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ABSTRACT

Sparsity-inducing penalties are useful tools in variational
methods for machine learning. In this paper, we propose
two block-coordinate descent strategies for learning a sparse
multiclass support vector machine. The first one works by
selecting a subset of features to be updated at each itera-
tion, while the second one performs the selection among the
training samples. These algorithms can be efficiently imple-
mented thanks to the flexibility offered by recent randomized
primal-dual proximal methods. Experiments carried out for
the supervised classification of handwritten digits demon-
strate the interest of considering the primal-dual approach in
the context of block-coordinate descent. The efficiency of
the proposed algorithms is assessed through a comparison of
execution times and classification errors.

Index Terms— Sparsity, multiclass SVM, proximal algo-
rithm, random update, block-coordinate descent.

1. INTRODUCTION

This work aims at designing fast algorithms for learning a
multiclass support vector machine (SVM) [1] with a sparsity-
inducing regularization. In this context, sparsity has been in-
troduced for two main reasons:

(i) to prevent overfitting when the number of features is
much bigger than the number of training samples,

(ii) to provide insight in the interpretation of results [2, 3].

The use of sparse regularization in SVM was firstly pro-
posed in the context of binary classification [2, 4], where var-
ious `p-norms were used to shrink small coefficients to zero,
so as to perform an implicit “feature selection”. With the ad-
vent of multiclass SVM [5], the attention shifted toward `1,p-
norms, due to their ability to impose group sparsity [6, 7, 8, 9].

The benefits of sparse regularization are now well estab-
lished. Its use for classification, however, is still limited by
its high computational cost. Indeed, while the commonly-
used quadratic regularization can be efficiently implemented
by resorting to Lagrangian duality, its counterpart based on
the `1,p-norm regularization leads to a dual formulation as

difficult to solve as the primal one. Consequently, the sparse
multiclass SVM is usually trained through the direct resolu-
tion of the primal optimization problem.

Among the possible approaches to train a sparse multi-
class SVM, one can resort to linear programming, yielding
a problem involving several linear constraints whose number
is slightly larger than the number of training data [10, 11].
In order to reduce computational time, a much more efficient
strategy consists in approximating the loss function with the
quadratic hinge loss. Such an approximation permits to use
the forward-backward method [12] or a block-coordinate de-
scent method [13], although this approach may affect the clas-
sification accuracy.

Recently, we have proposed two efficient algorithms for
dealing with the exact hinge loss in an efficient manner [14],
both relying on primal-dual proximal methods. The first one
solves the constrained formulation by resorting to the epi-
graphical splitting technique [15], while the second approach
solves the penalized form by relying on the projection onto a
simplex. The good performance of both approaches w.r.t. the
state-of-the-art in terms of accuracy and computational times
is shown in [14].

Nowadays, it is well-established that random updates can
significantly reduce the computational time [16, 17]. How-
ever, dealing with sparsity is out of the scope of usual ran-
domized strategies. Recent major contributions in the opti-
mization literature focused on extending primal and primal-
dual proximal algorithms to random updates [18, Section IV].
For instance, in [19, 20, 21], the authors proposed new re-
sults for random updates in forward-backward iterations, es-
pecially adapted for training a sparse multiclass SVM with
the squared hinge loss [13]. More recently, random updates in
primal-dual proximal methods have been proposed [22, 23],
allowing one to deal with the exact formulation of the hinge
loss, as proposed by Crammer and Singer [5].

In this work, we propose an efficient solution to solve the
learning problem of a sparse multiclass SVM formulated with
the exact expression of the hinge loss [5]. Our approach is
based on the randomized FBPD method [22], which allows
us to simultaneously solve the primal and the dual problems
through a block-coordinate descent strategy. In particular, we
propose two algorithms: the first one selects the blocks to be
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updated over the features of the solution vector (similarly to
[13]), while the second one performs the selection over the
training samples. The latter constitutes the main contribution
of our paper, as we are not currently aware of another sparse
SVM training algorithm which offers such flexibility.

In Section 2, we formulate the sparse multiclass SVM
problem and recall the algorithm we proposed in [14]. Sec-
tion 3 is dedicated to the proposed randomized primal-dual
proximal algorithm. Two algorithms will be provided, allow-
ing us to play with stochasticity over primal or dual variables,
that is features or samples. The convergence guaranties will
be established. The efficiency of the proposed algorithms
w.r.t. a randomized version of the forward-backward method
[20] will be illustrated in Section 4.

