée avec un flou uniforme
de taille 3× 3, un bruit de variance 102, et 60% de décimation.
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(c) NLTV1,2.
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(d) NLTV1,∞.

Figure 3 Distance relative de x[∞] vs temps d’exécution (en seconds): plots qui comparent
les approches épigraphique et standard par rapport à deux méthodes proximales
(M+LFBF et SDMM).
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Contraintes basées sur les fonctions affines

L’éclatement épigraphique est basé sur l’idée de remplacer la con-
trainte sur une fonction séparable avec une collection d’épigraphes:

L∑
`=1

h`(F` x) ≤ η ⇔

 (∀` ∈ {1, . . . , L}) (F` x, ζ(`)) ∈ epih`,
ζ(1) + · · ·+ ζ(L) ≤ η.

Cette décomposition s’avère très efficace lorsque les fonctions (h`)1≤`≤L
sont des normes `p avec p ∈ {1, 2,+∞}, parce que la projection
épigraphique correspondante est calculable rapidement. Cependant,
cela n’est pas nécessairement vrai pour des fonctions h` qui n’ont
pas de projection épigraphique en forme explicite.

Pour surmonter la difficulté susmentionnée, nous proposons d’appro-
ximer les fonctions (h`)1≤`≤L impliquées dans la contrainte originale
par des fonctions affines telles que

(∀y(`) ∈ RM`) ĥ`(y(`)) = max
1≤j≤J`

δ>`,j y(`) + µ`,j,

où les paires (δ`,j, µ`,j) ∈ RM`×R sont définies à partir d’un ensemble
de valeurs distinctes {a`,1, . . . , a`,J`} ⊂ RM` de la manière suivante :

δ`,j ∈ ∂h`(a`,j), µ`,j = h`(a`,j)− δ>`,ja`,j.

La figure 4 montre une fonction et son approximation affine. Bien
évidemment, la qualité de l’approximation peut être contrôlée par le
nombre J` de paires {(δ`,j, µ`,j)}1≤j≤J` utilisées dans la fonction ĥ`.

Figure 4 Une fonction (trait rouge) et son approximation affine (trait bleu).
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L’éclatement épigraphique permet de résoudre efficacement le
problème d’optimisation « approximé ». En fait, la fonction affine ĥ`
peut s’exprimer comme le max composée par un opérateur linéaire:

(∀y(`) ∈ RM`) ĥ`(y(`)) = hmax
` (∆` y(`)),

où ∆` = [δ`,1 . . . δ`,J` ]
> et hmax

` (u(`)) = max1≤j≤J` u
(`,j) + µ`,j. Ainsi,

la décomposition épigraphique du problème approximé est

minimize
(x,ζ)∈RN×RL

R∑
r=1

fr(Tr x) s. t.


(∀` ∈ {1, . . . , L}) hmax

` (∆`F` x) ≤ ζ(`),
L∑
`=1

ζ(`) ≤ η.

En fixant F = [F>1 . . . F>L ]> ∈ RM×N et ∆ = diag(∆1, . . . ,∆L) ∈
RJ×M (avec M = M1 + · · · + ML and J = J1 + · · · + JL), nous
obtenons une forme compacte du problème précédent :

minimize
(x,ζ)∈RN×RL

R∑
r=1

fr(Tr x) s. t.
{

(∆Fx, ζ) ∈ E,
ζ ∈ V,

où

E =
{

(u, ζ) ∈ RJ × RL
∣∣∣ (∀` ∈ {1, . . . , L}) (u(`), ζ(`)) ∈ epihmax

`

}
,

V =
{
ζ ∈ RL

∣∣∣ 1>Lζ ≤ η
}
.

L’avantage de cette reformulation est que la projection dans E
équivaut à calculer des projections épigraphiques de la fonction max,
pour laquelle nous avons dérivé une forme explicite.

Une possible application de cette approche est la restauration
d’une image x ∈ RN dégradé avec un opérateur de flou A ∈ RK×N et
un bruit de Poission, c’est-à-dire z = Pα(Ax). Une possible approche
pour récupérer x à partir de z consiste à formuler un problème
d’optimisation convexe dans lequel une régularisation basée sur la
variation totale (TV) est optimisée sous la contrainte de la divergence
de Kullback-Leibler, à savoir

minimize
x∈RN

TV2(x) s. t.
K∑
`=1

hKL
`

(
(Ax)(`)

)
≤ K/2.

Ce problème peut être approximé par la formulation présentée en
haut. La Figure 5 montre une image dégradée par un flou uniforme
de taille 3× 3 et un bruit de Poission, ainsi que les images restaurées
par la méthode proposée et l’état de l’art. Les figures indiquent que
les résultats obtenus par la formulation approximée sont très proches
de la solution « exacte », avec des temps de calcul acceptables.
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(a) Image originale. (b) Degraded. (c) Exact [207]. SNR–SSIM:
21.98–0.869. Time: 16.35 s.

(d) Approx with Jk = 9.
SNR–SSIM: 21.80–0.861.
Time: 44.05 s.

(e) Approx with J` = 13.
SNR–SSIM: 22.04–0.862.
Time: 59.47 s.

(f) Approx with J` = 17.
SNR–SSIM: 22.04–0.862.
Time: 70.25 s.

Figure 5 SNR (dB) – SSIM indexes for the recovery of a grayscale image degraded with
a uniform blur of size 3× 3 and a Poisson noise with scaling α = 1.

Une deuxième application de cette approche est utilisée pour faire
de la classification parcimonieuse par régression logistique, ce qui
consiste à résoudre le problème suivant:

minimize
x∈RMK

K∑
k=1
‖x(k)‖1,p s. t.

L∑
`=1

hlog
` (F` x) ≤ η,

où hlog
` (y(`)) = log

(∑K
k=1 exp

(
y(`,k)

))
. Ce problème peut être égale-

ment approximé par la formulation présentée en haut. La figure 6
montre un jeu de données contenant un large nombre de 28× 28 im-
ages (N = 784) de chiffres manuscrites (K = 10) organisées en 60000
images de « training » et 10000 images de « test ». Le tableau 1 mon-
tre les erreurs de classification obtenues en faisant l’apprentissage sur
un sous-ensemble de ces données de taille L ∈ {5K, 10K, 20K, 50K}
et avec plusieurs valeurs de η. Les résultats indiquent que l’approche
proposée n’est que légèrement sensitive à l’approximation introduite.
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(a) Base de données. (b) Espace des carachteristiques.

Figure 6 Database MNIST.

Table 1 Erreurs de classification (dans le cas K = 3) obtenus avec la regression logistique
approximée pour plusieurs valeurs de L, η et J` = (2m+ 1)K−1.

η
g = || · ||1,∞

m = 3 m = 5 m = 7 m = 9 exact

L/K = 5

0.01L 3.37 % 3.40 % 3.37 % 3.43 %

2.76 %

0.05L 3.08 % 3.53 % 3.24 % 3.21 %
0.1L 3.11 % 2.83 % 3.08 % 2.92 %
0.5L 2.45 % 3.08 % 3.11 % 2.57 %
0.7L 3.15 % 2.64 % 2.80 % 2.80 %
1.0L 6.04 % 6.32 % 6.70 % 6.93 %

L/K = 10

0.01L 3.05 % 2.96 % 2.89 % 2.92 %

2.51 %

0.05L 2.48 % 2.48 % 2.86 % 2.48 %
0.1L 2.67 % 2.64 % 2.80 % 2.83 %
0.5L 2.32 % 2.67 % 2.51 % 2.29 %
0.7L 2.80 % 2.70 % 2.41 % 2.41 %
1.0L 6.77 % 4.26 % 3.62 % 3.56 %

L/K = 20

0.005L 1.78 % 2.22 % 2.03 % 2.07 %

1.97 %

0.01L 2.35 % 2.07 % 2.00 % 2.07 %
0.05L 1.68 % 2.03 % 1.97 % 2.05 %
0.1L 2.07 % 2.07 % 1.94 % 2.03 %
0.5L 2.32 % 2.76 % 2.67 % 2.70 %
0.7L 3.53 % 2.99 % 3.02 % 2.92 %
1.0L 8.64 % 6.23 % 7.05 % 6.55 %

L/K = 50

0.005L 1.56 % 1.08 % 1.08 % 1.14 %

1.49 %

0.01L 1.56 % 1.43 % 1.18 % 1.53 %
0.05L 1.84 % 1.43 % 1.53 % 1.56 %
0.1L 2.03 % 1.84 % 1.81 % 1.84 %
0.5L 2.89 % 2.86 % 2.76 % 2.80 %
0.7L 4.26 % 3.37 % 3.37 % 3.34 %
1.0L 12.81 % 10.84 % 12.20 % 11.63 %
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Tenseur de structure non-local

Les images multi-composants sont un ensemble de cartes spatiales
acquises simultanément, telles que les images couleurs (qui sont
constituées par les canaux rouge, vert et bleu) ou les images spectrales
(qui décomposent le spectre électromagnétique en plusieurs intervalles
de fréquence). En raison d’imprécisions du senseur ou de limitations
physiques, une image multi-composants x = (x1, . . . , xR) ∈ (RN)R
est souvent dégradées par un opérateur linéaire A : (RN)R 7→ (RK)S
et un bruit B, entrainant un modèle du type

z = B(Ax),

lequel se retrouve en plusieurs applications, telles que l’acquisition
comprimée, la super-résolution ou le démélange spectrale.

L’approche usuelle pour estimer x à partir de z consiste à résoudre
un problème d’optimisation convexe du type

minimize
x∈C

f(Ax, z) s. t. h(x) ≤ η.

Le terme d’attache aux données f(·, z) permet d’assurer que la
solution soit proche à l’image observée, dont l’expression dépende
de la distribution statistique du bruit, pouvant être une fonction
quadratique dans le cas Gaussien, une norme `1 dans le cas Laplacien,
ou une divergence dans le cas Poissonien. En revanche, la fonction h
permet d’imposer une contrainte de régularité sur la solution.

Nous proposons de modéliser les dépendances spatiales et spec-
trales d’une image multi-composants par une régularisation fondée
sur des normes matricielles, à savoir

(
∀x ∈ (RN)R

)
h(x) =

N∑
`=1
‖X(`)‖p.

Ci-dessus, le symbole ‖ · ‖p dénote la norme de Schatten avec p ≥ 1,
tandis que X(`) représente la matrice de gradients non-locales

X(`) =
[
ω`,n(x(`)

r − x(n)
r )

]
n∈N`,1≤r≤R

,

où N` ⊂ W` \ {`} est le support d’un voisinage de ` de taille M`.
Par conséquent, le problème d’optimisation évoqué en haut peut être
reformulé de la manière suivante

minimize
x∈C

f(Ax, z) s. t. Φ x ∈ D,
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où M = M1 + · · ·+MN , Φ: (RN )R 7→ RM×R est l’opérateur linéaire

(
∀x ∈ (RN)R

)
Φx = X =

X
(1)

. . .
X(N)


et D est l’ensemble convexe défini comme

D =
{
X ∈ RM×R

∣∣∣ N∑
`=1
‖X(`)‖p ≤ η

}
.

L’approche épigraphique permet de résoudre efficacement ce prob-
lème en décomposant la contrainteD dans une collection d’épigraphes
de la norme `p appliquée aux valeur singulières de X(`), dénotées
dans la suite par σX(`) =

(
σ

(m)
X(`)

)
1≤m≤M̃`

, avec M̃` = min{M`, R}.

• Normes nucléaires (cas p = 1)
(∀` ∈ {1, . . . , N})(∀m ∈ {1, . . . , M̃`})

∣∣∣σ(m)
X(`)

∣∣∣ ≤ ζ(`,m),

N∑
`=1

M̃∑̀
m=1

ζ(`,m) ≤ η.

• Normes de Frobenius ou spectrales (cas p ∈ {2,+∞})
(∀` ∈ {1, . . . , N}) ‖σX(`)‖p ≤ ζ(`),
N∑
`=1

ζ(`) ≤ η.

L’avantage de cette approche est que la projection épigraphique
d’une norme matricielle avec p ∈ {1, 2,+∞} peut être calculée en
forme explicite. Les expériences numériques et les comparaisons avec
l’état de l’art (notamment les méthodes ADMM) sont en faveur de
l’approche proposée en terme de PSNR-SSIM et en temps de calcul.
Les résultats en Fig. 7 et 8, ainsi que Tab. 2, montrent les meilleures
performances de la régularisation basée sur le tenseur de structure
par rapport à plusieurs types d’image multi-composant.

Les résultats montrent également que la norme nucléaire est plus
indiquées que les autre normes matricielles pour traiter des images
hyper-spectrales. De plus, l’algorithme épigraphique converges plus
rapidement que les approches classiques basées sur le calcul itératif
des projections à chaque itération. Dans tout les cas, l’algorithme
proposé s’avère plus efficace que les solutions basées sur ADMM,
indiquant que les méthodes proximales primaires-duales constituent
un bon choix pour attaquer des problèmes de restauration d’images
multi-composants.
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(a) Originale. (b) Bruitée. (c) Zoom.

(d) `1-CC-TV [6]: 16.15 dB (e) `2-CC-TV [6]: 16.32 dB (f) `∞-CC-TV [6]: 16.05 dB

(g) `1-CC-NLTV[51]: 16.87 dB (h) `2-CC-NLTV[51]: 17.20 dB (i) `∞-CC-NLTV[51]: 17.22 dB

(j) `1-ST-TV: 17.08 dB (k) `2-ST-TV [28]: 16.84 dB (l) `∞-ST-TV [108]: 16.43 dB

(m) `1-ST-NLTV: 18.20 dB (n) `2-ST-NLTV: 17.46 dB (o) `∞-ST-NLTV: 16.67 dB

Figure 7 Comparaison visuelle d’une image couleur reconstruite avec plusieurs contraintes
de régularisation. Dégradation: bruit Gaussien additive avec moyenne nulle
et écart type égal à 10, flou uniforme de taille 3 × 3, et 80% de décimation
(N = 154401, R = S = 3 et K = 30880).
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Table 2 Indices de SNR – M-SNR résultants de la reconstruction d’images dégradées par
un bruit Gaussien avec écart type égal à 5 et 90% de décimation.

image size H-TV [235] `1-ST-TV M-NLTV [45] `1-ST-NLTV
Hydice 256× 256× 191 10.65 – 09.87 11.93 – 11.16 11.57 – 10.76 12.98 – 12.11
Indian Pine 145× 145× 200 17.31 – 17.00 18.46 – 18.24 17.62 – 17.34 19.53 – 19.49
Little River 512× 512× 7 17.81 – 18.20 18.49 – 18.83 18.46 – 18.90 19.88 – 20.18
Mississippi 512× 512× 7 18.27 – 18.07 18.60 – 18.37 18.94 – 18.59 19.56 – 19.28
Montana 512× 512× 7 22.49 – 20.97 22.68 – 21.15 22.85 – 21.29 23.31 – 21.76
Rio 512× 512× 7 16.48 – 15.29 16.65 – 15.48 16.82 – 15.64 17.20 – 16.05
Paris 512× 512× 7 14.85 – 14.31 14.94 – 14.39 15.05 – 14.53 15.36 – 14.82

(a) Composant r = 81 (b) H-TV [235]: 11.78 dB (c) `1-ST-TV: 12.98 dB

(d) Bruitée. (e) M-NLTV [45]: 12.76 dB (f) `1-ST-NLTV: 14.36 dB

Figure 8 Comparaison d’une image hyperspectrale reconstruite avec H-TV, `1-ST-TV,
M-NLTV et `1-ST-NLTV. Dégradation: scénario d’acquisition comprimée impli-
quant un bruit Gaussien additif avec moyenne nulle et écart type égal à 5, ainsi
que 90% de décimation (N = 65536, R = 191, K = 6553 et S = 191).
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SVM parcimonieuse

Une machine à vecteurs de support (SVM) est une fonction qui
prédit la classe k ∈ {1, . . . , K} associée à une observation u ∈ RN ,
en utilisant des vecteurs de référence x(k) tels que :

d(u) = arg max
k∈{1,...,K}

ϕ(u)>x(k),

où ϕ : RN 7→ RM+1. Le vecteur x = [x(1)> . . . x(K)>]> est estimé
sur un ensemble de données S =

{
(u`, z`) ∈ RN × {1, . . . , K} | ` =

{1, . . . , L}
}
en résolvant un problème d’optimisation convexe :

minimize
x∈R(M+1)K

K∑
k=1
‖x(k)‖2

2 + λ
L∑
`=1

max
{

0, 1 + max
k 6=z`

ϕ(u`)>(x(k) − x(z`))
}
.

Nous proposons de remplacer la norme quadratique par une
fonction convexe quelconque f ∈ Γ0(R(M+1)K), ainsi que refor-
muler la fonction de perte ci-dessus en introduisant, pour chaque
` ∈ {1, . . . , L}, l’opérateur linéaire T` : R(M+1)K 7→ RK tel que

(
∀x ∈ R(M+1)K

)
T` x =


ϕ(u`)>(x(1) − x(z`))

. . .

ϕ(u`)>(x(K) − x(z`))

 ,
le vecteur r` = (r(k)

` )1≤k≤K ∈ RK tel que

(∀k ∈ {1, . . . , K}) r
(k)
` =

{
0, if k = z`,

µ`, otherwise,

et la fonction h` : RK 7→ R telle que, pour chaque y(`) = (y(`,k))1≤k≤K ,

h`(y(`)) = max
1≤k≤K

y(`,k) + r
(k)
` ,

de façon que h`(T`x) = max
{

0, µ` + maxk 6=z` ϕ(u`)>(x(k) − x(z`))
}
.

Notre objectif est donc de résoudre les problèmes suivants

approche regularisée: minimize
x∈R(M+1)K

f(x) + λ
L∑
`=1

h`(T` x),

approche constrainte: minimize
x∈R(M+1)K

f(x) s. t.
L∑
`=1

h`(T` x) ≤ η,

où λ et η sont des constantes positives.
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L’approche épigraphique permet de résoudre le problème sous
contrainte au travers d’un vecteur ζ =

(
ζ(`)

)
1≤`≤L

tel que

minimize
(x,ζ)∈R(M+1)K×RL

f(x) s. t.

(Tx, ζ) ∈ E,
ζ ∈ V,

où

E =
{

(y, ζ) ∈ RLK × RL
∣∣∣ (∀` ∈ {1, . . . , L}) (y(`), ζ(`)) ∈ epih`

}
,

(1)
V =

{
ζ ∈ RL

∣∣∣ 1>Lζ ≤ η
}
. (2)

Les itérations de FBPD sont montrées dans l’algorithme 0.3. L’avantage
de cette approche est que l’opérateur PE équivaut à calculer des
projections épigraphiques de la fonction max, pour laquelle nous
avons dérivé une forme explicite.

Algorithm 0.3 FBPD pour résoudre le problème sous contrainte.

Initialization  choose (x[0], ζ [0]) ∈ R(M+1)K × RL

choose (y[0], ξ[0]) ∈ RL(K−1) × RL

set τ > 0 and σ > 0 such that τσmax{‖T‖2, 1} ≤ 1.

For i = 0, 1, . . . 

x[i+1] = proxτf
(
x[i] − τ T>y[i])

ζ [i+1] = PV
(
ζ [i] − τ ξ[i])

ŷ[i] = y[i] + σT
(
2x[i+1] − x[i])

ξ̂[i] = ξ[i] + σ
(
2ζ [i+1] − ζ [i])(

ỹ[i], ξ̃[i]) = PE
(
ŷ[i]/σ, ξ̂[i]/σ

)
y[i+1] = ŷ[i] − σỹ[i]

ξ[i+1] = ξ̂[i] − σξ̃[i].

Nous avons évalué les performances de notre approche sur trois
bases de données, en considérant un scénario avec peu d’exemples.
Les tests numériques montrent que l’utilisation d’une formulation
exacte, au lieu d’une approximation, conduit à une meilleure précision
de classification et à une méthode plus robuste par rapport au choix
du paramètre de régularisation, tandis que l’algorithme proposé est
souvent plus rapide que les solutions de l’état-de-l’art.
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Figure 9 Résultats sur le database MNIST pour L ∈ {3K, 5K, 10K}. Colonne de gauche:
erreurs de classification en fonction de la régularisation. Colonne de droite:
pourcentage de coefficients nuls.
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(f) L/K = 10 (distance vs time)

Figure 10 Résultats sur le database MNIST pour L ∈ {3K, 5K, 10K}. Colonne de
gauche: temps d’exécution en fonction de la régularisation. Colonne de droite:
distance à la solution x[∞] en fonction du temps.
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Détection d’images falsifiées

Une image y ∈ RN capturée par une camera digitale peut être décrite
par un modèle de bruit additif-multiplicatif tel que

y = x ◦ k + x+ θ,

où ◦ dénote le produit composant par composant, x ∈ RN est l’image
idéale sans bruit, k ∈ RN est le PRNU de la camera, et θ ∈ RN est la
réalisation d’un bruit additif. Ci-dessus, le terme k est le seul signal
d’intérêt dans nos analyses, tandis que les autres termes jouent le
rôle de bruits. Cela inclut l’image idéale x, qui est en fait estimée
et soustraite de l’image originale, afin d’obtenir un résidu de bruit
r = y − x̂ plus facile à traiter, où x̂ = f(y) est estimé par un filtre
de debruitage f . For convenance, le résidu est réécrit de façon telle
que k multiplie l’image observée y plutôt que l’image inconnue x :

r = y − x̂ = y ◦ k +
(
x− y

)
◦ k +

(
x− x̂

)
+ θ = y ◦ k + n.

La procédure proposée en [41] pour vérifier l’intégrité d’une image
est composée de trois étapes :

(i). Estimation du PRNU de la camera à partir d’un large
nombre d’images non-falsifiées provenant de la même camera :

(∀` ∈ {1, . . . , N}) k̂(`) =

M∑
m=1

y(`)
m r(`)

m

M∑
m=1

(
y(`)
m

)2
.

(ii). Calcul de la corrélation entre le PRNU et le résidu de l’image

ρ(`) = corr
([
r(n)

]
n∈W`

,
[
y(n)k(n)

]
n∈W`

)
,

où W` est le support du bloc 128× 128 centré en `.

(iii). Test de falsification, qui consiste à comparer la carte de
corrélation calculée précédemment avec des seuils γ1 et γ2, afin
d’obtenir une image binaire û indiquant les zones falsifiées

û(`) =

0, si ρ(`) < γ1 and ρ̂(`) > γ2,

1, sinon.

Le résultat û est post-traité avec les outils morphologiques.
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Nous proposons de remplacer la troisième étape par la résolution
d’un problème d’optimisation qui emploie une régularisation fondée
sur les champs de Markov afin de prendre en compte les dépendances
spatiales de la carte indiquant les zones falsifiées, conduisant à

minimize
u∈{0,1}N

N∑
`=1

c(`) u(`) + λ
N∑
`=1

∑
n∈N`
|u(`) − u(n)|,

où

c(`) =

(
ρ(`) − ρ̂(`)

)2

2σ2
1

−

(
ρ(`)

)2

2σ2
0

+ log p0 σ1

p1 σ0
.

Le problème ci-dessus peut être résolu de manière exacte par une
relaxation convexe, qui consiste à replacer le domaine discrète {0, 1}N
par l’hypercube unitaire [0, 1]N . De plus, la formulation convexe
peut être réécrite sous forme contrainte

minimize
u∈[0,1]N

N∑
`=1

c(`) u(`) s. t.
N∑
`=1

∑
n∈N`
|u(`) − u(n)| ≤ η,

ce qui peut simplifier le choix du paramètre η, car il est en lien direct
avec la taille de la falsification. Le problème sous contrainte peut
être résolu efficacement par l’éclatement épigraphique, à savoir

minimize
(u,ζ)∈[0,1]N×V

c>u s. t. (Fx, ζ) ∈ E,

où c = (c(`))1≤`≤N , F dénote l’opérateur différence, et

E =
{

(y, ζ) ∈ R4N × R4N
∣∣∣ (∀` ∈ {1, . . . , 4N}) (y(`), ζ(`)) ∈ epi | · |

}
V =

{
ζ ∈ R4N

∣∣∣ 1>4N ζ ≤ η
}
.

Les iterations de la méthode M+LFBF associée à ce problème sont
montrées dans l’algorithme 0.4, où l’opérateur PE équivaut à calculer
des projections épigraphiques de la valeur absolue, pour laquelle nous
avons dérivé une forme explicite.

Nous avons évalué les performance sur quatre cameras (Canon
EOS 450D, Canon IXUS 95IS, Nikon D200, and Nikon Coolpix S5100)
comprenant 600 images chacune. Les tests numériques montrent que
notre approche abouti à une amélioration significative par rapport
aux méthodes de l’état-de-l’art. Également, une version modifiée de
l’algorithme proposé a permis à l’équipe GRIP de gagner le premier
« IEEE IFS-TC Image Forensics Challenge ».
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Algorithm 0.4 Itérations de M+LFBF [66].

Initialization choose
(
x[0], ζ [0]) ∈ RN × R4N

choose
(
y[0], ξ[0]) ∈ R4N × R4N

set γ ∈ ]0, 1/4[
For i = 0, 1, . . .

p[i] = P[0,1]N

(
x[i] − γ (c+ F>y[i])

)
ρ[i] = PV

(
ζ [i] − γ ξ[i])

ŷ[i] = y[i] + γFx[i]

ξ̂[i] = ξ[i] + γ ζ [i]

(v[i], ν[i]) = (ŷ[i], ξ̂[i])− γPE
(
ŷ[i]/γ, ξ̂[i]/γ

)
y[i+1] = v[i] + γF

(
p[i] − x[i])

ξ[i+1] = ν[i] + γ
(
ρ[i] − ζ [i])

x[i+1] = p[i] − γF>(v[i] − y[i])

ζ [i+1] = ρ[i] − γ
(
ν[i] − ξ[i])

Originale Falsifiée Prediction ρ̂
Corrélation ρ
(avec Mihcak)

Corrélation ρ
(avec BM3D) Etat-de-l’art Proposé

Figure 11 Exemples d’images falsifiées et leur détection.
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Conclusion et perspectives

Nous avons proposé une technique d’éclatement épigraphique qui
permet de réduire la complexité des algorithmes d’optimisation en
présence d’une contrainte impliquant la somme de fonctions convexes
telles que la valeur absolue, la fonction distance, la norme Euclidienne,
la norme infinie et la fonction max. Nous avons démontré l’efficience
de cette approche sur des problèmes ayant une contrainte sur la norme
mixte, la divergence de Kullback-Leibler ou la régression logistique.
Nous avons également apporté des contributions dans le contexte
de la reconstruction d’images multi-composants, de l’apprentissage
d’une SVM parcimonieuse et de la détection d’images falsifiées.

Le travail de cette thèse a ouvert des perspectives intéressantes.
Une de celles-ci consiste à combiner les approches d’optimisation
stochastique avec l’éclatement épigraphique. Cela est de grand intérêt
dans toutes les applications impliquant l’élaboration d’un volume
important de données, comme par exemple l’apprentissage d’un clas-
sificateur parcimonieux. A l’état actuel, les algorithmes existants
(dont ceux que j’ai proposés) sont limités par le nombre d’échantillons
sur lesquels l’apprentissage peut être effectué. L’approche stochas-
tique permettrait de surmonter cette problématique et de rendre
nos algorithmes d’apprentissage parcimonieux encore plus compéti-
tifs par rapport aux techniques classiques d’apprentissage, avec des
retombées applicatives très intéressantes.

Une deuxième perspective serait d’étendre la régularisation basée
sur le tenseur de structure aux applications d’imagerie 3D. Un exem-
ple concerne les images volumétriques, qui sont largement utilisées
dans le contexte biomédical. Le tenseur de structure permettrait
d’adapter la restauration d’images aux besoins spécifiques de cette
communauté, par exemple en assurant de préserver les textures com-
plexes et les structure fines, telles que les vaisseaux sanguins. Bien
évidemment, cette approche peut s’étendre à d’autres domaines,
comme par exemple l’imagerie SAR multi-temporelle.

Enfin, une troisième perspective concerne l’allocation optimale des
ressources dans un codeur vidéo hybride. Dans un travail préliminaire
[98], nous avons traité un problème d’optimisation convexe qui vise
à minimiser la distorsion moyenne, tout en respectant une contrainte
de budget sur les ressources allouées aux différentes trames d’un
vidéo. Une extension de ce travail consiste à formuler le problème
sous forme contrainte, afin d’avoir un contrôle direct sur la distorsion
du vidéo codifié. L’approche épigraphique se présente alors comme
une solution naturelle, et nous nous attendons des performances
cohérentes aux résultats présentés dans cette thèse.
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Methodology
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Life is short and information endless: nobody has time
for everything. In practice we are generally forced to
choose between an unduly brief exposition and no expo-
sition at all. Abbreviation is a necessary evil and the
abbreviator’s business is to make the best of a job which,
although intrinsically bad, is still better than nothing.

Aldous Huxley

Chapter 1
Convex optimization
The main focus of this chapter is to review the basics of non-smooth convex optimization.
We begin with a brief overview of inverse problems addressed by variational approaches.
Then, we present a panel of convex optimization methods based on proximal tools.
Finally, we discuss different techniques for computing the projection onto a convex set.

1.1 Inverse problems
In many branches of science, one is interested in converting some measurements
into information about an entity that cannot be directly observed. This task can
be considered as the problem of inverting the forward relation between the model
parameters and the observed data. A popular example is the task of recovering
a signal x ∈ RN from an observation z ∈ RK given by the linear model

z = Ax+ b, (1.1)

where A ∈ RK×N is known, and b ∈ RK is a realization of a zero-mean noise.
Unfortunately, even in the absence of noise (b = 0), there is no guarantee that
the solution to this problem is unique or even exists, as the above system may be
underdetermined (rank(A) < N) or overdetermined (rank(A) = N and K > N).

In general, inverse problems can be hardly solved in an exact manner, due to
uncertainties in the observed data, and issues related to existence, uniqueness,
and stability of the solution. For such ill-posed problems, one actually aims at
finding inexact solutions which are optimal in a statistical or application-specific
sense. As a result, the standard approach to deal with inverse problems involves
the use of mathematical optimization, like in the celebrated least-squares method.

1.1.1 Least-squares method

The method of least squares is a standard approach to find the approximate
solution to an overdetermined system. The objective is to recover the signal that
minimizes the quadratic distance to the observation, leading to the problem

minimize
x∈RN

‖Ax− z‖22. (1.2)

The above problem is solved for x̂ = (A>A)−1A>z. However, when the matrix A
is ill conditioned, this solution is highly unstable and sensitive to small changes
in the observed data. In such a case, it is necessary to incorporate additional
information in order to prefer a solution with desirable properties. A possible
approach consists of adding a quadratic regularization [209], yielding

minimize
x∈RN

‖Ax− z‖22 + λ‖Fx‖22, (1.3)

where λ > 0 and F ∈ RM×N . can be the identity matrix, a gradient operator, etc.
So doing, the solution changes to x̂ = (A>A+λF>F )−1A>z, which is well defined

3
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in the case when the matrix [A> F>]> has full column rank.
An alternative regularization for the least-squares method amounts to intro-

ducing a constraint that bounds the `1-norm of the solution [208, 217], yielding

minimize
x∈RN

‖Ax− z‖22 s. t. ‖Fx‖1 ≤ η, (1.4)

with η > 0. The `1-norm ensures that the solutions will have a number of
transformed coefficients exactly equal to zero, depending on the value of η. Such
a sparsity-inducing behavior is exploited, for example, in the context of image
recovery [2, 8, 40, 80, 81, 195, 207]. However, unlike the quadratic regularization,
the above problem cannot be solved in closed form. This is typical of inverse
problems, which generally need to be solved through optimization methods.

1.1.2 Single-objective optimization

Optimization aims at selecting the best element from a set of available alternatives
ranked by a given criterion. This problem can be formally stated as

minimize
x∈D

f(x), (1.5)

where D denotes the set of feasible solutions, and f : D 7→ R ∪ {+∞} denotes
the objective function.

The function f can take the
value +∞ for discarding some
“forbidden parts” of D.

Optimization problems can be divided into two categories
depending on whether the feasible set is continuous (D ⊂ RN ) or discrete
(D ⊂ ZN ). In the former case, the feasible solutions may be signals or images,
whereas in the latter case they may be permutations or graphs.

There is no general formula for the solution to optimization problems. Hence,
they are solved by generating a sequence of points converging towards an optimal
solution. In this regard, variational techniques are used to deal with continuous
problems, as well as search techniques and cutting-plane methods are used to
tackle discrete problems. Among the huge array of optimization methods, many
of them have been specifically developed for solving convex problems. These
algorithms will be throughly discussed in Section 1.2. Given the efficiency and the
reliability of convex optimization methods, they are often employed to approach
nonconvex problems through the use of convex relaxations. This applies for
example to discrete labeling problems [36, 203], linear integer problems [135],
and continuous problems involving certain nonconvex functions [34, 173, 184].

1.1.3 Multi-objective optimization

Inverse problems typically involve multiple objectives to be optimized, such as
data fidelity and regularization terms, as well as criteria enforcing additional
pieces of prior information. This leads to a multi-objective optimization problem:

minimize
x∈D

{
f1(x), . . . , fR(x)

}
, (1.6)

with fr : D 7→ R ∪ {+∞} for every r ∈ {1, . . . , R}. In multi-objective opti-
mization, there hardly exists a solution that minimizes all objective functions
simultaneously, hence attention is paid to Pareto optimal solutions [169], namely
the solutions for which it is impossible to decrease the value of any objective
function without increasing the value of at least another objective function.



