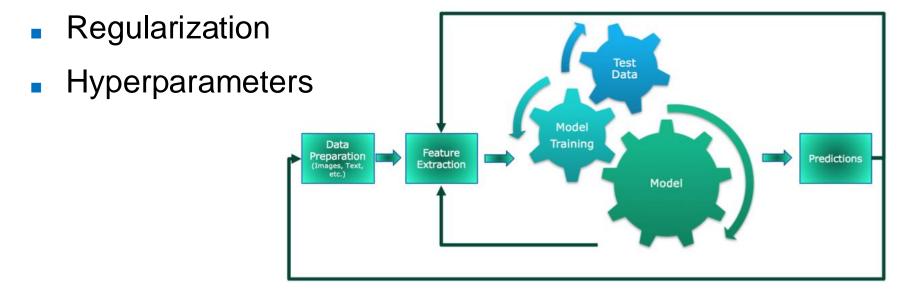
# Deep Learning

# Lecture 2 Best Practices

Giovanni Chierchia

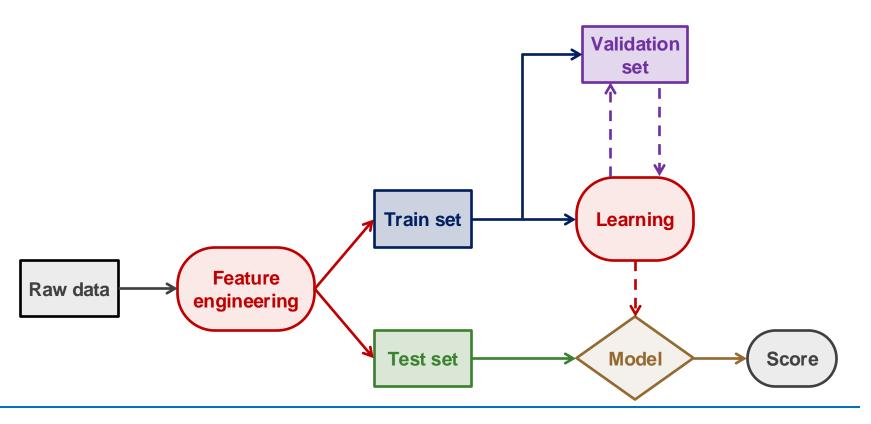
#### Table of contents

- Training a neural network
- Optimization algorithms
- Feature engineering
- Overfitting



### Machine learning system

#### Training pipeline



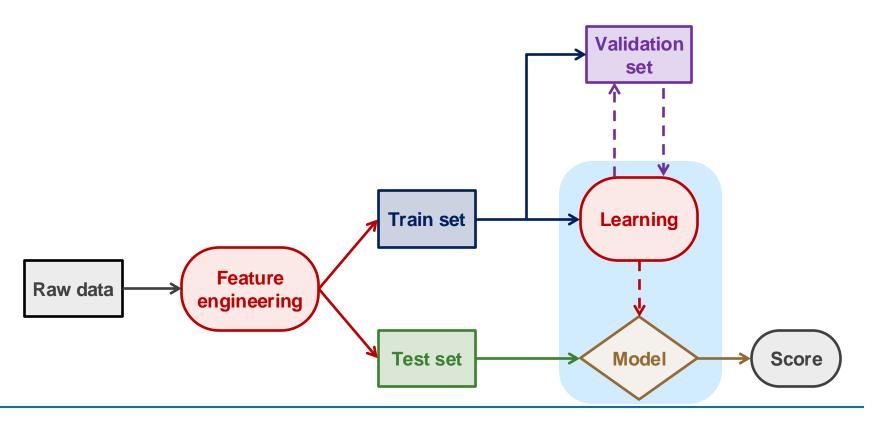
Giovanni Chierchia

# Neural network training

### Machine learning system

#### Training pipeline

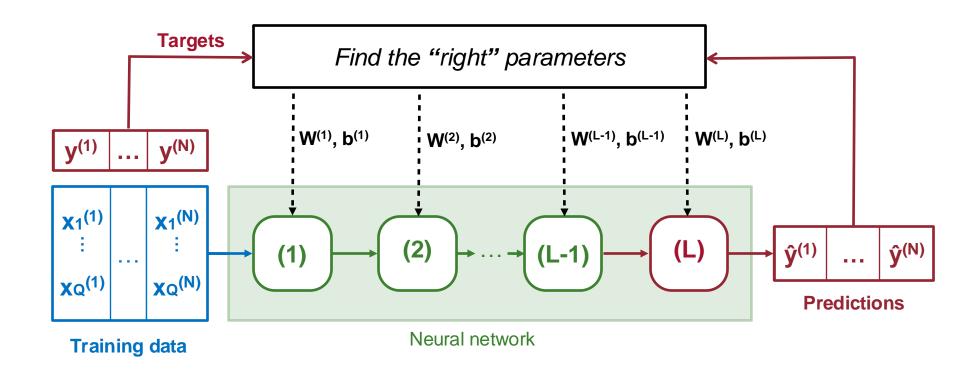
How to make it work in practice?



Giovanni Chierchia

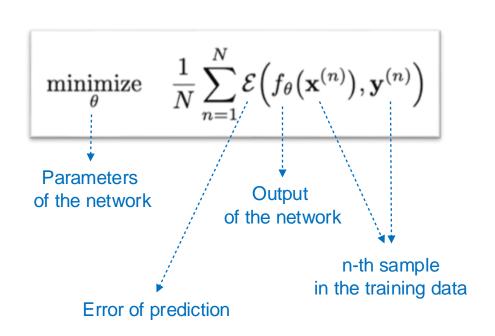
### Supervised learning

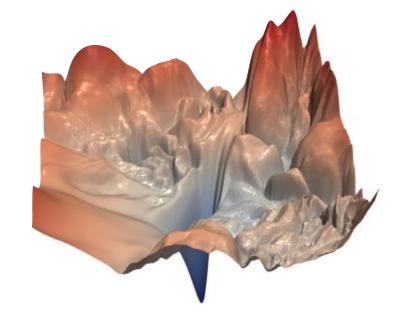
- Goal → Train the network on the training data
  - Find the parameters that make predictions similar to targets



### Training (1/2)

- How to select the right values for the parameters?
  - Minimize the mean error of prediction on the training data





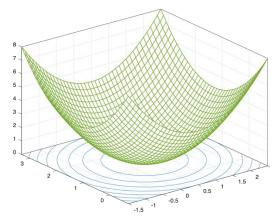
### Training (2/2)

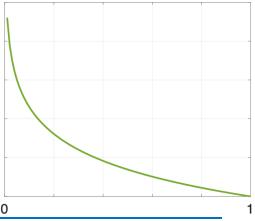
- The error of prediction is measured by a loss function
  - □ Regression → Euclidean distance

$$\mathcal{E}ig(f_{ heta}(\mathbf{x}),\mathbf{y}ig) = ig\|f_{ heta}(\mathbf{x}) - \mathbf{y}ig\|^2$$

□ Classification → Cross entropy

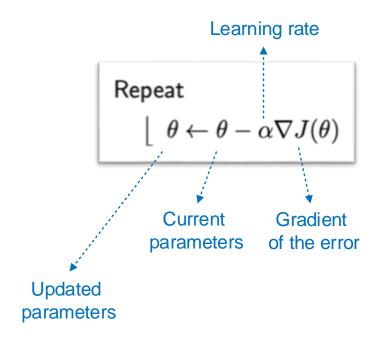
$$\mathcal{E}ig(f_{ heta}(\mathbf{x}), \mathbf{y}ig) = -\mathbf{y}^{ op} \log ig(f_{ heta}(\mathbf{x})ig)$$

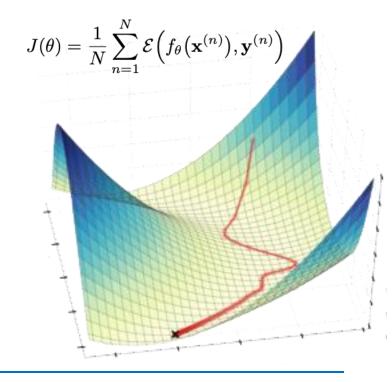




### Gradient descent (1/2)

- How to minimize the mean error of prediction ?
  - By using a numerical algorithm called gradient descent



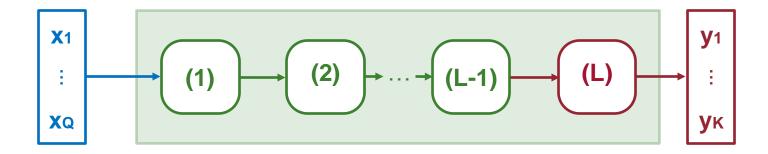


### Gradient descent (2/2)

- Be aware → Gradient descent has multiple pitfalls !!!
  - Choice of the learning rate
    - The network learns nothing if the learning rate is not sufficiently small
  - Convergence to local minima or saddle points
    - The network may not learn correctly, even if it is capable of doing so
  - Dependence on the data
    - The network learns very slowly if the data are not preprocessed

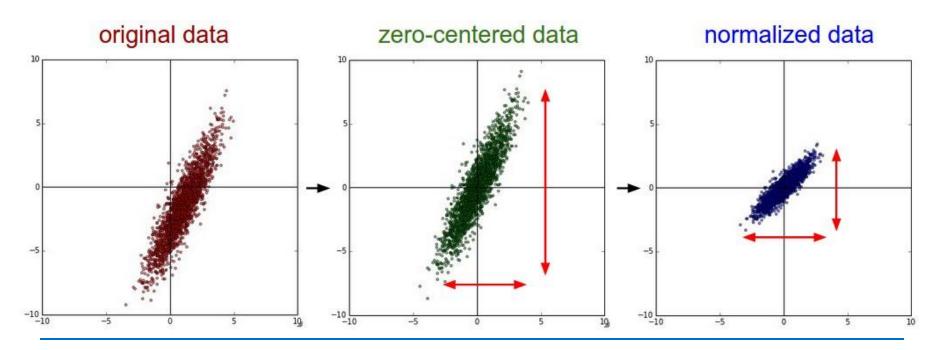
### Tricks of the trade (1/3)

