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Abstract. Many applications require the extraction of an object boundary from a discrete image. In most cases,
the result of such a process is expected to be, topologically, a surface, and this property might be required in
subsequent operations. However, only through careful design can such a guarantee be provided. In the present
article we will focus on partially ordered sets and the notion of n-surfaces introduced by Evako et al. to deal
with this issue. Partially ordered sets are topological spaces that can represent the topology of a wide range of
discrete spaces, including abstract simplicial complexes and regular grids. It will be proved in this article that
(in the framework of simplicial complexes) any n-surface is an n-pseudomanifold, and that any n-dimensional
combinatorial manifold is an n-surface. Moreover, given a subset of an n-surface (an object), we show how to
build a partially ordered set called frontier order, which represents the boundary of this object. Similarly to the
continuous case, where the boundary of an n-manifold, if not empty, is an (n − 1)-manifold, we prove that the
frontier order associated to an object is a union of disjoint (n − 1)-surfaces. Thanks to this property, we show
how topologically consistent Marching Cubes-like algorithms can be designed using the framework of partially
ordered sets.

INTRODUCTION

Many image processing applications require the extraction of the boundary of an object from a digital image. In
continuous spaces, the notion of topological n-manifold generalizes the notion of surface (which is a 2-dimensional
object) to the n-dimensional case. A topological n-manifold (without boundary) is an object (i.e., a set of points)
such that a neighborhood of each point is homeomorphic to an open ball of Rn. Furthermore, the boundary of any
“regular” n-dimensional object is a topological (n−1)-manifold. One of the aims of this article is to prove that object
boundaries can be extracted from an n-dimensional digital image which are guaranteed to be (n − 1)-dimensional
discrete surfaces.

Different notions of discrete surfaces have appeared in the last decades. Some of them are defined in the framework
of simplicial complexes [1–3]. A simplicial complex consists of a finite number of simplexes which can be thought of
as elementary building blocks, glued together to form the complex. In the framework of piecewise linear topology [1],
the simplexes are points (0-simplexes), straight line segments (1-simplexes), triangles (2-simplexes), tetrahedra (3-
simplexes), and so on. This geometrical interpretation allows to make connections between continuous and discrete
notions. Nevertheless, a simplicial complex can also be thought of as just a finite set, the vertices, with certain
specified subsets, the simplexes, an n-simplex being a simplex composed of n vertices; this purely combinatorial
approach can lead to simpler statements and proofs.

Let us here describe intuitively the notion of combinatorial manifold; a formal and truly combinatorial
definition will be given in the body of the paper. In a simplicial complex, the closed star of a 0-simplex S, denoted
by ŝtar(S), is the set composed of all the simplexes which contain S, and of all the simplexes which are included
in these simplexes (see Fig. 1.2). A simplicial complex is said to be a combinatorial n-manifold if the boundary
of the closed star of any 0-simplex S does not contain S and if there exists a subdivision of this boundary and a
subdivision of the boundary of an n-simplex which are piecewise linearly homeomorphic (see Fig. 1). It has been
proved that combinatorial manifolds are equivalent to triangulated topological manifolds up to dimension 3 (see [4]).
Nevertheless the use of subdivision for defining combinatorial manifolds complicates basic problems like testing
whether a particular complex is a combinatorial manifold.

Simpler notions are often favored, in particular for algorithms and demonstrations relative to their validity, such
as the notion of pseudomanifold. An n-pseudomanifold P is, roughly speaking, a connected and homogeneously
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Fig. 1. Illustration of the notion of combinatorial manifold. 1) Any subdivision of the boundary of a 2-simplex is a 1-sphere.
2) In a 2-combinatorial manifold, the boundary of the closed star of each point is a 1-sphere.

n-dimensional simplicial complex. This means in particular that every simplex of P is a subset of an n-simplex of P
and that every (n−1)-simplex of P is a subset of exactly two n-simplexes of P . Pseudomanifolds of dimension 2 exist
which are not combinatorial (nor topological) manifolds, like the pinched sphere depicted Fig. 2. The most important
property related to pseudomanifolds is the Jordan-Brouwer theorem, which states that an (n − 1)-pseudomanifold,
embedded in the continuous space Rn, separates Rn into two disjoint connected components. Most notions of discrete
surfaces presented in the literature are deemed acceptable if they verify some analog of the Jordan-Brouwer theorem,
and some authors prefer pseudomanifolds to combinatorial manifolds for they represent a wider class of “surfaces”
verifying this theorem.

However, while combinatorial manifolds and pseudomanifolds are based upon simplicial complexes, most digital
images are based upon a grid of square shaped cells. The framework of digital topology [5] has been developed
to introduce topological notions (such as connectedness) in Zn through adjacency graphs, and has led to many
successful applications, mainly in 2D image analysis. The notion of 1-dimensional surface, or curve, is well defined in
this framework and several notions of 2-dimensional surface have been developed [6–9]. Nevertheless, these notions
cannot be extended to higher dimensions. In fact, the only attempt we know of at defining higher dimensional surfaces
for digital topology [10] uses another framework, partially ordered sets. Notice that we only consider here approaches
where the surface is defined as a subset of Zn; other approaches defining n-dimensional surfaces by the introduction
of surface elements between the points of the space will be discussed later.