1.2 Proximal algorithms 5

A possible approach to deal with a multi-objective optimization problem
consists of converting it into a single-objective problem such that its optimal
solutions are some of the Pareto optimal solutions to the former. In this regard,
the most well-known reformulations of Problem (1.6) are the following [169]:
• regularized formulation

minimize
x∈D

λ1f1(x) + · · ·+ λRfR(x), (1.7)

with λr > 0 for every r ∈ {1, . . . , R};

• constrained formulation
minimize

x∈D
fj(x) s. t. (∀r 6= j) fr(x) ≤ ηr, (1.8)

with ηr ∈ R such that
{
x
∣∣ fr(x) ≤ ηr

}
6= ∅ for every r ∈ {1, . . . , R} \ {j}.

Under technical assumptions [138, 181], the above formulations are equivalent
for some specific values of (λr)1≤r≤R and (ηr)1≤r≤R. However, different Pareto
optimal solutions are produced by varying these parameters, leading to results
with a different quality. There is no general rule that relates the parameters
(λr)1≤r≤R to the quality of solutions obtained with the regularized formulation,
although it is possible to optimally select them in some circumstances [82, 87,
93, 159, 179]. In this regard, the constrained formulation may be more practical,
in the sense that the bounds (ηr)1≤r≤R may be easier to select, as they are
related to some knowledge on the degradation process [2, 67, 207] or some
physical properties of the target solution [61, 217]. This is the main motivation
in considering constrained formulations of optimization problems.

1.2 Proximal algorithms
The first methods for finding a solution to an inverse problem were restricted
to the use of a differentiable function [209]. In this context, gradient-based
algorithms (e.g., nonlinear conjugate gradient or quasi-Newton methods) are
popular [54]. However, in order to model properties such as sparsity or dynamic
ranges, one needs to incorporate non-smooth functions or hard constraints in
the optimization problem. In this case, a possible approach consists of resorting
to smart approximations in order to smooth the involved non-differentiable
functions [11, 14, 115, 123]. If one wants to directly address the original non-
smooth problem, projection methods [35, 232], block-coordinate descent methods
[212], or interior-point methods [225] may be applied, but they often impose
restrictive assumptions on the problem to be solved. To overcome these issues, a
new class of iterative methods referred to as proximal algorithms has recently
emerged to efficiently solve a large panel of convex optimization problems.

1.2.1 Proximity operator

The key tool in proximal methods is the proximity operator [174] of a proper
lower semicontinuous convex function f ∈ Γ0(RN ),

Γ0(RN ) is the class of proper
lower semicontinuous convex
functions from RN to R∪{+∞}.

defined as

(∀x ∈ RN ) proxf (x) = arg min
u∈RN

1
2‖u− x‖

2
2 + f(u). (1.9)
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The proximity operator can be interpreted as a sort of implicit subgradient step
for the function f , as it is uniquely defined through the following inclusion

The subgradient of ϕ ∈ Γ0(RN )
at p ∈ RN is the set defined as

∂ϕ(p) =
{
t ∈ RN | (∀u ∈ RN )

(u− p)>t+ ϕ(p) ≤ ϕ(u)
}
.

If ϕ is differentiable at y, then

∂ϕ(y) = {∇ϕ(y)}.

p = proxf (x) ⇔ p ∈ x− ∂f(p). (1.10)

Proximity operators enjoy many interesting properties [12, 40, 65, 178].
The great advantage of proximal methods is that they provide a unifying

framework which allows one to deal with non-smooth functions as well as hard
constraints. Indeed, the constraint associated with a nonempty closed convex
subset C ⊂ RN can be enforced through the indicator function of C, defined as

(∀x ∈ RN ) ιC(x) =
{

0, if x ∈ C,
+∞, otherwise.

(1.11)

This function belongs to Γ0(RN ) and the associated proximity operator coincides
to the orthogonal projection onto C, in the sense that

(∀x ∈ RN ) proxιC (x) = PC(x) = arg min
u∈C

‖u− x‖22. (1.12)

Proximal algorithms can be classified in primal [1, 65, 180] and primal-dual
[29, 37, 66, 69, 135, 215] methods. The main difference is that the latter ones
do not need to invert the linear operators involved in the optimization problem,
even though the former ones may converge faster when such an inversion can
be efficiently computed. Interestingly, a number of primal-dual methods can be
derived from the forward-backward splitting [59].

1.2.2 Forward-backward splitting

Forward-backward splitting is a standard approach to optimize the sum of a
non-smooth function f ∈ Γ0(RN ) and a differentiable function g ∈ Γ0(RN ) with
a β-Lipschitz continuous gradient for some β ∈]0,+∞[,The gradient of ϕ ∈ Γ0(RN ) is

β-Lipschitz if there exists β > 0
such that: ∀(x, u) ∈ RN × RN

‖∇ϕ(x)−∇ϕ(u)‖2 ≤ β‖x−u‖2.

namely

minimize
x∈RN

f(x) + g(x). (1.13)

This method aims at finding a point x ∈ RN satisfying the fixed-point condition

0 ∈ ∂f(x)+∇g(x) ⇔ x ∈ x−∇g(x)−∂f(x) ⇔ x = proxf
(
x−∇g(x)

)
.

(1.14)
As a matter of fact, under appropriate technical assumptions, it can be shown
[68] that, for every x[0] ∈ RN , the sequence (x[i])i∈N generated by

x[i+1] = proxγif
(
x[i] − γi∇g(x[i])

)
(1.15)

converges to a solution to Problem (1.13) for any γi ∈ ]0, 2/β[.
The forward-backward splitting generalizes various well-known algorithms,

which can be recovered from (1.15) through specific choices of f and g. This
includes the standard gradient descent when f = 0, the proximal-point algorithm
when g = 0, the projected gradient method when f is the indicator function of a
closed convex subset of RN , and the backward-backward splitting when g is the
inf-convolution

The inf-convolution between ϕ
and ψ in Γ0(RN ) is defined as

ϕ�ψ = inf
u∈RN

ϕ(u) + ψ(· − u).

It is differentiable for ψ=‖·‖2
2

∇(ϕ� 1
2γ ‖·‖

2
2) = (·−proxγϕ)/γ. between a function in Γ0(RN ) and the quadratic function.
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1.2.3 Fenchel-Rockafellar duality

A strong practical limitation of forward-backward splitting arises when the
non-smooth term f denotes a convex function composed with a linear operator.
Indeed, the proximity operator of such a function is difficult to compute, unless
the linear operator satisfies specific properties [12, Propos. 23.23], [186, Pro-
pos. 3.4].

Let F∈RM×N and ϕ∈Γ0(RM ).
If FF> = νI with ν > 0, then

proxϕ◦F (x) =

x+ 1
ν
F>
(

proxνϕ(Fx)− Fx
)
.

If F> = F−1, then

proxϕ◦F (x) = F> proxϕ(Fx).

One way to circumvent this issue is provided by the Fenchel-Rockafellar
duality, which can be applied to Problem (1.13) with an additional function
h ∈ Γ0(RM ) composed with a linear operator F ∈ RM×N , and some w ∈ RN ,
namely

minimize
x∈RN

f(x) + g(x) + h(Fx)− w>x. (1.16)

The principle is that the above primal problem can be associated with a dual prob-
lem involving the conjugate functions

Let ϕ and ψ belong to Γ0(RN ).
The conjugate function of ϕ is

ϕ∗ = sup
x∈RN

x>(·)− ϕ(x).

In addition, (ϕ+ψ)∗ = ϕ∗ �ψ∗,
and u ∈ ∂ϕ(x) ⇔ x ∈ ∂ϕ∗(u)
⇔ ϕ(x) + ϕ∗(u) = x>u.

of f+g and h, yielding [12, Definition 15.19]

minimize
y∈RM

(f∗� g∗)(w − F>y) + h∗(y). (1.17)

Under some technical assumptions, the primal and dual problems are equivalent,
in the sense that their objective functions achieve the same (up to a sign)
optimum value [12, Theorem 15.23]. This fact allows one to deduce that any
pair (x, y) of solutions to these problems is such that [12, Theorem 19.1]{

x ∈ ∂(f∗� g∗)(w − F>y),
Fx ∈ ∂h∗(y).

(1.18)

In addition, if there exists a solution y to the dual problem such that f∗� g∗ is
differentiable at w − F>y, then the primal problem admits either no solution or
a unique solution such that x = ∇(f∗� g∗)(w − F>y) [12, Proposition 19.3].

An important application of Fenchel-Rockafellar duality concerns the strongly
convex problems. Indeed, when g = 1

2‖ · ‖
2
2, it is easier to solve the dual problem

and to recover from it the (unique) solution to the primal problem, as

(i). the term f∗� 1
2‖·‖

2
2 is differentiable with gradient ∇(f∗� 1

2‖·‖
2
2) = proxf ,

(ii). there exists at least one solution y to the dual problem, and the solution x
to the primal problem is such that x = proxf (w − F>y),

(iii). in the dual problem, the linear operator F> appears in the smooth term
f∗� 1

2‖ · ‖
2
2 rather than the nonsmooth term h∗.

These arguments can be exploited to solve the dual problem via the forward-
backward splitting. Under some technical assumptions, it can be shown [60]
that, for every y[0] ∈ RM , the sequence (x[i])i∈N generated by

The proximity operator of ϕ
and ϕ∗ in Γ0(RN ) are such
that: for all u ∈ RN and γ > 0

proxγϕ∗ (u)= u−γ proxϕ
γ

(
u

γ

)
.

⌊
x[i] = proxf (w − F>y[i])
y[i+1] = proxγih∗(y

[i] + γiFx
[i])

(1.19)

converges to the solution to (1.16) with g = 1
2‖ · ‖

2
2, for any γi ∈

]
0, 2/‖F‖2

[
.

The above algorithm has the ability to decompose the optimization process
into elementary steps such as proxf , proxh∗ , F , and F>. This makes it possible
to reduce the complexity related to Problem (1.16) in the case when g = 1

2‖ · ‖
2
2.

Fortunately, the same kind of decomposition can be obtained for general instances
of Problem (1.16) through the use of primal-dual approaches.
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1.2.4 Primal-dual approach

A more general way to employ Fenchel-Rockafellar duality consists of solving
the primal-dual problem associated with (1.16), which can be derived from the
latter by rewriting h in terms of its conjugate,

A function ϕ ∈ Γ0(RN ) can be
expressed in terms of ϕ∗ as

ϕ = sup
u∈RN

u>(·)− ϕ∗(u).

yielding

maximize
y∈domh∗

minimize
x∈RN

f(x) + g(x) + y>Fx− h∗(y)− w>x, (1.20)

where dom h∗ =
{
y ∈ RM

∣∣ h∗(y) < +∞
}
. So doing, one actually aims at solving

simultaneously both the primal and dual problems in (1.16)-(1.17), leading to
x ∈ arg min

x∈RN
f(x) + g(x)− (w − F>y)>x,

y ∈ arg min
y∈RM

h∗(y)− y>Fx.
(1.21)

The goal of primal-dual methods is to find a pair (x, y) ∈ RN × RM such that{
0 ∈ ∂f(x) +∇g(x)− w + F>y

0 ∈ ∂h∗(y)− Fx,
⇔

x = proxf
(
x−∇g(x̄) + w − F>y

)
y = proxh∗

(
y + Fx

)
.

(1.22)
Under technical assumptions, the above condition guarantees that x is a

solution to (1.16), y is a solution to (1.17), and (x, y) is a solution to (1.20) [12,
Theorem 19.1, Proposition 19.18]. The advantage of (1.22) is that Problem (1.16)
can be solved through the separate evaluation of operators proxf , ∇g, and proxh,
which naturally leads to algorithms easier to implement. In addition, the
Lipschitz-differentiable function is activated through its gradient, which is often
simpler to compute than its proximity operator. Note also that Problem (1.16)
can actually include an arbitrary number of non-smooth functions by setting
F = [F>1 . . . F>R ]>, y = [y>1 . . . y>R ]>, h(y) = h1(y1) + · · ·+ hR(yR),

with Fr ∈ RMr×N , yr ∈ RMr , and hr ∈ Γ0(RMr ) for every r ∈ {1, . . . , R}.
Several primal-dual methods can be derived from a more general version of

the forward-backward splitting [59], such as the one illustrated in Algorithm 1.1.
There also exist primal-dual methods based on other approaches, like the one in
Algorithm 1.2. The reader can refer to [135] for a survey on primal-dual methods.

Algorithm 1.1 FBPD method [69, 215]

Initialization choose
(
x[0], y[0]) ∈ RN × RM

set τ > 0 and σ > 0 such that

τ
(
β/2 + σ‖F‖2) < 1

For i = 0, 1, . . .
x̂[i] = ∇g(x[i])− w + F>y[i]

x[i+1] = proxτf
(
x[i] − τ x̂[i])

ŷ[i] = F
(
2x[i+1] − x[i])

y[i+1] = proxσh∗
(
y[i] + σ ŷ[i])

Algorithm 1.2 M+LFBF method [66]

Initialization⌊
choose

(
x[0], y[0]) ∈ RN × RM

set γ ∈
]
0, (β + ‖F‖)−1[

For i = 0, 1, . . .

x̂[i] = ∇g(x[i])− w + F>y[i]

p[i] = proxγf
(
x[i] − γ x̂[i])

v[i] = proxγh∗
(
y[i] + γ Fx[i])

y[i+1] = v[i] + γF
(
p[i] − x[i])

x̃[i] = ∇g(p[i])− w + F>v[i]

x[i+1] = p[i] − γ
(
x̃[i] − x̂[i])
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1.3 Projection operators
Proximal methods deal with Problem (1.16) by iterating a sequence of steps
in which the operators proxf and proxh are evaluated at each iteration. The
efficient computation of these operators is thus essential for dealing with large-size
convex optimization problems. While the proximity operator can be efficiently
computed for many functions of practical interest [40, 65, 178], the same cannot
be claimed when a hard constraint is involved, because the projection operator
rarely admits a closed-form expression, except in the cases listed in Section 1.3.1.
As a result, the resolution of constrained optimization problems such as (1.8) is
often more challenging than solving the regularized counterparts in (1.7), due to
the difficulty of computing the involved projections. Two popular approaches to
circumvent this issue are discussed in Sections 1.3.2 and 1.3.3.

1.3.1 Projections in closed form

There exists a few number of convex sets for which an expression of the associated
projection is available. The most popular and relevant examples are listed below.

Euclidean balls

Let ε ∈]0,+∞[, let C ⊂ RN be a nonempty closed convex set, and let

Bε =
{
x ∈ RN

∣∣ ‖x‖2 ≤ ε}. (1.23)

The projection onto the convex set Bε + C reads [12, Proposition 28.10]

(∀x ∈ RN ) PBε+C(x) =


x, if ‖x− PC(x)‖2 ≤ ε,

PC(x) + ε
x− PC(x)
‖x− PC(x)‖2

, otherwise.

(1.24)
Note that Bε +C reduces to the `2-ball centered in some z ∈ RN when C = {z}.

Hyperslabs

Let u ∈ RN \ {0}, let (η1, η2) ∈ R2 such that η1 ≤ η2, and let

C =
{
x ∈ RN

∣∣ η1 ≤ u>x ≤ η2
}
. (1.25)

The associated projection can be expressed as [12, Example 28.17]

(∀x ∈ RN ) PC(x) =


x+ η1 − u>x

‖u‖22
u, if u>x < η1,

x+ η2 − u>x
‖u‖22

u, if u>x > η2,

x, otherwise.

(1.26)

As a special case, C reduces to a closed half-space when η1 = −∞, an hyperplane
when η1 = η2, and a closed interval when N = 1 and u ≡ 1.
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Affine sets

Let A ∈ RK×N . The range of A is the linear span of the columns of A, namely

ran(A) =
{
z ∈ RK

∣∣ (∃x ∈ RN ) z = Ax
}
. (1.27)

The associated projection can be expressed as [12, Proposition 3.25]

(∀z ∈ RK) Pran(A)(z) = AA†z, (1.28)

where A† denotes the pseudoinverse of A [12, Definition 3.26]. Note that A†z
yields a solution to the least-squares problem when A has full column rank,

In the case when rank(A) = K,
Pran(A)(z)=z as ran(A)= RK .

as

A† =
{

(A>A)−1A>, if rank(A) = N,

A>(AA>)−1, if rank(A) = K.
(1.29)

Moreover, the kernel of A is the orthogonal complement of the range of A>, i.e.
For a vector subspace V ⊂ RN

(ιV )∗ = ιV⊥ ,

which yields: for every x ∈ RN

Pker(A)(x) = x− Pran(A>)(x).

ker(A) = ran(A>)⊥ =
{
x ∈ RN

∣∣ Ax = 0
}
. (1.30)

The associated projection can be derived from Pran(A>) [12, Proposition 3.28(iii)]

(∀x ∈ RN ) Pker(A)(x) = x−A>(A>)†x. (1.31)
Finally, let b ∈ ran(A), and let

C =
{
x ∈ RN

∣∣ Ax = b
}
. (1.32)

The associated projection can be expressed as [12, Example 28.14(ii)]

(∀x ∈ RN ) PC(x) = x−A>(A>)†(x−A†b). (1.33)

In the case when rank(A) = K (and thus K ≤ N), it simplifies to

(∀x ∈ RN ) PC(x) = x−A>(AA>)−1(Ax− b), (1.34)

which, for K = 1, further reduces to the projection onto an hyperplane.

Standard simplex and `1-ball

Let η ∈]0,+∞[, and let

S =
{
x ∈ [0,+∞[N

∣∣ N∑
n=1

x(n) = η
}
. (1.35)

The associated projection can be expressed as [12, Example 28.27]

(∀x ∈ RN ) PS(x) =
[

max{0, x(n) − s}
]
1≤n≤N , (1.36)

where s ∈ R is the unique value such that

The sought value of s can be
efficiently computed with the
strategies proposed in [71, 217].

s =
n∑
n=1

ν(n) − η
n

and n = max
{
j ∈ {1, . . . , N}

∣∣ j∑
n=1

ν(n) − η
j

< ν(j)},
(1.37)

with (ν(n))1≤n≤N being the elements (x(n))1≤n≤N sorted in ascending order. The
projection onto the `1-ball C =

{
x ∈ RN

∣∣ ‖x‖1 ≤ η} can be handled similarly,
as PC(x) = sign(x) ◦ PS

(
|x|
)
for every x ∈ RN \ C, and PC(x) = x otherwise,

where ◦ denotes the element-wise product and |x| =
[
|x(n)|

]
1≤n≤N .
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1.3.2 Subgradient projection

The main difficulty in optimizing a convex function over a closed convex set
arises when there is no available expression for the corresponding projection. A
possible way to circumvent such an issue consists of resorting to the concept
of subgradient projection [21, 58, 200]. This technique applies to constraints
that can be defined as the sublevel set of a function ϕ ∈ Γ0(RN ) at level η ∈ R,
namely

lev≤η ϕ =
{
x ∈ RN

∣∣ ϕ(x) ≤ η
}
. (1.38)

The key observation lies in the fact that, for every u ∈ RN and t ∈ ∂ϕ(u), the
above constraint can be outer approximated by the closed half-space

Cuϕ =
{
x ∈ RN

∣∣ (x− u)>t+ ϕ(u) ≤ η
}
, (1.39)

as x 7→ (x−u)>t+ϕ(u) provides a linearization of ϕ at u, yielding lev≤η ϕ ⊂ Cuϕ
when t 6= 0. The projection of u onto Cuϕ is the so-called subgradient projection:

PCuϕ(u) =

u, if ϕ(u) ≤ η,

u+ η − ϕ(u)
‖t‖2

t, otherwise.
(1.40)

The subgradient projection was employed in [58] to optimize a quadratic and
strictly-convex function over the sublevel set of a convex function, namely

minimize
x∈RN

‖Ax− z‖22 s. t. ϕ(x) ≤ η, (1.41)

where A ∈ RK×N has full column rank, and z ∈ RK . The above problem is
equivalent to compute the projection of x[0] = (A>A)−1A>z onto lev≤η ϕ in the
Hilbert space HA induced by 〈· | ·〉HA = 〈A>A · | ·〉, since

‖Ax− z‖22 = ‖x− x[0]‖2HA − ‖x
[0]‖2HA + ‖z‖22. (1.42)

To tackle this problem, a sequence (x[i])i∈N is generated by projecting x[0] onto
the intersection of two half-spaces built from Cx

[i]

ϕ , yielding the iterations [58]
p[i] = P

Cx
[i]
ϕ

(x[i]),

x[i+1] = arg min
x∈HA

‖x− x[0]‖2HA s. t.
{
〈x− x[i] | x[0] − x[i]〉HA ≤ 0,
〈x− p[i] | x[i] − p[i]〉HA ≤ 0,

(1.43)
An essential feature of this method is that the projection onto the intersection
of two half-spaces is straightforward to be computed [12, Corollary 28.21]. In
addition, an arbitrary number of constraints can be handled in Problem (1.41) by
setting ϕ = max1≤r≤R ϕr, with ϕr ∈ Γ0(RN ) for every r ∈ {1, . . . , R}. In this
case, a surrogate for the subgradient projection of lev≤η ϕ is given by the weighted
average of the subgradient projections of some lev≤η ϕr, with r ∈ Ii ⊂ {1, . . . , R}.
However, despite this method can handle multiple constraints, it is limited by
the fact that the function to be minimized must be quadratic and strictly convex.
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1.3.3 Discrepancy principle

An alternative approach to deal with a difficult projection consists of solving the
quadratic constrained problem (1.12) through numerical methods [178, Section 6].
This approach may be particularly effective for handling the sublevel set of some
function ϕ ∈ Γ0(RN ). As a matter of fact, there exists a Lagrangian equivalence
between the projection onto lev≤η ϕ and the proximity operator of ϕ, in the
sense that [12, Proposition 28.30]

Plev≤η ϕ(x) =
{
x, if ϕ(x) ≤ η,
proxλϕ(x), otherwise,

(1.44)

where λ is a solution in ]0,+∞[ to the equation

ϕ
(

proxλϕ(x)
)

= η. (1.45)

While there is no general formula for solving the above equality, specific numerical
methods can be developed to find λ. However, this approach turns out to be
efficient only when the proximity operator admits a simple form, which is the
case of the `1-norm [71, 217] and the Kullback-Leibler divergence [207]. Note
that there also exist numerical methods based on other approaches (e.g., [188]),
but they may prove inefficient in large-size problems, due to inner iterations.

1.4 Conclusion
In this chapter, we have presented a quick overview of non-smooth convex
optimization. Firstly, we have introduced inverse problems and discussed the
advantages of formulating them as constrained convex optimization problems.
Then, we have presented some algorithms that can efficiently deal with a large
panel of convex problems. Finally, we have highlighted the difficulty of handling
nonlinear constraints, we have recalled some examples of projections that can be
explicitly computed, and we have made an overview of the existing approaches
in the case when the projection admits no closed-form expression. In the next
chapter, we will propose a novel technique to deal with a class of nonlinear
constraints for which the existing methods are infeasible or inefficient.



An epigraph is a funny literary convention:
excerpting lines of someone else’s work to
put before your own.

Disambiguation

Chapter 2
Epigraphical splitting

The main focus of this chapter is convex optimization under nonlinear constraints.
Firstly, we propose a technique for decomposing a constraint into some epigraphs.
Secondly, we provide closed-form expressions of the projection onto several epigraphs.

2.1 Introduction
Numerous constraints usually involved in the formulation of inverse problems can
be modelled through a block-decomposable function. Popular examples are the
Kullback-Leibler divergence [207], the hinge loss [78], the `2-norm composed with
the Anscombe transformation [113], the `1-norm [217], the `1,∞-norm [188], and
total variation [61] or total generalized variation [177] semi-norms. A possible
solution to deal with these constraints is to exploit the Lagrangian equivalence
between the projection and proximity operators, which boils down to the problem
of finding the zero of a nonlinear equation (see Section 1.3.3). However, to the
best of our knowledge, this approach turns out to be efficient only with the
Kullback-Leibler divergence [207] and the `1-norm [71, 217].

The present chapter aims at designing an efficient method for solving the
following class of constrained convex optimization problems:

minimize
x∈RN

R∑
r=1

fr(Trx) s. t. h(Fx) ≤ η, (2.1)

where Tr ∈ RKr×N and fr ∈ Γ0(RKr) for every r ∈ {1, . . . , R}, while η ∈ R,
F ∈ RM×N , and h ∈ Γ0(RM ) is a separable function such that

(∀y ∈ RM ) h(y) =
L∑
`=1

h`(y(`)), (2.2)

with the generic vector y decomposed into blocks of coordinates as follows

y =
[ (

y(1)
)>

︸ ︷︷ ︸
sizeM1

, . . . ,
(

y(L)
)>

︸ ︷︷ ︸
sizeML

]>
∈ RM=M1+···+ML . (2.3)

and h` ∈ Γ0(RM`) such that ri(dom h`) 6= ∅ for every ` ∈ {1, . . . , L}.
Section 2.2 details a technique that splits the constraint in Problem (2.1)

into a collection of epigraphs,
The epigraph of ϕ ∈ Γ0(RN ) is
the subset of RN ×R defined as

epiϕ =
{

(x, ζ)
∣∣ ϕ(x) ≤ ζ

}
.

so as to exchange the projection onto the original
constraint set with simpler epigraphical projections. In this regard, Section 2.3
provides novel theoretical results concerning the epigraphical projection of several
functions of practical interest, such as the absolute value raised to a power
q ∈ [1,+∞[, the distance to a convex set C ⊂ RN

The distance to a closed convex
set C ⊂ RN is defined as

dC = ‖ · −PC‖2.

, the `p-norm with p ∈ {2,+∞},
and the max function. Finally, some conclusions are drawn in Section 2.4.

13



14 Chapter 2. Epigraphical splitting

2.2 Proposed method
The epigraphical splitting consists of introducing an auxiliary vector ζ ∈ RL in
the minimization process, so that the constraint in Problem (2.1) can be split
into a collection of epigraphs and a closed half-space:

The linear inequality over ζ can
be also replaced by an equal-
ity, even though it makes little
difference in our approach.

L∑
`=1

h`(y(`)) ≤ η ⇔


(∀` ∈ {1, . . . , L}) h`(y(`)) ≤ ζ(`),
L∑
`=1

ζ(`) ≤ η.
(2.4)

Consequently, Problem (2.1) can be equivalently formulated as follows:

minimize
(x,ζ)∈RN×RL

R∑
r=1

fr(Tr x) s. t.


(∀` ∈ {1, . . . , L}) h` (F` x) ≤ ζ(`),

L∑
`=1

ζ(`) ≤ η,
(2.5)

where, for every ` ∈ {1, . . . , L}, F` ∈ RM`×N is such that F` x = [Fx](`) = y(`).
Note that the above minimization problem is defined with respect to x and ζ, so
we have increased the dimensionality of our problem, and we have replaced the
sublevel set of h with simpler constraints given by the epigraphs of h1, . . . , hL.

2.2.1 Connections with proximal algorithms

Within the proposed constrained optimization framework, Problem (2.5) can be
rewritten in a more compact form as follows:

minimize
(x,ζ)∈RN×RM

R∑
r=1

fr(Trx) s. t.
{

(Fx, ζ) ∈ E,
ζ ∈ V,

(2.6)

where

E =
{

(y, ζ) ∈ RM × RL
∣∣ (∀` ∈ {1, . . . , L}) (y(`), ζ(`)) ∈ epih`

}
, (2.7)

V =
{
ζ ∈ RL

∣∣ 1>Lζ ≤ η
}
, (2.8)

with 1L = (1, . . . , 1)> ∈ RL. The above problem can be efficiently solved by
the primal-dual proximal methods presented in Section 1.2.4, provided that the
operators (proxfr )1≤r≤R, PE , and PV can be quickly computed. In the present
case, we assume that (proxfr)1≤r≤R have closed-form expressions. In addition,
the projection onto V is given in Section 1.3.1, whereas

(∀(y, ζ) ∈ RM × RL) PE(y, ζ) = (p, θ), (2.9)

where p ∈ RM is blockwise decomposed as in (2.3), θ ∈ RL, and

(∀` ∈ {1, . . . , L}) (p(`), θ(`)) = Pepih`(y(`), ζ(`)). (2.10)

Consequently, in order to solve Problem (2.6), we need to compute the projection
onto epih` for each ` ∈ {1, . . . , L}, which yields two potential benefits with
respect to Problem (2.1). Firstly, the epigraphical projection involves the lower-
dimensional problem of determining the projection onto the convex subset epih`
of RM` × R. Secondly, these projections can be computed in parallel, since
they are defined over disjoint blocks [102]. Examples of algorithms that solve
Problem (2.6), and thus Problem (2.1), will be provided in the next chapters.
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2.2.2 Examples of epigraphical constraints

We now illustrate some examples of functions that can be handled with the
epigraphical splitting presented above. The mathematical expression of the
associated projections will be derived in Section 2.3.

(i). `q-norm. Let q ≥ 1, and let τ` > 0 for every ` ∈ {1, . . . , L}. Then, the
function

(∀y ∈ RM ) h(y) =
M∑
`=1

τ` |y(`)|q (2.11)

can be modelled as in (2.2) with L = M and

(∀` ∈ {1, . . . ,M})(∀y(`) ∈ R) h`(y(`)) = τ` |y(`)|q. (2.12)

The corresponding epigraphical projection will be given in Proposition 2.3.2
for q = 1 and Proposition 2.3.3 for q > 1. Note that the `1 and `2 norms
are widely used for the regularization of inverse problems [34, 209].

(ii). Distance function. For every ` ∈ {1, . . . , L}, let τ` > 0, q` ≥ 1, and
C` ⊂ RM` be a nonempty closed convex set. Then, the function

(∀y ∈ RM ) h(y) =
L∑
`=1

τ` d
q`
C`

(y(`)) (2.13)

can be modelled as in (2.2) with

(∀` ∈ {1, . . . , L})(∀y(`) ∈ RM`) h`(y(`)) = τ` d
q`
C`

(y(`)). (2.14)

The related epigraphical projection will be given in Proposition 2.3.4. Such
a function is relevant for relaxing constraints on support sets [64].

(iii). `1,2-norm. Let τ` > 0 for every ` ∈ {1, . . . , L}. Then, the function

(∀y ∈ RM ) h(y) =
L∑
`=1

τ` ‖y(`)‖2 (2.15)

can be modelled as in (2.2) with

(∀` ∈ {1, . . . , L})(∀y(`) ∈ RM`) h`(y(`)) = τ` ‖y(`)‖2. (2.16)

The associated epigraphical projection will be given in Corollary 2.3.5.
Note that the `1,2-norm is useful to define multivariate sparsity constraints
[80, 226] or total variation bounds [195], which typically involve a sum of
functions like (2.16) composed with frames or gradient operators.

(iv). `1,∞-norm. For every ` ∈ {1, . . . , L}, let Ω` = Diag(τ`,1, . . . , τ`,M`
), with

τ`,m > 0 for each m ∈ {1, . . . ,M`}. Then, the function

(∀y ∈ RM ) h(y) =
L∑
`=1
‖Ω` y(`)‖∞ (2.17)
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can be modelled as in (2.2) with

(∀` ∈ {1, . . . , L})(∀y(`) ∈ RM`) h`(y(`)) = max
1≤m≤M`

τ`,m |y(`,m)|,

(2.18)
where y(`) = (y(`,m))1≤m≤M`

. The corresponding epigraphical projection
will be given in Proposition 2.3.7. The infinity norm ‖ · ‖∞ has recently
attracted much interest for regularization purposes [42, 188, 204].

(v). Max function. Let r`,m ∈ R for every ` ∈ {1, . . . , L} andm ∈ {1, . . . ,M`}.
Then, the function

(∀y ∈ RM ) h(y) =
L∑
`=1

max
1≤m≤M`

y(`,m) + r`,m (2.19)

can be modelled as in (2.2) with

(∀` ∈ {1, . . . , L})(∀y(`) ∈ RM`) h`(y(`)) = max
1≤m≤M`

y(`,m) + r`,m,

(2.20)
where y(`) = (y(`,m))1≤m≤M`

. The corresponding epigraphical projection
will be given in Proposition 2.3.8. Note that the max function can be used
to define the hinge loss involved in multiclass support vector machines [78].

2.2.3 Differences with existing splitting techniques

Splitting methods play a central role in non-smooth convex optimization. In this
context, a number of techniques have been developed to reduce the complexity
related to a non-smooth function composed with a linear operator. Aside from the
Fenchel-Rockafellar duality (see Section 1.2.3), a popular approach to circumvent
this issue is inspired by the Alternating Direction Method of Multipliers [91],
which consists of dealing with optimization problems of the form

minimize
x∈RN

f(x) + h(Fx) (2.21)

by resorting to the following (equivalent) reformulation

minimize
(x,y)∈RN×RM

f(x) + h(y) s. t. Fx = y. (2.22)

This type of splitting has been used in image restoration [1] and, more recently,
for distributed optimization problems [23]. A similar approach was also used
to derive extensions of Douglas-Rachford method [30, 180], since the constraint
Fx = y can be interpreted either as the kernel of [F − Id] or the range of
[Id F>]>, whose projections can be efficiently computed when F is a circulant
matrix (see Section 1.3.1 for the definitions of kernel and range).

