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What you should already know

■ Calculus & linear algebra

❑ Functions, gradients, matrices, vectors, …

■ Programming

❑ Python & NumPy library (or MATLAB) 

■ Basics of machine learning

❑ Linear regression, logistic regression, overfitting
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Syllabus

■ Lectures (8h)

❑ (2h) Neural networks

❑ (2h) Training + Best practices

❑ (2h) Convolutional networks

❑ (2h) Representation learning

■ Labs (≥ 16h)

❑ Deep learning project

❑ Groups of 2-3 students

■ Evaluation

❑ (1h) MCQ

❑ (3h) Oral presentation

Last day of the course
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Logistics

■ Course material

❑ https://esiee.blackboard.com

■ Grading

❑ MCQ     ➜ 50% of final mark

❑ Project➜ 50% of final mark

■ Textbooks
❑ G. James, Witten, Hastie, Tibshirani. An Introduction to Statistical Learning. Springer, 2017.

❑ J. Watt, R. Borhani, A. Katsaggelos. Machine Learning Refined. Cambridge Univ. Press, 2016.

❑ F. Chollet. Deep Learning with Python. Manning, 2017.
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About the project

■ Step 1 ➜ Group Creation

❑ Form a team of 3 students (+/-1 admitted if well justified)

❑ Let us know the team members by the end of the first lab

■ Step 2 ➜ Project Selection

❑ Define the goal of your project

■ Option 1 ➜ Build a neural network from scratch (Available Online)

■ Option 2 ➜ Choose your own subject (classification of real images, 
object detection, motion tracking, visual odometry, 3D reconstruction, …)

❑ Let us know your choice by the end of the second lab

■ Step 3 ➜ Oral Presentation

❑ Prepare and give a presentation on the last day of class
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Learning
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Context

■ What is machine learning ?

❑ The ability of computers to learn without being explicitly programmed

■ There are several types of learning

❑ Supervised ➜ Teach the computer how to do something

❑ Unsupervised ➜ Let the computer learn how to do something

❑ Reinforcement ➜ Allow the computer automate decision-making

■ Course objectives

❑ Study of neural networks for supervised learning

❑ Special emphasis on computer vision
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■ Fundamental hypothesis

❑ Our goal is to predict an output from an input

❑ We are given a dataset of input-output examples

❑ We know there is a relationship between the input and the output

Training data

10

Size

(feet2)

Number of 

bedrooms

Number of 

floors

Age of home 

(years)

Price

($1000)

x1
(1) = 2104 x2

(1) = 5 x3
(1) = 1 x4

(1) = 45 y(1) = 460

x1
(2) = 1416 x2

(2) = 3 x3
(2) = 2 x4

(2) = 40 y(2) = 232

x1
(3) = 1534 x2

(3) = 3 x3
(3) = 2 x4

(3) = 30 y(3) = 315

x1
(4) = 852 x2

(4) = 2 x3
(4) = 1 x4

(4) = 36 y(4) = 178

… … … … …

(x(1),y(1)) = example 1

Input feature 1 Input feature 2 Input feature 3 Input feature 4 Output

(x(2),y(2)) = example 2

(x(3),y(3)) = example 3

(x(4),y(4)) = example 4
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■ Generalization by inductive bias 

❑ We are interested in predicting the output for new unseen inputs

❑ To do so, we use a parametric model fθ (where θ is a vector of parameters)

Prediction model
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Output

Scalar value

Input

Vector of size Q

x1
...

xQ

fθ y

Prediction model

Function from ℝQ to ℝ

θ
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■ Learning

❑ Our goal is to learn the prediction model fθ from training data

❑ This amounts to finding the “right values” for parameters θ

Training process

12

Predictions
Training examples

x(n) ŷ(n)

θ

ŷ(1) … ŷ(N)

x1
(1)
...

xQ
(1)

…

x1
(N)
...

xQ
(N)

y(1) … y(N)

Find the “right” parameters

fθ



Giovanni Chierchia ESIEE Paris

Supervised learning

■ Two types of problems

❑ Regression ➔ Learning how to predict a continuous output

❑ Classification ➔ Learning how to predict a discrete output

13

Classification Regression
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The big picture

14

■ Machine learning pipeline



Linear regression

Training data

Prediction model

Cost function
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Problem definition

■ We are interested in understanding the relationship f

between an input vector and a continuous output

f  is unknown !

f(x)

Input “x”

(vector of size Q)

Output “y”

(continuous value)

16
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Training data

■ We are given a set of input-output examples

y(n) is the approximated 

value of  f  at point x(n)

17
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Prediction model

■ We represent f with a parametric model

where θ denotes a vector of parameters.