- The network parameters must be randomly initialized
  - If the parameters were initialized to zero, each neuron in the hidden layers would perform the same computation...
  - ... so even after multiple iterations of gradient descent, all the neurons would be computing the same thing over and over.
  - Note → Random initialization introduces diversity in the ensemble



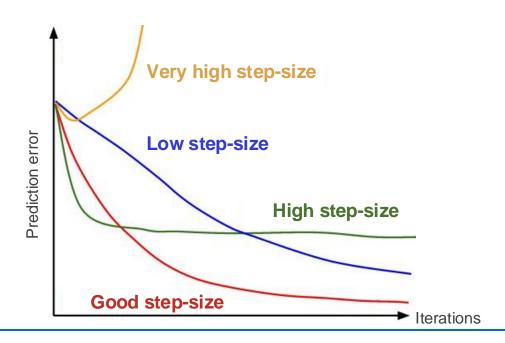
### Tricks of the trade (2/3)

- Data must be normalized before the network input
  - Standard → Subtract the mean and divide by the variance
  - Min-max → Map the min-max values into the range 0-1



### Tricks of the trade (3/3)

- Track the prediction error during training
  - Reduce the learning rate if the curve stagnates early or goes up
  - Increase the learning rate if the curve goes down too slowly



### Training with mini-batches (1/3)

#### Gradient descent → Full batch

The prediction error is computed on all the training set

$$J(\theta) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}\left(f_{\theta}\left(\mathbf{x}^{(n)}\right), \mathbf{y}^{(n)}\right)$$



 This requires intensive computation during training, as gradient descent must process all the training data at each iteration

$$\theta \leftarrow \theta - \frac{\alpha}{N} \sum_{n=1}^{N} \nabla \mathcal{E} \left( f_{\theta} (\mathbf{x}^{(n)}), \mathbf{y}^{(n)} \right)$$

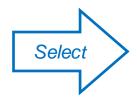
| X <sup>(1)</sup> | y <sup>(1)</sup> |
|------------------|------------------|
| X <sup>(2)</sup> | y <sup>(2)</sup> |
| X <sup>(3)</sup> | y <sup>(3)</sup> |
| X <sup>(4)</sup> | y <sup>(4)</sup> |
|                  |                  |
| X <sup>(n)</sup> | y <sup>(n)</sup> |
|                  |                  |
| X <sup>(N)</sup> | y <sup>(N)</sup> |
|                  |                  |

Training set

### Training with mini-batches (2/3)

- Gradient descent → Mini-batches
  - The prediction error is computed on a mini-batch of data

$$J_i(\theta) = \frac{1}{|\mathcal{N}_i|} \sum_{n \in \mathcal{N}_i} \mathcal{E}\Big(f_{\theta}\big(\mathbf{x}^{(n)}\big), \mathbf{y}^{(n)}\Big)$$



Use

Batch 1

Batch 2

| <b>X</b> <sup>(1)</sup> | y <sup>(1)</sup>   |
|-------------------------|--------------------|
| <b>X</b> <sup>(2)</sup> | y <sup>(2)</sup>   |
| <b>X</b> <sup>(3)</sup> | y <sup>(3)</sup>   |
| $X^{(4)}$               | y <sup>(4)</sup>   |
|                         |                    |
|                         |                    |
| X <sup>(N-1)</sup>      | y <sup>(N-1)</sup> |
| <b>X</b> <sup>(N)</sup> | y <sup>(N)</sup>   |
|                         |                    |

Use a different mini-batch at each iteration of gradient descent

$$\theta \leftarrow \theta - \frac{\alpha}{|\mathcal{N}_i|} \sum_{n \in |\mathcal{N}_i|} \nabla \mathcal{E} \Big( f_{\theta} \big( \mathbf{x}^{(n)} \big), \mathbf{y}^{(n)} \Big)$$

Batch B

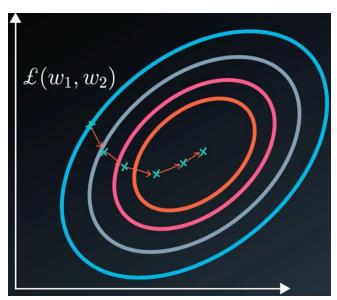
Training set

Shuffle the training set after a complete sweep

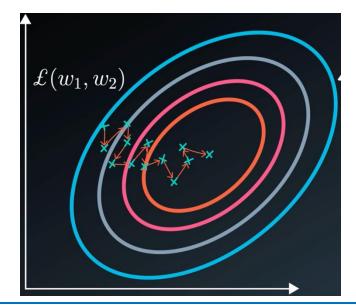
### Training with mini-batches (3/3)

- Stochastic gradient approximates the "true" gradient
  - Hence, it does not indicate the fastest way to update parameters
  - Training must take many smaller steps (instead of few large ones)

Gradient descent - Full batch

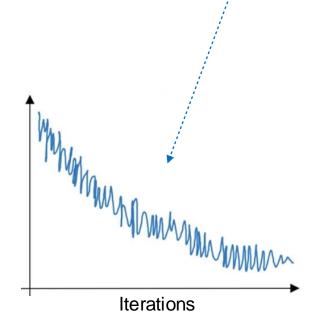


**Gradient descent – Mini batches** 



## Quiz

- Assume you tracked the cost function J(θ) during training, and the plot versus the number of iterations looks like this.
  - 1) If you're using stochastic gradient descent, something is wrong. But if you're using gradient descent, this looks acceptable.
  - 2) Whether you're using standard or stochastic gradient descent, this looks acceptable.
  - 3) If you're using stochastic gradient descent, this looks acceptable. But if you're using gradient descent, something is wrong.
  - 4) Whether you're using standard or stochastic gradient descent, something is wrong.



### Summary so far

Neural networks are trained with gradient descent

Tricks of the trade

4)

Data normalization ------ Speed up the optimization
 Random initialization ----- Otherwise, the network won't learn
 Learning rate ----- Must be chosen small enough

Mini-batches ----- Better generalization

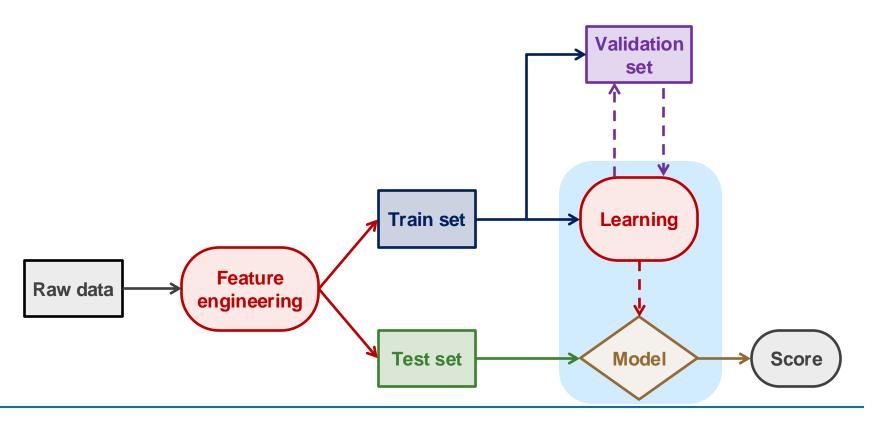
# Optimization algorithms

Stochastic gradient descent Normalized gradient descent State-of-the-art

### Machine learning system

#### Training pipeline

How to make it work in practice?



Giovanni Chierchia

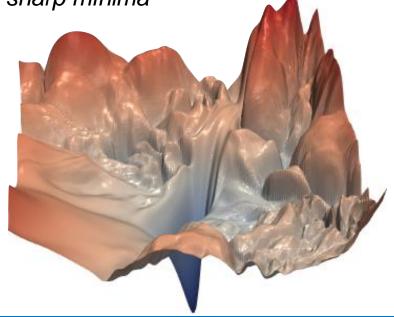
### Saddle points and plateaus (1/3)

- Neural network cost function is non-convex
  - Local minima dominate in shallow networks
  - Saddle points dominate in deep networks
  - Most local minima are close to the bottom (i.e., the global minimum)

Flat minima generalize better than sharp minima

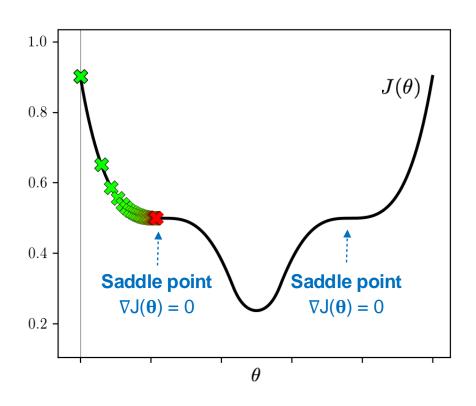
Pictorial representation of a neural network cost function