The solution that we propose in this work also introduces auxiliary variables.
However, our objective is not to deal with linear operators, but rather with
a projection that does not have a closed-form expression. Consequently, the
proposed solution departs from the usual splitting methods, in the sense that our
approach leads to a collection of epigraphs (i.e., nonlinear constraints), while the
usual splitting techniques involve affine sets (for which the projection is known).
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2.3 Epigraphical projections
The key point in the proposed splitting is the introduction of some epigraphs
in the minimization process, in order to facilitate the computational steps.
Therefore, it is of paramount importance that the projection onto the epigraph
can be efficiently computed. The problem of determining such an epigraphical
projection is formalized in the following proposition.
Proposition 2.3.1. Let H be a real Hilbert space and let H × R be equipped
with the standard product space norm. Let ϕ be a function in Γ0(H) such that
domϕ is open. For every (y, ζ) ∈ H × R, the projection onto epiϕ is given by

Pepiϕ(y, ζ) =
(
p, max{ϕ(p), ζ}

)
, (2.23)

where
p = prox 1

2 (max{ϕ−ζ,0})2(y). (2.24)

Proof. For every (y, ζ) ∈ H × R, Pepiϕ(y, ζ) = (p, θ) is the unique solution to

minimize
(u,ξ)∈H×R

‖u− y‖2 + (ξ − ζ)2 s. t. ϕ(u) ≤ ζ. (2.25)

If ϕ(y) ≤ ζ, the solution is (p, θ) = (y, ζ), which is equivalent to (2.23) because
ϕ(y) ≤ ζ implies max{ϕ(y)− ζ, 0} = 0, and thus prox 1

2 (max{ϕ−ζ,0})2(y) = y and
max{ϕ(y), ζ} = ζ. On the other side, if ϕ(y) > ζ, the Karush-Kuhn-Tucker
theorem [12, Proposition 26.18] assures the existence of α ∈ [0,+∞[ such that

The required qualification condi-
tion is obviously satisfied when
u ∈ domϕ and ξ ≥ ϕ(u)

(p, θ) = argmin
(u,ξ)∈H×R

1
2‖u− y‖

2 + 1
2(ξ − ζ)2 + α(ϕ(u)− ξ), (2.26)

where α is such that α(ϕ(p) − θ) = 0. Since the value α = 0 is not allowable
(otherwise p = y and θ = ζ), we deduce that ϕ(p) = θ and α > 0. Moreover,
differentiating the Lagrange functional in (2.26) yields y − p ∈ α∂ϕ(p) and
θ = ζ+α. Since α > 0, it results θ > ζ, and thus θ = max{θ, ζ} = max{ϕ(p), ζ},
as θ = ϕ(p). In addition, the solution to (2.25) is (p, θ) =

(
p, ϕ(p)

)
with

p = argmin
u∈H
ϕ(u)≥ζ

‖u− y‖2 + (ϕ(u)− ζ)2. (2.27)

Furthermore, as ϕ(y) > ζ, we obtain

inf
u∈H
ϕ(u)≤ζ

‖u− y‖2 = ‖Plev≤ζ ϕ(y)− y‖2 = inf
u∈H
ϕ(u)=ζ

‖u− y‖2, (2.28)

where we have used the fact that Plev≤ζ ϕ(y) belongs to
{
u ∈ H

∣∣ ϕ(u) = ζ
}
,

since ϕ ∈ Γ0(H) and domϕ is open [12, Corollary 8.38]. We have then

inf
u∈H
ϕ(u)≤ζ

‖u− y‖2 = inf
u∈H
ϕ(u)=ζ

‖u− y‖2 ≥ inf
u∈H
ϕ(u)≥ζ

‖u− y‖2 + (ϕ(u)− ζ)2. (2.29)

Altogether, (2.27) and (2.29) lead to

p = argmin
u∈H

1
2‖u− y‖

2 + 1
2
(
ϕ(u)− ζ

)2 (2.30)

which is equivalent to (2.24) as 1
2 (max{ϕ− ζ, 0})2 ∈ Γ0(H).
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2.3.1 Absolute value

The previous proposition shows that the proximity operator in (2.24) plays a
prominent role in computing the projection onto an epigraph. Interestingly, such
a proximity operator admits a simple form for several functions of practical
interest, such as the absolute value, as shown by the next propositions.
Proposition 2.3.2. Let τ ∈ ]0,+∞[. Assume that

(∀y ∈ R) ϕ(y) = τ |y|. (2.31)

For every (y, ζ) ∈ R× R, the projection onto epiϕ is given by (2.23) with

prox 1
2 (max{ϕ−ζ,0})2(y) =


y, if τ |y| ≤ ζ,
sign(y)
1 + τ2 max{|y|+ τζ, 0}, otherwise.

(2.32)

Proof. The above result follows by the fact that, for every (y, ζ) ∈ R2,

1
2(max{τ |y| − ζ, 0})2 =

{
0, if τ |y| ≤ ζ,
(τ2/2) y2 − τζ|y|+ ζ2/2, otherwise,

(2.33)

for which the proximity operator is known [40, Example 4.6].

Proposition 2.3.3. Let q ∈ ]1,+∞[ and τ ∈ ]0,+∞[. Assume that

(∀y ∈ R) ϕ(y) = τ |y|q. (2.34)

For every (y, ζ) ∈ R× R, the projection onto epiϕ is given by (2.23) with

prox 1
2 (max{ϕ−ζ,0})2(y) =

{
y, if τ |y|q ≤ ζ,
sign(y)χ, otherwise,

(2.35)

where χ is the unique solution on [(max{ζ, 0}/τ)1/q,+∞[ of the equationWhen q is a rational number,
(2.36) is equivalent to a polyno-
mial equation for which there
exists a closed-form solution or
a standard numerical method

qτ2χ2q−1 − qτζχq−1 + χ = |y|. (2.36)

Proof. Since (max{τ | · |q − ζ, 0})2 is an even function, prox 1
2 (max{τ |·|q−ζ,0})2 is

an odd function [40, Remark 4.1(ii)]. In the following, we thus focus on the case
when y > 0. If ζ ≤ 0, then (max{τ(·)q − ζ, 0})2 = (τ(·)q − ζ)2 is differentiable,
thus we can deduce that χ = prox 1

2 (τ(·)q−ζ)2(y) is equivalent to

y − χ = ∇
(

1
2(τχq − ζ)2

)
⇔ χ− y + qτχq−1(τχq − ζ) = 0, (2.37)

where χ ≥ 0 by virtue of [63, Corollary 2.5]. This allows us to state that χ is the
unique solution of (2.36) on [0,+∞[. Let us now focus on the case when ζ > 0.
If 0 < y ≤ (ζ/τ)1/q, then max{ϕ − ζ, 0} = 0, thus prox 1

2 (max{ϕ−ζ,0})2(y) = y.
On the other hand, if y > (ζ/τ)1/q, as the proximity operator of a function from
R to R is continuous and increasing [63, Proposition 2.4], we obtain

χ = prox 1
2 (max{ϕ−ζ,0})2(y) ≥ prox 1

2 (max{ϕ−ζ,0})2
(
(ζ/τ)1/q) = (ζ/τ)1/q. (2.38)

Therefore, χ is the unique solution to (2.36) on [(ζ/τ)1/q,+∞[.
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2.3.2 Distance function

The previous propositions allow us to establish a result concerning the distance
function to a convex set C ⊂ H. Note that, in the case when C = {z} for
some z ∈ H, this function reduces to dC = ‖ · −z‖2, as PC = z. Hence, the
next proposition leads to a corollary about the Euclidean norm, for which the
associated epigraph is called the Lorentz cone and its epigraphical projection is
known in the literature (e.g., see [178, Section 6.3.2]).
Proposition 2.3.4. Let C be a nonempty convex subset of H. Let q ∈ [1,+∞[,
τ ∈ ]0,+∞[, and ζ ∈ R. Assume that

(∀y ∈ H) ϕ(y) = τd qC(y). (2.39)

For every (y, ζ) ∈ H × R, the projection onto epiϕ is given by (2.23) with

prox 1
2 (max{ϕ−ζ,0})2(y) =

{
y, if y ∈ C,
αy + (1− α)PC(y), otherwise,

(2.40)

where

α =
prox 1

2 (max{τ |·|q−ζ,0})2
(
dC(y)

)
dC(y) , (2.41)

and the above expression is provided by Propositions 2.3.2–2.3.3.

Proof. Note that 1
2 (max{τdqC−ζ, 0})2 = ψ ◦dC , with ψ = 1

2 (max{τ | · |q−ζ, 0})2.
According to [64, Proposition 2.7], for every y ∈ H,

proxψ◦dC (y) =


y, if y ∈ C,
PC(y), if dC(y) ≤ max ∂ψ(0),
αy + (1− α)PC(y), if dC(y) > max ∂ψ(0),

(2.42)

where α = proxψ
(
dC(y)

)
/dC(y). In addition, we have ∂ψ(0) = [τζ,−τζ] if

ζ < 0 and q = 1, or ∂ψ(0) = {0} otherwise. As a result, (2.42) translates to

proxψ◦dC (y) =


y, if y ∈ C,
PC(y), if dC(y) ≤ −τζ and q = 1,
αy + (1− α)PC(y), otherwise.

(2.43)

By Proposition 2.3.2, proxψ
(
dC(y)

)
= 0 when dC(y) ≤ −τζ and q = 1, which

implies α = 0 and PC(y) = αy + (1− α)PC(y). Hence, (2.43) yields (2.40).

Corollary 2.3.5. Let τ ∈ ]0,+∞[, ζ ∈ R and z ∈ H. Assume that

(∀y ∈ H) ϕ(y) = τ ‖y − z‖2. (2.44)

For every (y, ζ) ∈ H × R, the projection onto epiϕ is given by (2.23) with

prox 1
2 (max{ϕ−ζ,0})2(y) =


z, if y = z,

y, if τ‖y − z‖2 ≤ ζ,
z + α(y − z), otherwise,

(2.45)

where
α = 1

1 + τ2 max
{

1 + τζ

‖y − z‖2
, 0
}
. (2.46)
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2.3.3 Max function

We conclude the section with some results about the epigraphical projection of
the max function. The first one considers the maximum of weighted absolute
values (which reduces to the standard infinity norm ‖ · ‖∞ when the weights are
all equal [85]), whereas the second one concerns the maximum of weighted values.
The proofs of these propositions are very similar, and rely on the expression of
the proximity operator involved in the next lemma.

Lemma 2.3.6. Let (τm)1≤m≤M ∈ RM and ν = (ν(m))1≤m≤M ∈ RM . Assume
that

(∀y ∈ R) ϕ(y) = 1
2

M∑
m=1

(
max{τm (ν(m) − y), 0}

)2
, (2.47)

with the values (ν(m))1≤m≤M`
sorted in ascending order. Then, ϕ ∈ Γ0(R) and

(∀y ∈ R) proxϕ(y) =
y +

m−1∑
m=1

ν(m)(τ−m)2 +
M∑

m=m

ν(m)(τ+
m)2

1 +
m−1∑
m=1

(τ−m)2 +
M∑

m=m

(τ+
m)2

, (2.48)

where τ−m = min{τm, 0} and τ+
m = max{τm, 0} for every m ∈ {1, . . . ,M},

whereas m is the unique integer in {1, . . . ,M + 1} such that

ν(m−1) <

y +
m−1∑
m=1

ν(m)(τ−m)2 +
M∑

m=m

ν(m)(τ+
m)2

1 +
m−1∑
m=1

(τ−m)2 +
M∑

m=m

(τ+
m)2

≤ ν(m), (2.49)

with the conventions ν(0) = −∞, ν(M+1) = +∞, and
∑0
m=1 · =

∑M
m=M+1 · = 0.

Proof. The function ϕ belongs to Γ0(R), as max{τm (ν(m)−·), 0} is finite convex,
and (·)2 is finite convex and increasing on [0,+∞[. In addition, ϕ is differentiable
and such that, for every v ∈ R and k ∈ {1, . . . ,M + 1},

ν(k−1) < v ≤ ν(k) ⇒ ϕ(v) = 1
2

k−1∑
m=1

(τ−m)2(v − ν(m))2
+ 1

2

M∑
m=k

(τ+
m)2(v − ν(m))2. (2.50)

Since p = proxϕ(y) is uniquely defined by y − p = ϕ′(p), there exists a unique
m ∈ {1, . . . ,M + 1} such that ν(m−1) < p ≤ ν(m) and

y − p =
m−1∑
m=1

(τ−m)2(p− ν(m)) +
M∑

m=m

(τ+
m)2(p− ν(m)). (2.51)

This yields (2.48), and thus ν(m−1) < p ≤ ν(m) is equivalent to (2.49).
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Proposition 2.3.7. Let (τm)1≤m≤M ∈ ]0,+∞[M . Assume that

(∀y ∈ RM ) ϕ(y) = max
1≤m≤M

τm |y(m)|, (2.52)

with the values
(
ν(m) = τm |y(m)|

)
1≤m≤M being sorted in ascending order. For

every (y, ζ) ∈ RM × R, the projection Pepiϕ(y, ζ) = (p, θ) is given by

p =
[

sign(y(m)) min
{
|y(m)|, θ/τm

}]
1≤m≤M

(2.53)

and

θ = max

0,
(

1 +
M∑

m=m

τ−2
m

)−1(
ζ +

M∑
m=m

τ−2
m ν(m)

) , (2.54)

where m is the unique integer in {1, . . . ,M + 1} such that

ν(m−1) <

(
1 +

M∑
m=m

τ−2
m

)−1(
ζ +

M∑
m=m

τ−2
m ν(m)

)
≤ ν(m), (2.55)

with the conventions ν(0) = −∞, ν(M+1) = +∞, and
∑M
m=M+1 · = 0.

Proof. For every (y, ζ) ∈ RM × R, Pepiϕ(y, ζ) = (p, θ) is the unique solution to

minimize
θ∈[0,+∞[

minimize
|p(1)| ≤ θ/τ1

...
|p(M)| ≤ θ/τM

(θ − ζ)2 + ‖p− y‖2. (2.56)

For every θ ∈ [0,+∞[, the inner minimization is achieved when, for every
m ∈ {1, . . . ,M}, p(m) is the projection of y(m) onto the range [−θ/τm, θ/τm],
which is given by (2.54). Then, (2.56) reduces to

minimize
θ∈[0,+∞[

(θ − ζ)2 +
M∑
m=1

(max{|y(m)| − θ/τm, 0})2, (2.57)

which yields θ = proxψ+ι[0,+∞[
(ζ) with ψ =

∑M
m=1(max{τ−1

m (ν(m) − ·), 0})2.
Hence, we can deduce from [62, Proposition 12] that θ = P[0,+∞[(χ) with
χ = proxφ(ζ), which leads to (2.55) according to Lemma 2.3.6.
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Proposition 2.3.8. Let (rm)1≤m≤M ∈ RM , (τm)1≤m≤M ∈ ]0,+∞[M , and
(εm)1≤m≤M ∈ {1,−1}M . Assume that

(∀y ∈ RM ) ϕ(y) = max
1≤m≤M

εm y
(m) + rm
τm

, (2.58)

with the values
(
ν(m) = εmy

(m)+rm
τm

)
1≤m≤M being sorted in ascending order. For

every (y, ζ) ∈ RM × R, the projection Pepiϕ(y, ζ) = (p, θ) is given by

p =
[
εm min

{
εm y

(m), τm θ − rm
}]

1≤m≤M
, (2.59)

and

θ =
(

1 +
M∑

m=m

τ2
m

)−1(
ζ +

M∑
m=m

τ2
m ν

(m)

)
, (2.60)

where m is the unique integer in {1, . . . ,M + 1} such that

ν(m−1) <

(
1 +

M∑
m=m

τ2
m

)−1(
ζ +

M∑
m=m

τ2
m ν

(m)

)
≤ ν(m), (2.61)

with the conventions ν(0) = −∞, ν(M+1) = +∞, and
∑M
m=M+1 · = 0.

Proof. For every (y, ζ) ∈ RM × R, Pepiϕ(y, ζ) = (p, θ) is the unique solution to

minimize
θ(`)∈R

minimize
ε1p

(1)≤τ1θ−r1

...
εMp

(M)≤τMθ−rM

(θ − ζ)2 + ‖p− y‖2. (2.62)

For every θ ∈ R and m ∈ {1, . . . ,M}, the inner minimization is achieved when
p(m) is the projection of y(m) onto ] − ∞, τmθ − rm] or [−(τmθ − rm),+∞[
according to whether εm = 1 or εm = −1, respectively. These projections are
given by (2.59). Then, (2.62) reduces to

minimize
θ(`)∈R

(θ − ζ)2 +
M∑
m=1

(
max{εm y(m) + rm − τmθ, 0}

)2
, (2.63)

which is equivalent to calculate θ = proxψ(ζ) with

(∀u ∈ R) ψ(u) = 1
2

M∑
m=1

(max{τm(ν(m) − u), 0})2. (2.64)

By using Lemma 2.3.6, we can deduce the expressions of (2.60) and (2.61).
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2.4 Conclusion
In this chapter, we have proposed a new approach to deal with a class of con-
strained convex optimization problems. Firstly, we have introduced a splitting
technique to decompose the sublevel set of a block-decomposable function into a
collection of epigraphs. Secondly, we have proved a relation between the projec-
tion onto an epigraph and the proximity operator of a composite function, from
which we have derived the closed-form expressions associated to the epigraphical
projection of the absolute value, the distance to a convex set, the Euclidean
norm, the infinity norm, and the max function.

In the next chapter, we will turn our attention to mixed-norm constraints. In
particular, we will show through an application in image recovery that regularity
constraints based on the nonlocal total variation penalty can be efficiently
handled by the proposed epigraphical splitting.





A fact is a simple statement that everyone believes.
It is innocent, unless found guilty. A hypothesis is
a novel suggestion that no one wants to believe. It
is guilty, until found effective.

Edward Teller

Chapter 3
Constraints based on
mixed norms
The main focus of this chapter is the epigraphical splitting applied to mixed-norm
constraints. We show through an example of image recovery that regularity constraints
based on nonlocal total variation can be efficiently handled by the proposed approach.

3.1 Image recovery problems
Natural images are often degraded by blur and noise arising from sensor impreci-
sions or physical limitations. The goal of image recovery is to restore the visual
content of a corrupted image by inverting the corresponding degradation process.
In this context, a popular task consists of recovering an image x ∈ RN as close
as possible to an observation z ∈ RK generated through the linear model

z = Ax+ b, (3.1)
where A ∈ RK×N (with K ≤ N) describes the physical laws linking x to the
observed data, and b ∈ RK is a realization of zero-mean white Gaussian noise.

A usual approach to recover x from z is to follow a variational approach that
aims at solving the convex optimization problem expressed as

minimize
x∈[0,255]N

‖Ax− z‖22 s. t. h(Fx) ≤ η, (3.2)

where η ≥ 0, F ∈ RM×N (with M ≥ N) is the linear operator associated with
an analysis transformation, and h ∈ Γ0(RM ). Hereabove, the quadratic term
aims at insuring that the solution is close to the observation, while the constraint
imposes some regularity on the solution. Regularization is essential for solving
such an ill-posed problem, as it allows one to convey some prior knowledge about
the image to be recovered, independently from any specific information that
can be inferred from the observed data. In this regard, the more carefully the
regularity is modeled, the better the quality of the estimated image.

Natural images usually exhibit a smooth spatial behaviour, except around
some locations (such as object edges), where discontinuities arise. Therefore, the
quality of the results obtained through the resolution of Problem (3.2) strongly
depends on the ability of the operator F and the function h to model such
a specific type of regularity. Among the sophisticated regularization terms
developed in the field of image restoration (e.g., see [105, 124]), the most popular
ones are expressed as the mixed norm of some transformed coefficients, yielding

(∀y ∈ RM ) h(y) =
L∑
`=1
‖y(`)‖qp, (3.3)

where q ≥ 1, p ≥ 1, and y is block-decomposed as in (2.3). Various forms of
regularization arise with specific choices of F , p and q, as discussed next.

25
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3.1.1 Quadratic regularization

The choice p = q = 2 in (3.3) yields a quadratic penalty, which is one of the most
widely referenced approaches for the regularization of ill-posed problems [209].
When F is an orthonormal transformation, the term h(Fx) = ‖Fx‖22 simply
measures the energy of x, and thus the regularity constraint in (3.2) directly
prevents the solution coefficients from becoming too large. This regularization is
known to induce a low-pass filtered solution, meaning that no attempt is made to
recover image components that are unobservable in the data [22, Chapter 3.6].

More interesting is the case when F is chosen as a gradient or Laplacian
operator, because ‖Fx‖22 provides a measure of the variability of x. So doing,
the regularity constraint forces solutions with limited high-frequency energy,
and thus it captures the prior belief that the recovered image should be smooth.
Interestingly, it can be shown that such a regularization leads to solutions
containing image components that are unobservable in the data [22, Chapter 3.6].

Regardless the choice of F , the use of a quadratic regularization results in a
linear filtering of the observed data, as there exists a Lagrangian equivalence
between Problem (3.2) and the regularized least-squares method in (1.3). Con-
sequently, when F is chosen so as to suppress the effect of high-frequency noise,
the linear filtering also reduces the high-frequency energy of the true image,
leading to an undesirable smoothing of object edges in the recovered image.

3.1.2 Total variation regularization

A powerful approach to overcome the limitation of the quadratic regularization
consists of resorting to the total variation penalty [61, 195], whose discretized
version is defined as the `1,p-norm (with p ≥ 0) of the image gradient coefficients

When ` is located in the last
column of the image, n`,1 = `

so that x(`)−x(n`,1) = 0. Like-
wise, n`,2 = ` on the last row.

TVp(x) =
N∑
`=1

(
|x(`) − x(n`,1)|p + |x(`) − x(n`,2)|p

)1/p
, (3.4)

where (n`,1, n`,2) ∈ {1, . . . , N}2 denote the positions of the horizontal/vertical
nearest neighbors of x(`). The above function actually computes the total amount
of change that the image x goes through, and thus it provides a robust measure of
the variability of x. As a result, this regularization tends to prefer solutions with
localized steep gradients, leading to the suppression of high-frequency details in
the recovered image while preserving the main geometry of the true image.

The TV regularization can be plugged into Problem (3.2) by setting the
transformation F as the 2D gradient operator, namely

Fx =



x(1) − x(n1,1)

x(1) − x(n1,2)

...
x(N) − x(nN,1)

x(N) − x(nN,2)



}
y(1) ∈ R2

...}
y(N) ∈ R2,

(3.5)

and the function h in (3.3) with M = 2N , q = 1, and L = N . The choices p = 1
or p = 2 are commonly referred to as anisotropic or isotropic TV, respectively.
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3.1.3 Nonlocal total variation regularization

Total variation has emerged as a successful mixed-norm regularization, with
p ∈ {0, 1, 2,+∞} being the most-used `1,p-norms [28, 171, 227, 228]. However,
TV fails to preserve textures, details and fine structures, because they are hardly
distinguishable from high-frequency noise. To improve this behavior, the TV
model has been extended by using some generalizations based on higher-order
spatial differences [27, 177], higher-degree directional derivatives [118, 119], or
the non-locality principle [105, 205, 229]. Another approach to overcome this
limitation is to replace the gradient with an operator yielding a better sparse
representation of the image, such as a frame [39, 124, 164] or learned dictionary
[3, 92, 122, 163]. In this context, the family of BM3D algorithms [79, 162]
has been recently formulated in terms of analysis and synthesis frames [80],
substantiating the use of non-locality as a valuable image modeling tool.

The nonlocal total variation extends the TV model by measuring the interac-
tions of each pixel with a “selected” subset of pixels chosen in the whole image,
yielding

NLTVq,p(x) =
N∑
`=1

(∑
n∈N`

ωp`,n |x
(`) − x(n)|p

)q/p
, (3.6)

where, for every ` ∈ {1, . . . , N}, the set N` ⊂ {1, . . . , N} \ {`} contains some
positions located around `, and (ω`,n)n∈N` are positive weights that measure the
similarity between x(`) and its neighbors (x(n))n∈N` . Several types of `q,p-norms
can be used to penalize the nonlocal variations. The case q = p = 2 may be
seen as a variational extension of the nonlocal-means algorithm [32], while the
choice q = p = 1 leads to the nonlocal-medians algorithm [150]. Finally, q = 1
and p ∈ {2,+∞} yields the common usage as mixed-norm regularization.

The NLTV regularization can be plugged into Problem (3.2) by setting the
transformation F as the nonlocal gradient operator, namely

The nonlocal operator reduces
to the classical gradient oper-
ator when N` only contains
the horizontal/vertical nearest
neighbors of ` and ω`,n ≡ 1.

Fx =


[
ω1,n(x(1) − x(n))

]
n∈N1

...[
ωN,n(x(N) − x(n))

]
n∈NN

 } y(1) ∈ RM1

...
} y(N) ∈ RMN ,

(3.7)

and the function h in (3.3) with M =
∑N
`=1M` and L = N . For every (`, n) ∈

{1, . . . , N}2, the weight ω`,n > 0 depends on the similarity between patches built
around the pixels ` and n of the true image. Since the degradation process in
(3.1) may involve some missing data, a two-step approach must be undertaken
in order to estimate these weights. In the first step, the TV regularization is
used in order to obtain an estimate x̃ of the target image. This estimate serves
in the second step to compute the weights through a self-similarity measure:

ω`,n = ω̃` exp
(
−δ−2 ‖L`x̃− Lnx̃‖22

)
, (3.8)

where δ > 0, L` (resp. Ln) selects a Q̃× Q̃ patch centered at position ` (resp. n)
after a linear processing depending on the position ` (resp. n) [32, 99], and the
constant ω̃` > 0 is set so as to normalize the weights (i.e.,

∑
n∈N` ω`,n = 1). For

every ` ∈ {1, . . . , N}, the neighborhood N` is built according to the procedure
described in [104], which allows one to limit the size M` of the neighborhood to
a fixed value M (in all the experiments, we set Q̃ = 5, δ = 35 and M = 14).
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3.2 Optimization method
The standard way of solving Problem (3.2) via proximal methods leads to a
sequence of steps involving the projection onto the `q,p-ball, as illustrated in
Algorithms 3.1 and 3.3 with M+LFBF [66] and SDMM [65]. However, an
expression of this projection is not available in the cases relevant to image
recovery, that are q = 1 and p ∈ {1, 2,+∞}. Hence, it must be computed
through specific numerical method [71, 188, 217], as explained in Section 1.3.3.

An alternative approach that avoids the use of inner iterations consists of
reformulating Problem (3.2) by the proposed epigraphical splitting, yielding

minimize
(x,ζ)∈[0,255]N×V

‖Ax− z‖22 s. t. (Fx, ζ) ∈ E, (3.9)

where the convex sets E and V are defined in Sections 3.2.1 and 3.2.2 according
to the type of `q,p-ball involved in Problem (3.2). The iterations of M+LFBF and
SDMM associated to the above problem are reported in Algorithms 3.2 and 3.4,
which involve only projections available in closed form, as explained next.

3.2.1 Mixed norms

Let q = 1 and p ∈ {2,+∞} in (3.3). Then, the sublevel set of the `1,p-norm can
be decomposed by introducing an auxiliary vector ζ = (ζ(`))1≤`≤L such that

L∑
`=1
‖y(`)‖p ≤ η ⇔


(∀` ∈ {1, . . . , L}) ‖y(`)‖p ≤ ζ(`),
L∑
`=1

ζ(`) ≤ η.
(3.10)

Consequently, the sets E and V in Problem (3.9) are defined as follows:

E =
{

(y, ζ) ∈ RM × RL
∣∣ (∀` ∈ {1, . . . , L}) (y(`), ζ(`)) ∈ epi ‖ · ‖p

}
,

V =
{
ζ ∈ RL

∣∣ 1>L ζ ≤ η
}
, (3.11)

with the epigraphical projections given in Corollary 2.3.5 and Proposition 2.3.7.

3.2.2 Usual norms

Let q ≥ 1 and p = q in (3.3). Then, the sublevel set of the `q,q-norm can be
split by introducing an auxiliary vector ζ = (ζ(`,m))1≤`≤L,1≤m≤M`

such that

L∑
`=1
‖y(`)‖qq ≤ η ⇔


(∀` ∈ {1, . . . , L})(∀m ∈ {1, . . . ,M`}) |y(`,m)|q ≤ ζ(`,m),
L∑
`=1

M∑̀
m=1

ζ(`,m) ≤ η.

(3.12)
Consequently, the sets E and V in Problem (3.9) are defined as follows:

E = {(y, ζ) ∈ RM × RM | (∀` ∈ {1, . . . , L})
(∀m ∈ {1, . . . ,M`}) (y(`,m), ζ(`,m)) ∈ epi | · |q

}
, (3.13)

V =
{
ζ ∈ RM

∣∣ 1>M ζ ≤ η
}
, (3.14)

and the epigraphical projections are given in Propositions 2.3.2 and 2.3.3.
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Algorithm 3.1 M+LFBF algorithm [66] specialized to Problem (3.2)

Initialization choose
(
x[0], y[0]) ∈ RN × RM

set γ ∈
]
0,
(
2‖A‖2 + ‖F‖2)−1/2

[
For i = 0, 1, . . .

p[i] = P[0,255]N

(
x[i] − γ (2A>Ax[i] − 2A>z + F>y[i])

)
ŷ[i] = y[i] + γ Fx[i]

v[i] = ŷ[i] − γPlev≤η h
(
ŷ[i]/γ

)
y[i+1] = v[i] + γF

(
p[i] − x[i])

x[i+1] = p[i] − γ
(

2A>A(p[i] − x[i]) + F>(v[i] − y[i])
)

Algorithm 3.2 M+LFBF algorithm [66] specialized to Problem (3.9)

Initialization
choose

(
x[0], ζ [0]) ∈ RN × V

choose
(
y[0], ξ[0]) ∈ RM × V

set γ ∈
]
0,
(
2‖A‖2 + max{‖F‖2, 1}

)−1/2
[

For i = 0, 1, . . .

p[i] = P[0,255]N

(
x[i] − γ (2A>Ax[i] − 2A>z + F>y[i])

)
ρ[i] = PV

(
ζ [i] − γ ξ[i])

(ŷ[i], ξ̂[i]) = (y[i], ξ[i]) + γ (Fx[i], ζ [i])

(v[i], ν[i]) = (ŷ[i], ξ̂[i])− γPE
(
ŷ[i]/γ, ξ̂[i]/γ

)
y[i+1] = v[i] + γF

(
p[i] − x[i])

ξ[i+1] = ν[i] + γ
(
ρ[i] − ζ [i])

x[i+1] = p[i] − γ
(

2A>A(p[i] − x[i]) + F>(v[i] − y[i])
)

ζ [i+1] = ρ[i] − γ
(
ν[i] − ξ[i])



30 Chapter 3. Constraints based on mixed norms

Algorithm 3.3 SDMM algorithm [65] specialized to Problem (3.2)

Initialization
choose

(
y

[0]
1 , y

[0]
2 , y

[0]
3

)
∈ RN × RK × RM

choose
(
y

[0]
1 , y

[0]
2 , y

[0]
3

)
∈ RN × RK × RM

set γ ∈]0,+∞[

define H = Id +A>A+ F>F

For i = 0, 1, . . .

x[i] = H−1
(
y

[i]
1 − y

[i]
1 +A>(y[i]

2 − y
[i]
2 ) + F>(y[i]

3 − y
[i]
3 )
)

y
[i+1]
1 = P[0,255]N

(
x[i] + y

[i]
1
)

y
[i+1]
2 = proxγ‖·−z‖2

2

(
Ax[i] + y

[i]
2
)

y
[i+1]
3 = Plev≤η h

(
Fx[i] + y

[i]
3
)

y
[i+1]
1 = y

[i]
1 + x[i] − y[i+1]

1

y
[i+1]
2 = y

[i]
2 +Ax[i] − y[i+1]

2

y
[i+1]
3 = y

[i]
3 + Fx[i] − y[i+1]

3

Algorithm 3.4 SDMM algorithm [65] specialized to Problem (3.9)

Initialization

choose
(
y

[0]
1 , y

[0]
2 , y

[0]
3

)
∈ RN × RK × RM

choose
(
y

[0]
1 , y

[0]
2 , y

[0]
3

)
∈ RN × RK × RM

choose
(
ν

[0]
2 , ν

[0]
2 , ν

[0]
3 , ν

[0]
3

)
∈ V × V × V × V

set γ ∈]0,+∞[

define H = Id +A>A+ F>F

For i = 0, 1, . . .

x[i] = H−1
(
y

[i]
1 − y

[i]
1 +A>(y[i]

2 − y
[i]
2 ) + F>(y[i]

3 − y
[i]
3 )
)

ζ [i] = ν
[i]
2 − ν

[i]
2 + ν

[i]
3 − ν

[i]
3

y
[i+1]
1 = P[0,255]N

(
x[i] + y

[i]
1
)

y
[i+1]
2 = proxγ‖·−z‖2

2

(
Ax[i] + y

[i]
2
)

ν
[i+1]
2 = PV

(
ζ [i] + ν

[i]
2
)

(y[i+1]
3 , ν

[i+1]
3 ) = PE

(
Fx[i] + y

[i]
3 , ζ

[i] + ν
[i]
3
)

y
[i+1]
1 = y

[i]
1 + x[i] − y[i+1]

1

(y[i+1]
2 , ν

[i+1]
2 ) = (y[i]

2 , ν
[i]
2 ) + (Ax[i], ζ [i])− (y[i+1]

2 , ν
[i+1]
2 )

(y[i+1]
3 , ν

[i+1]
3 ) = (y[i]

3 , ν
[i]
3 ) + (Fx[i], ζ [i])− (y[i+1]

3 , ν
[i+1]
3 )
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3.3 Numerical results
A numerical analysis of the proposed approach is now conducted. In Section 3.3.1,
the visual impact of TVp and NLTV1,p regularization is evaluated for different
choices of p ∈ {1, 2,+∞}. In Section 3.3.2, the execution times attained with
the epigraphical approach illustrated in Algorithms 3.2 and 3.4 are compared to
those achieved with the standard approach given in Algorithms 3.1 and 3.3.

