Deep Learning

Lecture 1 Neural networks

Giovanni Chierchia

Lecture 1 – Table of content

Introduction

Review

- Supervised learning
- Linear regression
- Logistic regression

Neural networks

- Fully-connected layers
- Loss function
- Code Example

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Introduction

Syllabus Organization

What you should already know

Calculus & linear algebra

Functions, gradients, matrices, vectors, ...

Programming

Python & NumPy library (or MATLAB)

Basics of machine learning

Linear regression, logistic regression, overfitting

Syllabus

- Lectures (8h)
 - (2h) Neural networks
 - (2h) Training + Best practices
 - (2h) Convolutional networks
 - (2h) Representation learning
- Labs (≥ 16h)
 - Deep learning project
 - Groups of 2-3 students

- Evaluation
 - (1h) MCQ
 - (3h) Oral presentation

Logistics

Course material

https://esiee.blackboard.com

Grading

- □ Project → 50% of final mark

Textbooks

- G. James, Witten, Hastie, Tibshirani. An Introduction to Statistical Learning. Springer, 2017.
- J. Watt, R. Borhani, A. Katsaggelos. *Machine Learning Refined*. Cambridge Univ. Press, 2016.
- F. Chollet. Deep Learning with Python. Manning, 2017.

About the project

Step 1 → Group Creation

- Form a team of 3 students (+/-1 admitted if well justified)
- Let us know the team members by the end of the <u>first lab</u>

Step 2 → Project Selection

- Define the goal of your project
 - Option 1 → Build a neural network from scratch (Available Online)
 - Option 2 → Choose your own subject (classification of real images, object detection, motion tracking, visual odometry, 3D reconstruction, ...)
- Let us know your choice by the end of the <u>second lab</u>

Step 3 → Oral Presentation

Prepare and give a presentation on the <u>last day of class</u>

Supervised learning

Fundamental hypothesis Inductive bias Learning

Context

- What is machine learning?
 - The ability of computers to learn without being explicitly programmed
- There are several types of learning
 - Supervised → Teach the computer how to do something
 - □ Unsupervised → Let the computer learn how to do something
 - □ Reinforcement → Allow the computer automate decision-making
- Course objectives
 - Study of neural networks for supervised learning
 - Special emphasis on computer vision

Training data

Fundamental hypothesis

- Our goal is to predict an output from an input
- We are given a dataset of input-output examples
- □ We know there is a relationship between the input and the output

	Input feature 1	Input feature 2	Input feature 3	Input feature 4	Output
	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
$(x^{(1)}, y^{(1)}) = example 1$	$\mathbf{x}_1^{(1)} = 2104$	$\mathbf{x}_{2}^{(1)} = 5$	$x_3^{(1)} = 1$	$x_4^{(1)} = 45$	$y^{(1)} = 460$
$(x^{(2)}, y^{(2)}) = example 2$	$\mathbf{x}_1^{(2)} = 1416$	$\mathbf{x}_{2}^{(2)} = 3$	$x_3^{(2)} = 2$	$x_4^{(2)} = 40$	$y^{(2)} = 232$
$(x^{(3)}, y^{(3)}) = example 3$	$\mathbf{x}_1^{(3)} = 1534$	$\mathbf{x}_{2}^{(3)} = 3$	$x_3^{(3)} = 2$	$x_4^{(3)} = 30$	$y^{(3)} = 315$
$(x^{(4)}, y^{(4)}) = example 4$	$X_1^{(4)} = 852$	$x_2^{(4)} = 2$	$x_3^{(4)} = 1$	$x_4^{(4)} = 36$	$y^{(4)} = 178$
	•••	•••			

Prediction model

Generalization by inductive bias

- We are interested in predicting the output for new unseen inputs
- □ To do so, we use a parametric model **f**₀ (where **0** is a vector of parameters)

Training process

Learning

- □ Our goal is to learn the prediction model **f**₀ from training data
- This amounts to finding the "right values" for parameters \(\mathbf{\theta}\)