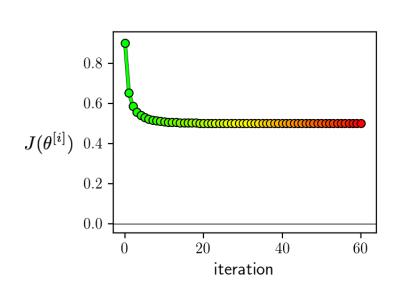




### Saddle points and plateaus (2/3)

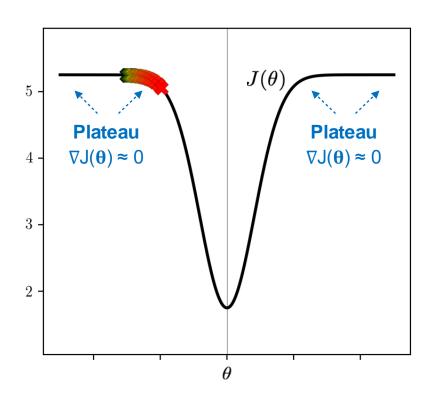
Gradient descent gets stuck in saddle points

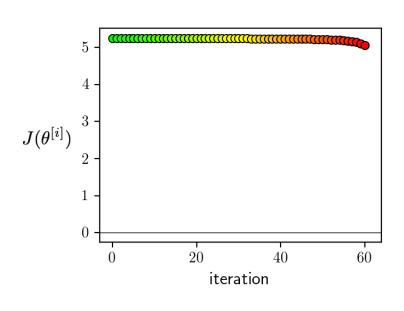




### Saddle points and plateaus (3/3)

Gradient descent slows down on plateaus





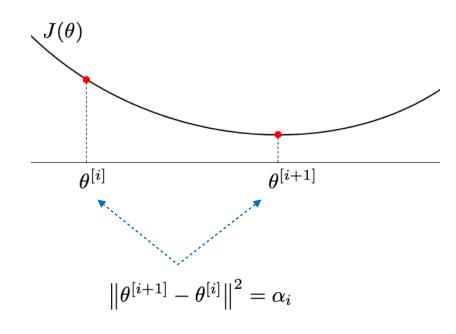
### Normalized gradient descent (1/6)

- Normalized gradient descent uses unit-length directions
  - The length travelled at each update is constant

Step-size 
$$heta^{[i+1]} = heta^{[i]} - rac{
abla J( heta^{[i]})}{\|
abla J( heta^{[i]})\|}$$

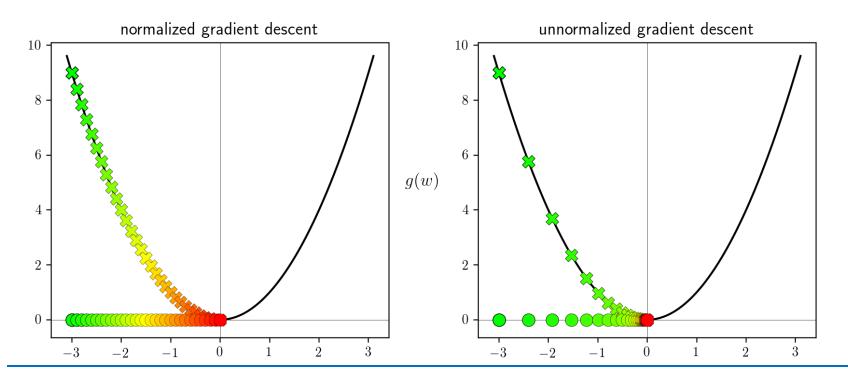
The distance travelled at each step is exactly equal to the step-size.

- Pros. The descent is only attracted by minima (local or global), not by saddle points.
- Cons. To get infinitesimally close to the solution, the step-size must decay to zero.



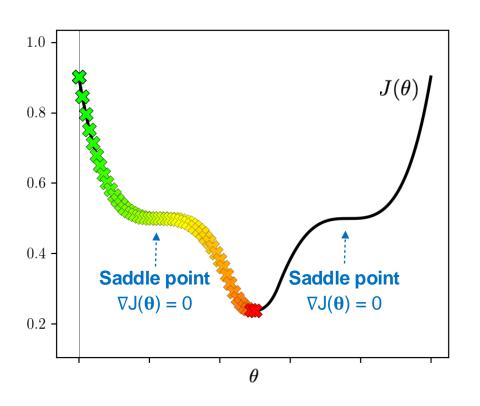
### Normalized gradient descent (2/6)

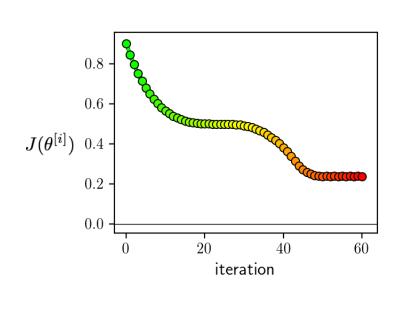
- Gradient descent → Normalized vs Standard
  - Normalized GD performs fixed-length updates
  - Standard GD performs (decreasing) variable-length updates



### Normalized gradient descent (3/6)

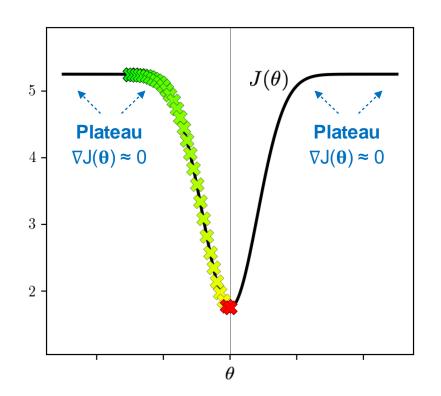
Normalized gradient descent overcomes saddle points

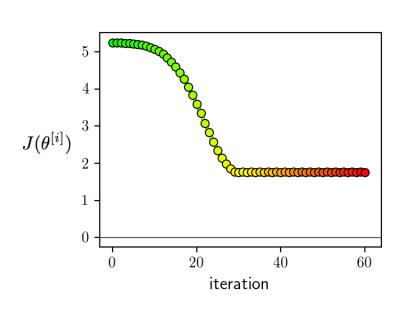




### Normalized gradient descent (4/6)

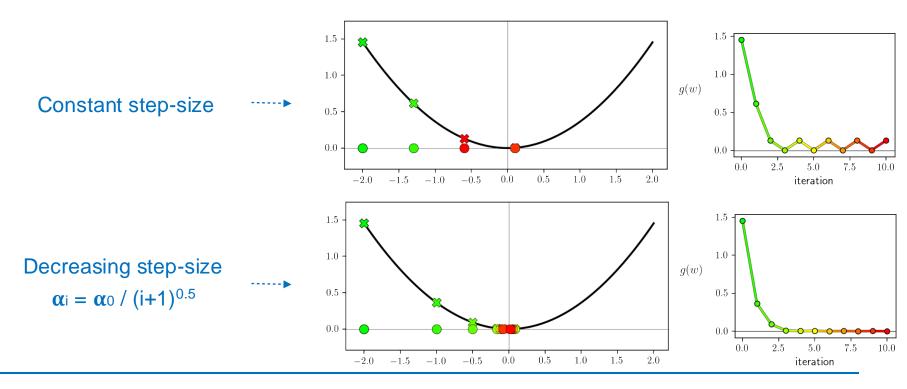
Normalized gradient descent goes through plateaus





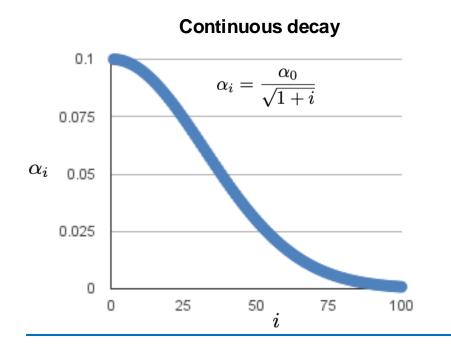
### Normalized gradient descent (5/6)

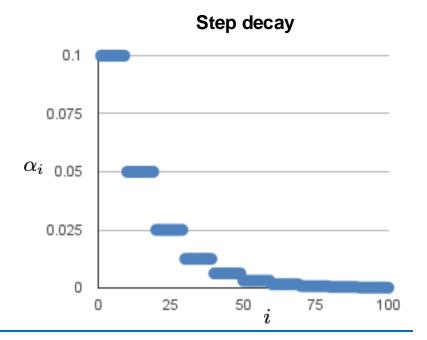
- Normalized GD can only get so close to a minimum
  - □ The length of each step doesn't decrease while approaching a minimum
  - □ Solution → Use a decreasing step-size to get arbitrary close to a minimum



### Normalized gradient descent (6/6)

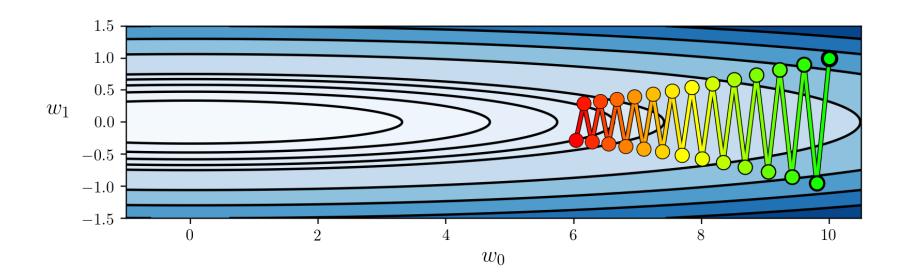
- Decreasing the step-size over time
  - The initial step-size can be larger





### Momentum (1/4)

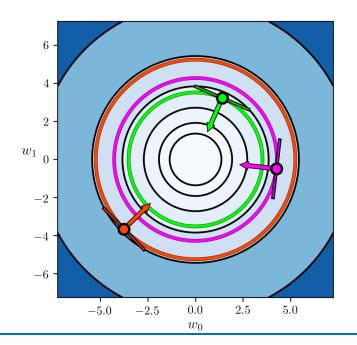
- Another issue is the "zigzagging" effect
  - Oscillations along the "steep" direction
  - Very slow progress along the "shallow" dimension