3.3.1 Assessment of the recovered quality

Figure 3.1 shows two images degraded with the model in (3.1). The same images
recovered by solving Problem (3.2) are illustrated in Figures 3.2 and 3.3 for
several types of regularity constraints, in which the corresponding bounds η were
hand-tuned in order to achieve the best SNR values. Additional examples with
various grayscale images are reported in Table 3.1. The results show the interest
of considering nonlocal operators for modeling the regularity present in natural
images. They also confirm that NLTV1,2 achieves a better performance with
grayscale images, whereas NLTV1,∞ is better suited for color images [171]. Note
however that the regularization is applied separately on each color channel. In
this regard, a more powerful approach will be proposed in Chapter 5.

(a) Original image (N = 256× 256). (b) Degraded image (K = 0.4×N).

(c) Original image (N=320×480×3). (d) Degraded image (K = 0.4×N).

Figure 3.1 Examples of images degraded by the model (3.1) through the use of a 3× 3
uniform blur, a decimation that randomly removes 60% of the pixels, and
an additive white Gaussian noise with variance 102. For color images, each
channel is degraded separately.
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Table 3.1 SNR (dB) and SSIM indexes (blur: 3× 3, noise: σ = 10, decimation: 60%)

SNR (dB) – SSIM N TV2 TV∞ NLTV1,2 NLTV1,∞

Lena 2562 23.18 – 0.783 22.77 – 0.769 24.18 – 0.812 24.14 – 0.812
Boat 2562 20.25 – 0.739 19.74 – 0.718 21.13 – 0.770 20.77 – 0.741
Cameraman 2562 20.06 – 0.774 19.68 – 0.755 20.71 – 0.801 20.17 – 0.743
House 2562 25.47 – 0.823 24.70 – 0.808 26.31 – 0.836 25.87 – 0.823
Man 2562 19.24 – 0.725 18.96 – 0.714 19.66 – 0.741 19.51 – 0.736
Peppers 5122 23.69 – 0.801 23.25 – 0.786 24.80 – 0.829 24.45 – 0.813
Barbara 5122 16.74 – 0.653 16.64 – 0.642 17.02 – 0.673 16.99 – 0.652
Hill 5122 22.18 – 0.723 21.89 – 0.715 22.55 – 0.735 22.43 – 0.733

3.3.2 Assessment of the execution time

Figure 3.4 plots the relative distance ‖x[i] − x[∞]‖/‖x[∞]‖ (as a function of
time) of iterates generated by Algorithm 3.1 (M+LFBF direct), Algorithm 3.2
(M+LFBF epi), Algorithm 3.3 (SDMM direct), and Algorithm 3.4 (SDMM epi).
This experiment refers to the example in Figure 3.3, where the stopping criterion
was set to ‖x[i+1] − x[i]‖ ≤ 10−4‖x[i]‖, with x[∞] denoting the solution obtained
when such a criterion is reached up to 106 iterations (note that x[∞] may not be
unique, hence it was computed for each algorithm independently). These plots
indicate that the proposed epigraphical approach yields a faster execution time.

Since the constraint bound η may not be known precisely, it is important to
evaluate the impact of its choice on the performance of the proposed epigraphical
splitting (it is outside the scope of this thesis to devise an optimal strategy
to set this bound). In Tables 3.2-3.5, we compare the execution times of epi-
graphical and direct approaches for different choices of regularization constraints
and values of η. This experiment refers to the example in Figure 3.2, as the
computational burden of the projection onto the `1,∞-ball becomes unbearable
with an image bigger than 256× 256 (see Figure 3.4). The stopping criterion is
set to ‖x[i+1]−x[i]‖ ≤ 10−4‖x[i]‖. For more readability, the values of η are given
as a multiplicative factor of TVp or NLTV1,p evaluated on the original image.

• Tables 3.2 and 3.3 report the comparisons for TV2 and TV∞, respectively.
The execution times indicate that the epigraphical approach yields a faster
convergence although it requires more iterations in order to converge. This
can be explained by the computational cost of the subiterations required
by the direct projections onto the `1,p-ball.

• Tables 3.2 and 3.3 also show that errors within ±20% from the optimal
value for η lead to SNR variations within 2%.

• Tables 3.4 and 3.5 collect the results of NLTV1,2 and NLTV1,∞ for different
neighborhood sizes. The execution times show that the epigraphical
approach is faster than the direct one for both considered algorithms.

• Tables 3.4 and 3.5 also show that errors within ±20% from the optimal
bound value lead to SNR variations within 1%.

The codes used in all the experiments were developed in MATLAB R2011b (with
the operators F and F> being implemented in C throuh mex-files) and executed
on an Intel Xeon CPU at 2.80 GHz and 8 GB of RAM.
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(a) Original image (zoom). (b) NLTV2,2: 22.26–0.842.

(c) TV1: 19.79–0.838. (d) TV2: 20.80–0.855.

(e) TV∞: 20.25–0.853. (f) NLTV1,1: 20.93–0.865.

(g) NLTV1,2: 22.62–0.897. (h) NLTV1,∞: 22.38–0.897.

Figure 3.2 SNR (dB) – SSIM indexes for the recovery of a grayscale image degraded with
a uniform blur of size 3× 3, a noise of variance 102, and 60% of decimation.



34 Chapter 3. Constraints based on mixed norms

(a) Original image (zoom). (b) NLTV2,2: 18.12–0.761.

(c) TV1: 17.78–0.787. (d) TV2: 18.36–0.821.

(e) TV∞: 18.91–0.824. (f) NLTV1,1: 18.93–0.828.

(g) NLTV1,2: 19.47–0.839. (h) NLTV1,∞: 20.17–0.847.

Figure 3.3 SNR (dB) – SSIM indexes for the recovery of a color image degraded with a
uniform blur of size 3× 3, a noise of variance 102, and 60% of decimation.
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(b) TV∞.
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(c) NLTV1,2.

0 500 1000 1500 2000 2500 3000
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

M+LFBF (direct)

M+LFBF (epi)

SDMM (direct)

SDMM (epi)

(d) NLTV1,∞.

Figure 3.4 Relative distance to x[∞] vs execution time (seconds): plots comparing the
epigraphical and direct approaches implemented with M+LFBF and SDMM.
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Table 3.2 Results for the TV2 constraint and different values of η.

η SNR (dB) – SSIM
SDMM M+LFBF

direct epigraphical speed up direct epigraphical speed up
# iter. sec. # iter. sec. # iter. sec. # iter. sec.

0.45 19.90 – 0.733 107 6.07 174 2.03 2.99 113 6.15 182 3.49 1.76
0.50 20.18 – 0.745 117 6.95 159 1.95 3.57 116 6.97 168 3.44 2.03
0.56 20.23 – 0.745 129 8.36 153 1.90 4.41 124 8.17 159 3.01 2.72
0.62 20.16 – 0.737 141 9.44 155 1.83 5.16 131 8.62 159 3.26 2.65
0.67 20.00 – 0.724 154 10.20 162 2.17 4.71 140 10.00 164 2.84 3.52

Table 3.3 Results for the TV∞ constraint and different values of η.

η SNR (dB) – SSIM
SDMM M+LFBF

direct epigraphical speed up direct epigraphical speed up
# iter. sec. # iter. sec. # iter. sec. # iter. sec.

0.45 19.52 – 0.726 160 312.55 231 3.89 80.43 183 347.10 252 6.43 53.96
0.50 19.71 – 0.728 168 342.01 215 3.75 91.31 185 368.24 236 5.83 63.17
0.56 19.71 – 0.734 180 373.60 211 3.49 106.93 189 386.29 229 5.53 69.91
0.62 19.59 – 0.715 196 412.68 216 3.67 112.50 198 411.04 229 5.86 70.15
0.67 19.39 – 0.698 211 448.77 223 3.76 119.27 207 437.66 234 5.76 75.96

Table 3.4 Results obtained with NLTV1,2 constraint and different values of η

η SNR (dB) – SSIM
SDMM M+LFBF

direct epigraphical speed up direct epigraphical speed up
# iter. sec. # iter. sec. # iter. sec. # iter. sec.

Neighbourhood size: 3× 3
0.43 20.82 – 0.757 208 20.67 211 10.93 1.89 82 6.95 93 3.76 1.85
0.49 20.97 – 0.765 167 16.84 177 9.01 1.87 75 6.61 83 3.47 1.91
0.54 21.02 – 0.767 147 15.31 157 7.93 1.93 71 6.45 77 3.15 2.04
0.59 20.98 – 0.764 134 14.44 148 7.67 1.88 72 6.58 77 3.24 2.03
0.65 20.88 – 0.757 133 14.82 136 7.11 2.08 76 7.53 80 3.27 2.30

Neighbourhood size: 5× 5
0.43 21.00 – 0.766 301 56.03 343 45.18 1.24 82 8.51 90 5.43 1.57
0.49 21.15 – 0.773 260 49.03 302 39.64 1.24 75 7.90 81 4.90 1.61
0.54 21.20 – 0.775 242 46.31 283 37.72 1.23 71 8.26 75 4.47 1.85
0.59 21.17 – 0.773 231 46.20 268 36.56 1.26 70 7.94 74 4.49 1.77
0.65 21.08 – 0.767 220 44.64 252 34.46 1.30 73 8.40 76 4.59 1.83

Table 3.5 Results obtained with NLTV1,∞ and different values of η

η SNR (dB) – SSIM
SDMM M+LFBF

direct epigraphical speed up direct epigraphical speed up
# iter. sec. # iter. sec. # iter. sec. # iter. sec.

Neighbourhood size: 3× 3
0.43 20.78 – 0.762 434 1470.46 449 25.03 58.76 225 730.26 244 12.35 59.15
0.49 20.86 – 0.764 395 1319.64 413 22.86 57.72 221 692.25 237 11.92 58.08
0.54 20.83 – 0.760 363 1193.61 382 21.46 55.62 217 667.50 233 11.46 58.22
0.59 20.73 – 0.752 340 1093.26 354 19.77 55.30 216 653.79 230 11.67 56.01
0.65 20.58 – 0.740 322 1007.55 336 18.64 54.06 216 643.00 229 11.45 56.18

Neighbourhood size: 5× 5
0.43 20.91 – 0.769 384 2069.62 452 64.42 32.13 233 863.01 252 18.47 46.73
0.49 20.97 – 0.767 326 1700.34 412 58.66 28.99 231 822.06 247 18.36 44.77
0.54 20.98 – 0.771 290 1476.98 389 55.35 26.69 229 787.61 245 17.90 43.99
0.59 20.88 – 0.759 276 1336.16 374 52.64 25.38 230 772.42 245 17.57 43.96
0.65 20.75 – 0.749 268 1220.14 362 51.45 23.72 231 760.86 245 17.81 42.72
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3.4 Conclusions
In this chapter, we have applied the epigraphical splitting to image recovery prob-
lems involving a regularity constraint based on mixed norms. On the one hand,
the obtained results demonstrate the good performance of nonlocal measures
and the interest of considering the infinity norm for the regularization of color
images. On the other hand, the obtained results indicate that the epigraphical
splitting leads to execution times faster than those achieved with the direct
computation of the projections via standard iterative solutions. Parallelization
of our codes should even allow us to accelerate them [102].

In the next chapter, we will employ the epigraphical splitting to develop
approximation methods for addressing more general convex constraints.





Le savant n’est pas l’homme qui
fournit les vraies réponses: c’est
celui qui pose les vraies questions.

Claude Lévi-Strauss

Chapter 4
Constraints based on
piecewise-affine functions

The main focus of this chapter is the epigraphical splitting applied to outer-approximated
constraints. To this end, we present a primal-dual approach grounded on the epigraphical
projection of the max function. Experiments with constraints based on Kullback-Leibler
divergence and logistic loss demonstrate the efficiency of our approach.

4.1 Introduction
The epigraphical splitting revolves around the idea of replacing the sublevel set
of a block-separable function h∈Γ0(RM ) with a collection of epigraphs, namely

h(y) =
L∑
`=1

h`(y(`)) ≤ η ⇔

{
1>Lζ ≤ η,
(∀` ∈ {1, . . . , L}) h`(y(`)) ≤ ζ(`),

(4.1)

with the vector y ∈ RM block-decomposed as in (2.3). As illustrated in Chapter 3,
the above decomposition turns out to be very efficient when the functions
(h`)1≤`≤L are `p-norms with p ∈ {1, 2,+∞}, since the associated epigraphical
projections can be quickly evaluated. However, the same efficiency cannot be
claimed when there is no available expression for the epigraphical projection.

The present chapter proposes a solution to overcome the aforementioned
difficulty. The principle is to outer approximate the sublevel set of h by replacing,
for every ` ∈ {1, . . . , L}, the term h` with a lower-approximating function having
a tractable epigraph, so as to facilitate the use of the epigraphical splitting. This
can be certainly achieved by means of piecewise-affine approximations, since the
associated epigraph can be handled through the epigraphical projection of the
max function derived in Section 2.3.3. Indeed, a piecewise-affine function can be
expressed as the maximum of a number of scalar products, namely

(∀y(`) ∈ RM`) ĥ`(y(`)) = max
1≤j≤J`

δ>`,j y(`) + µ`,j , (4.2)

where δ`,j ∈ RM` and µ`,j ∈ R for every j ∈ {1, . . . , J`}, with J` ∈ N∗.
The chapter is organized as follows. Section 4.2 details an approximation

technique based on piecewise-affine functions, together with some theoretical
equivalences between the original problem and the approximated one. Since
the epigraphical splitting decomposes the outer-approximated constraint into a
collection of convex polyhedrons, Section 4.3 presents a primal-dual approach to
deal with such constraints through the epigraphical projection of the max function.
Finally, Section 4.4 demonstrates the validity of the proposed approximation
method through an image recovery problem involving the Kullback-Leibler
divergence, and a supervised classification problem based on logistic regression.

39
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4.2 Lower approximation
The proposed approximation deals with optimization problems of the form

minimize
x∈RN

R∑
r=1

fr(Tr x) s. t. h(Fx) =
L∑
`=1

h` (F` x) ≤ η, (4.3)

and it consists of replacing each term h` with a function in Γ0(RM`) such that

(∀y(`) ∈ RM`) ĥ`(y(`)) ≤ h`(y(`)). (4.4)

So doing, the constraint in Problem (4.3) can be outer approximated as follows

{
y ∈ RM

∣∣ L∑
`=1

h`(y(`)) ≤ η
}
⊂

{
y ∈ RM

∣∣ L∑
`=1

ĥ`(y(`)) ≤ η
}
, (4.5)

which eventually leads to the approximated problem

minimize
x∈RN

R∑
r=1

fr(Tr x) s. t.
L∑
`=1

ĥ` (F` x) ≤ η. (4.6)

A possible choice for the function ĥ` is illustrated in Section 4.2.1, whereas a
theoretical equivalence between the above problems is detailed in Section 4.2.2.

4.2.1 Piecewise-affine function

In the spirit of cutting plane methods [133] and some of their extensions [57,
116], the function h` in (4.3) can be lower approximated by a piecewise-affine
function, as shown in Figure 4.1. To do so, one can notice that by conjugation

h`(y(`)) = sup
δ`∈RM`

δ>` y(`) − h∗` (δ`). (4.7)

By computing the supremum over a number J` of vectors {δ`,1, . . . , δ`,J`} ⊂ RM` ,
one can lower approximate h` through a function of the form

ĥ`(y(`)) = max
1≤j≤J`

δ>`,j y(`) − h∗` (δ`,j). (4.8)

In particular, let {a`,1, . . . , a`,J`} ⊂ RM` be distinct elements in the relative
interior of dom h` and, for every j ∈ {1, . . . , J`}, let δ`,j ∈ ∂h`(a`,j). By the
definition of subgradient, for every j ∈ {1, . . . , J`}, the following inequality holds

(∀y(`) ∈ RM`) δ>`,j(y(`) − a`,j) + h`(a`,j) ≤ h`(y(`)), (4.9)
which implies that h∗` (δ`,j) = δ>`,ja`,j − h`(a`,j). Altogether, the latter and (4.8)
show that a lower approximation of h` is given by

ĥ`(y(`)) = max
1≤j≤J`

δ>`,j y(`) + h`(a`,j)− δ>`,ja`,j︸ ︷︷ ︸
µ`,j

. (4.10)

The above piecewise-affine function is completely defined by the bundle set

B` =
{

(a`,j , δ`,j)
∣∣ j ∈ {1, . . . , J`}}, (4.11)

from which depends the tightness of the lower approximation in (4.4).
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Figure 4.1 A function (red line) and its piecewise-affine approximation (blue line).

4.2.2 Asymptotic behavior

The validity of the proposed approximation can be analyzed by considering a
sequence (ĥt)t∈N of progressively tighter approximations of the function h used
in Problem (4.3). For every t ∈ N, the function ĥt ∈ Γ0(RM ) is defined as

ĥt(y) =
L∑
`=1

ĥt`(y(`)), (4.12)

where
ĥt`(y(`)) = max

1≤j≤Jt
`

h`(at`,j) + (δt`,j)>(y(`) − at`,j). (4.13)

The above piecewise-affine function is defined from the bundle set

Bt` =
{

(at`,j , δt`,j)
∣∣ j ∈ {1, . . . , J t`}}, (4.14)

where at`,j ∈ RM` and δt`,j ∈ ∂h`(at`,j).
For every t ∈ N, Ĉt = lev≤η ĥt is an outer approximation of C = lev≤η h.

Under appropriate assumptions, it is possible to prove that such an approximation
asymptotically leads to a solution to Problem (4.3), as explained below.

Assumption 4.2.1.

(i). There exists x ∈ RN such that T1x ∈ dom f1, . . . , TRx ∈ dom fR, Fx ∈ C.

(ii).
∑R
r=1 fr ◦ Tr is coercive or F−1(Ĉ0) is bounded.

(iii). Bt` ⊂ B
t+1
` for every t ∈ N and for every ` ∈ {1, . . . , L}.

(iv). For every ` ∈ {1, . . . , L} and for every x ∈ RN such that F`x ∈ dom h`,

lim
t→+∞

ĥt`(F`x) = h`(F`x). (4.15)

(v).
⋂R
r=1 T

−1
r (dom fr) ⊂ F−1(dom h).



42 Chapter 4. Constraints based on piecewise-affine functions

Proposition 4.2.2. Under Assumption 4.2.1, the following points hold.

(i). For every t ∈ N, there exists a minimizer x̂t to
∑R
r=1 fr ◦Tr over F−1(Ĉt).

(ii). Let (x̂t)t∈N be a sequence of minimizers. Then, (x̂t)t∈N is a bounded
sequence, any of its cluster points is a solution x̂ to Problem (4.3), and(∑R

r=1 fr(Trx̂t)
)
t∈N is an increasing sequence converging to

∑R
r=1 fr(Trx̂).

(iii). If Problem (4.3) has a unique solution x̂, then (x̂t)t∈N converges to x̂.

Proof. Problem 4.3 is equivalent to minimize ϕ =
∑R
r=1 fr ◦ Tr + ιC ◦ F . For

every t ∈ N, let ϕ̂t =
∑R
r=1 fr ◦ Tr + ι

Ĉt
◦ F . Due to Assumption 4.2.1(iii),

ĥt ≤ ĥt+1 ≤ h, (4.16)

which implies that C ⊂ Ĉt+1 ⊂ Ĉt, and thus

ϕ̂t ≤ ϕ̂t+1 ≤ ϕ. (4.17)

From this inequality and Assumption 4.2.1(i), it can be deduced that the functions
ϕ and (ϕ̂t)t∈N are proper, thus they belong to Γ0(RN ).

In addition, due to Assumption 4.2.1(ii), ϕ0 is coercive (i.e., level-bounded),
and thus the sequence (ϕ̂t)t∈N is eventually level-bounded (see [192, Ex. 7.32]).
Besides, (ϕ̂t)t∈N converges pointwise to ϕ according to Assumptions 4.2.1(iv)-(v).
As (ϕ̂t)t∈N is an increasing sequence, Proposition 7.4(d) in [192] shows that
(ϕ̂t)t∈N epi-converges to ϕ. It can then be deduced from [192, Theorem 7.33]
that, for every t ∈ N, Argmin ϕ̂t 6= ∅, which proves (i). Theorem 7.33 in [192]
also allows us to claim that any sequence of minimizers (x̂t)t∈N is bounded, its
cluster points belong to Argminϕ, and ϕ̂t(x̂t) → inf ϕ as t → +∞. The fact
that (ϕ̂t(x̂t))t∈N is an increasing sequence follows from (4.17), which completes
the proof of (ii). The point (iii) is a direct consequence of (ii).

A natural question in this context is how the sets (Bt`)t∈N can be chosen so that
Assumption 4.2.1(iv) is satisfied. The following result provides an answer.

Proposition 4.2.3. Let ` ∈ {1, . . . , L}. Assume that h∗` is continuous relative
to its domainIf domh∗` is open, the continu-

ity property is clearly satisfied.
and that, for every δ` ∈ dom h∗` , there exists a sequence (at`, δt`)t∈N

such that (at`, δt`) ∈ Bt` for each t ∈ N, and

lim
t→+∞

δt` = δ`. (4.18)

Then,
(∀y(`) ∈ dom h`) lim

t→+∞
ĥt`(y(`)) = h`(y(`)). (4.19)

Proof. We proceed similarly to the proofs in [74, 158]. Let y(`) ∈ dom h`. Then,

h`(y(`)) = sup
δ`∈domh∗

`

(δ(`))>y(`) − h∗` (δ`) < +∞. (4.20)



4.2 Lower approximation 43

For any given positive real ε, there thus exists χ(`)
ε ∈ dom h∗` such that

h`(y(`)) ≤ (χ(`)
ε )>y(`) − h∗` (χ(`)

ε ) + ε

3 . (4.21)

Since h∗` is continuous relative to its domain, there exists a neighbourhood
N (χ(`)

ε ) of χ(`)
ε such that(
∀δ` ∈ N (χ(`)

ε ) ∩ dom h∗`
)

h∗` (δ`) ≤ h∗` (χ(`)
ε ) + ε

3 . (4.22)

In addition, we know that there exists a sequence (at`, δt`)t∈N such that, for every
t ∈ N, (at`, δt`) ∈ Bt` and limt→+∞ δt` = χ

(`)
ε . Hence, there exists tε ∈ N such that,

for every t ≥ tε, δt` ∈ N (χ(`)
ε ) ∩ dom h∗` and

(χ(`)
ε − δt`)>y(`) ≤ ε

3 . (4.23)

Now, by noticing that

ĥt`(y(`)) ≥ (δt`)>y(`) − h∗` (δt`), (4.24)

(4.21), (4.22) and (4.23) yield, for every t ≥ tε,

0 ≤ h`(y(`))− ĥt`(y(`))

≤ (χ(`)
ε − δt`)>y(`) + h∗` (δt`)− h∗` (χ(`)

ε ) + ε

3 ≤ ε. (4.25)

This shows that
(
ĥt`(y(`))

)
t∈N converges to h`(y(`)).

To illustrate these results, the Kullback-Leibler divergence is now considered.

Example 4.2.4. For every ` ∈ {1, . . . , L}, let M` = 1, z(`) ∈ [0,+∞[, and

(∀y(`) ∈ R) hKL
` (y(`)) =


−z(`) ln(y(`)) + α y(`), if y(`) > 0 and z(`) > 0,
α y(`), if y(`) ≥ 0 and z(`) = 0,
+∞, otherwise,

(4.26)
where α > 0. Then,

(∀δ` ∈ R) (hKL
` )∗(δ`) =


−z(`) ln

(
α− δ`
z`

)
− z(`), if δ` < α and z(`) > 0,

0 if δ` = α and z(`) = 0,
+∞, otherwise.

(4.27)
For every t ∈ N, set J t` = (t+ 1)2t and choose

Bt` =
{(z(`) 2t

j
, α` −

j

2t
) ∣∣∣ j ∈ {1, . . . , J t`}} . (4.28)

Then, Assumption 4.2.1(iii) holds and Proposition 4.2.3 shows that Assumption
4.2.1(iv) is also satisfied.

Note that these asymptotic properties are more of theoretical interest than
of practical one. Indeed, the applications considered in Section 4.4 will show
that satisfactory results are obtained for small values of the bundle size.
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4.3 Optimization method
The key point in the proposed method is that one solves the approximated
problem (4.6) in order to find a solution to the original problem (4.3). This
approach is motivated by the fact that the approximated problem is better suited
for the epigraphical splitting. Indeed, the piecewise-affine function ĥ in (4.10)
can be expressed as the max function composed with a linear operator, namely

(∀y(`) ∈ RM`) ĥ`(y(`)) = hmax
` (∆` y(`)), (4.29)

where the matrix ∆` is built from the bundled subgradients (δ`,j)1≤j≤J` of h`

∆` =

 δ
>
`,1
...

δ>`,J`

 ∈ RJ`×M` , (4.30)

and the function hmax
` is defined as the component-wise maximum

(∀u(`) = (u(`,j))1≤j≤J` ∈ RJ`) hmax
` (u(`)) = max

1≤j≤J`
u(`,j) + µ`,j . (4.31)

As a result, the epigraphical decomposition of Problem (4.6) yields

minimize
(x,ζ)∈RN×RL

R∑
r=1

fr(Tr x) s. t.


(∀` ∈ {1, . . . , L}) hmax

` (∆`F` x) ≤ ζ(`),

L∑
`=1

ζ(`) ≤ η.

(4.32)
By setting F = [F>1 . . . F>L ]> ∈ RM×N and ∆ = diag(∆1, . . . ,∆L) ∈ RJ×M
(with M = M1 + · · ·+ML and J = J1 + · · ·+ JL), the above problem can be
more conveniently rewritten as follows

minimize
(x,ζ)∈RN×RL

R∑
r=1

fr(Tr x) s. t.
{

(∆Fx, ζ) ∈ E,
ζ ∈ V,

(4.33)

where

E =
{

(u, ζ) ∈ RJ × RL
∣∣ (∀` ∈ {1, . . . , L}) (u(`), ζ(`)) ∈ epihmax

`

}
, (4.34)

V =
{
ζ ∈ RL

∣∣ 1>Lζ ≤ η
}
, (4.35)

with the generic vector u ∈ RJ being block-decomposed as follows

u =
[ (

u(1)
)>

︸ ︷︷ ︸
size J1

, . . . ,
(

u(L)
)>

︸ ︷︷ ︸
size JL

]>
∈ RJ=J1+···+JL . (4.36)

The undoubtedly advantage of the above reformulation is that the projection
onto E can be computed in closed form (see Section 2.3.3), opening the way
to efficient implementations of Problem (4.33) based on primal-dual proximal
methods. Some practical examples will be presented in the next section.
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4.4 Numerical results
The present section illustrates the validity of the proposed approximation method
by means of two practical applications, such as image recovery in the presence of
Poisson noise, and logistic regression. It is worth emphasizing that the primarily
aim of the numerical analysis presented hereafter is to compare the proposed
approach with “exact” state-of-the-art solutions [137, 207], so as to assess the
impact of the approximation over the quality of obtained results.

4.4.1 Image recovery with Poisson noise

Digital imaging sensors are inherently affected by Poisson noise, a signal-
dependent form of uncertainty originated from the quantized nature of light.
This phenomenon is very intense in applications such as emission tomography,
microscopy, and astronomy. As a result, it is common to model the degradation
process with a linear operator followed by a Poisson noise, namely

z = Pα(Ax), (4.37)

where x ∈ RN , A ∈ RK×N , and z ∈ [0,+∞[K are defined as in (3.1), while Pα
denotes a realization of Poisson noise with scaling parameter α > 0.

A possible approach to recover x from z is to formulate a convex optimization
problem in which the TV regularization in (3.4) is optimized under a constraint
involving the KL divergence in (4.26), yielding [207]

minimize
x∈RN

TV2(x) s. t.
K∑
`=1

hKL
`

(
(Ax)(`)

)
≤ K/2, (4.38)

where the bound K/2 follows from the statistical properties of Poisson noise
[238]. According to the optimization method detailed in Section 4.3, the above
problem can be approximated through an instance of Problem (4.33), namely

minimize
(x,ζ)∈RN×RK

‖Fx‖1,2 s. t.
{

(∆Ax, ζ) ∈ E,
ζ ∈ V,

(4.39)

where ‖ · ‖1,2 is the `1,2-norm defined in (3.3), and F ∈ R2N×N is the gradient
operator defined in (3.5). The iterations of PDFB [69, 215] associated with the
approximated problem (4.39) are given in Algorithm 4.1. For sake of comparison,
the iterations of PDFB associated to the exact problem (4.38) are given in Algo-
rithm 4.2, where the projection onto D =

{
y ∈ RK

∣∣ ∑K
`=1 h

KL
` (y(`)) ≤ K/2

}
is

computed with a specific iterative method [207], as detailed in Section 1.3.3.
Figure 4.2 illustrates an example of image degraded by the model in (4.37)

using a uniform blur of size 3× 3 and α = 1, along with the images recovered
by solving the exact problem in (4.38), and the approximated one in (4.39) for
several sizes of the bundle set indicated in (4.28). The SNR indexes show that
satisfactory results can be obtained with small bundle sets, while the execution
times indicate the efficiency of the proposed optimization method w.r.t. the
approach based on the direct computation of projections via inner iterations [207].
In this experiment, the stopping criterion was set to ‖x[i+1] − x[i]‖ ≤ 10−4‖x[i]‖,
the algorithms were developed in MATLAB R2011b,
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(a) Original image. (b) Degraded. (c) Exact [207]. SNR–SSIM:
21.98–0.869. Time: 16.35 s.

(d) Approx with Jk = 9.
SNR–SSIM: 21.80–0.861.
Time: 44.05 s.

(e) Approx with J` = 13.
SNR–SSIM: 22.04–0.862.
Time: 59.47 s.

(f) Approx with J` = 17.
SNR–SSIM: 22.04–0.862.
Time: 70.25 s.

Figure 4.2 SNR (dB) – SSIM indexes for the recovery of a grayscale image degraded
with a uniform blur of size 3× 3 and a Poisson noise with scaling α = 1.

Algorithm 4.1 FBPD for Problem (4.39)

Initialization
choose

(
x[0], y[0], w[0]) ∈ RN × RJ × R2N

choose
(
ζ [0], ξ[0]) ∈ RK × RK

set τ > 0 and σ > 0 such that

τσ
(
‖F‖2 + max{‖∆A‖2, 1}

)
≤ 1

For i = 0, 1, . . .

x[i+1] = x[i] − τ
(
A>∆>y[i] + F>w[i])

ζ [i+1] = PV
(
ζ [i] − γ ξ[i])

ŷ[i] = y[i] + σA
(
2x[i+1] − x[i])

ξ̂[i] = ξ[i] + σ
(
2ζ [i+1] − ζ [i])

ŵ[i] = w[i] + σF
(
2x[i+1] − x[i])

(y[i+1], ξ[i+1]) = (ŷ[i], ξ̂[i])− σPE
(
ŷ[i]

σ
, ξ̂

[i]

σ

)
w[i+1] = ŵ[i] − σ prox 1

σ
‖·‖1,2

(
ŵ[i]/σ

)

Algorithm 4.2 FBPD for Problem (4.38)

Initialization
choose x[0] ∈ RN

choose
(
y[0], w[0]) ∈ RJ × R2N

set τ > 0 and σ > 0 such that

τσ
(
‖F‖2 + ‖A‖2) ≤ 1

For i = 0, 1, . . .

x[i+1] = x[i] − τ
(
A>y[i] + F>w[i])

ŷ[i] = y[i] + σA
(
2x[i+1] − x[i])

ŵ[i] = w[i] + σF
(
2x[i+1] − x[i])

y[i+1] = ŷ[i] − σPD
(
ŷ[i]/σ

)
w[i+1] = ŵ[i] − σ prox 1

σ
‖·‖1,2

(
ŵ[i]/σ

)
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4.4.2 Classification with logistic regression

Classification is the task of identifying the class k ∈ {1, . . . ,K} to which belongs
an observation u ∈ RN (e.g., a signal, image, or graph). To do so, one can select
the class that maximizes the correlation with some “references”, namely

d(u) = argmax
k∈{1,...,K}

φ(u)>x(k), (4.40)

where φ : RN 7→ RM denotes the mapping into an arbitrary feature space, and
x = [(x(1))> . . . (x(K))>]> ∈ RMK denotes the vector of references that (in
supervised learning) have to be estimated from a given set of input-output pairs

S =
{

(u`, z`) ∈ RN × {1, . . . ,K}
∣∣ ` ∈ {1, . . . , L}}. (4.41)

Finding the vector x that allows (4.40) to correctly predict all the training
samples is an ill-posed problem, as there is no guarantee that such a vector exists.
Logistic regression overcomes this issue by resorting to a maximum a posteriori
probability (MAP) estimation of the vector x. To this end, the likelihood of the
training samples is modeled by the normalized exponential distribution

(∀` ∈ {1, . . . , L}) Pr
(
d(u`) = z` | x

)
=

exp
(
φ(u`)>x(z`)

)∑K
k=1 exp

(
φ(u`)>x(k)

) . (4.42)

The MAP approach thus amounts to minimizing the anti-log of the above
likelihood and a Gaussian prior distribution (scaled by a factor λ > 0), yielding

minimize
x∈RMK

λ ‖x‖22 +
L∑
`=1

log
(

1 +
∑
k 6=z`

eφ(u`)>(x(k)−x(z`))
)
. (4.43)

Despite the popularity of quadratic regularization, sparsity-inducing penalties
have recently attracted much attention in machine learning, as they perform an
implicit “feature selection” by shrinking small coefficients to zero [9, 23, 137,
189, 214, 218]. A possible formulation of the sparse logistic regression is

minimize
x∈RMK

K∑
k=1
‖x(k)‖1,p s. t.