■ In particular, the model is linear

with 𝞱 = [𝞱0, 𝞱1, …, 𝞱Q]T and x = [1, x1, …, xQ]T.

18
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Cost function for regression (1/4)

■ Our goal is to learn the prediction fθ from training data

❑ This amounts to finding the “right values” for parameters θ

19

Predicted 

outputs
Training 

examples

x(n) ŷ(n)

θ

ŷ(1) … ŷ(N)

x1
(1)
...

xQ
(1)

…

x1
(N)
...

xQ
(N)

y(1) … y(N)

Find the “right” parameters

θTx
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Cost function for regression (2/4)

■ How to choose the “right values” for parameters θ ?

❑ We select θ such that the model fθ is fitted to training data

20

Cost function
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Cost function for regression (3/4)

■ How to measure the fitting of fθ to the training data?

❑ for each example (x, y), the prediction fθ(x) must be close to y

❑ their distance is measured with the squared cost function

21
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Cost function for regression (4/4)

■ EXAMPLE. Linear regression with one feature (Q=1)

22
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What we have seen so far…

■ Key ingredients of linear regression

❑ Training data → Vector inputs — Continuous outputs

❑ Prediction → Linear model

❑ Learning → Squared error function

23



Logistic regression

Training data

Prediction model

Cost function

Decision boundary
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Binary classification (1/2)

■ Let’s focus on classification with two classes

❑ The response variable y is a binary value

■ Examples

❑ email → spam / not spam ?

❑ online transaction → fraudulent (yes / no) ? 

❑ tumor → malignant / benign ?

25

positive class

negative class
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Binary classification (2/2)

■ Our goal is to predict the class y from an observation x

❑ To do so, we use a parametric model fθ …

❑ … where θ = [θ0, θ1, …, θQ]T is a vector of parameters to be estimated.

26

Output “y”

Binary value

Input “x”

Vector of size Q

x1
...

xQ

x
fθ

y
0/1

Classifier

Function from ℝQ to {0,1}

θ
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Logistic model (1/3)

■ How to predict a binary response variable ?

❑ Actually, we don’t directly predict a binary outcome

❑ Instead, we predict the probability that y = 1 given x

❑ To do so, we use a bounded linear model

❑ where g is the logistic function

27
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Logistic model (2/3)

■ The logistic function maps a real value between 0 and 1
❑ Hence, it can be regarded as a probability.

28

Properties
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Logistic model (3/3)

■ Logistic model will be compactly written as

❑ NOTE 1: x and θ are column vectors of size Q+1 (with x0 = 1)

❑ NOTE 2: the linear combination of x and θ is a scalar product

29
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Training data

■ We are given a set of input-output examples

30

Binary classification (Q=1) Binary classification (Q=2)
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Learning (1/2)

■ Our goal is to learn P(y=1|x) from training data

❑ This amounts to finding the “right values” of θ in the logistic model 

31

Predicted 

outputs
Training 

examples

x(n)

θTx
ŷ(n)

θ

ŷ(1) … ŷ(N)

x1
(1)
...

xQ
(1)

…

x1
(N)
...

xQ
(N)

y(1) … y(N)

z(n) 1

1+e-z

Find the “right” parameters
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Learning (2/2)

■ How to choose the “right values” for parameters θ ?

❑ We select θ such that the model fθ is fitted to training data

32

Learning goal
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Cost function (1/2)

■ How to measure the fitting of fθ to the training data?

❑ for each example (x, y), the prediction fθ(x) must be close to y

❑ since 0 < fθ(x) < 1, the distance between fθ(x) and y can be measured as

33

distance to y = 1 distance to y = 0
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■ Data fitting is quantified by the logarithm cost function

■ which is exactly the anti-logarithm of Bernoulli distribution

❑ RECALL: fθ(x) is the probability that y = 1

Cost function (2/2)

34
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Example (1/2)

■ Suppose we wish to answer the following question

❑ A group of 20 students studied between 0 and 6 hours for an exam. 

❑ How does the number of hours spent studying affect the probability that 

the student will pass the exam?