Supervised learning

- Two types of problems
 - □ Regression → Learning how to predict a continuous output
 - □ Classification → Learning how to predict a discrete output

Classification

Here, the line classifies the observations into X's and O's

Regression

Here, the fitted line provides a predicted output, if we give it an input

The big picture

Machine learning pipeline

Linear regression

Training data
Prediction model
Cost function

Problem definition

We are interested in understanding the relationship f
between an input vector and a continuous output

Training data

We are given a set of input-output examples

$$(\mathbf{x}^{(n)},y^{(n)}) \in \mathbb{R}^Q \times \mathbb{R}$$

$$y^{(n)} = f(\mathbf{x}^{(n)}) + \varepsilon^{(n)}$$

$$y^{(n)} = f(\mathbf{x}^{(n)}) +$$

Prediction model

We represent f with a parametric model

$$f(\mathbf{x}) \approx f_{\theta}(\mathbf{x})$$

where **\theta** denotes a vector of parameters.

In particular, the model is linear

$$f_{\theta}(\mathbf{x}) = \theta^{\top} \mathbf{x}$$

= $\theta_0 + \theta_1 x_1 + \dots + \theta_Q x_Q$

with $\theta = [\theta_0, \theta_1, ..., \theta_Q]^T$ and $\mathbf{x} = [1, \mathbf{x}_1, ..., \mathbf{x}_Q]^T$.

Cost function for regression (1/4)

- Our goal is to learn the prediction f_θ from training data
 - $_{ extstyle }$ This amounts to finding the "right values" for parameters $oldsymbol{ heta}$

Cost function for regression (2/4)

- How to choose the "right values" for parameters θ?
 - We select **0** such that the model for is fitted to training data

$$\widehat{ heta} = rg \min_{ heta} \sum_{n=1}^{N} C\Big(f_{ heta}(\mathbf{x}^{(n)}), y^{(n)}\Big)$$

Cost function for regression (3/4)

- How to measure the fitting of fe to the training data?
 - \Box for each example (x, y), the prediction $f_{\theta}(x)$ must be close to y
 - their distance is measured with the squared cost function

$$C(f_{\theta}(\mathbf{x}), y) = (f_{\theta}(\mathbf{x}) - y)^{2}$$

Cost function for regression (4/4)

EXAMPLE. Linear regression with one feature (Q=1)

Giovanni Chierchia ESIEE Paris 22

What we have seen so far...

- Key ingredients of linear regression
 - □ Training data → Vector inputs Continuous outputs

$$(\mathbf{x}^{(n)}, y^{(n)}) \in \mathbb{R}^Q \times \mathbb{R} \qquad n = 1, \dots, N$$

□ Prediction → Linear model

$$f_{\theta}(\mathbf{x}) = \theta^{\top} \mathbf{x}$$

□ Learning → Squared error function

$$J(\theta) = \sum_{n=1}^{N} \left(f_{\theta}(\mathbf{x}^{(n)}) - y^{(n)} \right)^{2}$$

Logistic regression

Training data

Prediction model

Cost function

Decision boundary

Binary classification (1/2)

- Let's focus on classification with two classes
 - □ The response variable **y** is a binary value

- Examples
 - □ email → spam / not spam ?
 - □ online transaction → fraudulent (yes / no) ?
 - □ tumor → malignant / benign ?

Binary classification (2/2)

- Our goal is to predict the class y from an observation x
 - □ To do so, we use a parametric model **f**e ...
 - \square ... where $\theta = [\theta_0, \theta_1, ..., \theta_Q]^T$ is a vector of parameters to be estimated.