L∑
`=1

hlog
` (F` x) ≤ η, (4.44)

where η ≥ 0, F` x = [φ(u`)>(x(k) − x(z`))]1≤k≤K ∈ RK×MK , and

(∀y(`) = (y(`,k))1≤k≤K ∈ RK) hlog
` (y(`)) = log

( K∑
k=1

exp
(
y(`,k))). (4.45)

According to the optimization method detailed in Section 4.3, the above problem
can be approximated through an instance of Problem (4.33), namely

minimize
(x,ζ)∈RMK×RL

f(x) s. t.
{

(∆Fx, ζ) ∈ E,
ζ ∈ V,

(4.46)

where f ∈ Γ0(RMK) denotes the regularization term, and F = [F>1 . . . F>L ]>.
The iterations of PDFB associated to Problem (4.46) are given in Algorithm 4.3.
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For sake of comparison, the regularized version of Problem (4.44) is considered
as well, which amounts to

minimize
x∈RMK

f(x) + λ

L∑
`=1

hlog
` (F` x), (4.47)

with λ > 0. The above problem can be solved exactly through the iterations of
forward-backward splitting summarized in Algorithm 4.4, as the function hlog

` is
differentiable with 1-Lipschitz continuous gradient [24].

Figure 4.3 illustrates a database containing a large number of 28× 28 images
(N = 784) displaying handwritten digits (K = 10) organized in 60000 training
images and 10000 test images [142]. This database is used to evaluate the
performance of logistic regression w.r.t. the exact regularized problem (4.47),
and the approximated problem (4.46) for several sizes of the bundle set (built
by uniformly sampling the hypercube [−3, 3]K). In both cases, the mapping φ is
given by Kernel PCA [197] with a Gaussian kernel (thus M = N).

Table 4.1 collects the classification errors obtained by running the classifiers
on the 10000 test images, after a learning performed on training sets of different
size L ∈ {5K, 10K, 20K, 50K} and with different values of the parameter η.
For the regularization, we used the `1,∞-norm computed by dividing each
vector (x(k))1≤k≤K in blocks of size 10. The results indicate that the proposed
approximation is slightly sensitive to the size of the bundle set, and that even a
coarse approximation allows one to achieve a performance close to the ideal case,
within an error of 0.5%. It is worth emphasizing that the proposed approach
aims at directly solving Problem (4.44), while state-of-the-art methods only
focus on the regularized problem (4.47), which presents no challenge from an
optimization standpoint.

4.5 Conclusion
In this chapter, we have proposed a technique for outer approximating the sublevel
set of a block-separable function. We have then derived an optimization method
for dealing with such an approximated constraint through the epigraphical
splitting. To illustrate the validity of our approach, we have tackled constraints
involving the Kullback-Leibler divergence and the logistic loss. In the first
case, the results obtained with the proposed approximation are equivalent to
those achieved with the exact approach. In the second case, the proposed
approximation allows us to derive an algorithm for solving the sparse logistic
regression in constrained form, and the comparison with the regularized version
shows that our approach achieves a performance close to the exact case.

In the next part, we will employ the epigraphical splitting to design competi-
tive algorithms in the context of multicomponent image recovery, classification
with sparse support vector machines, and PRNU-based image forgery detection.
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(a) Training images. (b) Scatter plot in a feature space.

Figure 4.3 MNIST database.

Algorithm 4.3 FBPD algorithm [69, 215] specialized to Problem (4.46)

Initialization choose
(
x[0], ζ [0]) ∈ RN × RL

choose
(
y[0], ξ[0]) ∈ RJ × RL

set τ > 0 and σ > 0 such that τσmax{‖∆F‖2, 1} ≤ 1
For i = 0, 1, . . .

x[i+1] = proxτf
(
x[i] − τF>∆>y[i])

ζ [i+1] = PV
(
ζ [i] − γ ξ[i])

ŷ[i] = y[i] + σF
(
2x[i+1] − x[i])

ξ̂[i] = ξ[i] + σ
(
2ζ [i+1] − ζ [i])

(y[i+1], ξ[i+1]) = (ŷ[i], ξ̂[i])− σPE
(
ŷ[i]/σ, ξ̂[i]/σ

)

Algorithm 4.4 Forward-backward splitting [68] specialized to Problem (4.47)

Initialization⌊
choose x[0] ∈ RN

set γ ∈ ]0, 2[
For i = 0, 1, . . .⌊

x[i+1] = proxγf

(
x[i] − γ

L∑
`=1

F>` ∇hlog
` (F` x[i])

)
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Table 4.1 Classification errors (in the case K = 3) obtained with the lower-approximated
logistic regression for several values of L, η and J` = (2m+ 1)K−1.

η
g = || · ||1,∞

m = 3 m = 5 m = 7 m = 9 exact

L/K = 5

0.01L 3.37 % 3.40 % 3.37 % 3.43 %

2.76 %

0.05L 3.08 % 3.53 % 3.24 % 3.21 %
0.1L 3.11 % 2.83 % 3.08 % 2.92 %
0.5L 2.45 % 3.08 % 3.11 % 2.57 %
0.7L 3.15 % 2.64 % 2.80 % 2.80 %
1.0L 6.04 % 6.32 % 6.70 % 6.93 %

L/K = 10

0.01L 3.05 % 2.96 % 2.89 % 2.92 %

2.51 %

0.05L 2.48 % 2.48 % 2.86 % 2.48 %
0.1L 2.67 % 2.64 % 2.80 % 2.83 %
0.5L 2.32 % 2.67 % 2.51 % 2.29 %
0.7L 2.80 % 2.70 % 2.41 % 2.41 %
1.0L 6.77 % 4.26 % 3.62 % 3.56 %

L/K = 20

0.005L 1.78 % 2.22 % 2.03 % 2.07 %

1.97 %

0.01L 2.35 % 2.07 % 2.00 % 2.07 %
0.05L 1.68 % 2.03 % 1.97 % 2.05 %
0.1L 2.07 % 2.07 % 1.94 % 2.03 %
0.5L 2.32 % 2.76 % 2.67 % 2.70 %
0.7L 3.53 % 2.99 % 3.02 % 2.92 %
1.0L 8.64 % 6.23 % 7.05 % 6.55 %

L/K = 50

0.005L 1.56 % 1.08 % 1.08 % 1.14 %

1.49 %

0.01L 1.56 % 1.43 % 1.18 % 1.53 %
0.05L 1.84 % 1.43 % 1.53 % 1.56 %
0.1L 2.03 % 1.84 % 1.81 % 1.84 %
0.5L 2.89 % 2.86 % 2.76 % 2.80 %
0.7L 4.26 % 3.37 % 3.37 % 3.34 %
1.0L 12.81 % 10.84 % 12.20 % 11.63 %
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Knowledge without application is
like a book that is never read.

Christopher Crawford

Chapter 5
Nonlocal structure tensor

The main focus of this chapter is multicomponent image recovery from degraded obser-
vations, for which it is of paramount importance to exploit the intrinsic correlations
along spatial and spectral dimensions. To this end, we propose a variational approach
based on the introduction of a “nonlocal structure tensor” regularity constraint, and we
show how to solve it practically with the proposed epigraphical splitting. Experiments on
color, multispectral and hyperspectral images demonstrate the validity of our approach.

5.1 Multicomponent image recovery problems

Multicomponent images consist of several spatial maps acquired simultaneously
from a scene. Well-known examples are color images, which are composed of red,
green, and blue components, or spectral images, which divide the electromagnetic
spectrum into many components that represent the light intensity across a number
of wavelengths. Multicomponent images are often degraded by blur and noise
arising from sensor imprecisions or physical limitations, such as aperture effects,
motion, or atmospheric phenomena. Additionally, a decimation modelled by
a sparse or random matrix can be encountered in several applications, such
as compressive sensing [107, 190, 193], inpainting [96, 157, 199], or super-
resolution [240]. As a consequence, the standard imaging model consists of a
blurring operator [176] followed by a decimation and some kind of noise.

The quality of results obtained through a variational approach strongly
depends on the ability to model the regularity present in images. Since natural
images are often piecewise smooth, popular regularization models, such as total
variation (TV) and its generalizations, tend to penalize the image gradient (see
Section 3.1). The extension of TV-based models to multicomponent images
is however nontrivial. A first approach consists of computing TV channel-by-
channel and then summing up the resulting smoothness measures [6, 18, 89, 236].
Since there is no coupling of the components, this approach may potentially lead
to component smearing and loss of edges across components. An alternative
way is to process the components jointly, so as to better reveal details and
features that are not visible in each of the components considered separately.
This approach naturally arises when the gradient of a multicomponent image is
thought of as a structure tensor (ST) [28, 84, 108, 129, 145, 196, 201, 210, 222],
namely a matrix that summarizes the prevailing direction of the gradient.

The principle of ST-based regularization is to penalize the eigenvalues of the
ST matrix, in order to smooth in the direction of minimal change [18, 108]. The
first contribution of this chapter is the introduction of a new regularization for
multicomponent images that penalizes the eigenvalues of a nonlocal extension of
the ST matrix, so as to combine the strengths of ST and nonlocal TV (ST-NLTV).
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5.1.1 Degradation model

The R-component image of interest is denoted by x = (x1, . . . , xR) ∈ (RN )R,
where each component corresponds to an image channel of size N = N1 ×N2.
The degradation process of a multicomponent image can be modeled as

z = B(Ax), (5.1)

where the linear operator A : (RN )R 7→ (RK)S is defined as

A =

A1,1 . . . A1,R
...

. . .
...

AS,1 . . . AS,R

 (5.2)

where As,r ∈ RK×N for every (s, r) ∈ {1, . . . , S} × {1, . . . , R}, the operator
B : (RK)S → (RK)S models the effect of a noise, and z = (z1, . . . , zS) ∈ (RK)S
denotes the degraded observations. Interestingly, the above model can be
specialized to the following applications.
(i). Compressive sensing [107]. In this scenario, z denotes the compressed

multicomponent image, and x is the multicomponent image to be recon-
structed. The operator A is a block-diagonal matrix with S = R. For every
r ∈ {1, . . . , R}, the non-zero block Ar,r is a random measurement matrix
Dr ∈ RK×N with K � N . The noise is assumed to be a zero-mean white
Gaussian additive noise. This leads to the following degradation model:

(∀r ∈ {1, . . . , R}) zr = Dr xr + εr (5.3)

where εr ∼ N (0, σ2 IdK).

(ii). Super-resolution [240]. In this scenario, z denotes B multicomponent
images at low-resolution, and x is the (high-resolution) multicomponent
image to be recovered. The operator A is a block-diagonal matrix with
S = BR. For every r ∈ {1, . . . , R} and b ∈ {1, . . . , B}, the non-zero block
AB(r−1)+b,r is a composition of a warp matrix Wr ∈ RN×N , a blur operator
T ∈ RN×N , and a downsampling matrix Db ∈ RK×N with K < N . The
noise is assumed to be a zero-mean white Gaussian additive noise. As
a result, there are B noisy decimated versions of the same blurred and
warped component. This yields the following degradation model:

(∀r ∈ {1, . . . , R})(∀b ∈ {1, . . . , B}) zB(r−1)+b = DbTWr xr + εB(r−1)+b
(5.4)

where εB(r−1)+b ∼ N (0, σ2 IdK).

(iii). Spectral unmixing [55, 86, 161]. In this scenario, z models an hyperspec-
tral image with K = N , and x is a stack of R abundance maps associated
to as many spectra (Sr)1≤r≤R ∈ (RS)R known in advance. The operator A
has a block diagonal structure that leads to the following mixing model:

(∀` ∈ {1, . . . , N})


z

(`)
1
...
z

(`)
S

 =
R∑
r=1

x(`)
r Sr + ε(`) (5.5)

where ε(`) ∼ N (0, σ2 IdS).
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5.1.2 Convex variational approach

The usual way to recover x from the observations z consists of following a convex
variational approach that leads to an optimization problem in the form

minimize
x∈C

f(Ax, z) s. t. h(x) ≤ η, (5.6)

where η > 0. The data fidelity term f(·, z) ∈ Γ0
(
(RK)S

)
aims at insuring that

the solution is close to the observations. Depending on the noise characteristics,
standard choices for f are a quadratic function for an additive Gaussian noise, an
`1-norm when a Laplacian noise is involved, and a Kullback-Leibler divergence
when dealing with Poisson noise. The function h ∈ Γ0

(
(RN )R

)
allows one to

impose some regularity on the solution. Some possible choices for this function
have been mentioned in the introduction. Finally, C denotes a nonempty closed
convex subset of (RN )R that can be used to constrain the dynamic range of the
target signal (e.g., C = ([0, 255]N )R for standard natural images).

Regarding the variational formulation of the image recovery problem, one
may prefer to adopt a constrained formulation, despite state-of-the-art methods
often deal with the regularized version of Problem (5.6), that is

minimize
x∈C

f(Ax, z) + λh(x), (5.7)

where λ > 0. While both approaches are equivalent for specific values of λ and η,
the constrained one might be more practical, as the choice of η can be related to
some physical properties of the target signal. For example, a reasonable upper
bound on the TV constraint can be available for certain classes of images, since
TV constitutes a geometrical attribute that exhibits a limited variance over, e.g.,
views of similar urban areas in satellite imaging, tomographic reconstructions of
similar cross sections, fingerprint images, text images and face images [61].

One of the difficulties of constrained approaches is that a closed form of
the projection onto the involved constraint set is not always available. The
second contribution of this chapter is the application of the proposed epigraphical
splitting to convex optimization problems involving `1,p-matrix-norm constraints.

5.1.3 Imaging spectroscopy

Spectral imagery is used in a wide range of applications, such as remote sensing
[216], astronomical imaging [172], and fluorescence microscopy [219]. In these
contexts, one typically distinguishes between multispectral (MS) and hyperspectral
(HS) images. In general, HS images are capable to achieve a higher spectral
resolution than MS images (at the cost of acquiring a few hundred bands), which
results in a better spectral characterization of the objects in the scene. This
has stimulated many applications in remote sensing, such as the detection and
identification of the ground surface [15]. Since HS images are characterized by
the fact that an entire spectrum is acquired at each point, a huge correlation
exists among close spectral bands. Consequently, a large array of variational
methods have been proposed to efficiently exploit the spectral-spatial regularity
present in HS images. To the best of our knowledge, these methods can be
roughly divided into three classes.
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A first class of methods aims at extending the regularity models used in
color imagery [108, 211]. To cite a few examples, the work in [240] proposed a
super-resolution method based on a component-by-component TV regularization.
To deal with the huge size of HS images, the authors performed the actual
super-resolution on a few principal image components (obtained by means of
PCA), which are then used to interpolate the secondary components. In [30], the
problem of MS denoising is dealt with by considering a hybrid regularization that
induces each component to be sparse in an orthonormal basis, while promoting
similarities between the components through a distance function applied on
wavelet coefficients. Another kind of spectral adaptivity has been proposed in
[235] for HS restoration. It consists of using the multicomponent TV regulariza-
tion in [28] that averages the Frobenius norms of the multicomponent gradients.
The same authors have recently proposed in [45] an inpainting method based on
the multicomponent NLTV regularization. The link between this method and
the proposed work will be discussed in Section 5.2.

A second class of methods aims at modeling HS images as three-dimensional
tensors, i.e. two spatial dimensions and one spectral dimension. First denoising
attempts in this direction were pursued in [165, 168], where tensor algebra was
exploited to jointly analyze the HS hypercube by considering vectorial anisotropic
diffusion methods. Other strategies consider tensorial filtering methods, such as
the multiway Wiener filter (see [151] for a survey on this subject).

A third class of methods is based on robust PCA [33] or low-rank and sparse
matrix decomposition [117]. These methods proceed by splitting a HS image
into two separate contributions: an image formed by components having similar
shapes (low-rank image), and an image that highlights the differences between
the components (sparse image). For example, the work in [107] proposed a convex
optimization formulation for recovering an HS image from very few compressive-
sensing measurements. This approach involved a penalization based on two
terms: the `∗ nuclear norm of the matrix where each column corresponds to the
2D-wavelet coefficients of a spectral band (reshaped in a vector), and the `1,2-
norm of the wavelet-coefficient blocks grouped along the spectral dimension. A
similar approach was followed in [94], even though the `∗+`1,2-norm penalization
was applied directly on the HS pixels, rather than using a sparse transformation.

The third contribution of this chapter is the specialization of the proposed ST-
NLTV regularization in the recovery of spectral images. The resulting strategy
is based on tensor algebra ideas, but it uses variational strategies rather than
anisotropic diffusion or adaptive filtering.

5.1.4 Outline

The chapter is organized as follows. Section 5.2 describes the nonlocal structure
tensor regularization and its connections to related work. Section 5.3 explains
how to employ the epigraphical splitting derived in Chapter 2 for solving Prob-
lem (5.6) via primal-dual proximal methods. Section 5.4 provides an experimental
validation in the context of color, MS and HS image restoration, comparing
the proposed approach with state-of-the-art methods in terms of quality and
efficiency. Finally, some conclusions are drawn in Section 5.5.
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5.2 Structure tensor regularization
The proposed approach consists of modeling the spatial and spectral dependencies
of multicomponent images by introducing a regularization grounded on the use
of matrix norms, leading to the following penalty

(
∀x ∈ (RN )R

)
h(x) =

N∑
`=1

τ`‖F`B`x‖p, (5.8)

where ‖ · ‖p denotes the Schatten p-norm with p ≥ 1, (τ`)1≤`≤N are positive
weights, and
(i). block selection: the operator B` : (RN )R → RQ2×R selects from each

component the block of size Q×Q centered in `, and rearranges them in a
matrix of size Q2 ×R, yielding

x
(`)
1 x

(`)
2 x

(`)
3

 x
(n`,1)
1 x

(n`,1)
2 x

(n`,1)
3

...
...

...
x

(n`,Q2)
1 x

(n`,Q2)
2 x

(n`,Q2)
3


F`

X(`) =
[
X

(`)
1 X

(`)
2 X

(`)
3

]

Y(`) =


x

(n`,1)
1 . . . x

(n`,1)
R

...
...

x
(n`,Q2 )
1 . . . x

(n`,Q2 )
R

 (5.9)

where W` = {n`,1, . . . , n`,Q2} denotes the set of positions located into the
window around `, with Q > 1;

(ii). block transform: the operator F` : RQ2×R → RM`×R denotes an analysis
transformation that achieves a sparse representation of grouped blocks,
yielding

X(`) = F`Y(`), (5.10)
where M` ≤ Q2.

The resulting structure tensor regularization can be thus expressed as

h(x) =
N∑
`=1

τ` ‖X(`)‖p. (5.11)

By denoting the singular values of X(`) ordered in decreasing order with

σX(`) =
(
σ

(m)
X(`)

)
1≤m≤M̃`

, M̃` = min{M`, R}, (5.12)

the case p ∈ [1,+∞[ leads to

h(x) =
N∑
`=1

τ`

 M̃∑̀
m=1

(
σ

(m)
X(`)

)p1/p

, (5.13)

whereas the case p = +∞ yields

h(x) =
N∑
`=1

τ` σ
(1)
X(`) . (5.14)

In the case when p = 1, the Schatten norm reduces to the nuclear norm, and
thus the structure tensor regularization proposed in (5.10) induces a low-rank
approximation of matrices (X(`))1≤`≤N (see [202] for a survey on singular value
decomposition). In addition, the proposed regularization generalizes several
state-of-the-art regularization strategies, as explained in the following.
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5.2.1 ST-TV

The multicomponent TV regularization [28, 108, 235] can be retrieved by setting
F` to the operator which, for each r ∈ {1, . . . , R}, computes the difference
between x(`)

r and its horizontal/vertical nearest neighbours (x(`1)
r , x

(`2)
r ), yielding

the matrix

X(`)
TV

=
[
x

(`)
1 − x

(`1)
1 . . . x

(`)
R − x

(`1)
R

x
(`)
1 − x

(`2)
1 . . . x

(`)
R − x

(`2)
R

]
(5.15)

with M` = 2 (which implies Q = 2). A special case of ST-TV arising when p = 2
can be found in [235] (later referred to as Hyperspectral-TV ). The regularization
in [145] is an extension of ST-TV given by X(`) = [X(n)

TV
]n∈W`

, yielding a matrix
of size 2×RQ2 (see below (5.9) for the definition of W`). Finally, note that the
regularization used in [240] differs from ST-TV, as it amounts to summing up
the smoothed TV [7] evaluated separately over each component.

5.2.2 ST-NLTV

The NLTV regularization [105] can be extended to multicomponent images by
setting F` to the operator that, for each r ∈ {1, . . . , R}, computes the weighted
difference between x(`)

r and some other pixel values. This results in the matrix

X(`)
NLTV

=
[
ω`,n(x(`)

r − x(n)
r )
]
n∈N`,1≤r≤R

, (5.16)

where N` ⊂ W` \ {`} denotes the non-local support of the neighborhood of `,
and M` corresponds to the size of this support. The regularization in [45] (later
referred to as Multichannel-NLTV ) appears as a special case of the proposed
ST-NLTV arising when p = 2 and the local window is fully used (M` = Q2).

For every ` ∈ {1, . . . , N} and n ∈ N`, the weight ω`,n > 0 depends on the
similarity between patches built around the pixels ` and n of the image to be
recovered. Since the degradation process in (5.1) may involve some missing data,
a two-step approach is adopted in order to estimate these weights. In the first
step, the ST-TV regularization is used to obtain an estimate x̃ of the target
image. This estimate subsequently serves in the second step to compute the
weights through a self-similarity measure as follows:

ω`,n = ω̃` exp
(
−δ−2 ‖L`x̃− Lnx̃‖22

)
, (5.17)

where δ > 0, L` (resp. Ln) selects a Q̃ × Q̃ × R patch centered at position `
(resp. n) after a linear processing depending on the position ` (resp. n), and
the constant ω̃` > 0 is set so as to normalize the weights (i.e.

∑
n∈N` ω`,n = 1).

Note that the linear processing is applied to improve the reliability of the self-
similarity measure, and thus to insure a better image recovery performance. In
the simplest case, it consists of point-wise multiplying the selected patches by a
bivariate Gaussian function [32]. A more sophisticated processing may involve a
convolution with a set of low-pass Gaussian filters whose variances increase as
the spatial distance from the patch center grow [99]. For every ` ∈ {1, . . . , N},
the neighborhood N` is built according to the procedure described in [104], which
allows one to limit the size M` of the neighborhood to a fixed value M (in all
the experiments, we set τ` ≡ 1, Q = 11, Q̃ = 5, δ = 35 and M = 14).
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5.3 Optimization method
Within the proposed framework, Problem (5.6) can be reformulated as follows

minimize
x∈C

f(Ax, z) s. t. Φ x ∈ D, (5.18)

where M = M1 + · · ·+MN , Φ: (RN )R 7→ RM×R is the linear operator such that

(
∀x ∈ (RN )R

)
Φx = X =

F1B1x
. . .

FNBNx

 } X
(1)

} X(N)

(5.19)

and D is the closed convex set defined as

D =
{
X ∈ RM×R

∣∣ N∑
`=1

τ`‖X(`)‖p ≤ η
}
. (5.20)

The standard way of solving Problem (5.18) with M+LFBF leads to Algo-
rithm 5.1, whose iterations involve the projection onto D. While the latter can
be computed through specific numerical procedures for p ∈ {1, 2,+∞} [71, 95,
188, 217, 223], a more efficient approach consists of resorting to the proposed
epigraphical splitting. The latter amounts to reformulating Problem (5.18) as

minimize
(x,ζ)∈C×W

f(Ax, z) s. t. (Φ x, ζ) ∈ E, (5.21)

where the convex sets E and W are defined in Sections 5.3.1 and 5.3.2 according
to the type of Shatten p-norms involved in D. The iterations of M+LFBF
associated with Problem (5.21) are summarized in Algorithm 5.2.

5.3.1 Nuclear norm

Since the case p = 1 yields

X ∈ D ⇔
N∑
`=1

M̃∑̀
m=1

τ`

∣∣∣σ(m)
X(`)

∣∣∣ ≤ η, (5.22)

the constraint D can be decomposed by introducing an auxiliary vector ζ =
(ζ(`,m))1≤`≤L,1≤m≤M̃`

such that
(∀` ∈ {1, . . . , N})(∀m ∈ {1, . . . , M̃`})

∣∣∣σ(m)
X(`)

∣∣∣ ≤ ζ(`,m),

N∑
`=1

M̃∑̀
m=1

τ` ζ
(`,m) ≤ η.

(5.23)

Consequently, the sets E and W in Problem (5.21) are defined as follows:

E =
{

(X, ζ) ∈ RM×R × RM̃ | (∀` ∈ {1, . . . , N})

(∀m ∈ {1, . . . , M̃`}) (σ(m)
X(`) , ζ

(`,m)) ∈ epi | · |
}
, (5.24)

W =
{
ζ ∈ RM̃

∣∣ N∑
`=1

M̃∑̀
m=1

τ` ζ
(`,m) ≤ η

}
, (5.25)

and the epigraphical projection is given in Section 5.3.3.
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5.3.2 Frobenius and spectral norms

Since the case p > 1 leads to

X ∈ D ⇔
N∑
`=1

τ` ‖σX(`)‖p ≤ η, (5.26)

the constraint D can be decomposed by introducing an auxiliary vector ζ =
(ζ(`))1≤`≤N such that

(∀` ∈ {1, . . . , N}) ‖σX(`)‖p ≤ ζ(`),
N∑
`=1

τ` ζ
(`) ≤ η.

(5.27)

Consequently, the sets E and W in Problem (5.21) are defined as follows:

E =
{

(X, ζ) ∈ RM×R × RN
∣∣ (∀` ∈ {1, . . . , N}) (σX(`) , ζ(`)) ∈ epi ‖ · ‖p

}
,

W =
{
ζ ∈ RN

∣∣ N∑
`=1

τ` ζ
(`) ≤ η

}
, (5.28)

and the epigraphical projection is given in Section 5.3.3.

5.3.3 Epigraphical projection

The advantage of resorting to the epigraphical splitting is that the projection onto
E admits a closed-form expression in the case p ∈ {1, 2,+∞}, as summarized in
the following proposition (which is straightforwardly proved).

Proposition 5.3.1. For every ` ∈ {1, . . . , N}, let

X(`) = U(`)S(`)(V(`))> (5.29)

be the Singular Value Decomposition of X(`) ∈ RM`×R, where

The SVD can be avoided if p=2,
as the Frobenius norm is the `2-
norm of the vector formed by all
matrix elements [202].

• (U(`))>U(`) = Id
M̃`

,

•
(
V(`))>V(`) = Id

M̃`
,

• S(`) = Diag(s(`)), with s(`) = (σ(m)
X(`))1≤m≤M̃`

.

Then,
PE(X, ζ) =

(
U(`)T(`)(V(`))>, θ(`)

)
1≤`≤N

, (5.30)

where T(`) = Diag(t(`)) and

(t(`), θ(`)) =
{[

Pepi |·|(s(`,m), ζ(`,m))
]
1≤m≤M̃`

, if p = 1,

Pepi ‖·‖p(s(`), ζ(`)), if p > 1,
(5.31)

with the above epigraphical projections given in Propositions 2.3.2, 2.3.5, and 2.3.7.
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Algorithm 5.1 M+LFBF for solving Problem (5.18)

Initialization choose (x[0],Y[0]
1 , y[0]

2 ) ∈ (RN )R × RM×R × (RK)S

set γ ∈
]
0,
(
‖A‖2 + ‖Φ‖2)−1/2

[
For t = 0, 1, . . .

p[t] = PC

(
x[t] − γ(Φ>Y[t]

1 + A>y[t]
2 )
)

Ŷ
[t]
1 = Y[t]

1 + γΦx[t]

Ỹ
[t]
1 = Ŷ

[t]
1 − γPD

(
Ŷ

[t]
1 /γ

)
Y[t+1]

1 = Ỹ
[t]
1 + γΦ

(
p[t] − x[t])

ŷ[t]
2 = y[t]

2 + γAx[t]

ỹ[t]
2 = ŷ[t]

2 − γ proxγ−1f(·;z)

(
ŷ[t]

2 /γ
)

y[t+1]
2 = ỹ[t]

2 + γA
(
p[t] − x[t])

x[t+1] = p[t] − γΦ>
(
Ỹ

[t]
1 −Y[t]

1
)
− γA>

(
ỹ[t]

2 − y[t]
2
)

Algorithm 5.2 M+LFBF for solving Problem (5.21)

Initialization
choose (x[0],Y[0]

1 , y[0]
2 ) ∈ (RN )R × RM×R × (RK)S

choose (ζ [0], ν
[0]
1 ) ∈W ×W

set γ ∈
]
0,
(
‖A‖2 + max{‖Φ‖2, 1}

)−1/2
[

For t = 0, 1, . . .

p[t] = PC

(
x[t] − γ(Φ>Y[t]

1 + A>y[t]
2 )
)

ρ[t] = PW
(
ζ [t] − γν[t]

1
)

Ŷ
[t]
1 = Y[t]

1 + γΦx[t]

ν̂
[t]
1 = ν

[t]
1 + γζ [t](

Ỹ
[t]
1 , ν̃

[t]
1

)
=
(
Ŷ

[t]
1 , ν̂

[t]
1

)
− γPE

(
Ŷ

[t]
1 /γ, ν̂

[t]
1 /γ

)
Y[t+1]

1 = Ỹ
[t]
1 + γΦ

(
p[t] − x[t])

ν
[t+1]
1 = ν̃

[t]
1 + γ

(
ρ[t] − ζ [t])

ŷ[t]
2 = y[t]

2 + γAx[t]

ỹ[t]
2 = ŷ[t]

2 − γ proxγ−1f(·;z)

(
ŷ[t]

2 /γ
)

y[t+1]
2 = ỹ[t]

2 + γA
(
p[t] − x[t])

x[t+1] = p[t] − γΦ>
(
Ỹ

[t]
1 −Y[t]

1
)
− γA>

(
ỹ[t]

2 − y[t]
2
)

ζ [t+1] = ρ[t] − γ
(
ν̃

[t]
1 − ν

[t]
1
)
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5.3.4 Approach based on ADMM

An alternative approach to deal with Problem (5.18) consists of employing the
Alternating Direction Method of Multipliers (ADMM) [91] or one of its parallel
versions [2, 64, 65, 90, 180, 198], sometimes referred to as the Simultaneous
Direction Method of Multipliers (SDMM). Although these algorithms are appeal-
ing, they require to invert the operator Id +Φ>Φ +A>A, which makes them less
attractive than primal-dual algorithms for solving Problem (5.18). Indeed, this
matrix is not diagonalizable in the DFT domain (due to the form of Φ), which
rules out efficient inversion techniques, such as those employed in [1, 2, 187].
When Φ denotes the NLTV operator defined in (5.16), this issue can be circum-
vented [30, 182] by decomposing it as Φ = ΩG, where G : (RN )R → RM×N(Q2−1)

is a concatenation of discrete difference operators, and Ω ∈ RM×N(Q2−1) is a
weighted block-selection operator. So doing, Problem (5.18) can be equivalently
reformulated by introducing an auxiliary variable ξ = Φx ∈ RM×R, yielding

minimize
(x,ξ)∈C×D

f(Ax, z) s. t. (Gx, ξ) ∈ V, (5.32)

where V =
{

(X, ξ) ∈ RN(Q2−1)×R × RM×R
∣∣ ΩX = ξ

}
. The iterations of SDMM

associated to Problem (5.32) are illustrated in Algorithm 5.3, where the inversion
of matrix H = Id +G>G + A>A is performed in the DFT domain.

It is worth emphasizing that SDMM still requires to compute the projection
onto D, which may be done by either resorting to specific numerical solutions
[71, 95, 188, 217, 223] or employing the proposed epigraphical splitting. However,
according to our simulations, both approaches are slower than Algorithm 5.2.