35

Hours studying

P
a
s
s
in

g
 e

x
a
m

Training data

Prediction

Logistic model
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Example (2/2)

■ Learning yields the following parameters

❑ We will see later how to do this

36

Hours studying

P
ro

b
a
b

ili
ty

 o
f 
p

a
s
si

n
g
 e

x
a
m

Hours studying Prob. of passing exam

1 0.07

2 0.26

3 0.61

4 0.87

5 0.97

6 Compute it yourself !
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Decision boundary (1/2)

■ It is possible to show that

■ Hence, thresholding by 𝜸 = 0.5 is equivalent to 

37
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Decision boundary (2/2)

■ Logistic regression is a linear classifier

❑ The feature space is split in two regions by a line

38

Separating hyperplane

defined with 𝛄 = 0.5
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Summary

■ Key ingredients of logistic regression

❑ Training data → Vector inputs — Binary outputs

❑ Prediction → Logistic model

❑ Learning → Logarithmic cost function

39



Artificial neuron

40
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Artificial neuron (1/2)

■ The neuron is the building block of neural networks

❑ It is a single unit that inputs, processes and outputs information

❑ It is part of a network formed by many interconnected neurons

❑ The idea is loosely inspired from the nerve cells in the human brain

41
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Artificial neuron (2/2)

■ The neuron is a composition of two “simple” operations

❑ Scalar product➜ Parameterized by w (vector) and b (scalar)

❑ Activation ➜ Function (usually nonlinear) without parameters

42

(w, b)

wTx + b

x1
...

xQ

g(z)
zx

y

Input

Vector of size Q

Output

Scalar

Neuron

Function from ℝQ to ℝ

ActivationScalar product
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Linear models (1/4)

■ Linear models are neurons!

❑ Activation is adapted to the task (regression or classification)

❑ Training uses a “loss function” adapted to the task

43

θ = (w, b)

wTx + b

x1
...

xQ

g(z)

Training

(Loss function)

zx fθ(x)

Data
(x,y)

ŷ

Activation
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■ Linear regression

❑ Activation➜ None

❑ Training ➜ Square loss

Linear models (2/4)

44

Identity

θ = (w, b)

wTx + b

x1

...

xQ

Training

(Square loss)

zx fθ(x)

Data
(x,y)

ŷ
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■ Logistic regression

❑ Activation➜ Sigmoid function

❑ Training ➜ Logistic loss

Linear models (3/4)

45

Sigmoid

θ = (w, b)

wTx + b

x1

...

xQ

Training

(Logistic loss)

zx fθ(x)

Data
(x,y)

ŷ
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■ Support vector machine

❑ Activation➜ Step function

❑ Training ➜ Hinge loss

Linear models (4/4)

46

Step

θ = (w, b)

wTx + b

x1

...

xQ

Training

(Hinge loss)

zx fθ(x)

Data
(x,y)

ŷ
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Beyond linear models (1/3)

■ Linear models have low variance and high bias

❑ Good choice when Q >> N (more input features than examples)

❑ Prone to under-fitting when Q << N (large dataset) 

47

Regression Classification

(Here, the input space is 1-dimensional) (Here, the input space is 2-dimensional)
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Beyond linear models (2/3)

■ Idea ➜ Improve accuracy through ensemble learning

❑ Build a network composed of many neurons

❑ Reduce the bias by increasing the variance

48

Neuron 2

Neuron 4

Neuron 3 Neuron 6

Neuron 5

Neuron MNeuron 1Input
Output

(combined)
…

Neural network
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Beyond linear models (3/3)

■ Neural networks can outperform “traditional” techniques

❑ Requirement 1 ➜ A large amount of homogeneous non-tabular data

❑ Requirement 2 ➜ Time and resources for intensive computing

49

Deep learning
- Big neural nets
- GPUs

Medium neural nets
- Ensemble learning
- Convolutional nets

- Recurrent nets

Traditional methods
- Linear models
- SVM & kernels

- Random forests
- Small neural nets
- …

P
e
rf

o
rm

a
n
c
e

Amount of data

Small datasets Medium datasets Large datasets



Fully-connected layer
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■ A neuron takes in a vector and returns a scalar value

❑ How to output a vector ?