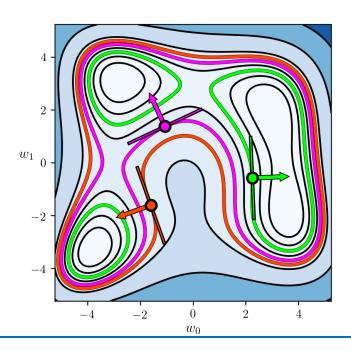


Giovanni Chierchia

### Momentum (2/4)

- Zigzagging arises when the loss function is elliptical
  - This is due to the very definition of gradient
  - Gradient always points perpendicular to the function contours





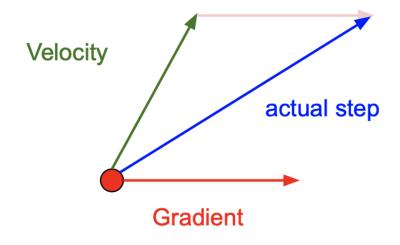
Giovanni Chierchia

**ESIEE** Paris

### Momentum (3/4)

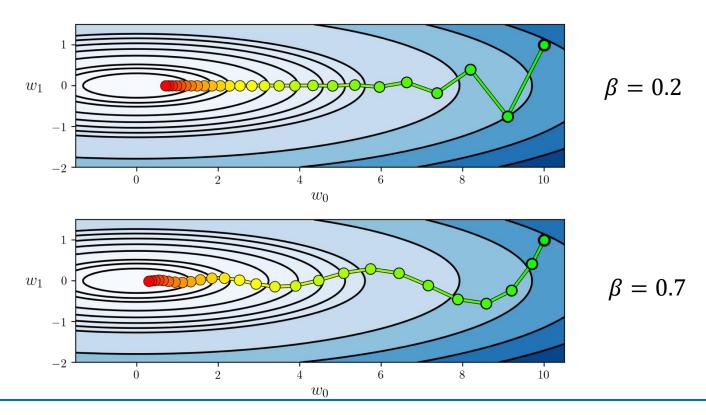
- Solution → Add a "momentum" term
  - Build up velocity as a running mean of gradients
  - Combine gradient with velocity to update parameters

$$\begin{bmatrix} \mathbf{v}^{[i+1]} = \beta \mathbf{v}^{[i]} + \nabla J(\theta^{[i]}) \\ \theta^{[i+1]} = \theta^{[i]} - \alpha \mathbf{v}^{[i+1]} \end{bmatrix}$$



### Momentum (4/4)

- The momentum term dampens the oscillations
  - It makes the trajectory reluctant to change direction



Giovanni Chierchia

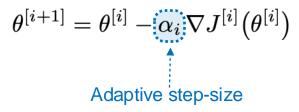
**ESIEE** Paris

### State-of-the-art

- ADAM → Modern algorithm for neural network training
  - Gradient descent + Normalization + Momentum

### Summary so far...

■ **ADAM** → Accelerated gradient descent





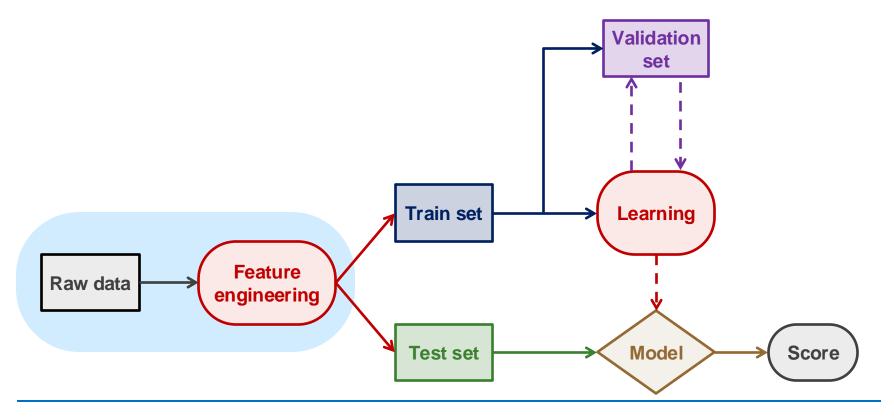
- New hyper-parameters unlocked !!!
  - Learning rate
  - Mini-batch size
  - Optimization (SGD, ADAM, ...)
  - Decaying schedule for step-size

# Feature engineering

#### Machine learning system

#### Training pipeline

How to make it work in practice?



Giovanni Chierchia

### Feature engineering (1/2)

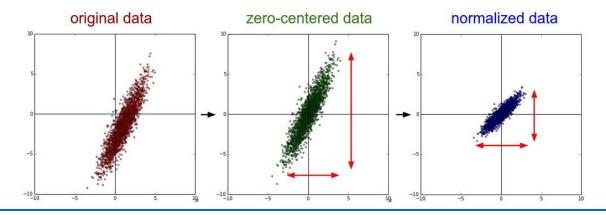
- What is feature engineering?
  - The process of extracting informative features from raw data
  - (Feature = Individual measurable property of a phenomenon)

#### Examples

- Crafting new variables from raw data
- Numerical transformations
- Normalization
- Encoding
- Cleaning & Imputation

## Feature engineering (2/2)

- Neural networks are capable of feature learning
  - Hidden layers learn how to extract informative features
  - There is no need to manually craft new variables
- Feature learning works well on numerical data
  - Remember to normalize numerical variables!

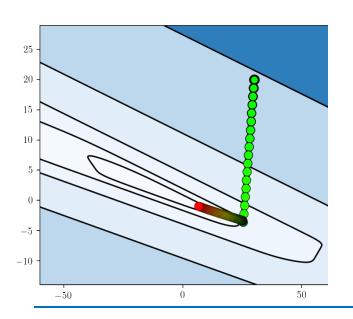


Giovanni Chierchia

**ESIEE** Paris

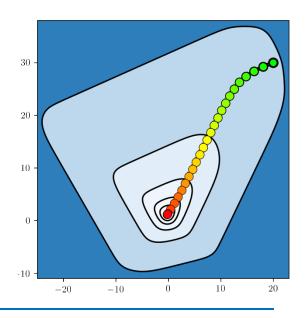
#### Numerical variables

- Normalization helps training go faster
  - The cost function is "strongly" elliptical
  - Normalization makes the cost function "more circular"
  - □ This transformation speeds up the optimization process



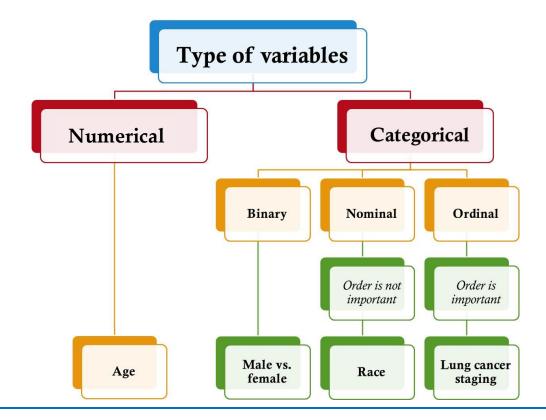
#### **Normalization**

The cost function becomes "more circular", and thus gradient descent can reach the minimum in less steps.



#### Categorical variables

- Neural networks struggle with categorical data
  - Variables that can take on a fixed number of possible values



Giovanni Chierchia

**ESIEE** Paris

#### Dummy coding

- A categorical variable is replaced by binary variables
  - Use N-1 binary values to represent N categories
  - A group is encoded with the vector (0, 0, ..., 0)
  - The other groups are one-hot encoded
  - When to use? One group is more important than the others

| Nationality | C1 | C2 | <b>C3</b> |
|-------------|----|----|-----------|
| French      | 0  | 0  | 0         |
| Italian     | 1  | 0  | 0         |
| German      | 0  | 1  | 0         |
| Other       | 0  | 0  | 1         |

←----- Most important or biggest group

Giovanni Chierchia

#### Effects coding

- A categorical variable is replaced by binary variables
  - Use N-1 binary values to represent N categories
  - A group is encoded with the vector (-1, -1, ..., -1)
  - The other groups are one-hot encoded
  - When to use? One group is less important than the others

| Nationality | <b>C1</b> | C2 | <b>C3</b> |
|-------------|-----------|----|-----------|
| French      | 1         | 0  | 0         |
| Italian     | 0         | 1  | 0         |
| German      | 0         | 0  | 1         |
| Other       | -1        | -1 | -1        |

Least important or smallest group

Giovanni Chierchia ESIEE Paris

#### Contrast coding

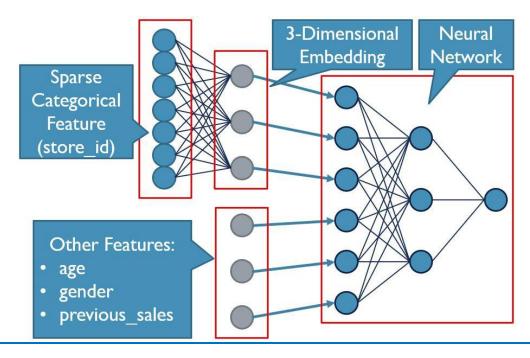
- A categorical variable is replaced by numerical variables
  - Use N-1 variables to represent N categories
  - The coefficients per each variable must sum to zero
  - The difference between the sum of the positive values and the sum of the negative values per each variable should equal 1
  - The vector of coefficients per each variable must be orthogonal

| Nationality | <b>C1</b> | C2    | <b>C3</b> |
|-------------|-----------|-------|-----------|
| French      | 0.25      | 0.33  | 0.5       |
| Italian     | 0.25      | 0.33  | -0.5      |
| German      | 0.25      | -0.66 | 0         |
| Other       | -0.75     | 0     | 0         |

Giovanni Chierchia ESIEE Paris

#### Embedding

- A special "embedding" layer is added to the network
  - This layer maps each category to a numerical vector (of arbitrary size) that is learned by the network during training

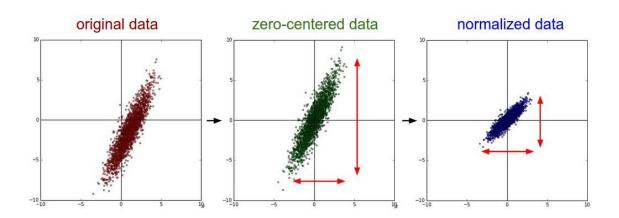


Giovanni Chierchia

#### Summary so far...

#### Data preprocessing is important

- Clean the dataset
- Normalize the numerical variables
- Replace the categorical variables



# Overfitting

What is it?