Logistic model (1/3)

- How to predict a binary response variable ?
 - Actually, we don't directly predict a binary outcome
 - \Box Instead, we predict the **probability** that y = 1 given x

$$f_{\theta}(\mathbf{x}) \approx \mathsf{P}(y = 1 \,|\, \mathbf{x})$$

To do so, we use a bounded linear model

$$f_{\theta}(\mathbf{x}) = g(\theta_0 + \theta_1 x_1 + \dots + \theta_Q x_Q)$$

where g is the logistic function

$$g(z) = \frac{1}{1 + e^{-z}}$$

Logistic model (2/3)

- The logistic function maps a real value between 0 and 1
 - Hence, it can be regarded as a probability.

$$g(z) = \frac{1}{1 + e^{-z}}$$

Properties

$$g(z) = \frac{e^z}{1 + e^z}$$
$$g(-z) = 1 - g(z)$$
$$g'(z) = g(z)(1 - g(z))$$
$$g^{-1}(t) = \log\left(\frac{t}{1 - t}\right)$$

Logistic model (3/3)

Logistic model will be compactly written as

$$f_{\theta}(\mathbf{x}) = \frac{1}{1 + \exp(-\theta^{\top} \mathbf{x})}$$

 \square NOTE 1: **x** and **0** are column vectors of size Q+1 (with **x**₀ = **1**)

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_Q \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_Q \end{bmatrix}$$

□ NOTE 2: the linear combination of **x** and **θ** is a scalar product

$$\theta^{\top} \mathbf{x} = [\theta_0 \ \theta_1 \ \dots \ \theta_Q] \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_Q \end{bmatrix} = \theta_0 + \theta_1 x_1 + \dots + \theta_Q x_Q$$

Training data

We are given a set of input-output examples

$$(\mathbf{x}^{(n)}, y^{(n)}) \in \mathbb{R}^Q \times \{0, 1\}$$
 $n = 1, \dots, N$

Binary classification (Q=1)

Binary classification (Q=2)

Learning (1/2)

- Our goal is to learn P(y=1|x) from training data
 - □ This amounts to finding the "right values" of **θ** in the logistic model

Learning (2/2)

- How to choose the "right values" for parameters θ ?
 - We select **0** such that the model for is fitted to training data

$$\widehat{\theta} = \operatorname*{arg\,min}_{\theta} \sum_{n=1}^{N} C\Big(f_{\theta}(\mathbf{x}^{(n)}), y^{(n)}\Big)$$

Cost function (1/2)

- How to measure the fitting of fe to the training data?
 - \Box for each example (x, y), the prediction $f_{\theta}(x)$ must be close to y
 - since $0 < f_{\theta}(x) < 1$, the distance between $f_{\theta}(x)$ and y can be measured as

Cost function (2/2)

Data fitting is quantified by the logarithm cost function

$$C(f_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(f_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - f_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

- which is exactly the anti-logarithm of Bernoulli distribution
 - \square RECALL: $f_{\theta}(x)$ is the probability that y = 1

$$\ell(y; \theta, \mathbf{x}) = \left(f_{\theta}(\mathbf{x})\right)^{y} \left(1 - f_{\theta}(\mathbf{x})\right)^{1-y}$$

Example (1/2)

- Suppose we wish to answer the following question
 - A group of 20 students studied between 0 and 6 hours for an exam.
 - How does the number of hours spent studying affect the probability that the student will pass the exam?

Prediction

Logistic model

$$f_{\theta}(x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x)}}$$

Example (2/2)

- Learning yields the following parameters
 - We will see later how to do this

Decision boundary (1/2)

It is possible to show that

$$f_{\theta}(\mathbf{x}) = g(\theta^{\top}\mathbf{x}) \ge 0.5$$
 \Leftrightarrow $\theta^{\top}\mathbf{x} \ge 0$
 $f_{\theta}(\mathbf{x}) = g(\theta^{\top}\mathbf{x}) < 0.5$ \Leftrightarrow $\theta^{\top}\mathbf{x} < 0$

• Hence, thresholding by $\gamma = 0.5$ is equivalent to

$$y_{\mathsf{pred}} = egin{cases} 1 & & ext{if} \ \ heta^{ op} \mathbf{x} \geq 0 \ \ 0 & & ext{if} \ \ heta^{ op} \mathbf{x} < 0 \end{cases}$$

Decision boundary (2/2)

- Logistic regression is a linear classifier
 - The feature space is split in two regions by a line