Scalar output

51

(w, b)

wTx + b

x1
...

xQ

g(z)
zx

y

Input

Vector of size Q

Output

Scalar

Neuron

Function from ℝQ to ℝ

ActivationScalar product
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Vector output

■ Fully-connected layer ➜ Stack of multiple neurons

❑ Input ➜ A vector supplied to all neurons

❑ Output➜ A vector holding the values produced by all neurons

52

x

w1
Tx + b1

w2
Tx + b2

wK
Tx + bK

...

z1

zK

z2 yg(z)z

y1

...

yK

x1

...

xQ

Input

Vector of size Q

Output

Vector of size K
Concatenation



Giovanni Chierchia ESIEE Paris

Matrix representation (1/2)

■ Mathematical formulation of a layer with K neurons

❑ Weights➜ Matrix that stacks the vectors w1, w2, …, wK

❑ Biases ➜ Vector that holds the scalars b1, b2, …, bK

❑ Activation➜ Vector function of vector variable (from ℝK to ℝK)

53

Weight matrix Bias vector Activation function
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Matrix representation (2/2)

■ Operations of a fully-connected layer

❑ Matrix product

❑ Bias addition

❑ Activation

54

g

W
x

b y
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Activation (1/4)

■ Two types of activation

❑ Non-separable➜ An operation applied to the vector as a whole

❑ Separable ➜ An operation applied separately to each element

■ Examples

❑ Sigmoid

❑ Logistic

❑ Softmax

❑ ReLU

❑ Leaky ReLU

❑ …

55
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Activation (2/4)

■ Rectified Linear Unit (ReLU)

❑ Negative values are set to zero

❑ Positive values are preserved

❑ It is a separable activation

56

zk

yk
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Activation (3/4)

■ Sigmoid

❑ Real values are mapped between zero and one

❑ S-shaped curve

❑ It is a separable activation

57

zk

yk
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Activation (4/4)

■ Softmax

❑ A vector is transformed to have positive elements that sum to one

❑ Generalization of the sigmoid to multiple dimensions

❑ Smooth approximation of the “argmax” operation

❑ It is a non-separable activation

58
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Quiz

■ Suppose you have a layer with Q inputs and K outputs. 

How many parameters (weights & biases) does it have?

1) Q

2) Q + K

3) Q K

4) Q K + K

59
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One-layer network (1/2)

■ One-layer network

❑ A single fully-connected layer with K ≥ 1 neurons

61

W x + b
yz

y1

...

yK

g(z)

x1

...

xQ

x

Linear model Activation

θ = (W, b)
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One-layer network (2/2)

■ This is a linear model with K outputs

❑ Regression ➜ Prediction of K values

❑ Classification ➜ Prediction of K classes

62
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Two-layer network (1/3)

■ Two-layer network

❑ Hidden layer➜ A fully-connected layer with M(1) neurons 

❑ Output layer ➜ A fully-connected layer with M(2) = K neurons

63

x1

...

xQ

W(1)x + b(1) g(1)(z)

Hidden layer

W(2)a + b(2)

y1

...

yK
Output layer

z a
g(2)(z)

yx

θ = ( W(1), b(1),                                                       W(2), b(2) )
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Two-layer network (2/3)

■ This is a nonlinear model with K outputs

❑ Regression ➜ Prediction of K values

❑ Classification ➜ Prediction of K classes

64
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Two-layer network (3/3)

■ The hidden layer must have a nonlinear activation

❑ Otherwise the network behaves like a linear model

65

x1

...

xQ

(1)
g(1)(z

)

g(1)
g(1)

Hidden layer

(2)

y1

...

yK

g(1)(z
)g(2)

Output layer

This is a linear model

This is a nonlinear model

x1

...

xQ

(1)
g(1)(z

)

g(1)
g(1)

Hidden layer

(2)

y1

...

yK

g(1)(z
)g(2)

Output layer
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Multilayer network

■ Multilayer network

❑ Feed-forward ➜ Multiple layers arranged in series (no loops)

66

x1

...

xQ

(1)
g(1)

Hidden layers

(L)

y1

...

yK

g(L)

Output layer

(L-1)
g(L-1)
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Why neural networks? (1/2)

■ Neural networks can learn a hierarchical representation

67

(1) (2) (3)

Visualization of 

hidden layers
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Why neural networks? (2/2)

■ Neural networks can learn a hierarchical representation

❑ First layer ➔ Localization of edges in the input images

❑ Second layer ➔ Grouping of edges into shapes (e.g., eyes, noses, …)

❑ Third layer ➔ Formation of full objects (e.g., faces)

❑ Fourth layer   ➔ Object classification (e.g., face detection)

68

W(1) W(2) W(3)

Visualization 

of hidden unis
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Quiz

■ Consider a network composed of a hidden layer with 3 

neurons and an output layer with 2 neurons (see below).

