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ABSTRACT

Optimal rate allocation is among the most challenging tasks
to perform in the context of multi-view video coding, because
of the dependency between frames induced by motion com-
pensation and depth image-based rendering. In this paper,
using a recursive rate-distortion model that explicitly takes
into account these dependencies, we approach the frame-level
rate allocation as a convex optimization problem. Within this
framework, we provide an efficient algorithm for exactly solv-
ing the above problem with recent convex optimization tools.
Experiments on standard sequences demonstrate the interest
of considering the proposed rate allocation method and con-
firm that our approach ensures a better performance (in rate-
distortion sense) than the standard MV-HEVC rate control.

Index Terms— MV video coding, rate distortion, convex
optimization, resource allocation.

1. INTRODUCTION

Digital 3D video technology has recently experienced a pro-
liferation of new applications, such as auto-stereoscopic 3D
TV and free-viewpoint video. In order to respond to the in-
creasing requirement for an efficient 3D video coding, the
new standard High Efficiency Video Coding (HEVC) [1] has
been recently extended with the Multiview Video-plus-Depth
(MV) format [2]. A typical MV involves multiple video se-
quences of the same scene taken at different angles, along
with the disparity between adjacent views.

Just like in regular videos, a key role in improving the vi-
sual quality of MV coding is played by the rate control, which
is responsible to efficiently distribute the bit budget among
frames. In particular, the rate control involves two steps: bit
allocation, where the total bit budget is allocated to frames,
and quantization selection, where the quantization parameter
(QP) is adjusted in function of the allocated bits.

The goal of rate control is to achieve an optimal trade-
off between rate and distortion. To this end, a large panel of
techniques have been proposed in the literature to select the
coding parameters. Many conventional approaches tend to
make these choices frame by frame [3, 4, 5, 6, 7]. However, it
is widely recognized that, from a rate-distortion (R-D) stand-
point, the optimal choice for a single frame may be potentially

suboptimal for encoding the remaining frames. This is due to
the motion compensation and depth image-based rendering,
which carry the quantization error of a coded frame into the
prediction of adjacent ones (either in the same view or dif-
ferent ones), resulting in multiple quantization errors when
the latter are coded. Consequently, an allocation scheme that
takes into account the dependency between frames yields a
significant bit reduction [8, 9, 10, 11, 12].

The focus of this paper is on optimal rate allocation in
MV coding, for which it is of paramount importance to ex-
ploit the dependency between frames induced by motion com-
pensation and depth image-based rendering. To this end, we
propose a convex optimization approach for exactly and effi-
ciently solving the frame-level rate allocation problem (within
the limit of the accuracy of our model).

1.1. Related work

In the last decades, a substantial research effort has been
made to enlarge the optimization scope from single frames
to groups of frames (GOP). One of the first attempts in this
sense was made by Ramchandran et al. [8], who used an op-
erational R-D framework to search the optimal combination
of quantization parameters for the whole GOP. Although it
was conceived for the allocation at frame level, this method
was also extended to different coding levels, such as blocks
within the same frame [13, 14]. However, the parameter
search requires to evaluate a set of R-D points for each frame,
making the computational burden very high due to the fact
that a multi-pass coding is required.

The obstacle encountered by search-based techniques is
that the R-D behavior of a residual frame is unknown before
encoding the frames from which it was predicted. Such a dif-
ficulty can be circumvented by using a parametric R-D model
to describe the dependency between frames [15, 16, 17, 18].
This approach was recently followed by Pang et al. [11], who
formulated the rate allocation as a non-convex optimization
problem, and solved it through a sequence of approximations.
The same R-D model was also used in distributed video cod-
ing (DCV) to propose new coding schemes for MV-DVC [19].

Some other works focus on minimizing the maximum
distortion of encoded frames (MINMAX), instead of the
usual average of distortions (MINAVE), as the former cri-



terion might lead to some benefits to the visual perception.
The MINMAX criterion can be optimized through dynamic
programming [20], multi-pass approaches [21], or ad-hoc it-
erative methods with lower encoding complexity [22]. How-
ever, it is not clear whether the MINMAX is always a better
criterion than the MINAVE.

1.2. Contributions

The methods proposed in the literature to deal with the frame-
level rate allocation are either theoretical in nature [15], com-
putationally demanding [8], approximated [11], or based on
the MINMAX criterion [22]. In this paper, we propose an
efficient solution to exactly solve the frame-level rate allo-
cation problem formulated with the MINAVE criterion. Our
approach is based on a recursive R-D model in which the er-
ror variance of a residual frame is decoupled in two terms:
the distortion of the frame used to build the prediction, and
the inaccuracy of the prediction itself.

This paper extends our previous work [23] with two sig-
nificant additions. Firstly, we generalize our approach to the
scenario in which the dependency between frames is repre-
sented by a bi-dimensional graph (instead of a linear chain), in
order to accommodate the more intricate prediction schemes
used in MV coding. Secondly, we integrate the proposed al-
gorithm in the MV-HEVC encoder, so as to compare the R-D
performance of our approach with the standard MV-HEVC
rate control.