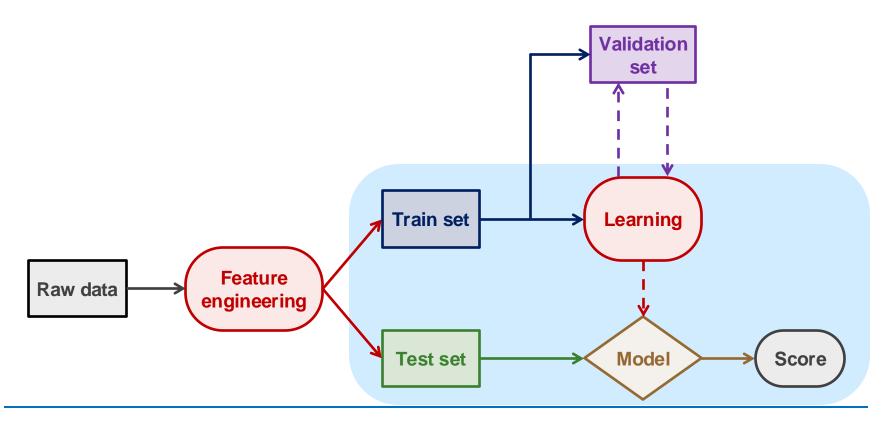
How to detect it?

How to fight it?

#### Machine learning system

#### Training pipeline

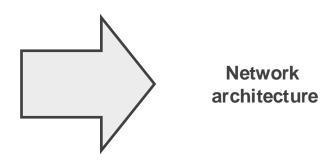
How to make it work in practice?



Giovanni Chierchia

## Over-fitting (1/3)

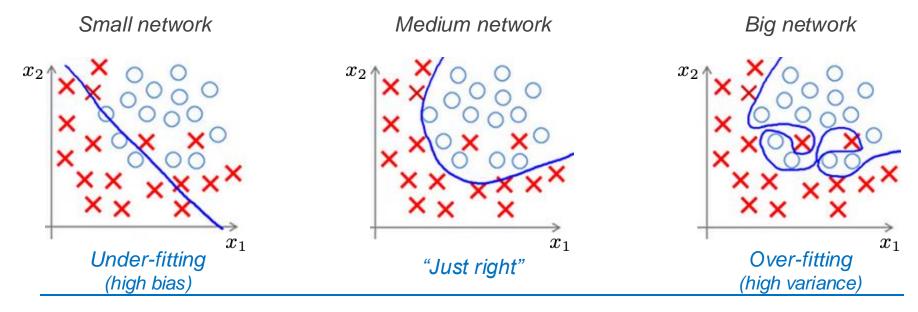
- Training allows the network to learn its parameters
- But only after the hyper-parameters are fixed...
  - Number of layers in the neural network
  - Number of units in each layer
  - Activation function for each layer
  - ... (and many others)



Hyper-parameters affect the network predictions

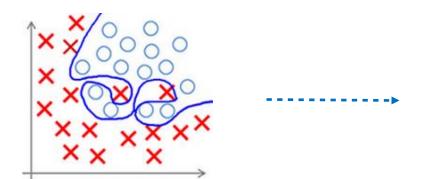
### Over-fitting (2/3)

- What is the impact of hyper-parameters on learning?
  - □ Under-fitting → The predictions are too far from the expected outputs
  - □ **Over-fitting** → The predictions are **too close** to the expected outputs



### Over-fitting (3/3)

- Learning aims to achieve a good generalization
  - The model must perform well on never-before-seen data
- Over-fitting is an obstacle to generalization
  - □ Learning → The model fits very well the training data...
  - □ Prediction → ... but it is unable to generalize to new data.



#### Nothing useful is being learned here

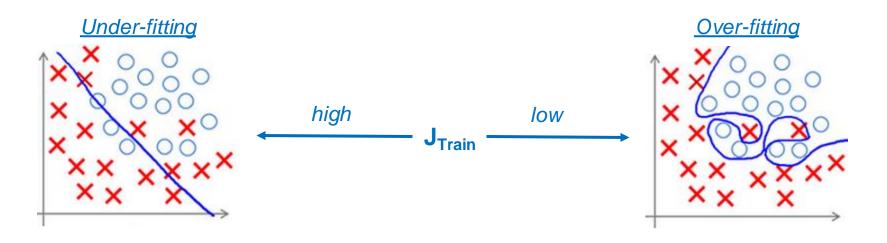
The model is distracted by some outliers, instead of following the general trend of data.

#### How to detect over-fitting (1/4)

It is not advised to evaluate the model on the training data

$$J_{\text{train}}(\widehat{\theta}) = \frac{1}{N} \sum_{n=1}^{N} C(f_{\widehat{\theta}}(\mathbf{x}^{(n)}), y^{(n)})$$

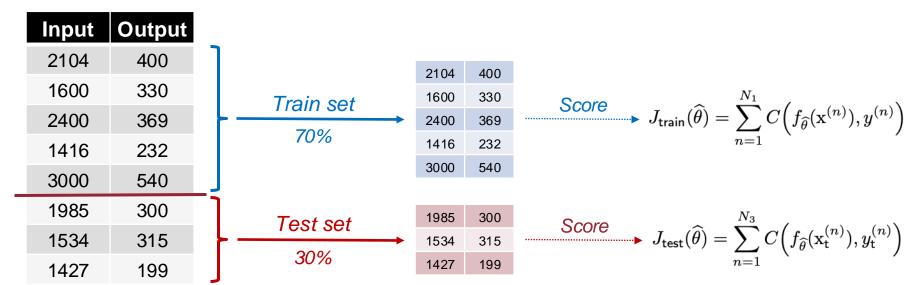
□ Warning → This estimate is biased toward over-fitting !!!



### How to detect over-fitting (2/4)

- It is better to evaluate the model on fresh data
  - □ Train set → Used for training the model
  - □ Test set → Used for testing the model

#### Dataset



### How to detect over-fitting (3/4)

- Over-fitting can be detected on the test set
  - □ Regression → Model evaluated on mean square error
  - □ Classification → Model evaluated on classification error

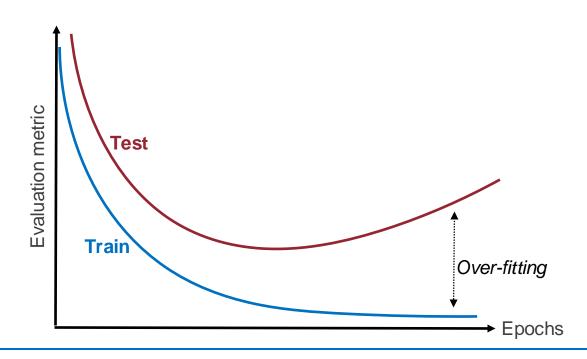
|                                 | Low bias                        | High bias<br>(under-fitting)     |                          |  |
|---------------------------------|---------------------------------|----------------------------------|--------------------------|--|
| Low variance                    | <b>Err</b> Train = <b>0.5</b> % | <b>Err</b> Train = <b>17.0</b> % | Small gap in performance |  |
|                                 | <b>Err</b> Test = <b>1.0</b> %  | ErrTest = 18.3 %                 |                          |  |
| High Variance<br>(over-fitting) | <b>Err</b> Train = 1.0 %        | <b>Err</b> Train = <b>15.0</b> % |                          |  |
|                                 | <b>Err</b> Test = <b>19.3</b> % | ErrTest = 30.0 %                 |                          |  |
|                                 | <u> </u>                        | <u></u>                          |                          |  |

Giovanni Chierchia ESIEE Paris 54

Small error on training Big error on training

#### How to detect over-fitting (4/4)

- Over-fitting can be also monitored during training
  - □ Train cost → How well the model fits the training data
  - □ Test cost → How well the model performs on new unseen data



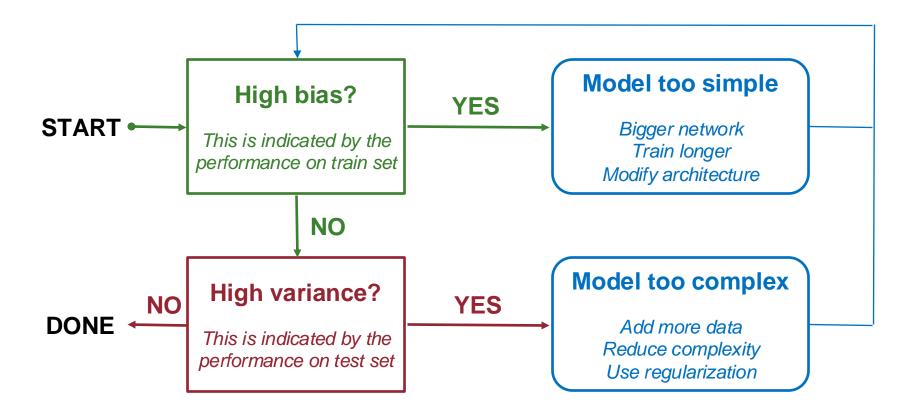
#### How to fight over-fitting (1/3)

