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■ Neural networks can be used for many things… 

Image-related tasks
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■ Standard networks are made of fully-connected layers

■ Each layer is a matrix multiplication

■ Each layer contains “(input dim. + 1) x hidden dim.” parameters 

Fully-connected layer
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Bottleneck of standard networks

■ Fully-connected layers are unsuitable for images

■ Too many parameters to train

■ Difficult to prevent overfitting
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Coming up…

■ Standard networks are limited to low-dimensional data

❑ Too many parameters when the input is high-dimensional

❑ How to deal with high-resolution images? 

■ Solution for image inputs ➜ Convolutional networks
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Convolution

Convolution in 1D/2D/3D

Edge detection
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Convolution 1D (1/2)

■ Convolution with vectors

7

Input

(vector of size N)

Kernel

(vector of size K<N)

Output

(vector of size N-K+1)

N=10

K=4

M=7



Giovanni Chierchia ESIEE Paris

Convolution 1D (2/2)

■ Visual explanation of convolution in 1D

❑ At each step, the kernel is multiplied to a chunk of the input…

❑ … and the resulting coefficients are summed
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Convolution 2D (1/2)

■ Convolution with single-channel images
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Convolution 2D (2/2)

■ Visual explanation of convolution in 2D
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Convolution 3D (1/2)

■ Convolution with multi-channel images
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Convolution 3D (2/2)

■ Visual explanation of convolution in 3D
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Edge detection (1/3)

■ Vertical edge detection
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Edge detection (2/3)

■ Horizontal edge detection
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Edge detection (3/3)

■ Putting all together

❑ A different kernel for each orientation and scale
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Quiz

1) What is the output size of the following convolutions?

❑ 10x12 matrix convolved by 5x5 kernel

❑ 15x15x10 volume convolved by 3x3x3 kernel

2) Compute the following convolution.
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Summary so far…

■ Convolution ➜ Spatially-invariant operation

❑ The same weights are used for computing the output coefficients

■ Matrix multiplication ➜ General operation

❑ Different weights are used for computing the output coefficients
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Hyper-parameters
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Multiple kernels (1/2)

■ The input is convolved with multiple kernels
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Multiple kernels (2/2)

■ Each convolution produces a channel for the output

❑ The kernel depth must be equal to the number of input channels
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Hyper-parameters

■ Main hyper-parameters

❑ F ➜ Spatial size of kernels

❑ K ➜ Number of kernels

■ Other hyper-parameters

❑ P ➜ Padding

❑ S ➜ Stride

■ Fixed value

❑ C ➜ Kernel depth (equal to the number of input channels)
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Padding & stride (1/3)

■ The input can be padded with zero rows/columns

❑ The output size is extended by P > 0

22

Input

Output

Example with P=1



Giovanni Chierchia ESIEE Paris

Padding & stride (2/3)

■ The output can be downsampled along the rows/columns

❑ The output size is reduced by a factor S > 1
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Padding & stride (3/3)

■ Example with padding (P=1) and stride (S=2)
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Neural interpretation

■ A convolution is a neuron with limited reception field

❑ The field limit is defined by the kernel size

❑ The same neuron is "fired" over multiple areas from the input.
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Quiz

■ Compute the output shape of a convolutional layer with

❑ Input ➜ 3 x 5 x C

❑ Kernel ➜ 3 x 3 x C x 2

❑ Padding ➜ 2 x 1

❑ Stride ➜ 2 x 2
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Summary so far…

■ Convolutional layer

❑ The input is a volume of size Wi x Hi x Ci

❑ Four hyper-parameters are required

★ K ➜ Number of kernels

★ F ➜ Spatial size

★ S ➜ Stride

★ P ➜ Padding

❑ The output is a volume of size Wo x Ho x Co

★ Wo = (Wi - F + 2P) / S + 1

★ Ho = (Hi - F + 2P) / S + 1

★ Co = K

❑ The number of parameters to be learned is (F x F x Ci + 1) x K
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Downsampling

■ The pooling layer reduces the spatial size of the input

❑ It operates over each channel map independently

❑ It has no parameter to be learned
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Max-pooling

■ The most-common variant is max-pooling

❑ It computes the max over a sliding window

❑ Hyper-parameters ➜ window size (F) & stride (S)
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• F = 2 ➜ window size

• S = 2 ➜ stride 
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Translation invariance

■ Pooling and convolution are translation invariant

❑ A spatial shift in the input doesn’t change the output

31

Max-pooling

Input 1

Input 2

Input 3



Giovanni Chierchia ESIEE Paris

Quiz

1) Because pooling layers do not have parameters, they 

do not affect the gradient calculation.