The paper is organized as follows. Sec. 2 illustrates the
proposed R-D model. Sec. 3 describes the rate allocation
problem and the proposed algorithm to solve it. Sec. 4 il-
lustrates the performance of our approach. Finally, the con-
clusion is drawn in Sec. 5.

2. RATE-DISTORTION MODEL

In order to effectively reduce the spatial and temporal redun-
dancy of a video sequence, it is crucial to optimally distribute
the bit budget within the sequence, because this directly af-
fects the visual distortion of encoded frames. In this regard,
the rate control of HEVC allocates the bit budget at three dif-
ferent levels: GOP level, frame level, and coding-unit level.

2.1. Background (2D videos)

The frame-level rate control allocates the bit budget within
a GOP by looking at the R-D behavior of the different
frames. To do so, a possible approach consists of resort-
ing to a parametric R-D model. Let us consider a GOP
I = (I0, . . . , IN−1), where the frame I0 is intra encoded,
while for n ≥ 1 the frame In is predicted from the previously
encoded frame Ĩn−1, and the prediction residual En is spa-
tially encoded (IP...P structure). According to the R-D model
proposed in [23], the distortion of the frame Ĩn encoded at a
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Fig. 1: Dependency graph used in the paper.

high rate rn reads

Dn = E{(In − Ĩn)2} = αn σ
2
n exp{−βn rn}, (1)

where (αn, βn) are free parameters, and σ2
n is the variance of

the frame I0 when n = 0 or the residual En for n ≥ 1.
However, the distortionDn also depends on the (encoded)

frame Ĩn−1 used to build the motion-compensated prediction.
This fact can be accounted for by decomposing the variance
of the residual frame as σ2

n = Mn + Dn−1 [15], where Mn

is the prediction square mean error. Consequently, the R-D
behavior of a frame In can be modeled as [23]

Dn = αn (Mn +Dn−1) exp{−βn rn}, (2)

where, for n = 0,M0 denotes the variance of I0 andD−1 =0.
Hence, for n ≥ 1, the distortion Dn is controlled by two
terms: the rate rn used to encode Ĩn, and the distortion Dn−1
of its encoded reference Ĩn−1, leading to a recursive model.

2.2. Proposed approach (MV videos)

In this paper, we consider the scenario where the dependency
between frames can be represented as the graph depicted in
Fig. 1, where Ikn denotes the n-th frame of the k-th view, with
k = 0 being the central view and k ≥ 1 being the side views.
Using the R-D model in (2), we can demonstrate by the induc-
tion principle that the distortion Dk

n actually depends on all
the frames involved in the chain of predictions leading to Ikn .
In the central view, the distortion D0

n is thus a function of the
rates r00, . . . , r

0
n allocated in the central view, yielding

D0
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`,nM

0
` exp

{
−

n∑
j=`

β0
j r

0
j

}
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where α0
`,n =

∏n
j=` α

0
j . In the k-th side view (with k ≥ 1),

the distortion Dk
n depends not only from the rate rk0 , . . . , r

k
n

allocated in the same view, but also from the rate r00 allocated
to the first frame I00 of the central view, leading to
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3. RATE ALLOCATION ALGORITHM

Optimal rate allocation consists in finding the vector of rates
that minimizes the global distortion while keeping the total
rate under a given budget η > 0, leading to

minimize
r∈[0,+∞[KN

K−1∑
k=0

N−1∑
n=0

Dk
n(r) s. t.

K−1∑
k=0

N−1∑
n=0

rkn ≤ η,

(5)
where r is the vector of rates defined as

r =
[
r00, . . . , r

0
N−1, . . . , r

K−1
N−1

]>
, (6)

and Dk
n is defined in (3)-(4). To gain some insight into

the solution of Problem (5), we introduce a vector u =
(ukn,`)0≤k≤K−1, 0≤n≤N−1, 0≤`≤n defined as

ukn,` =
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(7)

which allows us to express the global distortion as a separable
sum of exponentials

F (u) =

K−1∑
k=0

N−1∑
n=0

n∑
`=0

αk
n,`M

k
` exp{−ukn,`}. (8)

Therefore, Problem (5) can be reformulated as follows

minimize
r∈RKN

F (Lr) s. t. r ∈ C, (9)

where L : RN 7→ R
KN(N+1)

2 is the linear operator that maps
the vector r ∈ RN into the vector u ∈ R

KN(N+1)
2 defined

in (7), and C is the nonempty closed convex set defined as

C =
{
r ∈ [0,+∞[

KN |
K−1∑
k=0

N−1∑
n=0

rn ≤ η
}
. (10)

Among the approaches proposed in the literature to solve
this class of problems, we do not transform the constrained
problem in (5) to a Lagrangian formulation, but rather we
manage the bit budget as a hard constraint, in order to bypass
the need for determining the corresponding Lagrangian multi-
plier. To do so, we resort to proximal algorithms [24, 25, 26],
which can handle a wide class of convex optimization prob-
lems involving smooth and non-smooth penalizations, as well
as hard constraints. In particular, we employ the M+LFBF al-
gorithm proposed in [27], which guarantees the convergence
in a reasonable time even for large-scale problems, offers ro-
bustness to numerical errors, and its structure makes it suit-
able for parallel implementations.