Summary

- Key ingredients of logistic regression
 - □ Training data → Vector inputs Binary outputs

$$(\mathbf{x}^{(n)}, y^{(n)}) \in \mathbb{R}^Q \times \{0, 1\}$$
 $n = 1, \dots, N$

□ Prediction → Logistic model

$$f_{\theta}(\mathbf{x}) = \frac{1}{1 + e^{-\theta^{\top} \mathbf{x}}}$$

□ Learning → Logarithmic cost function

$$J(\theta) = \sum_{n=1}^{N} -y^{(n)} \log (f_{\theta}(\mathbf{x}^{(n)})) - (1 - y^{(n)}) \log (1 - f_{\theta}(\mathbf{x}^{(n)}))$$

Artificial neuron

Artificial neuron (1/2)

- The neuron is the building block of neural networks
 - It is a single unit that inputs, processes and outputs information
 - It is part of a network formed by many interconnected neurons
 - The idea is loosely inspired from the nerve cells in the human brain

Artificial neuron (2/2)

- The neuron is a composition of two "simple" operations
 - Scalar product → Parameterized by w (vector) and b (scalar)
 - Activation → Function (usually nonlinear) without parameters

Linear models (1/4)

Linear models are neurons!

- Activation is adapted to the task (regression or classification)
- Training uses a "loss function" adapted to the task

Linear models (2/4)

Linear regression

- Activation → None
- □ Training → Square loss

Linear models (3/4)

Logistic regression

- Activation → Sigmoid function
- □ Training → Logistic loss

Linear models (4/4)

Support vector machine

- Activation → Step function
- Training → Hinge loss

Beyond linear models (1/3)

- Linear models have low variance and high bias
 - Good choice when Q >> N (more input features than examples)
 - □ Prone to under-fitting when **Q** << **N** (large dataset)

(Here, the input space is 2-dimensional)

Beyond linear models (2/3)

- Idea → Improve accuracy through ensemble learning
 - Build a network composed of many neurons
 - Reduce the bias by increasing the variance

Beyond linear models (3/3)

- Neural networks can outperform "traditional" techniques
 - □ Requirement 1 → A large amount of homogeneous non-tabular data
 - □ Requirement 2 → Time and resources for intensive computing

Fully-connected layer

Scalar output

- A neuron takes in a vector and returns a scalar value
 - How to output a vector?

Vector output

- Fully-connected layer → Stack of multiple neurons
 - Input → A vector supplied to all neurons
 - Output → A vector holding the values produced by all neurons

Matrix representation (1/2)

- Mathematical formulation of a layer with K neurons
 - Weights → Matrix that stacks the vectors w₁, w₂, ..., w_K
 - □ Biases → Vector that holds the scalars $b_1, b_2, ..., b_K$
 - **Activation** \rightarrow Vector function of vector variable (from \mathbb{R}^K to \mathbb{R}^K)

$$W = \begin{bmatrix} -\mathbf{w}_1^\top - \\ \vdots \\ -\mathbf{w}_K^\top - \end{bmatrix} \in \mathbb{R}^{K \times Q} \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_K \end{bmatrix} \in \mathbb{R}^K \qquad \mathbf{g} \colon \mathbb{R}^K \to \mathbb{R}^K$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Weight matrix Bias vector Activation function

Matrix representation (2/2)

- Operations of a fully-connected layer
 - Matrix product
 - Bias addition
 - Activation

$$y = g(Wx + b)$$

$$\Rightarrow g = \begin{bmatrix}
0.2 & -0.5 & 0.1 & 2.0 \\
1.5 & 1.3 & 2.1 & 0.0 \\
0 & 0.25 & 0.2 & -0.3
\end{bmatrix} + \begin{bmatrix}
56 \\
231 \\
24 \\
2
\end{bmatrix} + \begin{bmatrix}
3.2 \\
-1.2 \\
56
\end{bmatrix} = \begin{bmatrix}
-96.8 \\
437.9 \\
61.95
\end{bmatrix}$$

Activation (1/4)

