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1. Introduction 

Distance maps of binary images contain. for each 
pixel, the distance between that pixel and the pixel 
of value 0 closest to it. They have important uses in 
computer vision, pattern recognition, morphology and 
robotics ( IO]. Many algorithms have been proposed 
for computing distance maps for a variety of distances 
such as the Li, L,, octagonal and Euclidean distances 
]%I I-131. 

Recently, Kolounzakis and Kutsulakos [ 91 gave an 
O( N2 log N) time algorithm for computing accurate 
Euclidean distance maps. It computes a distance map 
column by column, using a divide and conquer ap- 
proach to each column. They also pointed out that their 
algorithm is available for other distances such as the 
LI distance. Dividing rows and columns alternately, 
Chen and Chuang [4] reduced the time complexity 
to 0( N’) which is optimal. Breu et al. [ 21 also gave 
an 0( N*) time algorithm which is based on the con- 
struction of the Voronoi diagram. 

In this paper we give a simple unified algorithm 
for computing distance maps. The algorithm runs in 
O( N2) time for an input of N x N binary image. It 
was first developed for the Euclidean distance in 181. 
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We show that it is also available for a wide class of 
distances. The class contains most distances that ap- 
pear in machine vision applications, such as the Eu- 
clidean, city block (or I,, ). chessboard (or &,), oc- 
tagonaI and chamfer distances. A parailel version of 
our algorithm runs in 0( N*/p) time with p (I < 
p < N) processors, which is superior to the previous 
O(N’/p + Nlogp) of [4] when p is of O(N). Fu- 
jiwara et al. [ 61 also obtained a parallel version for 
the EREW PRAM model that runs in O(log N) time 
with N2/ log N processors. 

Some definitions are given in Section 2. In Section 3 
we review the algorithm of [ 81 to make our presen- 
tation self-contained. In Section 4 we show that the 
algorithm is available for a wide class of distances. 

2. Pdiminaries 

Let B = {b,} be an N x N binary image. We denote 
by (i, j) the clement in the ith row and the jth column. 
If bij = 0 we cdl it a O-element and if bii = 1 a I- 
element. The Euclidean distance map D = {dij} of a 
binary image B = {bij} is defined by 

dij = ,<FiqFN{d(i - pj2 + (j - q)2 1 b,,y = 0). . . , 
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In picture processing, the weighted 4-neighbor dis- 
tance is used quite frequently. The distance d(pt , ~2) 
between pt = (XI .yt ) and ~2 = (x2,y2) in the xy 
plane is defined by 

[ WOlXl - x21 + WI IYI - Y2I 

d(PI.P2) = 

( 

if 1x1 - x21 > IYI - y21, 

WI Ix1 - x21 + woly, - y21 

L otherwise, 

where wa > WI 2 0. When wa = WI = 1, the distance 
is called block (or 4-neighbor), and when we = 1, 

WI = 0, chessboard (or 8-neighbor). When we = I, 
WI = fi - 1, it is called chamfer, and when wo = 

1, wi = l/Jz - 1 + &7Zi x 0.351, optimal 
chamfer [ 31. 

The Euclidean, city block, and chessboard distances 
are coincide with the L2, LI and L, distances, respec- 
tively. Furthermore, the octagonal distance is defined 

by 

~(PI ,p2) = ma{lxl - ~21. IYI - ~21. 

2(1x1 -x21 + IYI - ~2l)P). 

3. Distance transform algorithm 

In this section we describe the algorithm for the Eu- 
clidean distance transformation originally presented 

in [8]. 

3. I. Basic algorithm 

We first give a basic form of the algorithm which 
has the same framework as that of [ 4 I . 
Tl. 

n. 

For each column j of B = {bij}, we compute a 
map G = {gij} such that 

gij = ,$$li- PI I bpi =OI- 

where gij = oo( 1 < i < N) for a column j with 
no O-element. 
Scanning each row i of G = {gij}, we compute 
D’ = {d:j} such that 

It is clear that the value of dij is the square of the 
distance value from an element (i, j) to the nearest 

O-element in B. It is also clear that Tl can be done in 

0( N2) time, and T2 in 0( N3) time. 

3.2. Algorithm for T2 

Here we give an efficient algorithm for T2. Con- 
sider a scan of the ith row in T2. The square of the 

minimum distance from a O-element of the kth col- 
umn to (i,j) is expressed as (j - k)2 + d. We de- 
note this value as a function of j, that is, f:(j) = 
(j - k)2 + g$. Then db = mintgk<N f:(j). There- 

fore, what we have to do for each row is finding the 
lower envelope rnint<kgn f:(x) of the set of func- 
tions FL = {A(x) I 1 < k < N}. From now on, 
we will use fk(x) and FN instead of fi( x) and Fh 
when no confusion arise. Let Lenv( FI) be the set of 

functions that give the lower envelope of F/, that is, 

&nv(fi) = {f,(x) I 3x0 fi(x0) = minl<kgr f&(x0)}. 
We denote by Xii the abscissa of the intersection of 
fi(X) and fj(x). TO compute Lnv(F~), we initially 
set &,,,( F2) = { fl , f2) (For simplicity we assume 
that git # 00 and gi2 # co.), and we compute 

Lnv(F3), Lv(F4), . . ., successively. To this end we 

use a stack. The following is the algorithm. 