A. True

B. False

2) You have an input volume that is 32x32x16, and apply 

max-pooling with a stride of 2 and a window size of 2. 

What is the output volume?

A. 16x16x8

B. 32x32x8

C. 16x16x16

D. 15x15x16
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Summary so far…

■ Pooling layer

❑ The input is a volume of size Wi x Hi x Ci

❑ Two hyper-parameters are required

★ F ➜ Window size

★ S ➜ Stride

❑ The output is a volume of size Wo x Ho x Co

★ Wo = (Wi - F) / S + 1

★ Ho = (Hi - F) / S + 1

★ Co = Ci

❑ No parameters to be learned

■ Note ➜ Pooling can be replaced with a stride in convolutional layers!
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Building blocks (1/2)

■ Architecture of a convolutional neural network

❑ Base ➜ Convolution + pooling

❑ Head➜ Fully-connected + output layer
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Building blocks (2/2)

■ ConvNets learn spatial hierarchies of patterns
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■ LeNet-5 (1998) ➜ 0.05 millions of parameters

Classic architectures (1/3)
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Classic architectures (2/3)

■ AlexNet (2012)
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■ VGG-16 (2015)

Classic architectures (3/3)
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Modern architectures (1/2)

■ Residual network (2016)
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Modern architectures (2/2)

■ Dense network (2017)
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Quiz

1) Which of the following do you typically see as you move to 
deeper layers in a ConvNet? (WxHxC is the layers’ output size)

A. W and H decreases, while C also decreases

B. W and H increases, while C decreases

C. W and H decreases, while C increases

D. W and H increases, while C also increases

2) Which of the following do you typically see in a ConvNet?

A. Multiple CONV layers follows by a POOL layer

B. Multiple POOL layers follows by a CONV layer

C. FC layers in the last few layers

D. FC layers in the first few layers
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Summary so far…

■ ConvNets make the assumption that the inputs are images

❑ New layers ➜ Convolution & Pooling

❑ Architecture ➜ Feature extractor + Classifier
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Practical advice

■ Use whatever works best on ImageNet

❑ If you’re feeling a bit of a fatigue in thinking about the architectural decisions, you’ll be
pleased to know that in 90% or more of applications you should not have to worry about
these. Instead of rolling your own architecture for a problem, you should look at whatever
architecture currently works best on ImageNet, download a pretrained model and fine-
tune it on your data. You should rarely ever have to train a CNN from scratch or design
one from scratch.

■ Prefer a stack of small CONV layers to one large CONV layer

❑ Suppose that you stack three 3x3 CONV layers on top of each other (with non-linearities
in between, of course). In this arrangement, each neuron on the first CONV layer has a
3x3 view of the input volume. A neuron on the second CONV layer has a 3x3 view of the
first CONV layer, and hence by extension a 5x5 view of the input volume. Similarly, a
neuron on the third CONV layer has a 3x3 view of the 2nd CONV layer, and hence a 7x7
view of the input volume. Suppose that instead of these three layers of 3x3 CONV, we
only wanted to use a single CONV layer with 7x7 receptive fields. These neurons would
have a receptive field size of the input volume that is identical in spatial extent (7x7).
However, the neurons would be computing a linear function over the input, while the three
stacks of CONV layers contain non-linearities that make their features more expressive.
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Introduction (1/2)

■ Data augmentation

❑ Technique to increase the amount of data during training

❑ Add slightly modified copies of already existing data

❑ It is a form of regularization that helps reducing overfitting
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Introduction (2/2)

■ Where does data augmentation occur in the ML pipeline?

