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Supervised learning

■ Goal ➜ Train the network on the training data

❑ Find the parameters that make predictions similar to targets
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Predictions

Training data

ŷ(1) … ŷ(N)

x1
(1)
...

xQ
(1)

…

x1
(N)
...

xQ
(N)

y(1) … y(N)

Find the “right” parameters

(1) (2) (L-1) (L)

Neural network

W(1), b(1) W(L-1), b(L-1) W(L), b(L)

…

W(2), b(2)

Targets
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Training (1/2)

■ How to select the right values for the parameters?

❑ Minimize the mean error of prediction on the training data
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Training (2/2)

■ The error of prediction is measured by a loss function

❑ Regression ➜ Euclidean distance

❑ Classification ➜ Cross entropy
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Gradient descent (1/2)

■ How to minimize the mean error of prediction ?

❑ By using a numerical algorithm called gradient descent
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Gradient descent (2/2)

■ Be aware ➜ Gradient descent has multiple pitfalls !!!

❑ Choice of the learning rate

■ The network learns nothing if the learning rate is not sufficiently small

❑ Convergence to local minima or saddle points

■ The network may not learn correctly, even if it is capable of doing so

❑ Dependence on the data

■ The network learns very slowly if the data are not preprocessed
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Tricks of the trade (1/3)

■ The network parameters must be randomly initialized

❑ If the parameters were initialized to zero, each neuron in the 

hidden layers would perform the same computation…

❑ … so even after multiple iterations of gradient descent, all the 

neurons would be computing the same thing over and over.

❑ Note➜ Random initialization introduces diversity in the ensemble
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x1

...

xQ

y1

...

yK

Output layer = Blender

(1) (2) (L-1) (L)…
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Tricks of the trade (2/3)

■ Data must be normalized before the network input

❑ Standard ➜ Subtract the mean and divide by the variance

❑ Min-max➜ Map the min-max values into the range 0-1

❑ …
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Tricks of the trade (3/3)

■ Track the prediction error during training

❑ Reduce the learning rate if the curve stagnates early or goes up

❑ Increase the learning rate if the curve goes down too slowly
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Very high step-size

Low step-size

High step-size
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Training with mini-batches (1/3)
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■ Gradient descent ➜ Full batch

❑ The prediction error is computed on all the training set

❑ This requires intensive computation during 

training, as gradient descent must process

all the training data at each iteration
Training set

x(1) y(1)

x(2) y(2)

x(3) y(3)

x(4) y(4)

… …

x(n) y(n)

… …

x(N) y(N)

All data
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Training with mini-batches (2/3)

■ Gradient descent ➜ Mini-batches

❑ The prediction error is computed on a mini-batch of data

❑ Use a different mini-batch at each

iteration of gradient descent
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Batch B

Select

Training set

x(1) y(1)

x(2) y(2)

x(3) y(3)

x(4) y(4)

… …

… …

x(N-1) y(N-1)

x(N) y(N)

Batch 1

Batch 2

Shuffle the training set 

after a complete sweep
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Training with mini-batches (3/3)

■ Stochastic gradient approximates the “true” gradient

❑ Hence, it does not indicate the fastest way to update parameters

❑ Training must take many smaller steps (instead of few large ones)
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Gradient descent – Full batch Gradient descent – Mini batches
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Quiz

■ Assume you tracked the cost function J(𝝷) during training, 

and the plot versus the number of iterations looks like this.

1) If you’re using stochastic gradient descent, 

something is wrong. But if you’re using 
gradient descent, this looks acceptable.

2) Whether you’re using standard or stochastic 

gradient descent, this looks acceptable.

3) If you’re using stochastic gradient descent, 

this looks acceptable. But if you’re using 

gradient descent, something is wrong.