Efficient algorithm for T2 

1: Repeat 2- 19 for each row i of G. 
2: begin 
3: Let s be an empty stack. 
4: push(s, 1); {Push f,(x) into s.} 

5: push(s. 2); {Rush fi(x) into s.} 

6: {Let t’ < t be the two top elements of s.} 

7: forj:=3toNdo 
8: if gij # 00 then 
9: begin 

10: while x,j < x,/t do pop(~); 

11: push(s,j) {Rush fj(x) intos.} 

12: end; 
13: while N < x,!, do pop(s) ; 
14: for j := N downto 1 do 
15: begin 
16: if j < x,r, then pop(s); 

17: d& := f,(j) 
18: end; 
19: end 

Correctness comes from the observation that any 
two functions of FN intersect exactly once. We can 
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view the first task of the above algorithm (lines 2-12) 
as that of finding the convex hull of N points [ 61. Let 
FL be the set {f;(x) = -2kx + k* + & 1 fdn) E 
FN}. It is easy to see that the task of finding the lower 
envelope of F,XJ is reduced to that of finding the lower 
envelope of FL. Using the standard dual transforma- 
tion from lines to points, we can view the latter task as 

that of finding the convex hull of the N points. Also we 
can view the task as a matrix searching problem: find- 

ing the minimum entry in each row of a matrix. Con- 
sider an N X N matrix A = (uij) such that ajk = f;(j). 

Then d$ = mint Q+v ajk. Thus our task is reduced to 
a matrix searching for A. The matrix searching can be 
done in O(N) time if A is totally monotone [ 11. Total 
monotonicity of A follows from the one-intersection 
condition of f:(x) . Note that the above algorithm is 
much simpler than a matrix-searching algorithm. 

can be applied to any distance function d(pl ,p2) 

for which there exists a function f(x, y) such that 

(i) 4~1.~2) = .01x1 - XZI,IYI - ~21). and (ii) 

VY lxll < 1x21 * f(l~~l,lvl) < f(l~21~l~l), and 

Vx 1~11 < 1~21 - f(l4vlu1l) < f(bl~I~2l). Most 
distances used in machine vision applications such as 
the 4-neighbor and 8-neighbor distances belong to this 
class. Note that the distance in this class would not 
necessarily be a metric because the triangle inequality 
does not always hold. 

Once L,,, ( FN) is stored in the stack, we assign a 

value of a function in the stack to each element of the 

row (lines 13- 18). It is clear that the above algorithm 
is of 0( N*) time. Taking the time complexity of Tl 
into account, we can compute the Euclidean distance 
map in 0( N*) time. 

The algorithm for T2 uses the fact that any two 

functions of FN intersect exactly once. It does not work 
for all the distances in the Paglieroni’s class. Consider 

the distance function d(p~,pz) = 1x1 - x2llyt - ~21, 
which, shown as an example in [lo], satisfies the 
Paglieroni’s conditions but not the triangle inequality. 

Then J$ (x) = &k Ix], and two functions intersect twice 
if the values gik are different. In the rest of this section 

we consider a class of distances to which the algorithm 

of the previous section applies. 

The above algorithm can be easily extended to the 

Euclidean distance transformation of a d-dimensional 
binary image (d 2 3) and the time complexity is 
0( N”). Since the above algorithm works on one col- 
umn (row) at a time, it can be easily parallelized. 
Since column scans are independent each other, with 
p ( 1 < p < N) processors the column scans can be 
done in parallel in 0( N*/p) time. Similar observation 

holds for row scans. Therefore, with p ( 1 < p 6 N) 
processors, a parallel version of the above algorithm 
runs in 0( N*/p) time, which is superior to the previ- 
ous 0( N*/p + Nlogp) of [4] when p is of O( N). 

We assume that the distance function satisfies the 
Paglieroni’s condition and the triangle inequality. Fur- 
thermore we add the following condition: for succes- 
sive three points PI, p2, p3 on a line, 

This condition with the triangle inequality assures us 
that the quadrangle inequality holds, that is, the sum 

of length of diagonals of a quadrangle is not shorter 
than that of a pair of its opposite edges. 

4. Class of distances 

Lemmal. Let a = (xorya) and b = (xh,yt,) be 
points not on the x-axis and p’ = ( xP~, 0) be a point on 
the x-axis such that x, < xb und d( a, p’) = d( b, p’) . 
Then, for a point p = (x,, , 0) on the x-axis, if xl,’ < 
x,,. d(u,p) 2 d(b,p), and ifx,~ > xp, d(a,p) 6 
d(b,p). 