- The underlying causes of under-fitting
  - □ Simple model → Prediction close to linear, few parameters, ...
  - □ Low dimension → Features are not enough to make a prediction

- The underlying causes of over-fitting
  - □ Complex model → Prediction highly nonlinear, a lot of parameters, ...
  - □ High dimension → There are too many features
  - □ Lack of data → The train set is too small w.r.t. the parameters to learn

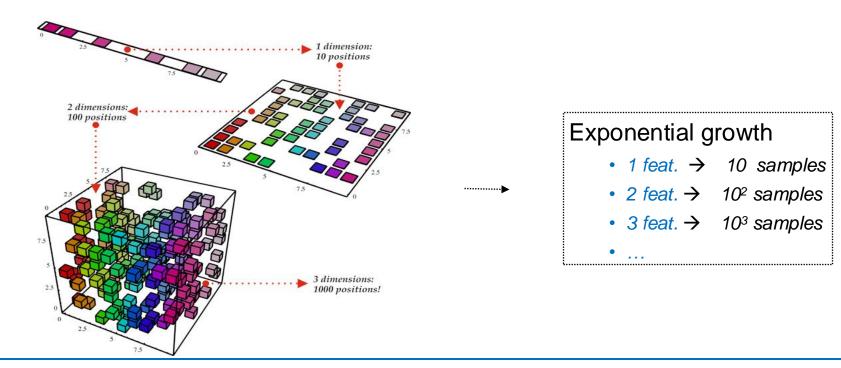
#### How to fight over-fitting (2/3)

Bias and variance reduction can be tackled separately



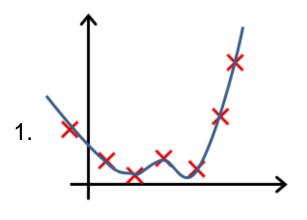
### How to fight over-fitting (3/3)

- Can we avoid over-fitting only with more training data?
  - The amount of data grows exponentially with the dimensionality
  - At some point, we can't add enough data to prevent over-fitting

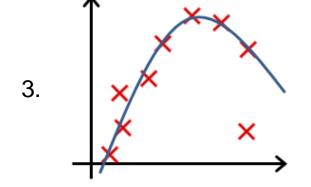


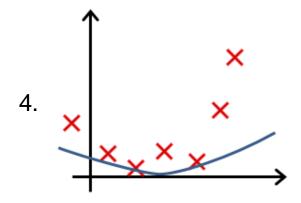
# Quiz (1/3)

In which figure the model has overfit or underfit the training set?









## Quiz (2/3)

- What does it mean that a model f<sub>e</sub> has <u>overfit</u> the data?
  - 1. It makes accurate predictions for examples in the training set, and generalizes well to make accurate predictions on new examples.
  - 2. It doesn't makes accurate predictions for examples in the training set, but it generalizes well to make accurate predictions on new examples.
  - 3. It makes accurate predictions for examples in the training set, but it doesn't generalizes well to make accurate predictions on new examples
  - 4. It doesn't make accurate predictions for examples in the training set, and doesn't generalizes well to make accurate predictions on new examples.

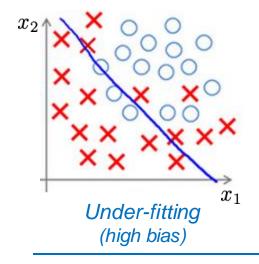
# Quiz (3/3)

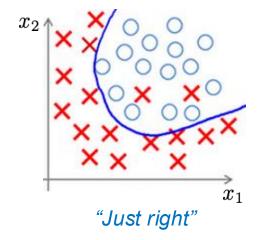
- Suppose your neural network obtains a train set error of 0.5%, and a test set error of 7%.
- What should you try to improve the performance?
  - 1) Increase the number of units in each hidden layer
  - 2) Add regularization
  - 3) Use a deeper neural network
  - Get more test data
  - 5) Get more training data

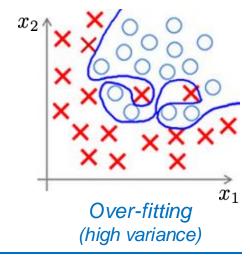
#### Summary so far...

#### Bias-variance tradeoff

- Over-fitting is the obstacle to generalization
- Use a test set to detect over-fitting (or under-fitting)
- Recipes to reduce bias and variance







# Regularization

Norm penalization

Early stopping

**Dropout** 

**Batch normalization** 

#### Over-fitting

- How to reduce over-fitting?
  - □ Option 1 → Add more training data
    - This is always beneficial, but it could be expensive to get more data
  - □ Option 2 → Simplify the model
    - Reduce the network parameters by using less units and layers
    - The risk is to increase the bias
  - □ Option 3 → Apply regularization
    - Keep the complexity, but reduce the model's degrees of freedom
    - This diminishes somewhat the capacity to fit the training data
    - A big variance reduction is traded for a small bias increase

#### Norm penalization (1/3)

- Norm penalization → Small values for parameters
  - The cost function is modified as follows:

$$J(\theta) = \sum_{n=1}^{N} C(f_{\theta}(\mathbf{x}^{(n)}), \mathbf{y}^{(n)}) + \lambda \sum_{m=1}^{M} |\theta_{m}|^{p}$$

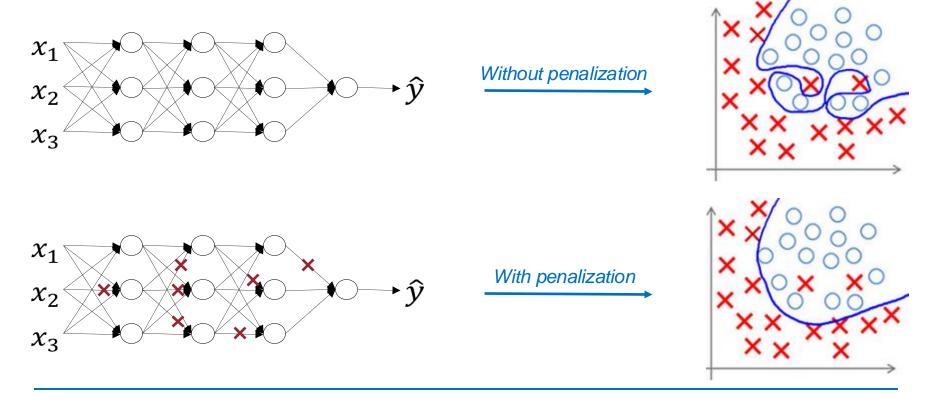
Now, the cost function is minimized for smaller values of parameters

$$J(\theta) \to 0 \qquad \Leftrightarrow \qquad \theta_1 \to 0, \dots, \theta_M \to 0$$

- Small values correspond to a simpler model
- A simpler model is less prone to over-fitting and more to under-fitting

#### Norm penalization (2/3)

- The penalization gets rid of some network connections
  - The connections to be removed are identified during training

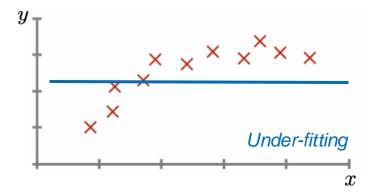


#### Norm penalization (3/3)

- The hyper-parameter  $\lambda$  controls the tradeoff of two goals
  - Fitting the train set
  - Keeping a simple model
- Warning → The choice of λ is critical
  - □ If *I* is very large, all the model parameters end up being close to zero

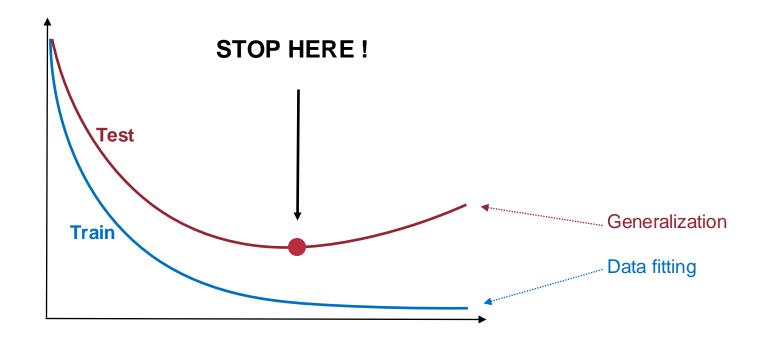
$$\lambda \to +\infty \qquad \Rightarrow \qquad \theta_1 \approx 0, \dots, \theta_M \approx 0$$

In this case, the model is under-fitting, as we get rid of all the network connections



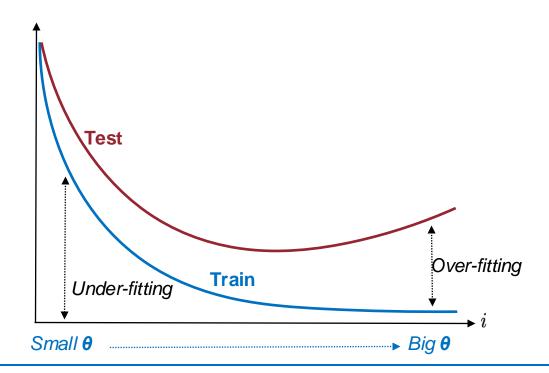
### Early stopping (1/2)

- Early stopping → Halt when generalization stops improving
  - Training is halted when the performance on test set begins to degrade