4) Whether you’re using standard or stochastic 

gradient descent, something is wrong.
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Iterations
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Summary so far

■ Neural networks are trained with gradient descent

■ Tricks of the trade

1) Data normalization

2) Random initialization

3) Learning rate

4) Mini-batches
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Speed up the optimization

Must be chosen small enough

Otherwise, the network won’t learn

Better generalization



Optimization algorithms

Stochastic gradient descent

Normalized gradient descent

State-of-the-art
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Machine learning system
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Saddle points and plateaus (1/3)

■ Neural network cost function is non-convex

❑ Local minima dominate in shallow networks

❑ Saddle points dominate in deep networks

❑ Most local minima are close to the bottom (i.e., the global minimum)

❑ Flat minima generalize better than sharp minima
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Pictorial representation of a 

neural network cost function
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Saddle points and plateaus (2/3)

■ Gradient descent gets stuck in saddle points
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Saddle point

∇J(𝛉) = 0

Saddle point

∇J(𝛉) = 0
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Saddle points and plateaus (3/3)

■ Gradient descent slows down on plateaus
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Plateau

∇J(𝛉) ≈ 0

Plateau

∇J(𝛉) ≈ 0
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Normalized gradient descent (1/6)

■ Normalized gradient descent uses unit-length directions

❑ The length travelled at each update is constant
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The distance travelled at each step is exactly

equal to the step-size.

• Pros. The descent is only attracted by
minima (local or global), not by saddle points.

• Cons. To get infinitesimally close to the
solution, the step-size must decay to zero.

Step-size
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Normalized gradient descent (2/6)

■ Gradient descent ➜ Normalized vs Standard

❑ Normalized GD performs fixed-length updates

❑ Standard GD performs (decreasing) variable-length updates
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Normalized gradient descent (3/6)

■ Normalized gradient descent overcomes saddle points
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Saddle point

∇J(𝛉) = 0

Saddle point

∇J(𝛉) = 0
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Normalized gradient descent (4/6)

■ Normalized gradient descent goes through plateaus
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Plateau

∇J(𝛉) ≈ 0

Plateau

∇J(𝛉) ≈ 0
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Normalized gradient descent (5/6)

■ Normalized GD can only get so close to a minimum

❑ The length of each step doesn’t decrease while approaching a minimum

❑ Solution ➜ Use a decreasing step-size to get arbitrary close to a minimum
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Constant step-size

Decreasing step-size

𝛂i = 𝛂0 / (i+1)0.5
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Normalized gradient descent (6/6)

■ Decreasing the step-size over time

❑ The initial step-size can be larger
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Step decayContinuous decay
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Momentum (1/4)

■ Another issue is the “zigzagging” effect

❑ Oscillations along the “steep” direction

❑ Very slow progress along the “shallow” dimension 
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Momentum (2/4)

■ Zigzagging arises when the loss function is elliptical

❑ This is due to the very definition of gradient

❑ Gradient always points perpendicular to the function contours
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Momentum (3/4)

■ Solution → Add a “momentum” term

❑ Build up velocity as a running mean of gradients

❑ Combine gradient with velocity to update parameters



Giovanni Chierchia ESIEE Paris

Momentum (4/4)

■ The momentum term dampens the oscillations

❑ It makes the trajectory reluctant to change direction

𝛽 = 0.2

𝛽 = 0.7
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State-of-the-art

■ ADAM → Modern algorithm for neural network training

❑ Gradient descent + Normalization + Momentum

34

Gradient (possibly on mini-batch)

Moving average of gradients

Moving average of square gradients

Normalization (element-wise)
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Summary so far…

■ ADAM → Accelerated gradient descent

■ New hyper-parameters unlocked !!!

❑ Learning rate

❑ Mini-batch size

❑ Optimization (SGD, ADAM, …)

❑ Decaying schedule for step-size

35

Adaptive step-size
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Feature engineering (1/2)

■ What is feature engineering?