The algorithm of the previous section first scans Proof. We first consider the case y0 > 0 and yb > 0 

all columns of an input binary image to compute (or ya < 0 and yb < 0). Assume that xp) < x,&et c 

a l-dimensional distance map for each column and be the intersection of the line segments Zj7 and bp’. (If 

then scans all rows of this intermediate result to such an intersection does not exist, then I ya I > 1 yb I and 

compute the Euclidean distance maps. This approach Jxp - x0] > ]xp - xb(. By Paglieroni’s condition (ii), 
applies not only to the Euclidean distance. In fact, d (a, p) 2 d( b, p) .) By the quadrangle inequality, we 

Paglieroni [ lo] proposed a unified transform ar- have d(u,p) + d(b,p’) 2 d(u,p’) + d(b,p). But 
chitecture based on parallel row scanning followed d(u,p’) = d(b,p’) implies d(u,p) 2 d(b,p). The 
by parallel column scanning and showed that it case xpt > xp is similar. 
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When ya > 0 and yb < 0, consider the point 
b’ = (xb, -yb) . Paglieroni’s condition (i) implies that 
d(b’,p’) = d(b,p’) and d(b’,p) = d(b,p). There- 
fore the above discussion applies. 0 

Lemma 1 guarantees that any two of the functions 
f;(x) in FN have at most one intersecting point/part 
with each other, That is, assume that there are O- 

elements at the points a and b and consider a scan of 
the ith row in T2, then the abscissa of the intersection 
of fX,, (x) and fX, (x) corresponds p’. (If fX, (x) and 
f*,,(x) overlap partially, we slightly translate one of 
them to find an intersecting point.) It is reasonable 
to assume that the intersection can be found in 0( 1) 

time. From the above discussion we have 

Theorem 2. If a distance satisfies the Paglieroni’s 
conditions and the quadrangle inequality the distance 
map can be computed in 0( N2) time. 

Paglieroni’s condition (i) suggests that we concen- 

trate ourselves to distances that come from a vector 
space norm. 

A distance is based on (or comes from) a vector 
space norm if the distance is defined as d(pl,pZ) = 
l(pI - ~211, where 11 - II denotes a norm in a vector 
space Note that a distance based on a vector space 
norm satisfies the axioms of metric. Since the con- 
dition on successive three points on a line naturally 
holds, the quadrangle inequality also holds. To sat- 
isfy Paglieroni’s conditions we need a further condi- 
tion. 

A vector space norm is x-axis (y-&s) symmetric 
if its unit sphere is a symmetric figure with respect to 
the vertical (horizontal) line through its center. Since 
the unit sphere of a vector space norm is symmetric 
with respect to its center, an x-axis symmetric norm 
is also y-axis symmetric. Therefore, we call an x-axis 
symmetric norm an axial symmetric norm. If a dis- 

tance is based on an axial symmetric norm, it depends 
on absolute values of differences of x-coordinates 
and y-coordinates, that is, d(pl ,pz) = II (1x1 - ~21, 

IYl - Y2I)II. 

Lemma3. Let PI = (xl,yl), ~2 = (~2~~2)~ pi = 

(x2vY;)v P! = (xy , ~2) be fourpoints on a plane such 
that/y;?-y,I < Iy$-y,IandIxz-xl1 < Ix;-xlI.ZYzen 
d(pl,p2) < d(pl,p$) andd(pl,pa) 6 d(pl,p$‘). 

Pmf. We show that d(pl,pZ) < d(pl,p$). The 
proof for d (pl , ~2) < d (p1 , p;) is similar. Consider 
a sphere S with radius d (p1 , pi ) centered at ~1, that 
is, S = {p 1 IIp - p1 II < d(pl,pi)}. We claim that 
S is a convex region. To observe this, we show that 
ta + (1 - t)b is in S for any a,b E S and t (0 < 
t < 1). Since a,b E S, I/a--pill < d(pl,pi) and 
II b - PI II < d (p1 , pi ) . On the ground of the property 

of a norm, we have 

lIta+ (1 - t)b-plll 

= lIta+ (1 - t)b- tp1 - (1 - t)plIj 

= IMa-n) + (1 -t)(b-m)ll 
< IHa-m)ll +I/(1 -t)(b-m)ll 
= ItlIl(a-m)ll + 11 - tlll(b-m)ll 
< 1tlW.Q:) + II- tldW,p;) 
= d(pd. 

Consequently ta + ( 1 - t) b E S, and thus S is convex. 

Now consider the point & = (~2~2~1 - yi). By 
the axial symmetry, d(pl,&) = d(pl,pi), and thus 
~5; E S. But p2 = tp; + (1 - t)p; with t = (~2 + 
yi - 2y1)/(2yi - 2~1). This implies p2 E S and 

d(p,rpz) < d(p,,p;). 0 

Lemma 3 implies that the distance d(pl , ~2) is non- 
decreasing in 1x1 - x21 and in Iy1 - ~21, and thus a 
distance d (p1 , ~2) based on an axial symmetric norm 
satisfies the Paglieroni’s conditions. 

Corollary 4. If a distance is based on an axial sym- 
metric norm the distance map can be computed in 
0( N2) time. 

The class of distances satisfying the condition of 
the above corollary is wide enough to contain the Eu- 
clidean, 4-neighbor, g-neighbor, chamfer and octago- 

nal distances. 
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