Notations Let f : RN →] − ∞,+∞] be a separable
function such that, for every u = (u(s))16s6S ∈ RS ,
f(u) =

∑S
s=1 fs(u

(s)). We denote S ⊂ {1, . . . , S} and fS
the function defined as, for every uS = (u(s))s∈S, fS(uS) =∑
s∈S fs(u

(s)). We denote S = {1, . . . , S} \ S.

2. SPARSE MULTICLASS SVM PROBLEM

In supervised learning, the discriminating functions are built
from a set of L input-output pairs

T =
{
(x`, z`) ∈ RN × {1, . . . ,K} | ` = {1, . . . , L}

}
,

(2.1)
where x` ∈ RN denotes a training sample, and z` indicates
the associated class. Here, the class number is denoted by K.
The features are assumed to be linear in some representation
input space [24], denoted by ϕ : RN 7→ RM .

The objective of learning consists of finding a vector

w =
[
(w(1))>︸ ︷︷ ︸

size M

. . . (w(K))>︸ ︷︷ ︸
size M

]>
∈ RMK (2.2)

such that, for every ` ∈ {1, . . . , L}, the input-output pair
(u`, z`) ∈ T is correctly predicted by the classifier, i.e.,

(∀` ∈ {1, ..., L}) z` = argmax
k∈{1,...,K}

ϕ(x`)
>w(k). (2.3)

By the definition of argmax, the above equality holds if
maxk 6=z` ϕ(x`)

>(w(k) − w(z`)) < 0, which (after suitable
normalization) is equivalent to

(∀` ∈ {1, ..., L}) max
k 6=z`

ϕ(x`)
>(w(k) − w(z`)) 6 −1.

(2.4)
Unfortunately, this constraint has no practical interest for

learning purposes, as it becomes infeasible when the train-
ing set is not fully separable. Multiclass SVM overcome this
issue by introducing the notion of soft margins, which boils
down to the definition of the multiclass hinge loss [5]:

h`(T`w) = max
{
0, 1+max

k 6=z`
ϕ(x`)

>(w(k)−w(z`))
}
. (2.5)

Hereabove, the operator T` ∈ RK×MK is defined as

T`w =
[
ϕ(x`)

>(w(k) − w(z`))
]
16k6K

(2.6)

where, for every y` = (y
(k)
` )16k6K ∈ RK ,

h`(y`) = max
16k6K

y
(k)
` + 1− δk,z` , (2.7)

with δk,z` being the Kronecker delta, which is equal to 1 if
k = z` and 0 otherwise. The sparse multiclass SVM learning
problem amounts to

minimize
w∈RMK

L∑
`=1

h`(T`w)︸ ︷︷ ︸
h(Tw)

+λ

B∑
b=1

K∑
k=1

‖w(k,b)‖p︸ ︷︷ ︸
g(w)

, (2.8)

where λ > 0, and each vector w(k) is block-decomposed as

w(k) =
[
(w(k,1))>︸ ︷︷ ︸

size M1

. . . (w(k,B))>︸ ︷︷ ︸
size MB

]>
∈ RM , (2.9)

with M = M1 + · · · + MB . The regularization term g is
chosen so as to promote some form of group sparsity. In this
work, we focus on convex `1,p-norm regularizations (p > 1).1

In [14], we proposed to solve the minimization prob-
lem (2.8) using the primal-dual proximal method recalled in
Algorithm 1, where the steps involving the proximity operator
denote implicit subgradient steps, i.e.,

w[i+1] = proxf (w
[i]) (2.10)

= w[i] − u[i] with u[i] ∈ ∂f(w[i+1]). (2.11)

For more details regarding proximity operators, the reader
could refer to [25]. A large number of closed-form expres-
sion are available in the literature (see [26, 27] and the refer-
ences therein). The proximity operator of g has a closed-form
expression for specific values of q, such as q ∈ {1, 2,+∞},
while the proximity operator of the conjugate of h` reduces to
the standard projection onto the unit simplex [28].

The sequence (w[i])i∈N generated by Algorithm 1 con-
verges to a solution to (2.8). The efficiency of these iter-
ations w.r.t. state-of-the-art procedures is illustrated in [14].
The computational performance makes the approach compa-
rable with forward-backward iterations, while a better accu-
racy is reached in terms of classification performance. Based
on some recent advances in random proximal algorithms, we
propose to design new iterations using the block-separability
of the involved functions.