Algorithm 5.3 SDMM for solving Problem (5.32)
Initialization

y[0]
1 ∈ (RN )R,Y[0]

2 ∈ RM×R, y[0]
3 ∈ (RK)S

y[0]
1 ∈ (RN )R,Y[0]

2 ∈ RM×R, y[0]
3 ∈ (RK)S

χ
[0]
1 ∈ RM×R, χ[0]

2 ∈ RM×R

χ
[0]
1 ∈ RM×R, χ[0]

2 ∈ RM×R

H = Id +G>G + A>A
For t = 0, 1, . . .

γt ∈ ]0,+∞[
x[t] = H−1

[
y[t]

1 − y[t]
1 + G>(Y[t]

2 −Y[t]
2 ) + A>(y[t]

3 − y[t]
3 )
]

ξ[t] = 1
2

(
χ

[t]
1 − χ

[t]
1

)
+ 1

2

(
χ

[t]
2 − χ

[t]
2

)
y[t+1]

1 = PC

(
x[t] + y[t]

1

)
χ

[t+1]
1 = PD

(
ξ[t] + χ

[t]
1

)
(
Y[t+1]

2 , χ
[t+1]
2

)
= PV (Gx[t] + Y[t]

2 , ξ
[t] + χ

[t]
2 )

y[t+1]
3 = proxγtf

(
Ax[t] + y[t]

3

)
y[t+1]

1 = y[t]
1 + x[t] − y[t+1]

1
χ

[t+1]
1 = χ

[t]
1 + ξ[t] − χ[t+1]

1(
Y[t+1]

2 , χ
[t+1]
2

)
=
(
Y[t]

2 + Gx[t] −Y[t+1]
2 , χ

[t]
2 + ξ[t] − χ[t+1]

2
)

y[t+1]
3 = y[t]

3 + Ax[t] − y[t+1]
3
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5.4 Numerical results
A numerical analysis of the proposed approach is now conducted. In Sections
5.4.1 and 5.4.2, the visual impact of the proposed regularization is evaluated on
color and spectral images. In Section 5.4.3, the execution time of Algorithm 5.2
is assessed w.r.t. some alternatives. In all the experiments, the pixels of each
component in the original image are normalized in [0, 255], hence the dynamic
range constraint set C imposes that the pixel values belong to such an interval.
Moreover, the noise is assumed to be additive white Gaussian, thus the fidelity
term related to its anti-log likelihood is f = ‖A · −z‖22.

5.4.1 Color photography

The first experiment is focused on color imaging (i.e., R = S = 3). The
noisy observations are obtained with the degradation model in (5.3), where
the measurement operator Dr denotes a decimated convolution. While it is
common for color imaging to work in a luminance-chrominance space [70, 72], or a
perceptually-uniform space [108], the random decimation prevents us from taking
this approach, as pixels having missing colors cannot be correctly projected onto
a different color space. The tests are thus conducted in the RGB space.

Figure 5.1 collects the images reconstructed by using, for every p ∈ {1, 2,+∞},
the proposed `p-ST-NLTV, the standard `p-ST-TV [28, 108], and the more
classical channel-by-channel (CC) regularization [6, 51], defined as

hcc(x) =
R∑
r=1

N∑
`=1
‖X(`)

r ‖p, (5.33)

where X(`)
r denotes the r-th column vector of matrix X(`) in (5.10). For all the

considered constraints, the bounds η were hand-tuned in order to obtain the
best SNR values. The results indicate that `1-ST-NLTV is the most effective
regularization, because it combines the advantages of both ST and NLTV, namely
a better preservation of details and a reduction of color smearing.

5.4.2 Imaging spectroscopy

In this section, the proposed `1-ST-NLTV is compared with implementations
of two state-of-the-art methods in spectral imagery: Hyperspectral TV (H-TV)
[235] (see Section 5.2.1), and Multichannel NLTV (M-NLTV) [45] (see Sec-
tion 5.2.2). To this end, two scenarios are addressed by using the degradation
model in (5.3): a compressive-sensing scenario in which the measurement op-
erator (Dr)1≤r≤R is a random decimation, and a restoration scenario in which
(Dr)1≤r≤R is a decimated convolution. For reproducibility purposes, several
publicly available multispectral and hyperspectral images were used (see on-
line at engineering.purdue.edu/∼biehl/MultiSpec/hyperspectral.html).
The SNR index is used to give a quantitative assessment of the results obtained
from the simulated experiments, reporting both the SNR computed over all the
image, and the average of SNRs evaluated component-by-component (M-SNR).

Extensive tests have been carried out on several images of different sizes.
Tables 5.1 and 5.2 collect the SNR and M-SNR indexes obtained with H-TV, M-
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(a) Original. (b) Noisy. (c) Zoom.

(d) `1-CC-TV [6]: 16.15 dB (e) `2-CC-TV [6]: 16.32 dB (f) `∞-CC-TV [6]: 16.05 dB

(g) `1-CC-NLTV[51]: 16.87 dB (h) `2-CC-NLTV[51]: 17.20 dB (i) `∞-CC-NLTV[51]: 17.22 dB

(j) `1-ST-TV: 17.08 dB (k) `2-ST-TV [28]: 16.84 dB (l) `∞-ST-TV [108]: 16.43 dB

(m) `1-ST-NLTV: 18.20 dB (n) `2-ST-NLTV: 17.46 dB (o) `∞-ST-NLTV: 16.67 dB

Figure 5.1 Visual comparison of a color image reconstructed with various regularization
constraints. Degradation: additive zero-mean white Gaussian noise with std.
deviation equal to 10, uniform blur of size 3 × 3, and 80% of decimation
(N = 154401, R = S = 3 and K = 30880).
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NLTV, `1-ST-TV, and `1-ST-NLTV, for the two degradation scenarios mentioned
above. The hyper-parameter for each method (the bound η for the ST constraint
in our algorithm) was hand-tuned in order to achieve the best SNR values.
The best results are highlighted in bold. Moreover, a component-by-component
comparison of two hyperspectral images is made in Figure 5.3, while a visual
comparison of a component from the image hydice is displayed in Figure 5.2.

The aforementioned results demonstrate the interest of combining the non-
locality principle with measures based on the structure tensor. Indeed, `1-ST-
NLTV proves to be the most effective regularization with gains in SNR (up to
1.4 dB) with respect to M-NLTV, which in turn is comparable with `1-ST-TV.
The better performance of `1-ST-NLTV seems to be related to its ability to
better preserve edges and thin structures, while preventing component smearing.

Table 5.1 SNR – M-SNR indexes resulting from the reconstruction of images degraded
by a Gaussian noise with std. deviation equal to 5, and 90% of decimation.

image size H-TV [235] `1-ST-TV M-NLTV [45] `1-ST-NLTV
Hydice 256× 256× 191 10.65 – 09.87 11.93 – 11.16 11.57 – 10.76 12.98 – 12.11
Indian Pine 145× 145× 200 17.31 – 17.00 18.46 – 18.24 17.62 – 17.34 19.53 – 19.49
Little River 512× 512× 7 17.81 – 18.20 18.49 – 18.83 18.46 – 18.90 19.88 – 20.18
Mississippi 512× 512× 7 18.27 – 18.07 18.60 – 18.37 18.94 – 18.59 19.56 – 19.28
Montana 512× 512× 7 22.49 – 20.97 22.68 – 21.15 22.85 – 21.29 23.31 – 21.76
Rio 512× 512× 7 16.48 – 15.29 16.65 – 15.48 16.82 – 15.64 17.20 – 16.05
Paris 512× 512× 7 14.85 – 14.31 14.94 – 14.39 15.05 – 14.53 15.36 – 14.82

Table 5.2 SNR – M-SNR indexes resulting from the reconstruction of images degraded by
a Gaussian noise with std. deviation equal to 5, 5× 5 uniform blur, and 70% of decimation.

image size H-TV [235] `1-ST-TV M-NLTV [45] `1-ST-NLTV
Hydice 256× 256× 191 13.76 – 12.90 14.30 – 13.50 13.84 – 12.98 14.84 – 14.08
Indian Pine 145× 145× 200 19.80 – 19.65 20.22 – 20.13 19.73 – 19.57 20.43 – 20.41
Little River 512× 512× 7 21.35 – 21.88 21.62 – 22.01 21.31 – 22.00 21.99 – 22.49
Mississippi 512× 512× 7 21.12 – 20.29 21.21 – 20.27 21.41 – 20.52 21.65 – 20.83
Montana 512× 512× 7 24.80 – 23.37 24.82 – 23.31 24.96 – 23.53 25.18 – 23.72
Rio 512× 512× 7 18.62 – 17.50 18.57 – 17.48 18.57 – 17.60 18.87 – 17.80
Paris 512× 512× 7 16.68 – 16.55 16.80 – 16.53 16.73 – 16.60 17.05 – 16.81
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(a) Component r = 81 (b) H-TV: 11.78 dB (c) `1-ST-TV: 12.98 dB

(d) Noisy. (e) M-NLTV: 12.76 dB (f) `1-ST-NLTV: 14.36 dB

Figure 5.2 Comparison of the HS image hydice reconstructed with H-TV [235], `1-ST-TV,
M-NLTV [45] and `1-ST-NLTV. Degradation: compressive sensing scenario
involving an additive zero-mean white Gaussian noise with std. deviation 5
and 90% of decimation (N = 65536, R = 191, K = 6553 and S = 191).

0 50 100 150
8

10

12

14

16 L1−ST−TV
L1−ST−NLTV
M−NLTV
HTV

(a) SNR (dB) vs component index (image:
hydice).
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(b) SNR (dB) vs component index (image:
indian pine).

Figure 5.3 Quantitative comparison of two hyperspectral images reconstructed with H-TV
[235], `1-ST-TV, M-NLTV [45] and `1-ST-NLTV. Degradation: compressive
sensing scenario involving an additive zero-mean white Gaussian noise with
std. deviation 5 and 90% of decimation.
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5.4.3 Comparison with SDMM

To complete our analysis, the execution time of Algorithm 5.2 is compared with
three alternative solutions:

• Algorithm 5.1, which is a specialization of M+LFBF to Problem (5.18)
where the projection onto D is computed via the procedure in [217];

• Algorithm 5.3, which is a specialization of SDMM to Problem (5.32) where
the projection onto D is computed via the procedure in [217];

• the epigraphical version of Algorithm 5.3, namely SDMM applied to
Problem (5.32) after that the constraint D is replaced by E and W .

It is worth emphasizing that all the above algorithms solve exactly Problem (5.18),
hence they produce equivalent results. Our objective here is to empirically
demonstrate that the epigraphical splitting technique and primal-dual proximal
algorithms constitute a competitive choice for the problem at hand.

The results refer to the image indian pine, since a similar behavior was
observed for other images. The stopping criterion is set to ‖x[i+1] − x[i]‖ ≤
10−5‖x[i]‖. The basic structure of the aforementioned algorithms was developed
in Matlab, with the most “complex” operations (such as the non-local gradient
and projection computations) being implemented in C using mex files. In order
to compute the projection onto D, the `1-ball projector in [217, Algorithm 2]
was used, as it avoids the expensive sorting operation (a review of several `1-ball
projectors can be found in [71]). The codes were executed in Matlab R2011b
with an Intel Xeon CPU at 2.80 GHz and 8 GB of RAM.

Figure 5.4 shows the relative error ‖x[i] − x[∞]‖/‖x[∞]‖ as a function of the
computational time, where x[∞] denotes the solution computed with a stopping
criterion of 10−5 (up to 106 iterations). These plots indicate that the epigraphical
approach yields a faster convergence than the direct one for both SDMM and
M+LFBF, the latter being much faster than the former. This can be explained
by the computational cost of the subiterations required by the direct projection
onto the `1-ball. Note that these conclusions extend to all images in the dataset.

The results in Figure 5.4 refer to the bound η that achieves the best SNR
indices. In practice, the optimal bound may not be known precisely, although
a reasonable estimate may be available for certain classes of images based on
statistics of databases [61]. While it is out of the scope of this paper to investigate
an optimal strategy to set this bound, it is important to evaluate the impact of its
choice on our method performance. Tables 5.3 and 5.4 compare the epigraphical
approach with the direct computation of the projections (via standard iterative
solutions) for different choices of η. For better readability, the values of η are
expressed as a multiplicative factor of the ST-TV and ST-NLTV semi-norms of
the original image. The execution times indicate that the epigraphical approach
yields a faster convergence than the direct approach for SDMM and M+LFBF.
Moreover, the numerical results show that errors within ±5% from the optimal
value for η lead to SNR variations within 1.2%.
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Figure 5.4 Comparison between epigraphical and direct methods: ‖x
[i]−x[∞]‖
‖x[∞]‖ vs time

(Degradation: std. deviation = 5, decimation = 90%).

Table 5.3 Results for the `1-ST-TV constraint and some values of η. Degradation: std.
deviation = 5, decimation = 90% (“speed up” is the ratio between “direct” and “epigraphical” times)

η SNR (dB) – M-SNR (dB)
SDMM M+LFBF

direct epigraphical speed up direct epigraphical speed up
# iter. sec. # iter. sec. # iter. sec. # iter. sec.

0.35 18.41 – 18.19 547 767.51 471 466.80 1.64 466 471.95 389 339.24 1.39
0.40 18.46 – 18.24 838 1066.24 698 701.03 1.52 733 735.36 621 558.37 1.32
0.45 18.26 – 18.02 1000 1353.13 1000 990.76 1.37 1000 1018.58 1000 902.00 1.13

Table 5.4 Results for the `1-ST-NLTV constraint and some values of η. Degradation:
std. deviation = 5, decimation = 90% (“speed up” is the ratio between “direct” and “epigraphical”
times)

η SNR (dB) – M-SNR (dB)
SDMM M+LFBF

direct epigraphical speed up direct epigraphical speed up
# iter. sec. # iter. sec. # iter. sec. # iter. sec.

Neighbourhood size: Q = 3
0.25 19.15 – 19.05 1000 4384.38 1000 3583.57 1.23 190 494.77 190 448.22 1.11
0.30 19.39 – 19.32 1000 4414.94 1000 3417.18 1.29 243 649.31 236 534.50 1.21
0.35 19.36 – 19.28 875 4175.52 1000 3482.80 1.20 319 839.86 308 726.50 1.16

Neighbourhood size: Q = 5
0.25 19.43 – 19.38 1000 14412.86 1000 10167.34 1.42 216 977.95 212 871.80 1.12
0.30 19.55 – 19.51 1000 14338.36 1000 10174.68 1.41 275 1257.71 268 1143.35 1.10
0.35 19.53 – 19.49 1000 14365.92 1000 10356.73 1.39 358 1631.17 347 1424.72 1.14
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5.5 Conclusions
We have proposed a new regularization for multicomponent images that is a
combination of nonlocal total variation and structure tensor. The resulting image
recovery problem has been formulated as a constrained convex optimization
problem and solved through the epigraphical splitting and primal-dual proximal
algorithms. The obtained results demonstrate the better performance of structure
tensor and nonlocal gradients over a number of multispectral and hyperspectral
images, although it would be interesting to consider other applications, such as
the recovery of video signals or volumetric images. Our results also show that
the nuclear norm has to be preferred over the Frobenius norm for hyperspectral
image recovery problems. Furthermore, the experimental part indicates that
the epigraphical method converges faster than the approach based on the direct
computation of the projections via standard iterative solutions. In both cases,
the proposed algorithm turns out to be faster than solutions based on ADMM,
suggesting that primal-dual proximal algorithms constitute a good choice in
practice to deal with multicomponent image recovery problems.





No amount of experimentation can
ever prove me right, but a single
experiment can prove me wrong.

Albert Einstein

Chapter 6

Sparse multiclass SVM

The main focus of this chapter is the learning of support vector machines through a
sparse regularization and the multiclass hinge loss formulated by Crammer and Singer.
To this end, we consider two approaches: one including the hinge loss as a penalty term,
and the other one addressing the case when the hinge loss is enforced as a constraint.
We implement the corresponding algorithms through a primal-dual proximal method and
the proposed epigraphical splitting. Experiments on different types of databases, as well
as comparisons with state-of-the-art methods, demonstrate the validity of our approach.

6.1 Introduction

Support vector machines (SVMs) have gained much popularity in solving clas-
sification problems with a large amount of training data or a huge number of
classes [121, 126, 141, 166, 213]. While the major difficulty encountered in the
large-scale SVM learning problem stems from the computational cost, this issue
can be circumvented by resorting to standard Lagrangian duality techniques [75,
78]. Indeed, this approach brings in several advantages, such as the kernel trick
[4], or the possibility to break the problem down into a sequence of smaller ones
[19, 183]. Some works also proposed to approximate the dual problem using
cutting plane approaches, in order to address scenarios with a lot of training
data and thousands (or even an infinite number) of classes [126, 213].

In some applications, however, only a small number of training data is
available. This is undoubtedly true in medical contexts, where the goal is to
classify a patient as being “healthy", “contaminated”, or “infected”, but the
verified cases of infected patients might be just a few. In such applications, the
lack of training data may lead to the so-called overfitting problem, eventually
yielding a prediction which is too strongly tailored to the particularities of the
training set and poorly generalizes to new data.

A common solution to prevent overfitting consists of introducing a sparsity-
inducing regularization, in order to perform an implicit feature selection that
gets rid of irrelevant or noisy features. In this respect, the `1-norm and, more
generally, the `1,p-norm regularization have attracted much attention over the
past decade [9, 88, 137, 189, 194, 214, 218, 233]. However, when a sparse
regularization is introduced, the duality approach is no longer useful. Therefore,
the learning of sparse SVMs leads to a nonsmooth convex optimization problem
which is challenging to deal with. The main objective of this chapter is to exactly
and efficiently solve the multiclass SVM learning problem involving a convex
regularization and the hinge loss formulated by Crammer and Singer [78].

71
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6.1.1 Related work

The use of sparse regularization in SVMs was firstly proposed in the context of
binary classification. The idea traces back to Bradley and Mangasarian [26], who
demonstrated that the `1-norm regularization can effectively perform “feature
selection” by shrinking small coefficients to zero. Other forms of regularization
have also been studied, such as the `0-norm [224], the `p-norm with p > 0 [155],
the `∞-norm [245], and the combination of `0-`1 norms [156] or `1-`2 norms [221].
A different solution consists of reformulating the SVM learning problem through
an indicator vector (its components being equal to 0 or 1) to model the active
features [206], which leads to a combinatorial problem addressable by convex
relaxation. More recently, Laporte et al. [140] proposed an accelerated algorithm
for `1-regularized SVMs involving the square hinge loss. They also proposed
a procedure for handling nonconvex regularization (using the reweighted `1-
minimization scheme by [34]), showing that nonconvex penalties lead to similar
prediction quality while using less features than convex ones.

Binary SVMs can be turned into multiclass classifiers by a variety of strategies,
such as the one-vs-all approach [75, 191]. While these techniques provide a simple
and powerful framework, they cannot capture the correlations between different
classes, since they break a multiclass problem into multiple independent binary
problems. Crammer and Singer [78] therefore proposed a direct formulation
of multiclass SVMs by generalizing the notion of margins used in the binary
case. A natural idea thus consists of equipping muticlass SVMs with sparse
regularization. A simple example is the `1-regularized multiclass SVM, which
can be addressed by linear programming techniques [220]. In multiclass problems,
however, feature selection becomes more complex than in the binary case, since
multiple discriminating functions need to be estimated, each one with its own set
of important features. For this reason, mixed-norm regularization has attracted
much interest due to its ability to impose group sparsity [88, 167, 175, 234].

In the context of multiclass SVMs, Zhang et al. [241] proposed to deal with
the `1,∞-norm regularization by reformulating the SVM learning problem in
terms of linear programming. However, they validated their method on small-size
problems, indicating that the linear reformulation may be inefficient for larger-
size ones. More recently, Blondel et al. [20] proposed an algorithm to handle
`1,2-regularized SVMs involving a smooth loss function. While their method
is efficient and can handle other convex regularizations, the multiclass SVM
learning is not solved rigorously, possibly leading to performance limitations.

6.1.2 Contributions

The aforementioned methods deal with sparse multiclass SVMs by either finding
an approximate solution [20, 140, 206] or employing inefficient linear programming
techniques [220, 241]. This chapter presents a novel approach for sparse multiclass
SVMs learning based on a primal-dual proximal method [69] and the proposed
epigraphical splitting. In the following, Section 6.2 formulates the multiclass
SVM learning problem with sparse regularization. Section 6.3 illustrates two
algorithms for solving the considered problem with proximal tools. Finally,
Section 6.4 evaluates the proposed approach on three standard datasets and
compares it to state-of-the-art methods [20, 137, 140, 241].
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6.2 Sparse Multiclass SVM
A multiclass classifier can be modeled as a function d : RN → {1, . . . ,K} that
predicts the class k ∈ {1, . . . ,K} associated to a given observation u ∈ RN (e.g.
a signal, an image or a graph). This predictor relies on K different discriminating
functions Dk : RN 7→ R which, for every k ∈ {1, . . . ,K}, measure the likelihood
that an observation belongs to the class k. Consequently, the predictor selects
the class that best matches an observation, namely

d(u) = arg max
k∈{1,...,K}

Dk(u). (6.1)

The discriminating functions are built from a set of L input-output pairs

S =
{

(u`, z`) ∈ RN × {1, . . . ,K} | ` = {1, . . . , L}
}
, (6.2)

and they are assumed to be linear in some feature representation of inputs [76].
The latter assumption leads to the following form of the discriminating functions:

Dk(u) = φ(u)>x(k) + b(k), (6.3)

where φ : RN 7→ RM denotes a mapping from the input space onto an arbitrary
feature space, and (x(k), b(k))1≤k≤K denote the parameters to be estimated. For
convenience, the latter ones are concatenated into a single vector x ∈ R(M+1)K

x =



x(1)

b(1)

...
x(K)

b(K)



}
x(1)

}
x(K)

(6.4)

so that (6.3) can be shortened to Dk(u) = ϕ(u)>x(k) with ϕ(u) =
[
φ(u)> 1

]>.
6.2.1 Background

The objective of learning is to find the vector x such that, for every ` ∈ {1, . . . , L},
the input-output pair (u`, z`) ∈ S is correctly predicted by the classifier, namely

z` = arg max
k∈{1,...,K}

ϕ(u`)>x(k). (6.5)

By the definition of argmax, the above equality holds if

For simplicity, k 6= z` is short
for k ∈ {1, . . . ,K} \ {z`}.(∀` ∈ {1, . . . , L}) max

k 6=z`
ϕ(u`)>(x(k) − x(z`)) < 0, (6.6)

or, equivalently, with the introduction of a margin µ` ∈ ]0,+∞[,

(∀` ∈ {1, . . . , L}) max
k 6=z`

ϕ(u`)>(x(k) − x(z`)) ≤ −µ`. (6.7)
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Unfortunately, this constraint has no practical interest for learning purposes,
as it becomes infeasible when the training set is not fully separable. Multiclass
SVMs overcome this issue by introducing the notion of soft margins, which
consists of adding a vector of slack variables ξ = (ξ(`))1≤`≤L into (6.7), yielding (∀` ∈ {1, ..., L}) max

k 6=z`
ϕ(u`)>(x(k) − x(z`)) ≤ ξ(`) − µ`,

(∀` ∈ {1, ..., L}) ξ(`) ≥ 0,
(6.8)

The multiclass SVM learning problem is thus obtained by adding a quadratic
regularization [78], leading to the convex optimization problem expressed as

The regularization does not in-
volve the offsets (b(k))1≤k≤K .

minimize
(x,ξ)∈R(M+1)K×RL

K∑
k=1
‖x(k)‖22 + λ

L∑
`=1

ξ(`) s. t.(∀` ∈ {1, ..., L}) max
k 6=z`

ϕ(u`)>(x(k) − x(z`)) ≤ ξ(`) − µ`,

(∀` ∈ {1, ..., L}) ξ(`) ≥ 0,
(6.9)

where λ ∈ ]0,+∞[. Note that the linear penalty on the slack variables allows us
to minimize the violation of constraint (6.7). By using standard convex analysis
[24], the above problem can be equivalently rewritten without slack variables as

minimize
x∈R(M+1)K

K∑
k=1
‖x(k)‖22 + λ

L∑
`=1

max
{

0, µ` + max
k 6=z`

ϕ(u`)>(x(k) − x(z`))
}
. (6.10)

Hereabove, the second term is called hinge loss when µ` ≡ 1.

6.2.2 Proposed approach

The proposed approach consists of replacing the squared `2-norm regularization in
Problem (6.10) with a generic function f ∈ Γ0(R(M+1)K). In addition, the hinge
loss is rewritten in an equivalent form by introducing, for every ` ∈ {1, . . . , L},
the linear operator T` : R(M+1)K 7→ RK defined as

(
∀x ∈ R(M+1)K) T` x =


ϕ(u`)>(x(1) − x(z`))

...

ϕ(u`)>(x(K) − x(z`))

 , (6.11)

the vector r` = (r(k)
` )1≤k≤K ∈ RK defined as

(∀k ∈ {1, . . . ,K}) r
(k)
` =

{
0, if k = z`,

µ`, otherwise,
(6.12)

and the function h` : RK 7→ R defined, for every y(`) = (y(`,k))1≤k≤K ∈ RK , as

h`(y(`)) = max
1≤k≤K

y(`,k) + r
(k)
` , (6.13)

so that the following holds

h`(T`x) = max
{

0, µ` + max
k 6=z`

ϕ(u`)>(x(k) − x(z`))
}
. (6.14)
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The objective is to solve the following convex optimization problems

regularized approach: minimize
x∈R(M+1)K

f(x) + λ

L∑
`=1

h`(T` x), (6.15)

constrained approach: minimize
x∈R(M+1)K

f(x) s. t.
L∑
`=1

h`(T` x) ≤ η, (6.16)

where λ and η are positive constants. Note that, by Lagrangian duality, the
above formulations are equivalent for some specific values of η and λ. The
interest of considering the constrained formulation lies in the fact that η may be
easier to set, since it is directly related to the properties of the training data.

As mentioned in the introduction, the regularization term f is chosen so
as to promote some form of sparsity. A popular example is the `1-norm, as
it ensures that the solution will have a number of coefficients exactly equal to
zero, depending on the strength of the regularization [9]. Another example is
given by the mixed `1,p-norm. For every x ∈ R(M+1)K , assume that, for each
k ∈ {1, . . . ,K}, the vector x(k) ∈ RM+1 is block-decomposed as follows:

x(k) =
[ (
x(k,1)

)>
︸ ︷︷ ︸

sizeM1

. . .
(
x(k,B)

)>
︸ ︷︷ ︸

sizeMB

b(k)
]>
, (6.17)

with M1 + · · ·+MB = M . The `1,p-norm is defined as

f(x) =
K∑
k=1

B∑
b=1
‖x(k,b)‖p. (6.18)

The mixed-norm regularization is known to induce block-sparsity: the solution
is partitioned into groups and the components of each group are ideally either all
zeros or all non-zeros. In this context, the exponent values p = 2 or p = +∞ are
the most popular choices. In particular, the `1,∞-norm tends to favor solutions
with few nonzero groups having components of similar magnitude.

6.2.3 Connection with logistic regression

Problems (6.15)-(6.16) can model different types of learning if the hinge loss
defined in (6.13) is replaced with other functions, such as the quadratic loss, the
exponential loss, the squared hinge loss, the modified Huber loss, or the logistic
loss (e.g., see [242]). These functions actually provide a smooth approximation
of the hinge loss. On the other side, the hinge loss can be interpreted as a
piecewise-affine lower approximation of the logistic loss, as [24]

max
1≤k≤K

y(`,k) ≤ log
( K∑
k=1

exp
(
y(`,k))) ≤ max

1≤k≤K
y(`,k) + log(K), (6.19)

where the second inequality is tight in the case when y(`,1) = · · · = y(`,K).
Consequently, the hinge-loss constraint in (6.16) can be regarded as an outer
approximation of the logistic-loss constraint in Problem (4.44). In this respect,
the algorithm for solving Problem (6.16) proposed in Section 6.3.2 can be seen as
an efficient implementation of the approximation technique derived in Chapter 4.
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6.3 Optimization method
Two different algorithms are now proposed for solving Problems (6.15) and (6.16).

6.3.1 Regularized formulation

Problem (6.15) fits nicely into the framework provided by FBPD method [69], as
the proximity operator of both f and (h`)1≤`≤L can be efficiently computed. In-
deed, proxf has a closed form for several norms [65, 71, 178], while (proxh`)1≤`≤L
can be computed by the projection onto the standard simplex, as described next.

Proposition 6.3.1. For every ` ∈ {1, . . . , L},

(∀y(`) ∈ RK) proxλh`
(
y(`)) = y(`) − PSλ

(
y(`) + r`

)
, (6.20)

with
Sλ =

{
u =

(
u(k))

1≤k≤K ∈ [0,+∞[K
∣∣ K∑
k=1

u(k) = λ
}
. (6.21)

Proof. Note that u ∈ RK 7→ λmax1≤k≤K u
(k) is the support function of Sλ,

defined as (∀u ∈ RK) σSλ(u) = supv∈Sλ v
>u. Hence, for every y(`) ∈ RK ,

λh`(y(`)) = σSλ(y(`) + r`) and

proxλh`
(
y(`)) = proxσSλ (y(`) + r`)− r`, (6.22)

Since σSλ is the conjugate function of ιSλ , (6.20) is deduced by applying Moreau’s
decomposition formula [12, Theorem 14.3(ii)].

If the function h` is replaced
with the logistic loss in (4.45),
the term −r>` y

(`) in the dual
formulation is replaced by

K∑
k=1

y(`,k) log(y(`,k))

with the convention 0 log 0 = 0.

Problem (6.15) are summarized in Algorithm 6.1, with the notation T =
[T>1 . . . T>L ]> and r = [r>1 . . . r>L ]>. As mentioned in Section 1.2.4, this
algorithm solves both Problem (6.15) and its dual formulation

minimize
y∈RLK

f∗(−T>y)−
L∑
`=1

r>` y
(`) s. t. (∀` ∈ {1, ..., L}) y(`) ∈ Sλ. (6.23)

In the case when f = (1/2)‖ · ‖22, the primal and dual solutions are linked by
x = −T>y, and thus Problem (6.23) reduces to the Lagrangian dual formulation
of Problem (6.9) used in standard SVMs [19, 78]. The projection onto the
simplex can be efficiently computed with the method illustrated in Section 1.3.1.

Algorithm 6.1 FBPD for solving Problem (6.15)

Initialization⌊
choose (x[0], y[0]) ∈ R(M+1)K × RLK

set τ > 0 and σ > 0 such that τσ‖T‖2 ≤ 1

For i = 0, 1, . . . x[i+1] = proxτf
(
x[i] − τ T>y[i])

y[i+1] = P(Sλ)L

(
y[i] + σT

(
2x[i+1] − x[i])+ σ r

)
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6.3.2 Constrained formulation

The resolution of Problem (6.16) presents a challenging computational issue, as
the projection onto the hinge-loss constraint set cannot be computed in closed
form. One way to manage this constraint consists of introducing an auxiliary
vector ζ =

(
ζ(`))

1≤`≤L, so that Problem (6.16) can be equivalently rewritten as

minimize
(x,ζ)∈R(M+1)K×RL

f(x) s. t.


L∑
`=1

ζ(`) ≤ η,

(∀` ∈ {1, . . . , L}) h`(T` x) ≤ ζ(`).
(6.24)

While this approach is conceptually similar to adding the slack variables in (6.8),
the epigraphical splitting specifically aims at simplifying the way of solving the
problem. A possible interpretation of Problem (6.24) is indeed the following

minimize
(x,ζ)∈R(M+1)K×RL

f(x) s. t.
{

(Tx, ζ) ∈ E,
ζ ∈ V,

(6.25)

where

E =
{

(y, ζ) ∈ RLK × RL
∣∣ (∀` ∈ {1, . . . , L}) (y(`), ζ(`)) ∈ epih`

}
, (6.26)

V =
{
ζ ∈ RL

∣∣ 1>Lζ ≤ η
}
. (6.27)

The iterations of FBPD related to Problem (6.25) are listed in Algorithm 6.2. The
advantage of this approach is that the projection PE is given by Proposition 2.3.8.

Algorithm 6.2 FBPD for solving Problem (6.16)

Initialization  choose (x[0], ζ [0]) ∈ R(M+1)K × RL

choose (y[0], ξ[0]) ∈ RL(K−1) × RL

set τ > 0 and σ > 0 such that τσmax{‖T‖2, 1} ≤ 1.

For i = 0, 1, . . . 

x[i+1] = proxτf
(
x[i] − τ T>y[i])

ζ [i+1] = PV
(
ζ [i] − τ ξ[i])

ŷ[i] = y[i] + σT
(
2x[i+1] − x[i])

ξ̂[i] = ξ[i] + σ
(
2ζ [i+1] − ζ [i])(

ỹ[i], ξ̃[i]) = PE
(
ŷ[i]/σ, ξ̂[i]/σ

)
y[i+1] = ŷ[i] − σỹ[i]

ξ[i+1] = ξ̂[i] − σξ̃[i].