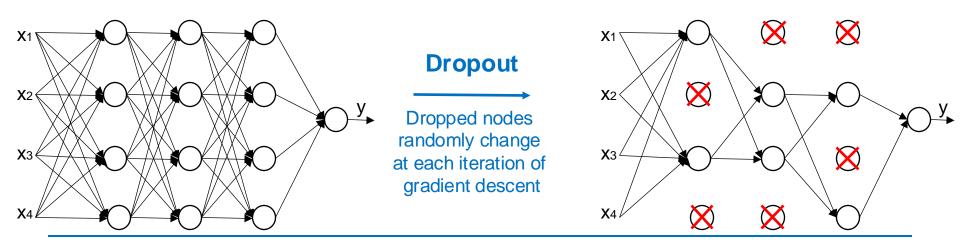
## Early stopping (2/2)

- The magnitude of parameters increases during training
  - □ At the beginning → Parameters are just initialized to small values
  - □ Toward the end → Parameters get bigger to fit the training data



#### Dropout (1/2)

- Dropout → Nodes are randomly removed during training
  - □ The output of random nodes is temporarily **set to zero** (for one iteration)
  - The dropout rate is the fraction of nodes that are zeroed out
  - Why it works? At test time, all the nodes are kept. This is equivalent to averaging the output of all the networks randomly created during training



### Dropout (2/2)

- Inverted Dropout (implementation)
  - Drop and scale at training time; do nothing at test time

```
p = 0.5 # prob. of keeping a unit (higher = less dropout)
def train forward (X):
  # forward pass of 3-layer neural network at train time
  H1 = np.maximum(0, W1 @ X + b1)
  U1 = (np.random.rand(*H1.shape) < p) / p
  H1 *= U1 # 1<sup>st</sup> dropout
  H2 = np.maximum(0, W2 @ H1 + b2)
  U2 = (np.random.rand(*H2.shape) < p) / p
  H2 *= U2 # 2<sup>nd</sup> dropout
  out = W3 @ H2 + b3
  return out
```

```
def predict(X):
    # forward pass at test time

H1 = np.maximum(0, W1 @ X + b1)

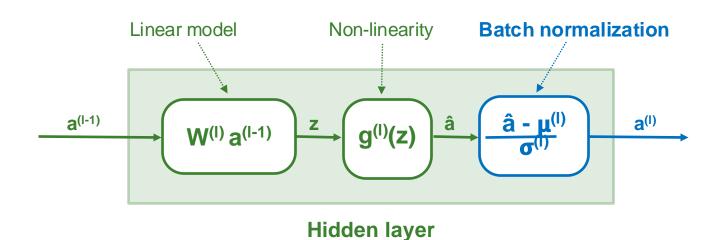
H2 = np.maximum(0, W2 @ H1 + b2)

out = W3 @ H2 + b3

return out
```

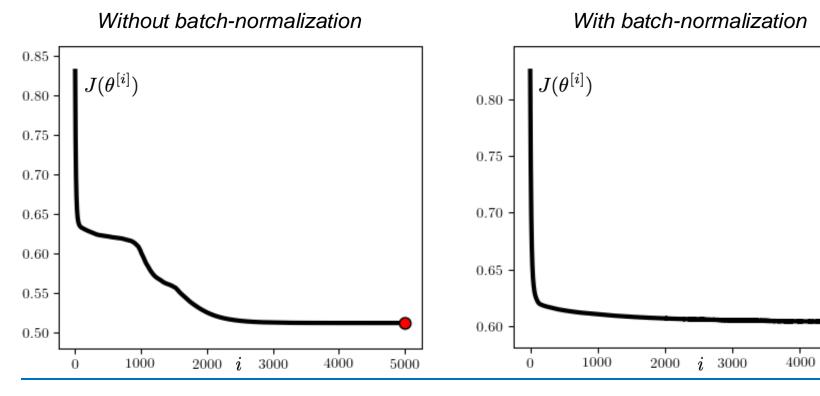
#### Batch normalization (1/2)

- Normalization can be also applied to hidden layers
  - □ Training → Parameters  $\mu^{(l)}$  and  $\sigma^{(l)}$  are learned
  - □ **Testing**  $\rightarrow$  Parameters  $\mu^{(l)}$  and  $\sigma^{(l)}$  are kept fixed



### Batch normalization (2/2)

- Layer normalization speeds up the training process
  - It also helps to avoid gradient explosions



Giovanni Chierchia ESIEE Paris 73

5000

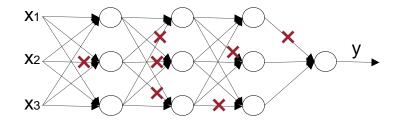
### Quiz

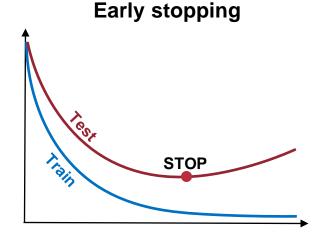
- What happens when you increase the hyper-parameter  $\lambda$ ?
  - 1) Weights are pushed toward becoming smaller (closer to 0)
  - 2) Weights are pushed toward becoming bigger (further from 0)
  - 3) Doubling lambda should roughly result in doubling the weights
  - 4) Gradient descent taking bigger steps with each iteration
- What will likely happen when you increase the dropout rate?
  - 1) Increasing the regularization effect
  - 2) Reducing the regularization effect
  - 3) Causing the neural network to end up with a higher training set error
  - 4) Causing the neural network to end up with a lower training set error

### Summary so far...

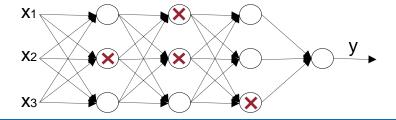
Three types of regularization

#### Norm penalization





#### **Dropout**



# Hyper-parameter tuning

Hyper-parameters

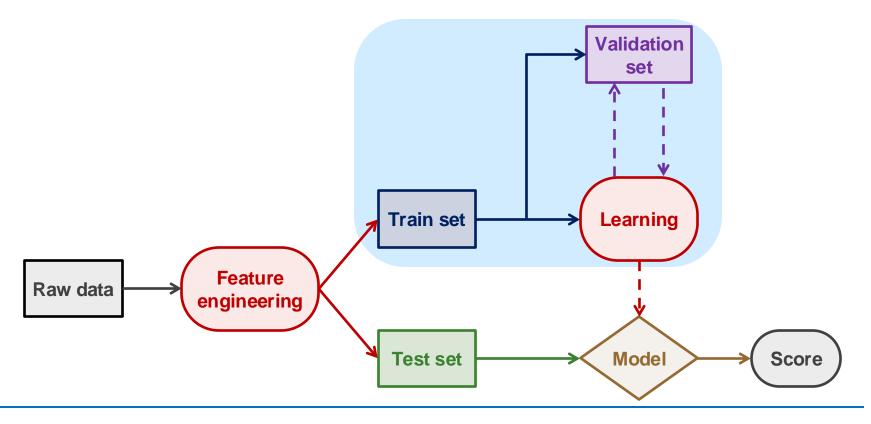
**Cross-validation** 

Sampling strategies

### Machine learning system

#### Training pipeline

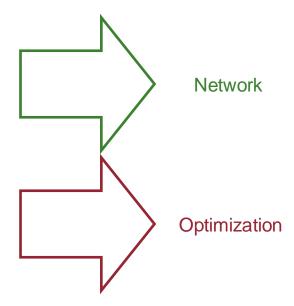
How to make it work in practice?



Giovanni Chierchia

## Hyper-parameters (1/2)

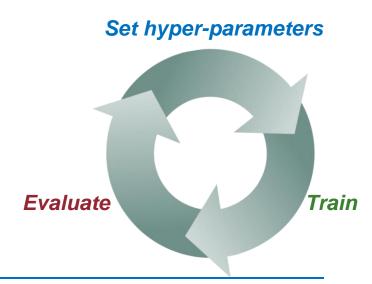
- Firstly, the hyper-parameters must be fixed...
  - Number of layers in the neural network
  - Number of units in each layer
  - Activation function for each layer
  - Regularization
  - Learning rate in gradient descent
  - Number of iterations in gradient descent
  - □ ... (and many others)



- Then, the parameters can be learned via training
  - $\Box$   $\theta = W^{(1)}, W^{(2)}, ..., W^{(L)}$

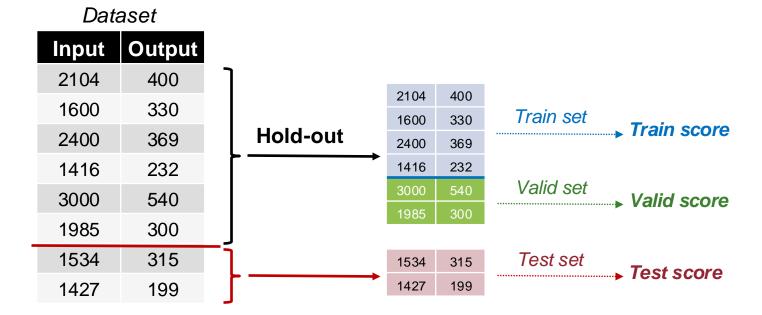
### Hyper-parameters (2/2)

- How to find the best values for the hyper-parameters?
  - Difficult to know in advance what are the best values
  - Unlike parameters, they can be hardly estimated through optimization
  - Instead, they are found by a trial-and-error process
    - 1) Assign some values to hyper-parameters
    - 2) Train the network (on the train set)
    - 3) Evaluate the performance (on the valid set)
    - 4) Repeat 1-3 for different values
    - 5) Select the best values



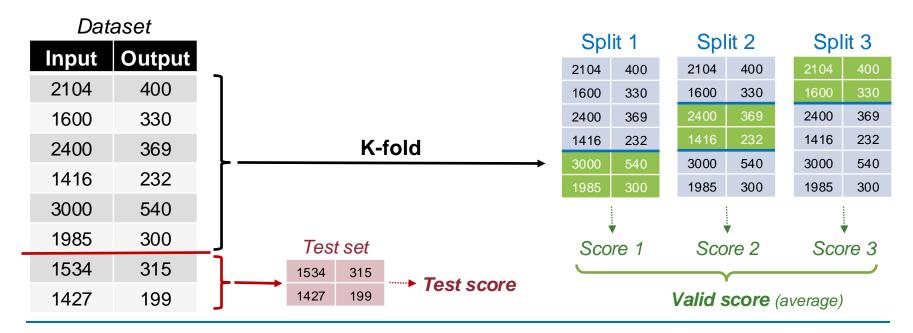
### Cross-validation (1/2)