- Two types of activation
 - Non-separable → An operation applied to the vector as a whole
 - Separable → An operation applied separately to each element

Examples

- Sigmoid
- Logistic
- Softmax
- ReLU
- Leaky ReLU

Activation (2/4)

Rectified Linear Unit (ReLU)

- Negative values are set to zero
- Positive values are preserved
- It is a separable activation

$$\mathbf{g}_{\mathrm{relu}}(\mathbf{z}) = egin{bmatrix} \max\{0, z_1\} \\ \max\{0, z_2\} \\ \vdots \\ \max\{0, z_K\} \end{bmatrix}$$

Activation (3/4)

Sigmoid

- Real values are mapped between zero and one
- S-shaped curve
- It is a separable activation

Activation (4/4)

Softmax

- A vector is transformed to have positive elements that sum to one
- Generalization of the sigmoid to multiple dimensions
- Smooth approximation of the "argmax" operation
- It is a non-separable activation

Quiz

- Suppose you have a layer with Q inputs and K outputs. How many parameters (weights & biases) does it have?
 - 1) Q
 - 2) Q + K
 - 3) QK
 - 4) QK+K

59

Neural networks

One-layer network (1/2)

One-layer network

A single fully-connected layer with K ≥ 1 neurons

$$f_{\theta}(\mathbf{x}) = \mathbf{g}(W\mathbf{x} + \mathbf{b})$$

One-layer network (2/2)

- This is a linear model with K outputs
 - Regression → Prediction of K values
 - □ Classification → Prediction of K classes

Two-layer network (1/3)

Two-layer network

- □ Hidden layer → A fully-connected layer with M⁽¹⁾ neurons
- □ Output layer \rightarrow A fully-connected layer with $M^{(2)} = K$ neurons

$$\mathbf{a} = \mathbf{g}^{(1)}(W^{(1)}\mathbf{x} + \mathbf{b}^{(1)})$$
 $f_{\theta}(\mathbf{x}) = \mathbf{g}^{(2)}(W^{(2)}\mathbf{a} + \mathbf{b}^{(2)})$

Two-layer network (2/3)

- This is a nonlinear model with K outputs
 - Regression → Prediction of K values
 - □ Classification → Prediction of K classes

Two-layer network (3/3)

- The hidden layer must have a nonlinear activation
 - Otherwise the network behaves like a linear model

Multilayer network

Multilayer network

□ Feed-forward → Multiple layers arranged in series (no loops)

$$\mathbf{a}^{(1)} = \mathbf{g}^{(1)} (W^{(1)} \mathbf{x} + \mathbf{b}^{(1)})$$

$$\mathbf{a}^{(2)} = \mathbf{g}^{(2)} (W^{(2)} \mathbf{a}^{(1)} + \mathbf{b}^{(2)})$$

$$\vdots$$

$$f_{\theta}(\mathbf{x}) = \mathbf{g}^{(L)} (W^{(L)} \mathbf{a}^{(L-1)} + \mathbf{b}^{(L)})$$

Why neural networks? (1/2)

Neural networks can learn a hierarchical representation

Why neural networks? (2/2)

- Neural networks can learn a hierarchical representation
 - □ First layer → Localization of edges in the input images
 - □ Second layer → Grouping of edges into shapes (e.g., eyes, noses, ...)
 - □ **Third layer** → Formation of full objects (e.g., faces)
 - □ Fourth layer → Object classification (e.g., face detection)

Quiz

- Consider a network composed of a hidden layer with 3 neurons and an output layer with 2 neurons (see below).
 - 1) What is the size of the weight matrix $W^{(1)}$ and the bias vector $b^{(1)}$?
 - 2) What is the size of the weight matrix $W^{(2)}$ and the bias vector $b^{(2)}$?

Neural networks for regression/classification

What we have seen so far...

- Neural network
 - □ Hidden layers → Activations must be nonlinear
 - Output layer → How to set it up?