78 Chapter 6. Sparse multiclass SVM

Table 6.1 Comparisons on the leukemia database.

f(x) hinge square logit one-vs-all

errors non-zero coeff. errors non-zero coeff. errors non-zero coeff. errors non-zero coeff.

`2 1/34 7129 + 7129 + 7129 2/34 7129 + 7129 + 7129 1/34 7129 + 7129 + 7129 2/34 7129 + 7129 + 7129
`1 2/34 13 + 03 + 10 3/34 8 + 3 + 8 3/34 18 + 05 + 14 3/34 19 + 8 + 15

`1,2 0/34 95 + 5 + 75 1/34 55 + 05 + 45 0/34 50 + 05 + 35 1/34 70 + 10 + 50
`1,∞ 0/34 50 + 5 + 45 0/34 35 + 05 + 35 0/34 50 + 05 + 40 0/34 45 + 5 + 45

6.4 Numerical results
The performance of sparse multiclass SVM is evaluated on the following databases.

• Leukemia database. The first experiment concerns the classification
of microarray data. The considered database contains 72 samples of
N = M = 7129 gene expression levels (so that φ(u) = u) measured from
patients having K = 3 types of leukemia disease [112]. The database is
usually organized in L = 38 training samples and 34 test samples.1 In the
experiments, the mixed-norm regularization is defined on blocks of size 5.

• MNIST dataset. The second experiment concerns the classification
of handwritten digits [142]. The MNIST database contains a number
of 28 × 28 grayscale images (N = 784) displaying digits from 0 to 9
(K = 10). The database is organized in 60000 training images and 10000
test images.2 In the experiments, the mapping φ is defined through the
scattering convolution network [31] with m = 2 wavelet layers scaled up to
2J = 4, which transforms an input image of size 28× 28 in 81 images of
size 14× 14 (thus M = 15876). For this database, indeed, it was observed
[31] that the scattering network leads to better results than kernel PCA
[197] or deep convolution networks [143, 144]. For the regularization, the
`1,∞-norm is defined by dividing each vector (x(k))1≤k≤K in 142 blocks
of size 81. Moreover, in order to evaluate the performance, the classifier
is trained on 25 different training subsets of size L ∈ {3K, 5K, 10K}, the
classification errors are computed by evaluating the 25 trained classifiers
on the whole test set, and by averaging the resulting errors.

• News20 database. The third experiment concerns the classification of
text documents into a fixed number of predefined categories [139]. The
News20 database contains a number of documents partitioned across
K = 20 different newsgroups. The database is organized in 11314 training
documents and 7532 test documents.3 In the experiments, the mapping φ
is defined through the term frequency – inverse document frequency trans-
formation [125], yielding M = 26214. For the regularization, the `1,2-norm
is defined so as to regroup the same feature across all classes, in the same
way as [20]. Moreover, in order to evaluate the performance, the classifier
is trained on 10 different training subsets of size L ∈ {5K, 10K, 50K}, the
classification errors are computed by evaluating the 10 trained classifiers
on the whole test set, and by averaging the resulting errors.

1Data available at www.broadinstitute.org/cancer/software/genepattern/datasets
2Data available at http://yann.lecun.com/exdb/mnist
3Data available at www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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6.4.1 Assessment of classification accuracy

This section evaluates the classification errors obtained with the sparse multiclass
SVM formulated in Problems (6.15)-(6.16). The objective here is to show that the
exact hinge loss allows one to achieve better performance than its approximated
smooth versions, especially with a few training data. Hence, the proposed
method is compared with the following approaches.

• The multiclass SVM proposed by Blondel et al. [20]

minimize
x∈R(M+1)K

f(x)+λ
L∑
`=1

∑
k 6=z`

(
max

{
0, µ` + ϕ(u`)>(x(k) − x(z`))

})2
. (6.28)

• The multinomial logistic regression (e.g., see [137])

minimize
x∈R(M+1)K

f(x)+λ
L∑
`=1

log
(

1+
∑
k 6=z`

exp
{
µ`+ϕ(u`)>(x(k)−x(z`))

})
. (6.29)

• The binary SVM by Laporte et al. [140] based on the “one-vs-all" strategy.
For every k ∈ {1, . . . ,K}, the latter amounts to separately estimating the
vector x(k) by splitting the training samples (u`, z̃`) in two classes, with
z̃` = 1 if z` = k, and z̃` = −1 otherwise, thus leading to

Note that (6.30) is the special-
ization of (6.28) to the case
K = 2, after a variable change.

minimize
x(k)∈R(M+1)

f(x) + λ

L∑
`=1

(
max

{
0, µ` + z̃` ϕ(u`)>x(k)})2

, (6.30)

Problems (6.15)-(6.16) are referred to as hinge, whereas Problems (6.28)-(6.30)
are referred to as square, logit, and one-vs-all. Since the parameters λ and η
need to be estimated (e.g., through cross validation), it is important to evaluate
the impact of their choice on the performance. To compare the above methods
for different choices of these parameters, it was set λ = α−1 or η = αL, with α
being varied inside a fixed set of predefined values. It was also set µ` ≡ 1.

• Leukemia database. Table 6.1 reports the classification errors and the
number of non-zero coefficients in (x(k))1≤k≤3 obtained with hinge, square,
logit, and one-vs-all using various regularization terms. For each method,
we set α so as to achieve the best accuracy (by using a simple trial-and-error
strategy). The results indicate that sparse regularization effectively selects
a small set of important features for each prediction vector (x(k))1≤k≤3,
with better results than the quadratic regularization. In addition, the
classification errors show that hinge is often more accurate than square.

• MNIST database. Figures 6.1a, 6.1c and 6.1e report the classification
errors as a function of the regularization hyperparameter. These results
were obtained with the `1,∞-norm regularization, as it was the one leading
to the best results in all our experiments on this database. The classification
errors indicate that the hinge approach is slightly more accurate than the
other ones. On the other side, Figures 6.1b, 6.1d and 6.1f report the
percentage of zero coefficients in vectors (x(k))1≤k≤K as a function of α.
The plots show that the hinge approach yields solutions slightly more
sparse than the other ones.
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Figure 6.1 Results on MNIST database with the `1,∞-regularization for L ∈
{3K, 5K, 10K}. Left column: classification errors as a function of α. Right
column: percentage of zero coefficients in vectors (x(k))1≤k≤K as a function
of α. The circles mark the values yielding the best accuracy.
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Figure 6.2 Results on News20 database with the `1,2-regularization for L ∈
{5K, 10K, 50K}. Left column: classification errors as a function of α. Right
column: percentage of zero coefficients in vectors (x(k))1≤k≤K as a function
of α. The circles mark the values yielding the best accuracy.
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• News20 database. Figures 6.2a, 6.2c and 6.2e report the classification
errors (as a function of the regularization hyperparameter) obtained by
using the `1,2-norm regularization. The classification errors indicate that
the hinge approach is slightly more accurate than the square approach.
The plots also show that the results obtained with the hinge approach are
more robust w.r.t. the choice of the regularization parameter. On the other
side, Figures 6.2b, 6.2d and 6.2f report the percentage of zero coefficients
in vectors (x(k))1≤k≤K as a function of α. The plots show that the hinge
approach yields solutions as sparse as the square approach.

6.4.2 Assessment of execution times

In this section, the execution time of Algorithms 6.1 and 6.2 is compared with

• a FISTA implementation of Problem (6.28),

• a forward-backward implementation of Problem (6.29),

• a FBPD implementation of Problem (6.24) being reformulated with an
extended number of linear constraints

minimize
(x,ζ)∈R(M+1)K×RLK

f(x) s. t.

L∑
`=1

K∑
k=1

ζ(`,k) ≤ Kη,

(∀` ∈ {1, ..., L}) ζ(`,1) = · · · = ζ(`,K),

(∀` ∈ {1, ..., L}) ζ(`,1) ≥ 0, . . . , ζ(`,K) ≥ 0,
(∀` ∈ {1, ..., L}) T` x + r` − (ζ(`,k))1≤k≤K ≤ 0.

(6.31)

This approach is conceptually similar to the linear programming methods
proposed by [220] and [241] for `1- or `1,+∞-regularized SVMs.

Figures 6.3a, 6.3c and 6.3e show the execution times (averaged among 10 training
sets) obtained by the above algorithms for various values of λ and η on the
MNIST database with L ∈ {3K, 5K, 10K}. In this experiment, the execution
times refer to a stopping criterion of 10−5 on the relative error between two
consecutive iterates. Figures 6.3b, 6.3d and 6.3f show the relative distance to
‖x[i] − x[∞]‖/‖x[∞]‖ (as a function of time) for the values of λ and η yielding
the best accuracy (as reported in Figure 6.1), where x[∞] denotes the solution
computed with a stopping criterion of 10−5. These results demonstrate that the
proposed algorithms are faster than the approaches based on linear constraints
and logistic regression, while being comparable in terms of execution times to
approaches based on the square hinge loss. In addition, Algorithm 6.2 turns
out to converge faster than Algorithm 6.1. This can be explained by the higher
computational cost of the projection onto the standard simplex. The codes were
tested in Matlab on a Intel CPU at 3.33 GHz and 24 GB of RAM.
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Figure 6.3 Results on MNIST database with the `1,∞-regularization for L ∈
{3K, 5K, 10K}. Left column: execution time as a function of α, where
the circles mark the values yielding the best accuracy (as reported in Fig-
ure 6.1). Right column: distance to x[∞] (as a function of time) obtained with
the values of α marked by a circle in the left column (note that the one-vs-all
approach, being defined by multiple optimization problems, does not allow
us to determine the iterate x[i] at each iteration, hence the associated plot
cannot be traced).
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6.4.3 Quadratic regularization

Although the emphasis is on sparse learning, we propose to complete our anal-
ysis by evaluating the efficiency of the proposed algorithms in the case when
f is a quadratic regularization function. To this end, the execution times of
Algorithms 6.1 and 6.2 is compared with the SVM-struct algorithm proposed
by Joachims et al. [126], which provides a numerical approach for solving Prob-
lem (6.9) through a cutting-plane technique. Figure 6.4 reports the execution
times (averaged on 10 training sets) obtained by the above methods on the
MNIST database with L ∈ {3K, 5K, 10K, 50K, 100K, 500K} and different val-
ues of α. In this experiment, the stopping criterion was set to 10−3 in all methods,
and the regularization parameter of SVM-struct was set to L/α.

The results show that the proposed algorithms are competitive with state-of-
the-art solutions in scenarios with a limited number of training data. The same
cannot be claimed for larger databases, as SVM-struct scales particularly well
w.r.t. the number M of features and the size L of the training set. Note however
that, when L/K = 500, the number of significant features for the SVM classifier
designed with a quadratic regularization is equal to 158214 (w.r.t. a threshold
set to 10−5), while a sparse approach using an `1,∞-norm regularization yields
only 42795 nonzero features.

6.5 Conclusions
We have proposed two efficient algorithms for learning a sparse multiclass
SVM. Our approach makes it possible to minimize a criterion involving the
multiclass hinge loss and a sparsity-inducing regularization. In the literature,
such a criterion is typically approximated by replacing the hinge loss with a
smooth penalty, such as the quadratic hinge loss or the logistic loss. In this
chapter, we have provided two solutions that directly deal with the hinge loss:
one addressing the regularized formulation and the other one adapted to the
constrained formulation. The performance of the proposed solutions have been
evaluated over three databases in scenarios with a few training data. The results
show that the use of the hinge loss, rather than an approximation, leads to a
slightly better classification accuracy and tends to make the method more robust
w.r.t. the choice of the regularization parameter, while the proposed algorithms
are often faster than state-of-the-art solutions.
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Figure 6.4 Results on MNIST database with a quadratic regularization. The plots show
the execution times obtained with a stopping criterion of 10−3 for some values
of α. The circles mark the values of α yielding the best classification accuracy.





The saddest aspect of life right now is
that science gathers knowledge faster
than society gathers wisdom.

Isaac Asimov

Chapter 7
Image Forgery Detection

The main focus of this chapter is the detection of image forgeries with the use of
photo response non-uniformity, a deterministic pattern noise specific of each individual
camera. To this end, we propose a variational approach that aims at solving a binary
segmentation problem regularized with a `1-norm constraint, and we explain how to
tackle it by convex relaxation and the proposed epigraphical splitting. Experiments on
real and simulated forgeries show the good performance of our approach.

7.1 Introduction
Digital images are more and more frequently used to support important deci-
sions. This is especially true in the forensic field where, to make just a few
examples, images are routinely used to describe the scene of a crime, or to define
responsibilities in road accidents. Unfortunately, with the wide availability of
sophisticated image manipulation tools, modifying a digital photo with little
or no obvious signs of tampering has become easier than ever before (e.g., see
www.fourandsix.com/photo-tampering-history). Therefore, it is important
to devise tools that help deciding on the authenticity of a digital image, which
raises attention on the image forgery detection field.

Several approaches have been proposed in the literature to detect image
alterations under a variety of scenarios. A first category comprises active
techniques for image authentication based on the use of watermarks [244] and
signatures [10, 243], with the former being embedded into images (possibly
originating small distortions), and the latter being attached to images as side
information. Although these methods are very effective, they can be applied only
when the digital source is protected at the origin, which is probably a minority
of the cases of interest. Therefore, there has been a steadily growing interest on
passive techniques, which retrieve traces of manipulations from the image itself
with no need of collaboration on the part of the user.

Some techniques are specifically tailored to copy-move forgeries, where por-
tions of the image are cut and pasted elsewhere in the same image. Duplicated
parts are discovered by block-based processing or, more efficiently, by means
of suitable invariant features [5, 56, 130]. A more general approach considers
physical inconsistencies, such as the lighting of objects, shadows, or geometric
features (dimension, position, etc.) of objects w.r.t. the camera [127, 128, 154].
Also, as many images are saved in some compressed format, several forgery
detection techniques rely on the traces left by multiple compressions. In fact,
when a JPEG image is modified and saved again in JPEG format, specific
artifacts appear as a result of the multiple quantization processes, suggesting
the presence of some form of tampering [17, 44, 152, 237].

Another valuable source of information is the acquisition phase, which often
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leaves peculiar traces, related to lens characteristics [101, 231], the color filter
array (CFA) pattern [97, 136, 185], or the sensor array [41, 160], that can be used
to discover image manipulations. In the latter context, the photo-response non
uniformity (PRNU) noise appears as one of the most promising tools at hand.
The PRNU arises from tiny imperfections in the silicon wafer used to manufacture
the imaging sensor [114]. These physical differences provide a unique sensor
pattern, specific of each individual camera, constant in time, and independent of
the scene. It can be therefore considered as a sort of camera fingerprint and used
as such to accomplish forgery detection or image identification tasks. Indeed,
the most common forms of image forgery, like copy-move or splicing, delete
the original camera PRNU from the target region, a fact that can be detected
through suitable analyses, provided the camera PRNU is available. Note that,
unlike with most other approaches, the detection of tampering is based on the
absence of the fingerprint, hence does not depend on the specific type of forgery.
On the other hand, the PRNU pattern is fairly robust to several forms of image
processing, such as JPEG compression, filtering, or gamma correction [41, 160].

The main contribution of this chapter is the design of a new algorithm
for PRNU-based forgery detection. The proposed strategy improves upon the
reference method [41] in several aspects. The most important one consists of
formulating the problem in terms of a binary segmentation regularized with
a suitable Markov random field. So doing, one can exploit the strong spatial
dependencies of the source, and take the decisions jointly on the whole image,
rather than individually for each pixel.

7.1.1 Related work

A PRNU-based technique for camera identification and forgery detection was
originally proposed in [160], then refined in [41]. Given the potential of this
algorithm [43], many research groups have soon started working, trying to
improve the estimate of the image PRNU, to define better decision statistics,
or better decision strategies. In fact, since the PRNU is a very weak signal, its
reliable estimation is crucial for the algorithm success.

An estimate of the PRNU is typically computed by subtracting a filtered
version of the image from the observed one, obtaining a residual where the
PRNU is present, but the image (seen as noise in this context) is mostly removed.
However, the residual contains also traces of the signal, especially at high
frequencies, due to the imperfection of the filtering process or to in-camera
processing, such as JPEG compression, CFA interpolation, or vignetting [146].

In order to mitigate the aforementioned issue, the denoising filter used in
the original technique was replaced with a state-of-the-art nonlocal filter [47],
with significant performance improvements. A different strategy to reduce the
interference of scene was proposed in [147], based on selective attenuation of
wavelet transform coefficients.

Another major challenge is the suppression of the so-called non-unique ar-
tifacts [100], specific to a camera model or manufacturer. These include for
example JPEG block artifacts, and CFA interpolation artifacts, both charac-
terized by regular “linear” spatially periodic patterns, relatively easy to correct
[148]. Non-unique artifacts may lead to wrong results, especially in camera
identification, because of the increased similarity between the PRNU fingerprints
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of a different devices with similar characteristics. Recently, nonlinear artifacts
have also been reported, due to correction of radial lens distortion [110] and
other advanced in-camera processing procedures [106].

As for decision statistics, since the normalized correlation used in the original
algorithm was very sensitive to artifacts, the more stable peak-to-correlation
energy (PCE) ratio was proposed in [100, 109] for camera identification purposes,
further modified in [131] to lower the false positive rate. A different approach
proposed in [239] was the adoption of canonical correlation analysis. In [48], it
was proposed to compute statistics, and possibly take decisions, based on a prior
segmentation of the image, thus moving towards an object-oriented processing.
The original signal was used also in [153], where only regions characterized by
higher signal quality are used, discarding those regions heavily deteriorated by
irrelevant noise. Some papers, finally, focus on computational/storage complexity,
certainly an issue for applications that involve large-scale databases, proposing
the use of a quantized [13], or spatially limited [111], or hashed [120] PRNU.

7.1.2 Contributions

This chapter proposes a new PRNU-based forgery detection algorithm that relies
on the same general structure and basic tools as the reference method [41], but
improves upon it under several respects:

(i). first of all, the constant false alarm rate decision strategy is abandoned in
favor of a more flexible Bayesian rule;

(ii). more important, decisions are now made jointly on the whole image, rather
than individually for each pixel;

(iii). to do so, the strong spatial dependencies of the source are taken into
account by modeling the data through a suitable Markov random field;

(iv). this leads to a binary segmentation problem involving a regularity con-
straint based on the `1-norm, which is tackled by convex relaxation and
solved through the proposed epigraphical splitting, so as to guarantee the
convergence to a global optimum in a limited time;

(v). moreover, the quality of the observed data is improved by using a nonlocal
denoising algorithm;

(vi). finally, experiments prove that the proposed algorithm outperforms the
reference one, with a very limited increase in the computational burden.

7.1.3 Outline

The chapter is organized as follows. Section 7.2 thoroughly revises the refer-
ence method [41]. Section 7.3 motivates and describes in detail the proposed
improvements. Section 7.4 analyzes the performance by means of simulation
experiments. Finally, Section 7.5 draws conclusions and outlines future research.
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7.2 Background
Let y ∈ RN be a digital image observed at the camera output (either as a single
color band or the composition of multiple color bands), with y(`) denoting the
pixel value at site `. According to the standard camera model [41, 114], an image
y can be written as

(∀` ∈ {1, . . . , N}) y(`) =
(

1 + k(`)
)
x(`) + θ(`), (7.1)

where x ∈ RN is the ideal noise-free image, k ∈ RN the camera PRNU, and
θ ∈ RN the realization of an additive noise term which accounts for all types of
disturbances. Let ◦ denotes the element-wise product. By rewriting (7.1) as

y = x ◦ k + x+ θ, (7.2)

we stress from the beginning that the PRNU k is the only signal of interest in
all our analyses, and all other terms assume the role of unwanted disturbance.
This includes the ideal image x, which is in fact estimated and subtracted from
the original image, obtaining a more tractable noise residual

r = y − x̂, (7.3)

where x̂ = f(y) is estimated by means of a denoising filter f based on a wavelet
transformation [170]. Even so, since the PRNU is typically very small, except for
possible faulty sensors, we work in a very hostile environment, with an extremely
low signal-to-noise (SNR) ratio.

For convenience, the above residual is rewritten so that k multiplies the
observed image y rather than the unknown original x, leading to

r = y − x̂
= y ◦ k +

(
x− y

)
◦ k +

(
x− x̂

)
+ θ

= y ◦ k + n,

(7.4)

where the small difference term
(
x−y

)
◦k has been included in a single noise term

n, together with the denoising error x− x̂ and other disturbances. However, even
in the case of perfect denoising, the noise term is likely to dominate the residual
r which, therefore, will be only weakly correlated with the camera PRNU. In
addition, denoising is typically less accurate in the presence of textured areas,
and some signal components leak into the residual. This event lowers even
dramatically the operative SNR, and makes the detection virtually impossible.
Especially in these areas, the effectiveness of the denoising methods becomes
crucial for the overall performance. To improve the residual estimation, the
algorithm proposed in Section 7.3 relies on nonlocal denoising techniques.

In the following, we describe the image integrity verification procedure
proposed in [41], which comprises three basic steps:

(i). estimation of the camera PRNU (off-line);

(ii). sliding-window pixel-wise forgery detection test;

(iii). morphological processing of test result map.
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7.2.1 PRNU estimation

The first step of the procedure is not a hard task, because one is supposed to
have either a large number of images taken by the camera of interest or the
camera itself, and hence any reasonable estimation technique will provide, by
sheer brute force, a good result. The maximum likelihood estimate of the PRNU
from M given images {y1, . . . , yM} ⊂ RN is computed in [41] as

(∀` ∈ {1, . . . , N}) k̂(`) =

M∑
m=1

y(`)
m r(`)

m

M∑
m=1

(
y(`)
m

)2 , (7.5)

where rm denotes the noise residual of the image ym. Note that the weighting
terms ym account for the fact that dark areas of the image present an attenuated
PRNU, and hence should contribute less to the overall estimate. In the following,
for the sake of simplicity, we neglect the estimation error and assume to know
the camera PRNU perfectly, that is k̂ = k.

7.2.2 Forgery detection test

The detection problem can be formulated as a binary test between the hypothesis
H0 that the camera PRNU is absent (i.e., the pixel has been tampered) and the
hypothesis H1 that it is present (i.e., the pixel is genuine), yielding

(∀` ∈ {1, . . . , N})
{
H0 : r(`) = n(`),

H1 : r(`) = y(`)k(`) + n(`).
(7.6)

The true and estimated pixel classes will be denoted by binary values u(`) and
û(`), both defined in {0, 1}. Notice that, since we focus on the detection of
forgeries (signaled by the absence of the PRNU), the role of the two hypotheses
is inverted w.r.t. what is usual. For example, we will talk of False Alarm when
H0 is accepted but H1 holds (a forged pixel is declared genuine), and of Missing
Detection when H0 is accepted but H1 holds (a genuine pixel is declared forged).

The detection test is based on the normalized correlation [41] between the
restrictions of r and y ◦ k to a window W` ⊂ {1, . . . , N} centered at `, that is

ρ(`) = corr
([
r(n)]

n∈W`
,
[
y(n)k(n)]

n∈W`

)
, (7.7)

where the normalized correlation of two vectors a and b is defined as

corr(a, b) = (a− a)>(b− b)
‖a− a‖ ‖b− b‖

, (7.8)

with a (resp. b) being a vector containing the arithmetic mean of a (resp. b).
For each site ` ∈ {1, . . . , N}, the pixel label û(`) is obtained by comparing the
decision statistic ρ(`) with a threshold γ1 ∈ R, leading to the binary rule

û(`) =
{

0, if ρ(`) < γ1,

1, otherwise.
(7.9)
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The above threshold is selected with a Neyman-Pearson approach to obtain the
desired false acceptance rate (FAR), namely a suitably small probability that a
tampered pixel be wrongly identified as genuine. The probability distribution of
ρ under hypothesis H0 is estimated by computing the correlation between the
camera PRNU and a large amount of noise residuals coming from other cameras,
and using standard density fitting techniques. Rather large square blocks must
be considered in order to obtain a reliable statistic, such as 128×128 pixels [41].

Even in the absence of forgery, the correlation might happen to be very low
when the image is dark (since y multiplies the PRNU), saturated (because of
intensity clipping), or when denoising does not perform well and some image
content leaks into the noise residual. In [41], this problem is addressed by means
of a “predictor” which computes the expected value ρ̂(`) of the correlation index
under the hypothesis H1, relying on some local images features such as texture,
flatness and intensity. The principle consists of labeling the pixel y(`) as genuine
(the less risky decision) when the prediction ρ̂(`) is too low, irrespective of the
value of ρ(`). In this case, in fact, even for a genuine pixel, one cannot expect a
correlation index much larger than 0. Therefore, the test becomes

û(`) =
{

0, if ρ(`) < γ1 and ρ̂(`) > γ2,

1, otherwise.
(7.10)

The second threshold γ2 ∈ R is chosen heuristically by the user and separates,
in practice, reliable regions from problematic ones. It is worth underlining that
the refined decision test (7.10) can only reduce the false alarm rate but does
not increase (actually it might reduce) the probability of detecting an actual
forgery. In addition, the choice of the threshold itself is not obvious and can
significantly impact on the performance. For this reason, the algorithm proposed
in Section 7.3 employs a more flexible Bayesian approach that allows us to make
decisions jointly on the whole image, rather than individually for each pixel.

7.2.3 Label map post-processing

The output from the previous step, being generated by decisions taken indepen-
dently for each pixel, results in a fragmented and inconsistent map û that needs
to be post-processed. To do so, an ad-hoc morphological filtering is performed
on the regions of pixels declared as forged, over a background of genuine pixels.
In [41], all regions smaller than 64×64 pixels (one fourth of the window size)
are attributed to random errors and removed. Finally, the surviving regions are
dilated with a structured element of radius 20 pixel to approximately restore
the shape of the forged region, since many border points go lost because their
correlation index is computed on mixed (forged/genuine) blocks.

An important limitation of the reference method [41] is that the spatial
dependencies exhibited by natural images are taken into account in the post-
processing phase, after that the decisions about forged pixels have been already
taken. On the contrary, the algorithm proposed in Section 7.3 aims at solving a
binary segmentation problem involving a regularity constraint, so as to provide
a smooth output by penalizing maps with isolated points or many small regions.
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7.3 Proposed algorithm
The proposed algorithm relies on [41], using the same hypotheses, basic approach
and tools, but differs profoundly from it in the formulation of the problem and,
consequently, in the solution techniques. We follow a Bayesian approach which
allows us to better balance the observed statistics and the prior knowledge on
the image. As a consequence, we obtain an improved performance, namely an
increased probability to reveal small forgeries, and a much lower probability of
declaring forgery in genuine regions. In addition, as proposed in [47], we replace
the wavelet-based filter used in [41] with a better nonlocal filter, which provides
us with more reliable data for the subsequent decision phase.

7.3.1 Bayesian Formulation

Our goal is to find the label map û ∈ {0, 1}N which has the maximum probability
All quantities of interest, except
for the PRNU, are modeled as
random fields, using the same
symbol Pr for denoting their
probability distributions.

to occur given the observed image y, leading to

û = arg max
u∈{0,1}N

Pr(u|y). (7.11)

Like in [41], however, we consider the noise residual r = y − f(y) in place of the
original image, because of its reduced noise power, although this is sub-optimal
in principle, because r is not a sufficient statistic for our decision problem [132].

We compute the decision statistics ρ from r. Under the hypothesis H0
(forged pixel), the expected value of ρ(`) is zero, since the noise is assumed to
be signal-independent. Under the hypothesis H1, instead, the expected value of
ρ(`) is larger than zero, but not known, as it depends in a complex way on local
image features. Since this information is necessary to make any sensible decision,
we resort to a further statistic, the predictor ρ̂(`) proposed in [41], and assume

(∀` ∈ {1, . . . , N}) ρ̂(`) ' E{ρ(`)|H1}. (7.12)

Therefore, according to the conditional Bayes law, our problem becomes

û = arg max
u∈{0,1}N

Pr(u|ρ, ρ̂)

= arg max
u∈{0,1}N

Pr(ρ|u, ρ̂) Pr(u|ρ̂)

= arg max
u∈{0,1}N

Pr(ρ|u, ρ̂) Pr(u), (7.13)

in which the last equality comes from the fact that ρ̂ does not depend on u,
but only on the image content, be it genuine or forged. Hereabove, the term
Pr(ρ|u, ρ̂) is the conditional likelihood of observing ρ, while Pr(u) accounts for
the prior probability of the labels.

The model in (7.13) provides some insight about the strength of the Bayesian
approach. The prior term, in fact, allows us to take into account all available
knowledge on the expected forgery map, so as to guide the decision process
towards reasonable results. In the absence of such a term, decisions are typi-
cally taken independently for each pixel, which could generate fragmented and
inconsistent maps, calling for intense ad hoc postprocessing. On the contrary, by
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choosing a model for u that exploits the strong spatial dependencies exhibited
by natural images, decisions are taken jointly, penalizing ultimately maps with
isolated points or many small regions and providing a smooth output.

The choice of the prior model plays a pivotal role for performance and, not
least, for the complexity of the optimization algorithm, which is why we use a
Markovian prior. Markov random fields (MRF) [16, 83, 103, 149] are relatively
simple and effective tools to model the prior distribution of an image. An image
u ∈ RN is said to be a MRF when each pixel u(`) depends on the rest of the
image only through a selected group of neighbors N` ⊂ {1, . . . , N} \ {`}, namely

Pr
(
u(`) |

(
u(n))

n∈{1,...,N}\{`}

)
= Pr

(
u(`) |

(
u(n))

n∈N`

)
. (7.14)

Thanks to the Markovian property, one avoids the challenging problem of
assigning a global prior, and specifies only statistics on the local neighborhoods.
It can be proved that any positive MRF has a Gibbs probability law defined as

Pr(u) = 1
Z

exp
{
−
∑
e∈C

Ue(u)
}
, (7.15)

where Z is a normalizing constant, and C contains a number of subset of
{1, . . . , N} called cliques. The potentials Ue are ultimately responsible for the
MRF properties. Consider for example a two-pixel clique e = (`, n), with
associated potential U`,n(u) = λ|u(`) − u(n)| for some λ > 0. If u(`) = u(n), the
clique will contribute a unitary factor to the overall probability of the image,
while if λ|u(`) − u(n)| = ∆ � 0 it will contribute a factor e−∆ very close to
0. With this choice of local potentials, images with a sharp transition between
pixels ` and n are made very unlikely a priori, and smooth images are preferred.

In our case, since u ∈ {0, 1}N , we resort to the popular Ising model [149],
where only single-site and two-site cliques are considered, yielding the potentials

(∀` ∈ {1, . . . , N}) U`(u) = α
(
u(`) − 1/2

)
=
{
−α/2, if u(`) = 0,
+α/2, if u(`) = 1,

(7.16)

and, for every ` ∈ {1, . . . , N},

(∀n ∈ N`) U`,n(u) = λ|u(`) − u(n)| =
{
λ, if u(`) 6= u(n),

0, otherwise,
(7.17)

where N` denotes the set of 4-connected neighbors of `. Single-site potentials
are directly related to the prior probability p0 and p1 of the classes, as

α = log
(
p0/p1

)
. (7.18)

Two-site potentials, instead, penalize label transitions (remember the minus sign
before the energy) between 4-connected sites, enforcing a bias toward smooth
images whose strength depends on the edge-penalty parameter λ. For λ = 0,
there is no interaction between pixels, no matter how close they are, while the
bias against label transition grows stronger with increasing values of λ, and
extends well beyond a local clique thanks to chain propagation. Therefore, in
the absence of observable data, the prior probability is maximized by a flat map,
with all labels equal to the one most probable a priori.
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Turning to the likelihood term, we assume the conditional independence of ρ
(this and other hypotheses will be discussed later). As a result, after taking the
negative log, we can rewrite Problem (7.13) as

minimize
u∈{0,1}N

N∑
`=1
− log Pr

(
ρ(`)|u(`), ρ̂(`))+

N∑
`=1

U`(u) +
N∑
`=1

∑
n∈N`

U`,n(u), (7.19)

which, after having set f`(u(`)) = − log Pr
(
ρ(`)|u(`), ρ̂(`)), leads to

minimize
u∈{0,1}N

N∑
`=1

f`(u(`)) + α

N∑
`=1

u(`) + λ

N∑
`=1

∑
n∈N`

|u(`) − u(n)|. (7.20)

Since the function f`(u(`)) of a binary variable u(`) ∈ {0, 1} can be expressed as
f`
(
u(`)) = u(`)[f`(1)− f`(0)

]
+ f`(0), Problem (7.20) reduces to

minimize
u∈{0,1}N

N∑
`=1

c(`) u(`) + λ

N∑
`=1

∑
n∈N`

|u(`) − u(n)|, (7.21)

where c(`) = f`(1)− f`(0) + α. Finally, we assume the likelihood to be Gaussian
under both hypotheses, with zero mean and variance σ2

0 under hypothesis H0,
and mean ρ̂(`) and variance σ2

1 under hypothesis H1, namely

f`(1) =
(
ρ(`) − ρ̂(`))2

2σ2
1

+ log σ1 + log
√

2π, (7.22)

f`(0) =
(
ρ(`))2
2σ2

0
+ log σ0 + log

√
2π, (7.23)

and by recalling α in (7.18), we readily obtain the expression

c(`) =
(
ρ(`) − ρ̂(`))2

2σ2
1

−
(
ρ(`))2
2σ2

0
+ log p0 σ1

p1 σ0
. (7.24)

Problem (7.21) is the final expression to consider for finding the optimal û.
Before that, however, let us gain some insight into the meaning of the objective
function in (7.21). Assume λ = 0, for the time being, which means that
decisions are taken independently for each pixel, selecting u(`) = 1 if the biased
likelihood c(`) is negative, and u(`) = 0 otherwise. If we assume also σ2

0 = σ2
1 and

p0 = p1 (no bias), the algorithm reduces to comparing the correlation index ρ(`)

with a threshold ρ̂(`)/2 placed halfway between the two means. Unequal prior
probabilities and variances modify somewhat the decision regions, favoring for
example the most probable class, without altering the essence of the procedure.