❑ The process of extracting informative features from raw data

❑ (Feature = Individual measurable property of a phenomenon)

■ Examples

❑ Crafting new variables from raw data

❑ Numerical transformations

❑ Normalization

❑ Encoding

❑ Cleaning & Imputation
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Feature engineering (2/2)

■ Neural networks are capable of feature learning

❑ Hidden layers learn how to extract informative features

❑ There is no need to manually craft new variables

■ Feature learning works well on numerical data

❑ Remember to normalize numerical variables!
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Numerical variables

■ Normalization helps training go faster

❑ The cost function is “strongly” elliptical

❑ Normalization makes the cost function “more circular”

❑ This transformation speeds up the optimization process

40

Normalization

The cost function becomes 

“more circular”, and thus 
gradient descent can reach
the minimum in less steps. 
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Categorical variables

■ Neural networks struggle with categorical data

❑ Variables that can take on a fixed number of possible values

Numerical
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Dummy coding

■ A categorical variable is replaced by binary variables

❑ Use N-1 binary values to represent N categories

❑ A group is encoded with the vector (0, 0, …, 0)

❑ The other groups are one-hot encoded

❑ When to use? One group is more important than the others

Nationality C1 C2 C3

French 0 0 0

Italian 1 0 0

German 0 1 0

Other 0 0 1

Most important

or biggest group
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Effects coding

■ A categorical variable is replaced by binary variables

❑ Use N-1 binary values to represent N categories

❑ A group is encoded with the vector (-1, -1, …, -1)

❑ The other groups are one-hot encoded

❑ When to use? One group is less important than the others

Nationality C1 C2 C3

French 1 0 0

Italian 0 1 0

German 0 0 1

Other -1 -1 -1
Least important

or smallest group
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Contrast coding

■ A categorical variable is replaced by numerical variables

❑ Use N-1 variables to represent N categories

❑ The coefficients per each variable must sum to zero

❑ The difference between the sum of the positive values and the 

sum of the negative values per each variable should equal 1

❑ The vector of coefficients per each variable must be orthogonal

Nationality C1 C2 C3

French 0.25 0.33 0.5

Italian 0.25 0.33 -0.5

German 0.25 -0.66 0

Other -0.75 0 0
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Embedding

■ A special “embedding” layer is added to the network

❑ This layer maps each category to a numerical vector (of arbitrary 

size) that is learned by the network during training
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Summary so far…

■ Data preprocessing is important

❑ Clean the dataset

❑ Normalize the numerical variables

❑ Replace the categorical variables

46



Overfitting

What is it?

How to detect it?

How to fight it?
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Over-fitting (1/3)

■ Training allows the network to learn its parameters 

❑ θ = W(1), b(1), W(2), b(2)…, W(L), b(L)

■ But only after the hyper-parameters are fixed…

❑ Number of layers in the neural network

❑ Number of units in each layer

❑ Activation function for each layer

❑ … (and many others)

■ Hyper-parameters affect the network predictions

49

Network 

architecture
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Over-fitting (2/3)

■ What is the impact of hyper-parameters on learning ?

❑ Under-fitting➜ The predictions are too far from the expected outputs

❑ Over-fitting ➜ The predictions are too close to the expected outputs

50

Under-fitting
(high bias)

Over-fitting
(high variance)

“Just right”

Small network Medium network Big network
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Over-fitting (3/3)

■ Learning aims to achieve a good generalization

❑ The model must perform well on never-before-seen data

■ Over-fitting is an obstacle to generalization

❑ Learning ➜ The model fits very well the training data… 

❑ Prediction ➜… but it is unable to generalize to new data.
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Nothing useful is being learned here

The model is distracted by some outliers,
instead of following the general trend of data.
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How to detect over-fitting (1/4) 

■ It is not advised to evaluate the model on the training data

❑ Warning ➜ This estimate is biased toward over-fitting !!!

Under-fitting Over-fitting

JTrain

lowhigh

52



Giovanni Chierchia ESIEE Paris

How to detect over-fitting (2/4) 

■ It is better to evaluate the model on fresh data

❑ Train set ➜ Used for training the model

❑ Test set  ➜ Used for testing the model

Input Output

2104 400

1600 330

2400 369

1416 232

3000 540

1985 300

1534 315

1427 199

70%

30%
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Dataset

2104 400

1600 330

2400 369

1416 232

3000 540

1985 300

1534 315

1427 199

Train set

Test set

Score

Score
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How to detect over-fitting (3/4) 

■ Over-fitting can be detected on the test set

❑ Regression     ➜ Model evaluated on mean square error

❑ Classification ➜ Model evaluated on classification error
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Low bias