1The dimensionality M could be increased by 1 in order to integrate the
bias estimation. For readability purposes, we have decided to not take into
account that additional variable but the proposed methodology can be directly
extended to solve this generalized estimation problem. The reader could refer
to [14] for more details regarding this point.



Algorithm 1 FBPD for solving Problem (2.8)

Initialization
choose w[0] ∈ RMK and y[0] ∈ RLK

set T =
[
T>1 . . . T>L

]>
∈ RLK×MK

set τ > 0 and σ > 0 such that τσ‖T‖2 6 1.

For i = 0, 1, . . .w[i+1] = proxτg
(
w[i] − τ T∗y[i]

`

)
y[i+1] = proxσh∗

(
y[i] + σT

(
2w[i+1] − w[i])).

3. PRIMAL-DUAL COORDINATE DESCENT

The interesting point in using primal-dual proximal algo-
rithms is the possibility to perform a block-coordinate de-
composition over both the primal variable w and the dual
variable y. Indeed, Problem (2.8) presents a block-separable
structure, as

T`w =

B∑
b=1

T`,bwb (3.1)

where

wb =
[
(w(1,b))>︸ ︷︷ ︸

size Mb

. . . (w(K,b))>︸ ︷︷ ︸
size Mb

]>
∈ RKMb (3.2)

and

T`,bwb =
[(
ϕ(x`)

(b)
)>(

w(k,b) − w(z`,b)
)]

16k6K
(3.3)

with ϕ(x`) =
[(
ϕ(x`)

(1)
)>
. . .
(
ϕ(x`)

(B)
)>]> ∈ RM being

decomposed as in (2.9). Therefore, Problem (2.8) becomes

minimize
w=(w1,...,wB)

L∑
`=1

h`

( B∑
b=1

T`,bwb

)
+ λ

B∑
b=1

‖wb‖1,p︸ ︷︷ ︸
gb(wb)

(3.4)

which can be solved with the randomized primal-dual meth-
ods in [22], which consists of the following iterations:

Set Bi ⊂ {1, . . . , B} and Li ⊂ {1, . . . , L}

w
[i+1]
Bi

=

(
proxτgb

(
w

[i]
b − τ

L∑
`=1

T∗`,b y
[i]
`

))
b∈Bi

w
[i+1]

Bi
= w

[i]

Bi

y
[i+1]
Li

=

(
proxσh∗

`

(
y
[i]
` + σ

B∑
b=1

T`,b
(
2w

[i+1]
b − w

[i]
b

)))
`∈Li

y
[i+1]

Li
= y

[i]

Li

(3.5)
where the initialization setting is the same as in Algorithm 1.

3.1. Convergence conditions

At each iteration of the scheme in (3.5), we randomly select
a block of features Bi ⊂ {1, . . . , B} and a subset of samples
Li ⊂ {1, . . . , L}, according to a given probability law. By
[22], the almost sure convergence is guaranteed if the acti-
vation probability of each block is greater than zero, and the
next condition is satisfied at each iteration:

b /∈ Bi =⇒ (∀` ∈ Li) T`,b = 0. (3.6)

A simple way to satisfy the above condition consists of setting
Bi = {1, . . . , B}, which is the choice adopted here. However,
this prevents us from simultaneously updating the primal and
the dual variables through a block-coordinate strategy. In the
following, we present two algorithms that randomly update
either the primal or the dual variable.

3.2. Proposed schemes

We first focus on the dual random update, that is Bi =
{1, . . . , B}. The fact that

L∑
`=1

T∗`,by
[i]
` =

∑
`∈Li

T∗`,by
[i]
` +

∑
`∈Li

T∗`,by
[i]
` (3.7)

allows us to rewrite the iterations in (3.5) as shown by Algo-
rithm 2, where we have introduced the notations

TBw =
(
T`w

)
`∈B

(3.8)

T∗L yL =
∑
`∈L

T∗` y`. (3.9)

The modified algorithm allows us to deal with the submatrix
TLi rather than with the complete matrix, reducing the com-
putational cost of each iteration. Indeed, under the aforemen-
tioned technical assumptions, Algorithm 2 converges almost
surely to a solution to (2.8). Similarly, we can derive the ran-
dom updates w.r.t. the primal variables by inversing the order
of proximity operations in (3.5), which leads to Algorithm 3.