If we now consider λ > 0, decisions are not independent anymore, as tran-
sitions are penalized, and a decision can be reverted if convenient. This can
happen especially if the biased likelihood c(`) is small, that is typically when
ρ̂(`) is small. However, if the biased likelihood c(`) keeps the same sign over a
relatively large and compact area, there is no reason to change decisions, or
refrain from taking a decision at all, even if absolute values are small. Therefore,
it becomes possible to detect relatively small forgeries even in dark and textured
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regions of the image. This is the fundamental improvement w.r.t. the original
algorithm, which did not trust at all the decision statistic in problematic regions.
Both algorithms enforce some compactness constraints, but in [41] this is done
only by morphological filtering of the label map, after irreversible hard decisions
have been already taken. Here, on the contrary, likelihood and prior are weighted
optimally (in the limit of the accuracy of the model) before taking any decision,
and the compactness is taken into account by the `1-norm of pixel differences.

A few words are due about the hypotheses. The conditional independence of
the likelihood does not hold true if correlation indexes are computed on largely
overlapping sliding windows. A necessary condition to restore it is to use disjoint
blocks, but this would entail an annoying loss of spatial resolution. Therefore, as
a reasonable compromise, we use a subsampling of 8×8 (only in the optimization
phase), which guarantees a good spatial resolution, allows for a significantly
saving in CPU time, and reduces the spatial correlation of the likelihood field.
On the other hand, the residual correlation, which modifies the absolute values
of the global likelihood, is automatically taken into account through the edge
penalty parameter λ, set by means of preliminary experiments.

Concerning the Gaussian model, it was observed in [41] that it fits experi-
mental data very accurately under H0 but not under H1, where a generalized
Gaussian (GG) model was preferred. However, the choice of the GG model is
strongly influenced by a small number of outliers that lie on the right tail of the
distribution (large ρ(`)) of little interest for the decision. In the region where
a good modeling is more important, between 0 and ρ̂(`), the simpler Gaussian
fitting seems accurate enough. The ratio between the prior probabilities p0/p1
can be based on actual observations or, more practically, based on the different
risks associated with false alarm and missing detection errors. This choice can
be thus loosely related with the choice of the constant FAR threshold of [41].

7.3.2 Optimization by convex relaxation

Problem (7.21) can be solved, either exactly or approximatively, by a number of
combinatorial algorithms, such as simulated annealing [134], iterated conditional
modes [16], graph cuts [25], or belief propagation [230]. A powerful alternative
approach relies on the concept of convex relaxation, which consists of converting
Problem (7.21) into a convex one admitting the same solution [38]. This approach
amounts to replace the discrete domain {0, 1}N with the unitary hypercube
[0, 1]N , obtaining eventually the convex optimization problem

minimize
u∈[0,1]N

N∑
`=1

c(`) u(`) + λ

N∑
`=1

∑
n∈N`

|u(`) − u(n)|. (7.25)

It can be proved [38] that (7.25) is equivalent to (7.21), in the sense that a
solution to the integer-valued problem can be obtained by thresholding at any
level µ ∈]0, 1[ the solution to the above convex problem.

The great advantage of convex relaxation is that Problem (7.25) can be
equivalently rewritten in the following constrained form

minimize
u∈[0,1]N

N∑
`=1

c(`) u(`) s. t.
N∑
`=1

∑
n∈N`

|u(`) − u(n)| ≤ η, (7.26)
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as these two formulations are equivalent for specific values of λ and η. As already
argued in the previous chapters, Problem (7.26) may be more practical, as the
choice of η can be related to some physical properties of the target signal [61].
This is especially true in binary segmentation, where the edge penalty is directly
related to the forgery size, and thus the upper bound η can be reasonably set
according to the outcome of a number of controlled preliminary experiments.

The standard way of solving Problem (7.26) via proximal methods leads to a
sequence of steps involving the projection onto the `1-ball. While this projection
can be computed through specific numerical procedures [71, 217], a more efficient
approach consists of resorting to the proposed epigraphical splitting. The latter
amounts to reformulating Problem (7.26) as

minimize
(u,ζ)∈[0,1]N×V

c>u s. t. (Fx, ζ) ∈ E, (7.27)

where c = (c(`))1≤`≤N , F is defined in (3.7) with ω1,n ≡ 1 and M` ≡ 4, while

E =
{

(y, ζ) ∈ R4N × R4N ∣∣ (∀` ∈ {1, . . . , 4N}) (y(`), ζ(`)) ∈ epi | · |
}

V =
{
ζ ∈ R4N ∣∣ 1>4N ζ ≤ η

}
. (7.28)

The iterations of M+LFBF associated to the above problem are reported in Algo-
rithm 7.1, where the projection PE is computed by virtue of Proposition (2.3.2).
The algorithm stops when either the convergence criterion

‖u(i+1) − u(i)‖ < 10−5‖u(i)‖ (7.29)

is satisfied or the maximum allowed number of iterations is reached. Experiments
show that 1000 iterations are always enough for a good convergence.

Algorithm 7.1 Iterations of M+LFBF [66] for Problem (7.27)

Initialization choose
(
x[0], ζ [0]) ∈ RN × R4N

choose
(
y[0], ξ[0]) ∈ R4N × R4N

set γ ∈ ]0, 1/4[
For i = 0, 1, . . .

p[i] = P[0,1]N

(
x[i] − γ (c+ F>y[i])

)
ρ[i] = PV

(
ζ [i] − γ ξ[i])

ŷ[i] = y[i] + γFx[i]

ξ̂[i] = ξ[i] + γ ζ [i]

(v[i], ν[i]) = (ŷ[i], ξ̂[i])− γPE
(
ŷ[i]/γ, ξ̂[i]/γ

)
y[i+1] = v[i] + γF

(
p[i] − x[i])

ξ[i+1] = ν[i] + γ
(
ρ[i] − ζ [i])

x[i+1] = p[i] − γF>(v[i] − y[i])

ζ [i+1] = ρ[i] − γ
(
ν[i] − ξ[i])
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7.3.3 Nonlocal denoising

Although the proposed Bayesian approach will very likely improve the reliability
of forgery detection, performance ultimately depends mostly on the quality of
the original data. Looking at the definition of noise residual in (7.4), we see that
the local signal-to-noise ratio depends primarily on image intensity y (which
multiplies the PRNU) and the strength of three noise terms. Among them, the
denoising error x− x̂ typically predominates due to imperfect treatment of edges
and textures, and thus the quality of denoising impacts immediately and strongly
on the detection performance.

Most denoising algorithms separate signal from noise based on their spectral
properties, assuming the signal to be dominant at the lower spatial frequencies,
and noise to prevail at the higher ones. This approach inspires both spatial-
domain and transform-domain filters, in more or less explicit forms, including
those operating in the wavelet domain. Unfortunately, such a spectral separation
holds very well in flat areas of the image, but much less so in textured areas,
where the signal has significant components at the higher frequencies of the
spectrum. As a result, some signal components are treated as noise and filtered,
causing smoothing and blurring in the output image and, what is worse in our
point of view, contributing significantly to noise power in the residual.

To improve the quality of noise residual, we resort to nonlocal denoising [32],
and in particular to the state-of-the-art BM3D algorithm [79]. As the name
suggests, nonlocal filtering estimates the true value of a given pixel by relying on
pixels (taken anywhere in the image) statistically homogeneous with the target.
Thanks to the inherent self-similarity of images, there are several patches in the
surroundings of the target that happen to be very similar to it, and therefore can
be assumed to be good predictors. By jointly filtering such patches, one obtains
a good estimate of the target, with little or no spatial smearing, mimicking a
true statistical average. The joint processing of similar patches ensures that the
original image is well estimated also in the presence of strong texture. As a
result, the noise residual obtained using BM3D presents limited traces of signal,
leading to a better correlation index field, especially in the textured areas.

7.4 Experimental results
In this section, we assess experimentally the performance of the proposed tech-
nique. Experiments are carried out on four cameras: Canon EOS 450D, Canon
IXUS 95IS, Nikon D200, and Nikon Coolpix S5100. For each camera, we use
a first training set of 200 images to estimate the PRNU pattern, and another
training set of 20 images to design the predictor. Performance indicators are then
computed on a larger set, disjoint from the training sets, comprising 600 images
for each camera. All training and test images have the same size of 768× 1024
pixels, and are cropped from the same region of the original images output by
the camera. For each test image, we consider both the genuine version, used to
look for false alarms (wrongly declared forgeries), and a forged version, used to
look for correct detections (correctly declared forgeries). To create the forged
version, we replace a square at the center of the image with an equal-size square
taken at random (but in a reproducible way) from another image of the same
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(a) Genuine image. (b) Tampered image.

(c) Decision map for the genuine image. (d) Decision map for the tampered image.

Figure 7.1 Color coded detection masks. Gray: genuine pixel declared genuine; red:
genuine pixel declared tampered (error); white: tampered pixel declared
genuine (error); green: tampered pixel declared tampered.

or different camera. To study how performance depends on forgery size, we use
forgeries of three sizes, 128×128, 256×256, and 384×384 pixels, creating thus
three test subsets of 200 images each.

In order to assess separately the improvements due to the Bayesian for-
mulation and the improved filtering, we consider all four combinations in our
experiments, that is, the original technique with constant false acceptance rate
(CFAR) decision rule and either Mihcak or BM3D denoising, and the proposed
version with the Bayesian decision rule and, again, Mihcak or BM3D denois-
ing. In the following, we will call these techniques for short CFAR-Mihcak,
CFAR-BM3D, Bayes-Mihcak and Bayes-BM3D, respectively.

Figure 7.1 shows an example genuine image together with a tampered version
with a medium-size realistic forgery at the center and, on the bottom row, the
corresponding color-coded decision masks output by the CFAR-Mihcak algorithm.
The first mask, obtained for the genuine image, is used to compute the false
alarm probability, as the ratio between the number of pixels declared forged (in
red) and the image size. The second mask, obtained for the forged image, is
used to compute the detection probability, as the ratio between the number of
correctly identified forged pixels (in green) and the forgery size (white + green).
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7.4.1 Pixel-level analysis

Figure 7.2 shows, for each of the four cameras, the receiver operating character-
istics (ROCs) of the four algorithms, computed on the complete test set (600
images with forgeries of various sizes). To improve the readability, we show
only a close-up of the most relevant top-left region. Each ROC is computed by
varying in a wide range the algorithm main parameters, γ1 and γ2 for CFAR,
α and η for Bayes, and then taking the upper envelope of the resulting points
(PFA, PD). Although CFAR-Mihcak can be considered one of the best forgery
detection techniques known to date, Bayes-BM3D technique improves clearly
upon it, showing for all cameras a uniformly better ROC. Both the improved
denoising filter and the global Bayesian formulation provide significant improve-
ments over CFAR-Mihcak. Their joint use, however, improves performance still
further, showing that better data do not solve all problems by themselves, nor is
sufficient to adopt a more clever decision strategy irrespective of data quality. Of
course, results change slightly from camera to camera but the general behavior
is always the same. For the Canon IXUS, the ROCs are much closer to one
another. For the two Nikon cameras, the performance is generally worse than
with the Canon cameras. This is not surprising since the performance depends
strongly on the average intensity of the PRNU noise, which varies significantly
for different manufacturers and camera models, and is somewhat smaller for the
Nikon. This fact explains also why, for the Nikon cameras, unlike the Canon,
CFAR-BM3D outperforms Bayes-Mihcak. In fact, given the weaker PRNU,
improving data reliability is more rewarding than using a better optimization
strategy on unreliable data.

To gain insight into how the performance depends on forgery size, Figure 7.3
shows in distinct graphs the ROCs (same close-up as before) computed only on
large (384×384 pixels), medium (256×256), and small size (128×128) forgeries.
To save space, results are shown only for the Canon EOS camera, but the same
general behavior is observed in all cases. The performance is always very good
(remember that we are zooming on the upper-left part of the (PFA, PD) domain)
but, as expected, gets worse and worse as the forgery size decreases, because
some small forgeries might be missed altogether. Note that the gap between the
Bayesian and CFAR approach grows very wide in the case of large forgeries, where
the former exhibits a near-optimal behavior. In fact, the Bayesian approach
allows one to detect large forgeries even in unfavourable conditions, such as dark
and textured regions, where CFAR approach can be fooled.

Although the pixel-level false alarm and detection probabilities reported
in the above figures are widespread performance indicators in this field, they
are not fully appropriate to assess forgery detection performance. A typical
user is mostly interested, in order of decreasing importance, in: (i) establishing
whether an image is tampered, (ii) finding the approximate location of detected
forgeries, (iii) knowing their approximate size and shape. In fact, once a forgery
has been detected, together with its approximate location, one can resort to
many other tools to obtain more detailed information. Moreover, automatic
forgery detection can be used to pre-screen a large number of images, in order
to select those more likely to have been tampered with for visual analysis by
expert photo-interpreters. Therefore, in the following, we present two more sets
of curves, the customary image-level results, and what we call object-level results,
concerning the probability of correctly detecting forged objects within an image.
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(b) Canon IXUS.
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(c) Nikon D200.
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(d) Nikon Coolpix.

Figure 7.2 Pixel-level ROCs (close-up) for all cameras under test.
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(a) Large-size forgeries.
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(b) Medium-size forgeries.
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(c) Small-size forgeries.

Figure 7.3 Pixel-level ROCs (close-up) for the Canon EOS camera.
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7.4.2 Image-level analysis

To compute image-level results, we consider only the global decision made on the
whole image. More precisely, the image under test is declared forged if any of its
pixels is (remember that small regions are erased right away from the map), and
genuine otherwise. False alarm and detection probabilities are then computed as
the fraction of genuine and, respectively, forged images that are declared forged
by the algorithm. Figure 7.4 shows the results for the four cameras under test,
computed over the complete test set. The general behavior is the same as in
the case of pixel-level ROCs, with the only difference that all curves are now
further from the top-left corner (ideal performance). However, this is obvious
considering that a wrong decision on just a small number of pixels may cause a
wrong image-level decision on the whole image.
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(b) Canon IXUS.
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(c) Nikon D200.
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(d) Nikon Coolpix.

Figure 7.4 Image-level ROCs for all cameras under test.
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7.4.3 Object-level analysis

Image-level ROCs provide information on the ability of an algorithm to classify
images as forged or genuine. A more ambitious goal, however, is to localize
forgeries with a reasonable accuracy. The PRNU-based approach, unlike many
others, has the potential to address this task, therefore it is certainly worth
carrying out a specific experimental analysis. To this end, we compute object-
level ROCs, by modifying the definition of correct detection w.r.t. the image-level
case. More precisely, we declare a correct detection only when the binary mask
output by the algorithm covers a significant fraction, ω ∈ [0, 1], of the actual
forged region, namely, going back to the example of Figure 7.1, if the green
area is large enough w.r.t. the forgery. Therefore, all situations in which the
output map covers just a tiny part of the actual forgery, or is even disjoint with
it, providing little or no hints for visual inspection, are regarded as missing
detections.

Figure 7.5 reports, for all cameras, the object-level performance computed
on the complete test set with ω = 0.2. As expected, all ROCs drift downward
w.r.t. the corresponding image-level curves. The impairment, however, is almost
negligible for the Bayesian algorithms, with either Mihcak or BM3D denoising,
while it is dramatic for the CFAR techniques, especially for the Nikon cameras.
In hindsight, this could be expected, since the MRF prior drives the optimization
towards a compact and well localized output mask, while no guarantees in this
sense is given by the CFAR-based thresholding. It is also interesting that ROCs
are now in the same order of performance for all cameras, Bayes-BM3D > Bayes-
Mihcak > CFAR-BM3D > CFAR-Mihcak, confirming that at object-level the
most important improvement comes from making decisions globally as opposed
to locally. Figure 7.6 shows, with reference only to the Canon EOS, that the
Bayes techniques have an object-level performance almost independent of ω,
while for the CFAR techniques a clear dependence is observed, indicating a less
accurate forgery localization.

We complete this analysis by reporting, in Figure 7.6, again for the Canon EOS
camera, the object-level ROCs computed separately on large (384×384 pixels),
medium (256×256) and small (128×128) forgeries. As expected, performance
drops for all algorithms as the forgery size reduces, and it is quite poor for the
smallest size, which coincides with the size of the window used to compute the
decision statistics. In this condition, the statistics used to detect forged pixels
are always (except for a single point) computed on mixed data, thus impairing
their diagnostic power. This is certainly one of the major limitations of the
PRNU approach, and probably the main topic to deal with in future research.
Barring this limiting case, performance is generally good, especially for the
proposed version of the technique, which provides always a significant gain w.r.t.
the original one.

In summary, this performance analysis shows that the proposed technique
is not only able to reliably classify a test image as genuine or forged, but also
to localize with good accuracy the detected forgery, provided it is large enough
w.r.t. the analysis window. Under all these respects, it improves significantly
over the reference technique.
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(b) Canon IXUS.
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(c) Nikon D200.
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(d) Nikon Coolpix.

Figure 7.5 Object-level ROCs (ω = 0.2) for all cameras under test.
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(a) All forgeries (ω = 0.1)
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(b) Large-size forgeries (ω = 0.2).
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(c) All forgeries (ω = 0.2)
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(d) Medium-size forgeries (ω = 0.2).
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(e) All forgeries (ω = 0.4)
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(f) Small-size forgeries (ω = 0.2).

Figure 7.6 Object-level ROCs for Canon EOS camera.
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7.4.4 Sample results on realistic cases

To gain a better insight into the behavior of proposed and reference algorithms,
we now consider some sample results obtained by running the algorithms on a set
of real-world tampered images taken by our four cameras. We consider both the
insertion of a new object into the scene (splicing), and the cancellation of an object
from the scene, realized by copy-moving part of the background to hide it. For
both CFAR-Mihcak and Bayes-BM3D, we use the set of parameters corresponding
to the best operating points in their respective object-level ROCs with ω = 0.20.
As an example, for the Canon EOS-450 camera, we use α = log 3, η = 48 for
Bayes-BM3D, and γ1 = 0.026, γ2 = 0.013 for CFAR-Mihcak. Here, we focus on
some situations where clear differences arise in the behavior of algorithms.

Figure 7.7 shows the outputs of CFAR-Mihcak and the Bayes-BM3D al-
gorithms on some examples. The first one (Camel) corresponds to a simple
case, with a large, bright and smooth forgery which, in fact, is successfully
and accurately detected by both algorithms. Note that the correlation fields
computed after Mihcak and BM3D filtering follow closely the predicted field,
except in the region of the forgery, where the original PRNU is missing and a
large deviation is observed. Notice also that no visual hint suggests the presence
of a forgery, making the detection virtually impossible without proper tools.

The second example (Road Sign) is similar to the previous one, except for
the two forgeries that are much smaller than before, about 128×128 pixels. As
a consequence, the CFAR-Mihcak algorithm misses both of them, while Bayes-
BM3D detects them correctly. Notice, in the center-bottom of the computed
index correlation fields, the reddish square region with sharp edges caused by a
single defective sensor, a feature that could be exploited to improve performance.

The third image (Wading Bird) is much darker than the previous ones and
also more textured. As a consequence, the computed correlation indexes are
quite small (blueish), especially after Mihcak filtering, which might easily induce
false alarms. The optimum thresholds of the original algorithm, set so as to
limit false alarms, discard the forgery region as well, causing a missed detection.
The proposed technique, instead, detects accurately the spliced object, thanks
to both the better filtering and the more sophisticated decision strategy.

The problem with textures is even more evident in the fourth example
(Beach), where both algorithms detect easily the copy-move forgery, but CFAR-
Mihcak presents also a false alarm caused by the bird feathers, highly textured,
and imperfectly filtered by the wavelet-based denoiser. Also in the subsequent
example (Roof), the texture causes some problems to CFAR-Mihcak. The
algorithm detects a forged area which only partially (less than 10%) overlaps the
actual spliced object and is therefore classified as a false alarm. This decision
appears to be correct in this case, since the algorithm seems to follow the textured
roof rather than the dark bird.

Finally, we show the case of a dark and textured image (Market) where both
algorithms fail, detecting the forgery but generating multiple false alarms as
well. With such a low quality image, on the other hand, it is difficult to envision
successful strategies. We do not even show the case of forgeries much smaller
than the analysis window, since they are obviously missed by definition by both
algorithms. Notice, however, going back to the Wading Bird example, that the
spliced object is indeed much thinner than 128 pixels, although longer than that,
but still detected by the Bayesian strategy.
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(a) (b) (c) (d) (e) (f) (g)

Figure 7.7 Forgery detection results for some selected examples: Camel, Road Sign,
Wading Bird, Beach, Roof, Market.
(a) Original image.
(b) Tampered version.
(c) Predicted correlation field ρ̂.
(d) Correlation index field ρ computed after Mihcak filtering.
(e) Correlation index field ρ computed after BM3D filtering.
(f) Color-coded detection mask provided by CFAR-Mihcak.
(g) Color-coded detection mask provided by Bayes-BM3D.
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7.4.5 Comparison of running times

Table 7.1 reports the average CPU times spent on a 3.40Ghz desktop computer
with 8GB memory, for a 768× 1024 image. The proposed technique is somewhat
more complex than the original, but not dramatically so. Most of the gap is due
to the costly nonlocal denoising. The decision phase, instead, takes much less
than expected. Thanks to the efficient optimization method, it requires less than
12 sec. without subsampling, which becomes just 0.31 sec. with subsampling, less
than 5% of the overall CPU time. After the final upsampling, some inexpensive
morphological filtering is used to slightly enlarge and smooth all map contours.

Table 7.1 CPU time (sec.) for the original and proposed techniques.

CFAR-Mihcak Bayes-BM3D

mean st.dev. mean st.dev.

Denoising 0.45 0.03 5.45 0.12
Index Field Computation 1.30 0.01 1.30 0.01
Decision/Optimization 0.01 0.00 0.31 0.14
Morphological Filtering 0.03 0.00 0.04 0.00
Overall 1.79 0.03 7.10 0.21

7.4.6 Comparison with other reference techniques

To complete our analysis, we show here the results of an experiment designed to
compare performance with some state-of-the-art techniques, namely A-DJPG
[17] (based on JPEG artifacts), and CFA-Loc [97] (based on the analysis of the
CFA), for which the codes are publicly available. In order to fairly compare
techniques based on very different principles and hypothesis, a pretty realistic
setting was designed. A test set of 300 images of size 768×1024, 75 for each of our
test cameras, were created with realistic forgeries, some of them drawn from the
web, and others designed by ourselves. We included an equal number of small,
medium, and large forgeries, classified based on the largest circle included in the
forgery area, with radius r ≤ 64, r ∈ [65, 128] and r ∈ [129, 192], respectively.
Both uncompressed and compressed (Q > 75) forgeries were used, half of them
resampled, the other half either rescaled or rotated.

Figure 7.8 shows ROCs obtained at pixel level on the test set. To evaluate
robustness of the algorithms, we considered also the case in which all tampered
images were JPEG compressed with quality factor 90. In both cases, Bayes-
BM3D performs better than CFAR-Mihcak, which in turn performs slightly
better than A-DJPG, and much better than CFA-Loc. In A-DJPG, we used all
64 DCT coefficients to generate the likelihood map, since 6 coefficients were not
enough to obtain a good performance [17]. It is also interesting to note that while
all techniques exhibit a worse performance on compressed images, the impairment
is much stronger for A-DJPG and CFA-Loc than for the PRNU-based techniques.

Although a thorough comparative analysis would be certainly interesting,
it is out of the scope of this work. It is worth pointing out that the proposed
technique improves upon the well-known and extensively tested technique in
[41], and can be therefore expected to inherit its good and robust performance.
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(b) Compressed images.

Figure 7.8 Pixel-level ROCs for PRNU-based and reference techniques.

7.5 Conclusions
Image forgery detection is becoming more challenging by the day, due to the
unrelenting advances in image processing. PRNU-based forgery detection is
one of the most promising approaches for this task. Provided that one has the
opportunity to estimate the camera PRNU, all kinds of forgeries can be dealt
with in a uniform manner and with a consistent good performance. Here, we
improve upon the seminal PRNU-based forgery detection technique proposed
in [41] by recasting the problem in a Bayesian framework, and by modeling
the decision variables as a Markov random field, thus accounting for their
spatial dependencies. In addition, we resort to state-of-the-art signal and image
processing tools: nonlocal denoising to improve estimation of noise residual, and
convex optimization to reach a globally optimal solution in a limited time. As a
result, the proposed technique provides a significant and consistent performance
gain over the original one, especially in terms of object-level detection ability,
the main parameter of interest for the applications. A modified version of the
proposed algorithm together with some other forgery detection tools [77], allowed
the GRIP team to win the First IEEE IFS-TC Image Forensics Challenge.
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Conclusion and
perspectives

In this thesis, we have designed a number of convex optimization algorithms
to address three problems in image restoration, machine learning, and digital
forensics. The common thread among these algorithms is the use of a novel
epigraphical splitting technique for dealing with nonlinear convex constraints.
Experiments carried out for each application have illustrated the efficiency and
the performance of the proposed approaches w.r.t. state-of-the-art solutions.

Conclusion
In the first part of the thesis, we have proposed a new epigraphical splitting
technique to deal with a class of nonlinear convex constraints. The proposed
technique allows us to reduce the complexity of optimization algorithms when a
constraint involves the sum of absolute values raised to a power q ≥ 1, distance
functions to a convex set, Euclidean norms, infinity norms, and max functions.
To demonstrate the efficiency of our approach, we have focused on mixed-norm
constraints that enforce a sparse regularization in image recovery problems.
In this context, the obtained results indicate that algorithms based on the
epigraphical splitting are faster (in terms of execution time) than equivalent
algorithms based on the direct computation of the projections via standard
iterative solutions. A summary of these findings was published in [51].

Although the proposed splitting turns out to be very efficient when the
epigraphical projections can be quickly evaluated, the same efficiency cannot be
claimed when there is no available expression for such projections. To facilitate
the use of the epigraphical splitting, in the first part of the thesis, we have also
turned our attention to outer-approximated constraints based on piecewise-affine
functions. In this context, we have tackled constraints involving the Kullback-
Leibler divergence and the logistic loss. The obtained results indicate both
the good performance of the proposed approximation and the efficiency of the
epigraphical splitting. These findings were partially published in [50].

In the second part of the thesis, grounded on the aforementioned epigraphical
splitting, we have brought three contributions in the context of multicomponent
image recovery, sparse multiclass SVM learning, and PRNU-based image forgery
detection, as summarized in the following.

(i). We have proposed a new regularization for multicomponent images that
combines nonlocal total variation and structure tensor. The obtained
results demonstrate the better performance of structure tensor and nonlocal
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gradients. They also indicate that the epigraphical splitting leads to faster
algorithms (in terms of the execution time) than those based on the direct
computation of the projections via standard iterative solutions. This
contribution was published in [53], and the toolbox is publicly available.1

(ii). We have proposed two efficient algorithms for learning a sparse multiclass
SVM. Our approach makes it possible to minimize a criterion involving
the multiclass hinge loss and a sparsity-inducing regularization. In the
literature, such a criterion is typically approximated by replacing the hinge
loss with a smooth penalty, such as the quadratic hinge loss or the logistic
loss. The obtained results show that the use of the hinge loss, rather than
an approximation, leads to a slightly better classification accuracy, while
the proposed algorithms are often faster than state-of-the-art solutions,
with the one based on the epigraphical splitting being the most efficient.
This contribution is, at the moment, under review [52].

(iii). We have proposed a new approach for PRNU-based image forgery detection
by recasting the problem in a Bayesian framework, and by modeling the
decision variables as a Markov random field, thus accounting for their
spatial dependencies. In addition, we have resorted to nonlocal denoising
to improve estimation of noise residual, and proximal methods based on the
epigraphical splitting to reach a globally optimal solution in a limited time.
As a result, the proposed technique provides a significant and consistent
performance gain over the original one, especially in terms of object-level
detection ability, the main parameter of interest for the applications. This
contribution was published in [49].

Perspectives
Despite the present advances, the work in this thesis opens up a number of
interesting perspectives from an applicative standpoint, as discussed next.

• The regularization based on nonlocal structure tensor leads to competitive
results in the context of spectral imaging, and thus it would be interesting
to consider other applications, such as the recovery of video signals or volu-
metric images. Another possibility could be the investigation of techniques
for reducing the high computational burden due to the huge number of
spectral bands. This goal may be achieved, for example, by processing
only the most informative bands selected by means of PCA, as already
done in [240] for the super-resolution of hyperspectral images. Other solu-
tions may involve the approximation of the singular value decomposition,
which also take a significant amount of time. Last but not least, ad-hoc
implementations on massively parallel architectures should allow one to
further accelerate the proposed algorithms [102].

• We believe that sparse multiclass SVM learning is one of the most promising
topics in the thesis. To the best of our knowledge, there exists no real
alternative for dealing with the exact formulation of the multiclass hinge

1perso.ens-lyon.fr/nelly.pustelnik/Software/Toolbox_MultiResto_v-1.0.zip
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loss, as the latter is typically approximated with a smooth penalty, such
as the quadratic hinge loss or the logistic loss. Currently, one of the main
limitations of sparse learning is the lack of methods for dealing with a large
amount of training data, or a huge number of classes. Standard SVMs
circumvent this difficulty by resorting to Lagrangian duality techniques
[78], leading to a constrained quadratic formulation that can be efficiently
decomposed into smaller problems [19, 183], or even approximated through
cutting plane approaches, in order to address scenarios with a lot of
training data and thousands (or even an infinite number) of classes [126,
213]. However, the same reasoning cannot be applied to sparse SVMs, as
the dual approach brings no advantages whatsoever. One way to overcome
this difficulty consists of resorting to block-coordinate descent methods
[20], but they impose restrictive assumptions on the problem to be solved
(this is the main reason why quadratic approximations of the hinge loss
are used). Another approach is given by stochastic methods [242].

• There is still much room for improvements in the context of PRNU-based
image forgery detection. A notable example is the design of a better
and more robust predictor, in order to reduce the False Alarm rate. Our
major goal for future research, however, is to improve spatial resolution,
allowing for the detection of smaller forgeries. Prior work on this topic
[48] showed that image-level segmentation can help increasing resolution
in some suitable cases, but segmentation itself is a very challenging and
unreliable process. We are currently working towards a new version of this
algorithm based on soft segmentation [46].

• We are currently working on other applications that can benefit from the
epigraphical splitting. One of the most interesting concerns the optimal
rate allocation in predictive video coding, which is challenging because of
the dependencies between frames induced by motion compensation. In a
preliminary work [98], we derived an analytical rate-distortion model that
explicitly takes into account the dependencies between frames, allowing
us to formulate the optimal rate allocation as a convex optimization
problem that we solved (exactly and efficiently) via proximal methods.
An interesting extension of this work consists of considering a constrained
formulation of the rate-allocation problem, so that the user can have a
direct control on the distortion of coded frames, the main parameter of
interest for this application. The epigraphical splitting thus arises as a
natural solution for this kind of problems, and we expect to obtain a
performance in line with the results presented in this thesis.

In addition to these avenues of research, we feel that the approximation method
presented in Chapter 4 has not been developed yet to its full potential, and it
would be interesting to investigate the connections with bundle methods [57, 73].
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Éclatement épigraphique de contraintes convexes.
Application à la restauration d’images, la classification

supervisée, et la détection d’images falsifiées.
Giovanni CHIERCHIA

RESUME : Dans cette thèse, nous proposons une approche d’optimisation convexe pour aborder des
problèmes en restauration d’images multi-composantes, en apprentissage supervisé et en détection d’images
falsifiées. Le fil conducteur de ces problèmes est la présence de contraintes convexes non linéaires qui sont
difficiles à gérer avec les méthodes de l’état-de-l’art. Par conséquent, nous avons élaboré une technique
d’éclatement épigraphique pour en simplifier la gestion. En s’appuyant sur cette approche, nous avons éga-
lement proposé des contributions spécifiques pour les applications susmentionnées.

MOTS-CLEFS : Optimisation convexe, méthodes proximales, contraintes non linéaires, restauration d’ima-
ges multi-composantes, apprentissage supervisé, détection d’images falsifiées.

ABSTRACT : In this thesis, we present a convex optimization approach to address three problems ari-
sing in multicomponent image recovery, supervised classification, and image forgery detection. The common
thread among these problems is the presence of nonlinear convex constraints difficult to handle with state-of-
the-art methods. Therefore, we present a splitting technique to simplify the management of such constraints.
Relying on this approach, we also propose some contributions to the aforementioned applications.

KEY-WORDS : Convex optimization, proximal methods, nonlinear constraints, multicomponent image
restoration, supervised classification, image forgery detection.
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