High bias

(under-fitting)

Low variance
ErrTrain = 0.5 %

ErrTest = 1.0 %

ErrTrain = 17.0 %

ErrTest = 18.3 %

High Variance

(over-fitting)

ErrTrain =   1.0 %

ErrTest = 19.3 %

ErrTrain = 15.0 %

ErrTest = 30.0 %

Small gap in performance

Big gap in performance

Small error on training Big error on training
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How to detect over-fitting (4/4) 

■ Over-fitting can be also monitored during training

❑ Train cost ➜ How well the model fits the training data

❑ Test cost   ➜ How well the model performs on new unseen data
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Train

Test

Over-fitting

Epochs
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How to fight over-fitting (1/3)

■ The underlying causes of under-fitting

❑ Simple model ➜ Prediction close to linear, few parameters, …

❑ Low dimension ➜ Features are not enough to make a prediction

■ The underlying causes of over-fitting

❑ Complex model ➜ Prediction highly nonlinear, a lot of parameters, …

❑ High dimension ➜ There are too many features

❑ Lack of data      ➜ The train set is too small w.r.t. the parameters to learn

56
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How to fight over-fitting (2/3)

■ Bias and variance reduction can be tackled separately

57

High bias?

This is indicated by the 
performance on train set

Model too simple

Bigger network
Train longer

Modify architecture

YES
START

High variance?

This is indicated by the 
performance on test set

NO

DONE
YES

Model too complex

Add more data
Reduce complexity

Use regularization

NO
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How to fight over-fitting (3/3)

■ Can we avoid over-fitting only with more training data ?

❑ The amount of data grows exponentially with the dimensionality

❑ At some point, we can’t add enough data to prevent over-fitting

58

Exponential growth

• 1 feat.  → 10  samples

• 2 feat. → 102 samples

• 3 feat. → 103 samples

• …
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Quiz (1/3)

■ In which figure the model has overfit or underfit the training set?

59

1.

4.3.

2.
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Quiz (2/3)

■ What does it mean that a model fθ has overfit the data ?

1. It makes accurate predictions for examples in the training set, and 

generalizes well to make accurate predictions on new examples.

2. It doesn’t makes accurate predictions for examples in the training set, 

but it generalizes well to make accurate predictions on new examples.

3. It makes accurate predictions for examples in the training set, but it 

doesn’t generalizes well to make accurate predictions on new examples 

4. It doesn’t make accurate predictions for examples in the training set, and 
doesn’t generalizes well to make accurate predictions on new examples.

60
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Quiz (3/3)

■ Suppose your neural network obtains a train set error of 

0.5%, and a test set error of 7%. 

■ What should you try to improve the performance?

1) Increase the number of units in each hidden layer

2) Add regularization

3) Use a deeper neural network 

4) Get more test data

5) Get more training data

61
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Summary so far…

■ Bias-variance tradeoff

❑ Over-fitting is the obstacle to generalization

❑ Use a test set to detect over-fitting (or under-fitting)

❑ Recipes to reduce bias and variance

62

Under-fitting
(high bias)

Over-fitting
(high variance)

“Just right”
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Norm penalization

Early stopping

Dropout

Batch normalization
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Over-fitting

■ How to reduce over-fitting ?

❑ Option 1 ➜ Add more training data

• This is always beneficial, but it could be expensive to get more data

❑ Option 2 ➜ Simplify the model

• Reduce the network parameters by using less units and layers

• The risk is to increase the bias

❑ Option 3 ➜ Apply regularization

• Keep the complexity, but reduce the model’s degrees of freedom

• This diminishes somewhat the capacity to fit the training data

• A big variance reduction is traded for a small bias increase

64
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Norm penalization (1/3)

■ Norm penalization ➜ Small values for parameters

❑ The cost function is modified as follows:

❑ Now, the cost function is minimized for smaller values of parameters

❑ Small values correspond to a simpler model

❑ A simpler model is less prone to over-fitting and more to under-fitting

65
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Norm penalization (2/3)