- For the evaluation, the dataset is split in three chunks
  - □ Train set → Used for training the model
  - □ Valid set → Used for choosing the best hyper-parameters
  - □ Test set → Used for detecting over-fitting



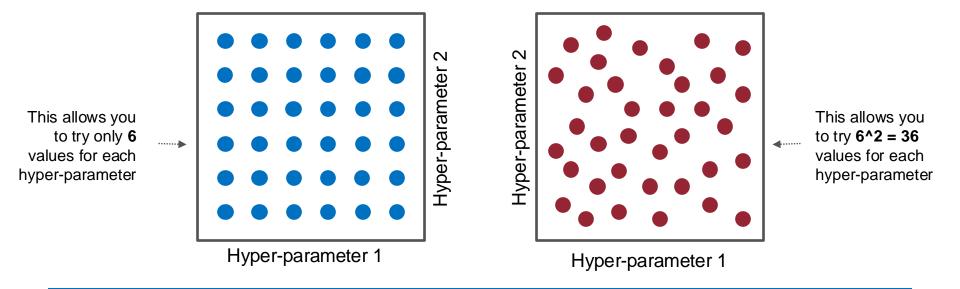
### Cross-validation (2/2)

- Training data can be shaken up for a better evaluation
  - Divide your data in K partitions of equal size
  - For each partition, use it as the valid set and the rest for training
  - Your final score is the average of the K scores obtained



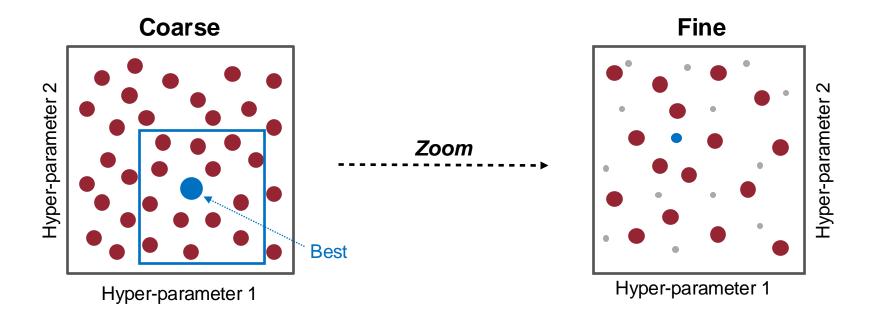
### Hyper-parameter sampling (1/3)

- How to pick values for hyper-parameters?
  - □ Uniform sampling → Use a regular grid of points
  - □ Random sampling → Choose points at random (in a given range)



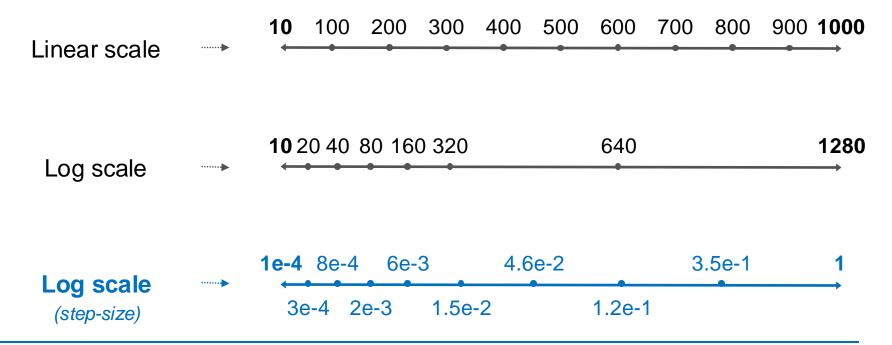
### Hyper-parameter sampling (2/3)

■ Advice → Use a coarse to fine sampling scheme



### Hyper-parameter sampling (3/3)

- Advice → Consider also a logarithmic scale for sampling
  - In some cases, the log scale is better than the linear one



Giovanni Chierchia ESIEE Paris 84

### Quiz

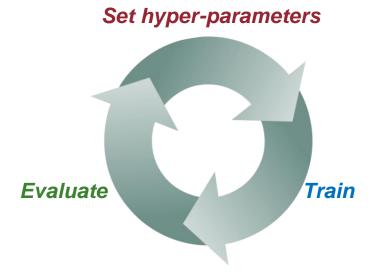
#### Which of the following statements are true?

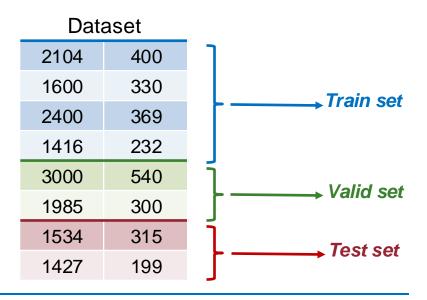
- 1) Every hyper-parameter, if set poorly, can have a huge negative impact on training, and so all of them are about equally important to tune well.
- 2) Finding good hyper-parameter values is very time-consuming. So you should do it once at the start of the project, and try to find very good values, so that you don't ever have to revisit tuning them again.
- 3) If you think that the step-size (hyper-parameter for gradient descent) is between  $10^{-3}$  (= 0.001) and  $10^{-1}$  (= 0.1), the recommended way to sample its possible values consists of using a logarithmic scale.

### Summary so far...

#### Hyper-parameter search

- Use a validation set to find the best hyper-parameters
- Random sampling is superior to uniform grid search
- □ Use a logarithmic scale when it is appropriate (e.g., for step-size)





### Conclusion

Training
Over-fitting
Regularization
Hyper-parameters

### Training

Neural networks are trained with gradient descent

Repeat 
$$\ \ \, \big\lfloor \ \, \theta \leftarrow \theta - \alpha \nabla J(\theta) \, \, \big\vert \, \,$$

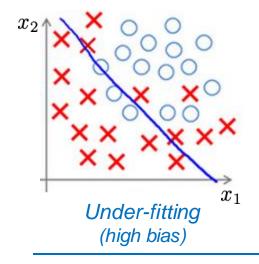
Tricks of the trade

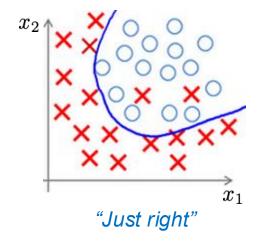
Data normalization ------ Speed up the optimization
 Random initialization ----- Otherwise the network won't learn
 Learning rate ----- Must be chosen small enough
 Mini-batches ----- Better generalization

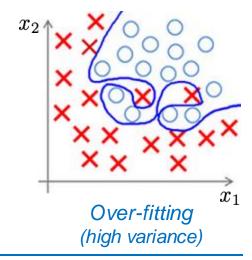
### The problem of over-fitting

#### Bias-variance tradeoff

- Over-fitting is the obstacle to generalization
- Use a test set to detect over-fitting (or under-fitting)
- Recipes to reduce bias and variance



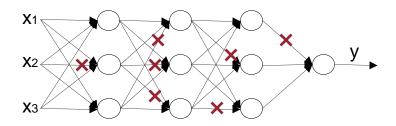




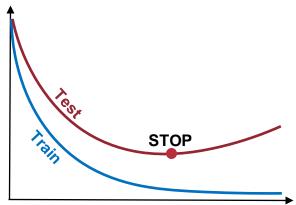
### Regularization

#### Effective ways to reduce overfitting

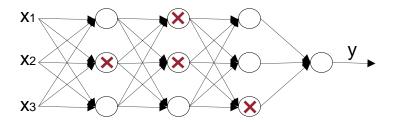
#### Norm penalization



#### Early stopping



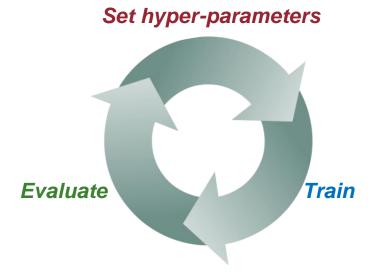
#### **Dropout**

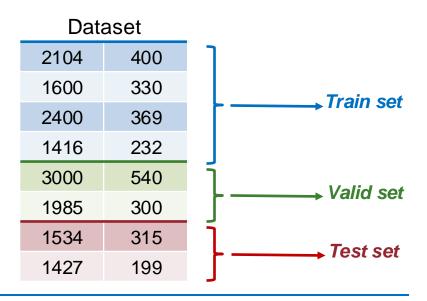


### Hyper-parameters

#### How to deal with hyper-parameters

- Use a validation set to find the best hyper-parameters
- Random sampling is superior to uniform grid search
- □ Use a logarithmic scale when it is appropriate (e.g., for step-size)





#### Ensemble of networks

#### ■ Advice → Train several networks and combine their outputs

#### 1) Same model, different initialization.

 Use cross-validation to determine the best hyper-parameters, then train several models with the same hyper-parameters, but with different random initialization.

#### 2) Top models discovered during cross-validation.

 Use cross-validation to determine the best hyper-parameters, then pick the models having the best-performing sets of hyper-parameters.

#### 3) Different checkpoints of a single model.

If training is very expensive, take different checkpoints of a single network over time. For example, pick a network after a fixed number of epochs. Alternatively, start with a large step-size and a decaying schedule, train the network for a fixed time, and restart with a large step-size after saving the network. Another way is to maintain a running average of network parameters during training.