Table 1: Sequence characteristic and used target bit rates

Sequence Resolution Frame Rate Target Bit Rate
(fps) (Mbps)

Balloons
1024x768 30

1.5 2.7 3.6 4.5

Kendo 2.1 2.4 3.0 4.5

Newspaper CC 9 12 15 21

Undo Dancer

1920x1088 25

10.2 25.2 40.2 60

GT Fly 4.5 10.5 15 21

Poznan Hall2 0.6 1.8 2.4 4.2

Poznan Street 10.2 21 30 51

4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm, sim-
ulations were conducted using the reference software and
experimental evaluation methodology has been developed.
The experimental framework is composed of three steps, that
are parameter estimation, bit allocation, and encoding, as
explained in the following.

Parameter estimation. The model parameter estimation is
performed by multiple encodings of the sequences at differ-
ent quantization parameter (QP) values: 10, 12, 14, . . . , 40.
A standard version of the reference software HM 16.0 was
used in this phase. For each frame, we recorded the val-
ues of D and R produced at the encoder output and, after
a logarithmic transformation of D, we estimated the model
parameters by resorting to a linear regression. The param-
eter (Mn)0≤n≤N−1, which represents the inter-view resid-
ual/motion prediction, is obtained by encoding the sequences
with a modified version of HM 16.0 that extrapolates Mn for
each frame, using a QP = 1.

Bit allocation. The algorithm takes the estimated parameters
of the sequence as input, providing as output the number of
bits for each frame that minimizes the total distortion over
each GOP, under the constrain of a defined target bit rate.
Table 1 reports the target bit rates used for each sequence.

Encoding. The encoder used in the final step of our experi-
ments is a modified version of HM 16.0 where the rate control
module is able to accept an external file containing the result
of the previous step and set the number of bits allocated for
each GOP and for each frame on these values. The base view
is coded as the center view and the two dependent views are
encoded as left and right view, with a configuration that re-
calls the dependency graph of Fig. 1. The average luma PSNR
values and bit rates for all three views are reported in Table 2
as total results.
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Fig. 2: The rate distortion curves of the proposed method as well as the rate control in the reference software.

4.1. Rate-Distortion performance comparison

To assess the validity of our bit rate allocation method, we
compared it with the standard rate control algorithm of MV-
HEVC. The R-D curves of the proposed method and MV-
HEVC are shown in Fig. 2 for two sequences ”Poznan Hall2”
and ”Newspaper CC” for the three view used. From that, we
can see that our method can achieve a larger PSNR value at
each target bit rate.

Table 2 shows the rate-distortion performance of our
method compared to straightforward MV-HEVC evaluated
with the Bjontegaard metrics [28]. For each sequence an
average value over the three views of the gain in terms of
∆ PSNR and bit rate reduction is presented. The results indi-
cate that our method provides an average bit rate savings of
20% relative to standard MV-HEVC with an average gain of
0.70 dB in terms of ∆ PSNR. In terms of allocation accuracy,
the difference between the target bit rate and the achieved bit
rate is for each sequence lower than 10%, with an average
value among all sequence of 7.5%.

5. CONCLUSIONS

We have proposed a new algorithm to exactly solve the frame-
level rate allocation problem arising in predictive video cod-
ing. The obtained results demonstrate that the analytical R-
D model we developed in Sec. 2 allows us to accurately de-

Sequence ∆ PSNR (dB) Bit Rate (%)

Balloons 1.20 -21.52
Kendo 0.35 -7.86
Newspaper CC 0.65 -23.35
Undo Dancer 0.49 -12.88
GT Fly 0.83 -20.34
Poznan Hall2 0.59 -34.72
Poznan Street 0.82 -23.61

Average 0.70 -20.61

Table 2: Average PSNR gain and bit rate savings compared
to straightforward HEVC multi-view extension (MV-HEVC).

scribe the temporal and inter-view dependencies in a group
of frames. Furthermore, our experiments indicate that the
optimal rate allocation, when supported by an accurate R-D
model, attains better results (in the R-D sense) than the stan-
dard rate control in MV-HEVC. The higher performance of
our approach is related to its ability to take into account the
characteristics of the video sequence and the temporal and
inter-view correlation between the frames. The results of our
experiments, conducted on different standard test sequences,
demonstrate the effectiveness of our proposition.
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