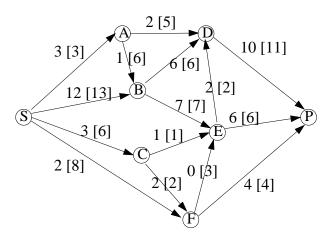
Examen de graphes - I3 - 2011 - éléments de correction

A. Flots et coupes (7 pts)

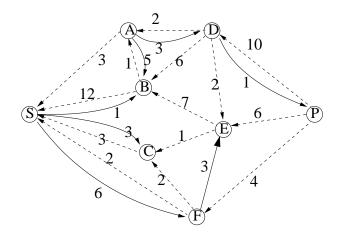
 \mathbf{A}_1 voir poly.

 \mathbf{A}_2 voir poly, exercice 39, et notes de cours.

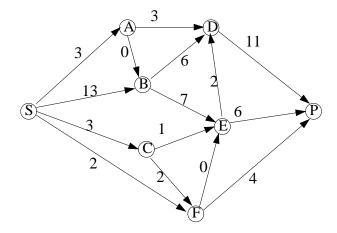
 \mathbf{A}_3



 \mathbf{A}_4



 \mathbf{A}_5 Chemin : S,B,A,D,P ; capacité résiduelle 1. Le nouveau flot est de valeur 21.



 A_6 Oui, car la coupe constituée des arcs sortant de $\{S, A, B, C, D, E, F\}$ est de capacité 21. On sait que la valeur d'un flot compatible est inférieure ou égale à la capacité d'une coupe quelconque (voir poly), aucun flot ne peut donc avoir une valeur supérieure à 21.

B. Algorithme A* (3 pts)

 \mathbf{B}_1 voir cours.

B₂ On pose pour tout sommet $x: h_3(x) = \min\{h_1(x), h_2(x)\}$ et $h_4(x) = \max\{h_1(x), h_2(x)\}$. Sachant que pour tout x on a $h_1(x) \leq h^*(x)$ et $h_2(x) \leq h^*(x)$, on déduit que $h_3(x) \leq h^*(x)$ et $h_4(x) \leq h^*(x)$. Les heuristiques h_3 et h_4 vérifient donc la condition A^* . L'heuristique h_4 est plus intéressante que h_3 car elle est plus proche de h^* .

C. Banquet de mariage (5 pts)

 C_1 , C_2 Les données du problème peuvent être modélisées par un réseau $R = (E, \vec{\Gamma}, m)$ où chaque sommet de E représente un convive, où $\vec{\Gamma}$ est l'ensemble de tous les couples possibles d'éléments distincts de E (graphe symétrique et antiréflexif complet), et où m(x,y) = m(y,x) représente la note de mécontentement attribuée à y par x plus celle attribuée à x par y.

La solution du problème, qui est un plan de table, correspond à un circuit C dans R passant une et une seule fois par chaque sommet de E (circuit hamiltonien). Le successeur (resp. prédécesseur) de x dans C représente le voisin de gauche (resp. de droite) de x à table. Du fait que C est un circuit, chaque personne a bien deux voisins. Du fait que C est hamiltonien, tout le monde trouve sa place à table.

La somme des m(x,y), sur tous les arcs de ce circuit, représente bien la somme, pour toutes les personnes, des mécontentements de se voir placées entre ses deux voisins de table.

 C_3 Il s'agit de trouver un circuit hamiltonien de longueur minimale dans R: on reconnaît le problème du voyageur de commerce. Une approche heuristique, par la méthode A^* , est bien adaptée (voir TD6).

D. Arbre couvrant (7 pts)

\mathbf{D}_1

Valuer tous les arcs par 1 et utiliser Prim ou Kruskal.

\mathbf{D}_2

```
Algorithme 1 : ArbreCouvrant

Données : (E = \{0, ..., n\}, \Gamma, \Gamma^{-1})

Résultat : \Gamma_A

1 C = \{0\}; T = \{0\};

2 tant que \exists x \in T faire

3 T = T \setminus \{x\};

4 pour chaque y \in \Gamma(x) tel que y \notin C faire

5 C = C \cup \{y\}; T = T \cup \{y\}; \Gamma_A(x) = \Gamma_A(x) \cup \{y\};

6 pour chaque y \in \Gamma^{-1}(x) tel que y \notin C faire

7 C = C \cup \{y\}; T = T \cup \{y\}; \Gamma_A(y) = \Gamma_A(y) \cup \{x\};

8 si C = E alors retourner VRAI; sinon retourner FAUX;
```

\mathbf{D}_3

Voir ComposanteConnexe (poly).