1) What is the size of the weight matrix W(1) and the bias vector b(1)?

2) What is the size of the weight matrix W(2) and the bias vector b(2)?

69

+

+

+

+

+

y1

y2

x1

x2

x3

x4

a1

a2

a3



Neural networks for

regression/classification
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What we have seen so far…

■ Neural network

❑ Hidden layers ➜ Activations must be nonlinear

❑ Output layer➜ How to set it up?

71

x1

...

xQ

(1)
g(1)

(L)

y1

...

yK

g(L)
(L-1)

g(L-1)
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■ Neural network

❑ Input size ➜ Equal to the “width” of neurons in the first layer

❑ Output size ➜ Equal to the number of neurons in the output layer

Input-Output of a neural network

72

Output

Vector of size K

Input

Vector of size Q

x1

...

xQ

fθ

Neural network

Function from ℝQ to ℝK

ŷ1

...

ŷK

θ = ( W(1), b(1),…, W(L), b(L) )
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Multiple regression (1/3)

■ Multiple regression

❑ Regression with K ≥ 1 target variables

❑ Example➜ Image restoration

73

OutputInput

fθ

Regressor

Function from ℝQ to ℝK

θ
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Multiple regression (2/3)

74

■ Output layer

❑ Number of neurons ➜ Equal to the number of target variables

❑ Activation ➜ Identity

x1

...

xQ

(1)
g(1)

Hidden layers

(L)

ŷ1

...

ŷK
Output layer - Regression

(L-1)
g(L-1) g(L)
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Multiple regression (3/3)

■ Training data ➜ Vector input – Vector output

■ Loss function ➜ Euclidean distance

75
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Multiclass classification (1/4)

■ Multiclass classification

❑ Classification with K ≥ 2 classes

❑ Example➜ Image classification

76

OutputInput

fθ

Neural network

Function from ℝQ to ℝK

0/1

0/1

0/1

0/1

Car

Moto

Truck

Pedestrian

θ
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Multiclass classification (2/4)

77

■ Output layer

❑ Number of neurons ➜ Equal to the number of classes

❑ Activation ➜ Softmax

x1

...

xQ

(1)
g(1)

Hidden layers

(L)

ŷ1

...

ŷK
Output layer - Classification

(L-1)
g(L-1) g(L)
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Multiclass classification (3/4)

■ Training data ➜ Vector input — Binary vector output

❑ Output vectors must be one-hot encoded

78
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Multiclass classification (4/4)

79

One-hot encodingOnly one is selected

■ Loss function ➜ Cross entropy



Code examples

80
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Live coding

■ Neural network playground ➜ http://playground.tensorflow.org

❑ Tinker with a neural network in your browser

❑ Useful to grasp the concepts introduced in this lecture

81

http://playground.tensorflow.org/
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Keras (1/5)

82

■ Keras is a Python library for deep learning

❑ Step 0 ➜ Import the library

❑ Step 1 ➜ Load the dataset
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Keras (2/5)

■ MNIST dataset requires a classifier with 10 classes

❑ Step 2 ➜ Define a two-layer network

❑ Step 3 ➜ Set the loss function and the optimizer

83
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Keras (3/5)

■ Data must be preprocessed before learning

❑ Step 4 ➜ Normalization of inputs

❑ Step 5 ➜ One-hot encoding of outputs

84
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Keras (4/5)

■ Now, all is ready for training the network

❑ Step 6 ➜ Learning on the training set

85
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Keras (5/5)

■ Finally, the network can be used to classify new data

❑ Step 7 ➜ Evaluate the performance on the test set

86



Conclusion
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Quest for nonlinear models

■ How to get better performance out of machine learning?

❑ Use “more complex” nonlinear models

❑ Use more data for training
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Multilayer networks (1/3)

■ Neural networks consist of neurons organized in layers
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Multilayer networks (2/3)

■ Adding more layers increases the learning capabilities
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Multilayer networks (3/3)
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x1
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xQ

(1)
g(1)

Hidden layers

(L)

y1
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yK
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■ Architecture of neural networks

❑ Hidden layers must have a nonlinear activation (e.g., ReLU)

❑ The output layer must be adapted to the task

■ Regression No activation

■ Classification Softmax
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Hierarchical representation

■ Multilayer networks can learn a hierarchical representation
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W(1) W(2) W(3)
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Why are neural networks successful?

93

High capacity models

Computing power Lots of training data
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