❑ Before a mini-batch of data is input to the neural network

❑ The transformation is performed on the fly (nothing is stored)
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Transformations (1/)

■ Horizontal or vertical flip
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Transformations (2/)

■ Rotation
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Transformations (3/)

■ Crop and scale
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Transformations (4/)

■ Color jitter
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Discussion

■ There are many types of augmentation… but be careful

❑ Always preserve the image size

❑ Do not “zero pad” the space beyond the image boundary

Wrong Correct
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Introduction (1/2)

■ Transfer learning

❑ Reusing knowledge from previously learned tasks

❑ Help in learning new tasks on small datasets
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Introduction (2/2)

■ A convolutional networks learns to extract features

❑ If the training dataset is sufficiently varied, the learned features 

are generic enough to be useful with similar images

Test images

Images with similar 

features from a CNN 
trained on “ImageNet”
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Feature extraction (1/3)

■ Step 1 → Take a pre-trained CNN

❑ Any network trained on “ImageNet” dataset will do



Giovanni Chierchia ESIEE Paris

Feature extraction (2/3)

■ Step 2 → Remove the last few layers

❑ Always remove the output layer, as it’s too specific for the old task

❑ Remove more layers based on the new task (more on this later)
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Feature extraction (3/3)

■ Step 3 → Train a new classifier

❑ Run the new dataset through the pretrained CNN

❑ Use the extracted features to train the classifier for the new task

Frozen layers Train from scratch
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Fine tuning

■ Step 3 (bis) → Allow the last few layers to be trained

❑ Let the weights of these layers change during training

❑ Use a small learning rate to avoid catastrophic cancellation

Train from scratchFrozen layers Continue training
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Discussion

■ How to decide which layers to freeze?
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Summary so far…

■ Takeaway for your projects and beyond

❑ Find a very large dataset that is similar to your problem

❑ Train a big CNN there (or find a pretrained CNN online)

❑ Transfer learn to your dataset

■ Deep learning frameworks provide 

a zoo of pretrained models !!!
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Introduction

■ Create a deep learning framework from scratch

❑ Implement the building blocks of multilayer neural networks 

❑ Train a neural network on classification tasks

❑ Implement several types of regularization

❑ Implement the building blocks of convolutional neural networks 

❑ Build a CNN for handwritten image classification

63Paris – 01/02/2025
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Grading

■ The assignment requires to

❑ solve the exercises in the notebook

❑ add more functions to the basic framework 

❑ write a report that explains all the work done

■ Grading is based both on the notebook and the report

❑ The grade will be 0 if you don’t submit a well-written report 

64Paris – 01/02/2025

Activity Points

Quiz 1-10 1,25 x quiz

More work 0 to 8

Total 20 (zero if the report is not submitted)
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Exercises (1/4)

■ Part 1 ➜ Build the neural network

❑ Quiz 1 – Implement the “SoftMax” and “ReLU” activations

❑ Quiz 2 – Define a fully-connected layer

❑ Quiz 3 – Randomly initialize the layer parameters

❑ Quiz 4 – Assemble a two-layer network

65Paris – 01/02/2025
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Exercises (2/4)

■ Part 2 ➜ Train the neural network

❑ Quiz 5 – Encode the labels as “one-hot” vectors

❑ Quiz 6 – Compute the cross-entropy between the outputs and targets

❑ Quiz 7 – Define the optimization problem to adjust the network weights

66Paris – 01/02/2025
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Exercises (3/4)

■ Part 3 ➜ Test the neural network on a toy example

❑ Quiz 8 – Use the network to classify data points

67Paris – 01/02/2025



Giovanni Chierchia ESIEE Paris

Exercises (4/4)

■ Part 4 ➜ Handwritten digit classification

❑ Quiz 9 – Train the network on MNIST with stochastic gradient descent 

❑ Quiz 10 – Use the network to classify images of handwritten digits

68Paris – 01/02/2025
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Add more to the framework

■ Multilayer neural networks (4 points)

❑ Allow the creation of networks with any number of layers

❑ Implement more activation functions: tanh, leaky relu, elu, selu

❑ Implement “dropout” layer

❑ Use the network on new datasets

■ Convolutional neural networks (4 points)

❑ Implement “convolutional” and “max-pooling” layers

❑ Build the architecture “LeNet-5” (see previous slide)

❑ Use “LeNet-5” on MNIST dataset
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