Input-Output of a neural network

- Neural network
 - □ Input size → Equal to the "width" of neurons in the first layer
 - Output size → Equal to the number of neurons in the output layer

Multiple regression (1/3)

Multiple regression

- Regression with K≥ 1 target variables
- Example → Image restoration

Multiple regression (2/3)

Output layer

- Number of neurons → Equal to the number of target variables
- Activation → Identity

Multiple regression (3/3)

■ Training data → Vector input – Vector output

$$\mathcal{S}_{ ext{train}} = \left\{ (\mathbf{x}^{(n)}, \mathbf{y}^{(n)}) \in \mathbb{R}^Q \times \mathbb{R}^K \mid n = 1, \dots, N \right\}$$

■ Loss function → Euclidean distance

$$\mathcal{E}(\hat{\mathbf{y}},\mathbf{y}) = \|\hat{\mathbf{y}} - \mathbf{y}\|^2$$

Multiclass classification (1/4)

Multiclass classification

- □ Classification with K ≥ 2 classes
- Example → Image classification

Multiclass classification (2/4)

Output layer

- Number of neurons → Equal to the number of classes
- Activation → Softmax

Multiclass classification (3/4)

■ Training data → Vector input — Binary vector output

$$\mathcal{S}_{\text{train}} = \left\{ (\mathbf{x}^{(n)}, \mathbf{y}^{(n)}) \in \mathbb{R}^Q \times \{0, 1\}^K \mid n = 1, \dots, N \right\}$$

Output vectors must be one-hot encoded

$$\mathbf{y}_{\mathsf{class}\;1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad \mathbf{y}_{\mathsf{class}\;2} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \qquad \cdots \qquad \mathbf{y}_{\mathsf{class}\;\mathsf{K}} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Multiclass classification (4/4)

■ Loss function → Cross entropy

$$\mathcal{E}(\hat{\mathbf{y}}, \mathbf{y}) = \begin{cases} -\log(\hat{y}_1) & \text{if } y_1 = 1\\ -\log(\hat{y}_2) & \text{if } y_2 = 1\\ \vdots & & \\ -\log(\hat{y}_K) & \text{if } y_K = 1 \end{cases}$$

Code examples

Live coding

- Neural network playground → http://playground.tensorflow.org
 - Tinker with a neural network in your browser
 - Useful to grasp the concepts introduced in this lecture

Keras (1/5)

- Keras is a Python library for deep learning
 - Step 0 → Import the library

import keras

Step 1 → Load the dataset

```
from keras.datasets import mnist
(images, labels), (test_images, test_labels) = mnist.load_data()
```


Keras (2/5)

- MNIST dataset requires a classifier with 10 classes
 - Step 2 → Define a two-layer network

Keras (3/5)

- Data must be preprocessed before learning
 - Step 4 → Normalization of inputs

Step 5 → One-hot encoding of outputs

```
train_targets = np.eye(10)[labels]
test_targets = np.eye(10)[test_labels]
```

Keras (4/5)

- Now, all is ready for training the network
 - Step 6 → Learning on the training set

```
history = network.fit(train_inputs, train_targets, epochs=10, batch_size=1000)
```

```
Epoch 1/10
60/60 [=============== ] - 1s 10ms/step - loss: 0.0453 - accuracy: 0.9884
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
```

|Keras (5/5)

- Finally, the network can be used to classify new data
 - Step 7 → Evaluate the performance on the test set

```
_, accuracy = network.evaluate(test_inputs, test_targets)
accuracy: 0.9804
```


Conclusion

Quest for nonlinear models

- How to get better performance out of machine learning?
 - Use "more complex" nonlinear models
 - Use more data for training

Multilayer networks (1/3)

Neural networks consist of neurons organized in layers

Two-layer network

Multilayer networks (2/3)

Adding more layers increases the learning capabilities

Multilayer networks (3/3)

Architecture of neural networks

- Hidden layers must have a nonlinear activation (e.g., ReLU)
- The output layer must be adapted to the task
 - Regression No activation
 - Classification Softmax

Hierarchical representation

Multilayer networks can learn a hierarchical representation

Why are neural networks successful?

High capacity models

Computing power

Lots of training data