■ The penalization gets rid of some network connections

❑ The connections to be removed are identified during training

Without penalization

66

With penalization
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Norm penalization (3/3)

■ The hyper-parameter 𝝺 controls the tradeoff of two goals

❑ Fitting the train set

❑ Keeping a simple model

■ Warning ➜ The choice of 𝝺 is critical

❑ If 𝞴 is very large, all the model parameters end up being close to zero

❑ In this case, the model is under-fitting, as 

we get rid of all the network connections

67

Under-fitting
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Early stopping (1/2)

■ Early stopping ➜ Halt when generalization stops improving

❑ Training is halted when the performance on test set begins to degrade

68

Train

Test

Generalization

Data fitting

STOP HERE !
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Early stopping (2/2)

■ The magnitude of parameters increases during training

❑ At the beginning ➜ Parameters are just initialized to small values

❑ Toward the end   ➜ Parameters get bigger to fit the training data

69

Train

Test

Over-fitting

Under-fitting

Small θ Big θ
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Dropout (1/2)

■ Dropout ➜ Nodes are randomly removed during training

❑ The output of random nodes is temporarily set to zero (for one iteration)

❑ The dropout rate is the fraction of nodes that are zeroed out

❑ Why it works? At test time, all the nodes are kept. This is equivalent to 

averaging the output of all the networks randomly created during training 

70

y

x1

x2

x3

x4

y

x1

x2

x3

x4

Dropout

Dropped nodes 
randomly change 

at each iteration of 
gradient descent
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Dropout (2/2)

■ Inverted Dropout (implementation)

❑ Drop and scale at training time; do nothing at test time

p = 0.5 # prob. of keeping a unit (higher = less dropout)

def train_forward (X): 

# forward pass of 3-layer neural network at train time

H1 = np.maximum(0, W1 @ X + b1) 

U1 = (np.random.rand(*H1.shape) < p) / p

H1 *= U1  # 1st dropout

H2 = np.maximum(0, W2 @ H1 + b2) 

U2 = (np.random.rand(*H2.shape) < p) / p 

H2 *= U2  # 2nd dropout

out = W3 @ H2 + b3

return out

def predict(X): 

# forward pass at test time

H1 = np.maximum(0, W1 @ X + b1) 

H2 = np.maximum(0, W2 @ H1 + b2) 

out = W3 @ H2 + b3

return out
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Batch normalization (1/2)

■ Normalization can be also applied to hidden layers

❑ Training ➜ Parameters 𝞵(l) and 𝞼(l) are learned

❑ Testing  ➜ Parameters 𝞵(l) and 𝞼(l) are kept fixed

72

a(l-1)

W(l) a(l-1) a(l)z
g(l)(z)

Linear model Non-linearity

Hidden layer

â - 𝝻(l)

𝞂(l)

Batch normalization

â
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Batch normalization (2/2)

■ Layer normalization speeds up the training process

❑ It also helps to avoid gradient explosions

73

Without batch-normalization With batch-normalization
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Quiz

■ What happens when you increase the hyper-parameter 𝝺?

1) Weights are pushed toward becoming smaller (closer to 0)

2) Weights are pushed toward becoming bigger (further from 0)

3) Doubling lambda should roughly result in doubling the weights

4) Gradient descent taking bigger steps with each iteration

■ What will likely happen when you increase the dropout rate?

1) Increasing the regularization effect

2) Reducing the regularization effect

3) Causing the neural network to end up with a higher training set error

4) Causing the neural network to end up with a lower training set error

74
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Summary so far…

■ Three types of regularization 

75

x1

x2
y

x3

Norm penalization

x1

x2
y

x3

Dropout

STOP

Early stopping
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Machine learning system

■ Training pipeline

❑ How to make it work in practice?

Raw data
Feature

engineering

Train set

Test set
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Model Score
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Hyper-parameters (1/2)

■ Firstly, the hyper-parameters must be fixed…

❑ Number of layers in the neural network

❑ Number of units in each layer

❑ Activation function for each layer

❑ Regularization

❑ Learning rate in gradient descent

❑ Number of iterations in gradient descent

❑ … (and many others)

■ Then, the parameters can be learned via training

❑ 𝞱 = W(1), W(2), …, W(L)

78

Network 

Optimization
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Hyper-parameters (2/2)

■ How to find the best values for the hyper-parameters ?