4. EXPERIMENTS

In this section, we aim at showing that the standard FBPD
in Algorithm 1 can be accelerated by using the randomized
versions proposed in Algorithms 2 and 3. Moreover, in order
to demonstrate the interest of our approach, we compare the
execution times of the above algorithms with the randomized
forward-backward (FB) method proposed in [20]. Note that
the latter requires the loss function to be differentiable, which
is not the case for the hinge loss in (2.5). Hence, in the FB
method, we replace it with the squared hinge loss used in [13].



Algorithm 2 FBPD for solving Problem (2.8)

Initialization

choose w[0] ∈ RMK and y[0] ∈ RLK

choose u[0] =

L∑
`=1

T∗`y
[i]
`

set τ > 0 and σ > 0 such that τσ
B∑
b=1

L∑
`=1

‖T`,b‖2 6 1.

For i = 0, 1, . . .

Set Li ⊂ {1, . . . , L}

w[i+1] = proxτg
(
w[i] − τ u[i])

y
[i+1]
Li

= proxσh∗
Li

(
y
[i]
Li

+ σTLi

(
2w[i+1] − w[i]))

y
[i+1]

Li
= y

[i]

Li

u[i+1] = u[i] +T∗Li

(
y
[i+1]
Li

− y
[i]
Li

)

Algorithm 3 FBPD for solving Problem (2.8)

Initialization⌊
choose w[0], y[0], τ and σ as in Algorithm 2

choose v[0] =
(
T` w

[0])
16`6L

For i = 0, 1, . . .

Set Bi ⊂ {1, . . . , B}

y[i+1] = proxσh∗
(
y[i] + σ v[i]

)
w

[i+1]
Bi

= proxτgBi

(
w

[i]
Bi
− τ T∗Bi

(
2y[i+1] − y[i]))

w
[i+1]

Bi
= w

[i]

Bi

v[i+1] = v[i] +TBi

(
w

[i+1]
Bi

− w
[i]
Bi

)

In our experiments, we consider the MNIST database [29]
for the classification of handwritten digits. This dataset con-
tains a number of 28 × 28 grayscale images (N = 784) dis-
playing digits from 0 to 9 (K = 10). The database is orga-
nized in 60000 training images and 10000 test images. In our
experiments, we define the mapping ϕ as the identity plus a
bias (so as to obtain a linear SVM classifier withM = N+1),
and we use the `1,2-norm regularization. Finally, we train the
classifier on a training set of size L = 1000, and we evaluate
the trained classifiers on a separate test set of size 10000.

Table 1 collects the classification errors obtained by the
aforementioned algorithms for various values of the regular-
ization parameter λ. Moreover, Figure 1 shows the execu-
tion times obtained by the aforementioned algorithms for var-
ious values of the regularization parameter λ. In particular,

the y-axis reports the quantity ‖w[i] − w[∞]‖, that is the dis-
tance of the current iterate w[i] to the solution w[∞] computed
after 500000 iterations, while the x-axis reports the execu-
tion time (in seconds) needed to compute i iterations. Fi-
nally, Table 2 reports the classification errors obtained with
λ = 10−3 (the choice leading to the best accuracy) for dif-
ferent sizes L ∈ {250, 500, 1000, 2000} of the training set,
along with the execution times obtained with the stopping cri-
terion ‖w[i+1]−w[i]‖ < 10−5‖w[i]‖. All the methods are im-
plemented in MATLAB and executed on a Intel CPU at 3.20
GHz and 12 GB of RAM.

The above results demonstrate that the randomized FBPD
algorithms are faster than the standard FBPD, while they
compare favorably to the randomized FB. In particular, the
fastest algorithm is the randomized FBPD with the block
selection on the dual variable. This seems to be reasonable,
since the considered training set contains a significant number
of samples.

5. CONCLUSION

We have proposed two randomized algorithms for learning
a sparse multiclass SVM: the first one selects the blocks to
be updated over the features of the solution vector, while the
second one performs the selection over the training samples.
The ability to perform the random selection of training sam-
ples (instead of the features) is a specificity of our approach,
since it is based on a clever use of a primal-dual method. In
our opinion, this is the main advantage of the proposed ap-
proach with respect to the classical block-coordinate methods
in [13, 19, 21].
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