❑ Difficult to know in advance what are the best values

❑ Unlike parameters, they can be hardly estimated through optimization

❑ Instead, they are found by a trial-and-error process

1) Assign some values to hyper-parameters

2) Train the network (on the train set)

3) Evaluate the performance (on the valid set)

4) Repeat 1-3 for different values

5) Select the best values

79

Set hyper-parameters

Evaluate Train
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Cross-validation (1/2)

■ For the evaluation, the dataset is split in three chunks

❑ Train set ➜ Used for training the model

❑ Valid set➜ Used for choosing the best hyper-parameters

❑ Test set  ➜ Used for detecting over-fitting

80

Input Output

2104 400

1600 330

2400 369

1416 232

3000 540

1985 300

1534 315

1427 199

Dataset

1534 315

1427 199

2104 400

1600 330

2400 369

1416 232

3000 540

1985 300

Train score

Valid score

Test score

Hold-out
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Cross-validation (2/2)

■ Training data can be shaken up for a better evaluation

❑ Divide your data in K partitions of equal size

❑ For each partition, use it as the valid set and the rest for training

❑ Your final score is the average of the K scores obtained
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Hyper-parameter sampling (1/3)

■ How to pick values for hyper-parameters ?

❑ Uniform sampling ➜ Use a regular grid of points

❑ Random sampling ➜ Choose points at random (in a given range)
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Hyper-parameter sampling (2/3)

■ Advice ➜ Use a coarse to fine sampling scheme
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Hyper-parameter sampling (3/3)

■ Advice ➜ Consider also a logarithmic scale for sampling

❑ In some cases, the log scale is better than the linear one
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Quiz

■ Which of the following statements are true?

1) Every hyper-parameter, if set poorly, can have a huge negative impact 

on training, and so all of them are about equally important to tune well.

2) Finding good hyper-parameter values is very time-consuming. So you 
should do it once at the start of the project, and try to find very good 

values, so that you don’t ever have to revisit tuning them again.

3) If you think that the step-size (hyper-parameter for gradient descent) is 

between 10-3 (= 0.001) and 10-1 (= 0.1), the recommended way to 
sample its possible values consists of using a logarithmic scale. 
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Summary so far…

■ Hyper-parameter search

❑ Use a validation set to find the best hyper-parameters

❑ Random sampling is superior to uniform grid search

❑ Use a logarithmic scale when it is appropriate (e.g., for step-size)
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Training

■ Neural networks are trained with gradient descent

■ Tricks of the trade

1) Data normalization

2) Random initialization

3) Learning rate

4) Mini-batches
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The problem of over-fitting

■ Bias-variance tradeoff

❑ Over-fitting is the obstacle to generalization

❑ Use a test set to detect over-fitting (or under-fitting)

❑ Recipes to reduce bias and variance
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Regularization

■ Effective ways to reduce overfitting
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Hyper-parameters

■ How to deal with hyper-parameters

❑ Use a validation set to find the best hyper-parameters

❑ Random sampling is superior to uniform grid search

❑ Use a logarithmic scale when it is appropriate (e.g., for step-size)
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Ensemble of networks

■ Advice ➜ Train several networks and combine their outputs

1) Same model, different initialization.

❑ Use cross-validation to determine the best hyper-parameters, then train several 
models with the same hyper-parameters, but with different random 
initialization.

2) Top models discovered during cross-validation.

❑ Use cross-validation to determine the best hyper-parameters, then pick the 
models having the best-performing sets of hyper-parameters.

3) Different checkpoints of a single model.

❑ If training is very expensive, take different checkpoints of a single network over 
time. For example, pick a network after a fixed number of epochs. Alternatively, 
start with a large step-size and a decaying schedule, train the network for a 
fixed time, and restart with a large step-size after saving the network. Another 
way is to maintain a running average of network parameters during training.
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