Partially ordered sets [11, 12, 10], also called orders or posets, are topological T0 spaces [13]. A poset is a
couple composed of a set and an order relation upon elements of this set. In such a space, two distinct elements are
said to be neighbors if they are comparable. For example, the couple constituted by a simplicial complex and the
inclusion relation is a poset. Khalimsky [11] has introduced a family of posets on Zn which allows to formalize most
of the topological notions useful in digital image analysis.

More recently, Evako has defined a simple and recursive notion of n-dimensional discrete surface in the framework
of graphs, which may be extended to the framework of posets: n-surfaces [14–16]. A connected poset is an n-surface,
for any n > 0, if the neighborhood of each element of this poset is an (n− 1)-surface, a 0-surface being composed of
two disconnected elements. It should be noted that Evako et al. [14] have proved that the space Zn equipped with the
Khalimsky topology is an n-surface, for any n > 0. Moreover, n-surfaces have been proved to verify analogs of the
Jordan-Brouwer theorem in Z2 [17] and Z3 [18] equipped with the Khalimsky topology. Furthermore, the recursivity
of the notion of n-surface is essential to demonstrate n-dimensional properties. This is the notion of surface upon
which we will focus in this article.
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Fig. 2. This simplicial complex is a 2-dimensional pseudomanifold, called a pinched sphere.

Our interest in this paper is on the boundaries of discrete objects, which we want to define in such a way that we
can prove that they are n-dimensional surfaces. The notion of boundary has been studied from different viewpoints.

The internal boundary [5] (see Fig. 3.2) and the external boundary (see Fig. 3.3), are among the earliest
attempts to define discrete boundaries. A point of an object belongs to the internal boundary of this object if at
least one of its neighbors belongs to the complementary of this object. The external boundary of the object is the
internal boundary of its complementary. We can easily see that those definitions do not guarantee boundaries to be
surfaces of any kind.

Another approach is to define the boundary as a set of surface elements separating the object from the rest of
the image. In particular, digital boundaries [19–22] are constituted by pairs of points, representing the surface
element between them, one of those points belonging to the object and the other to its complementary. It has been
proved that digital boundaries are “near-Jordan” [19]: they separate Zn in two disjoint domains (see Fig. 3.4 for
an example). Stronger guarantees for these boundaries have been obtained but they require additional notions and
hypotheses [22, 23].

The Marching Cubes algorithm [24] extracts a polygonal mesh representing the surface of an object in Z3 by
generating a surface patch for each unit cube delimited by 8 points of Z3, depending on the status of these points.
The original Marching Cubes algorithm is fast, but holes might appear in the generated surfaces. This problem
was solved by, among others, J.-O. Lachaud [25], using the framework of digital topology, through the definition of
continuous analogs of digital boundaries.

In previous articles [26, 27], we have introduced frontier orders (see Fig. 3.5) as a mean to extract the boundary
of an object in any partially ordered set. As mentioned previously, partially ordered sets cover a wider range of spaces
than digital topology.

The main contributions of this article are the following original results:
•We investigate the join operator (denoted by ∗) which is a fundamental tool to demonstrate properties relative

to n-surfaces. Evako et al. [14] have proved that the join of any n-surface and any m-surface is an (n+m+1)-surface.
We prove that, moreover, A ∗B is an (n+ 1)-surface if and only if A is an m-surface and B is an (n−m)-surface,
for some m ∈ {0 . . . n} (Th. 2), a property which is essential for the proof of following results.
• We prove, using the previous property, that the simplicial complex defined by the fully ordered subsets of an

order is an n-surface if and only if this order is itself an n-surface (Th. 12), which will, in particular, result in Cor. 21
(see below).
• We establish, in the framework of abstract simplicial complexes, that all n-combinatorial manifolds are n-

surfaces and that all n-surfaces are n-pseudomanifolds (Th. 17), implying that any (n− 1)-surface, embedded in Rn,
verifies the Jordan-Brouwer theorem.
• We prove that the frontier order of an object is a union of disjoint (n − 1)-surfaces if the order to which the

object belongs is an n-surface (Th. 19 and Cor. 21).
• We describe how a Marching Cubes-like algorithm coherent with the Khalimsky topology on Zn can be imple-

mented based on frontier orders. The topology of the extracted surface is guaranteed by Th. 19.
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Fig. 3. Boundaries of an object. (1) Object X (black dots). (2) Internal boundary of X (grey dots). (3) External boundary of
X (grey dots). (4) Digital boundary of X (thick line). (5) Frontier order of X (thick line).

1 SURFACES AND PARTIALLY ORDERED SETS

This section introduces basic definitions and properties related to partially ordered sets and n-surfaces. Among these
properties Th. 2 will play a central role in the demonstration of the main results of this paper.

1.1 Preliminary Definitions

Let us first introduce the notations we will use in this article. We write S ⊂ X if S is a subset of X and S 6= X, in
which case we say that S is a proper subset of X. We write S ⊆ X if S ⊂ X or S = X. If X is a set and S ⊆ X,
when no confusion may occur we denote by S the complement of S in X. If λ is a binary relation on X, i.e., a subset
of the cartesian product X ×X, the inverse of λ is the binary relation {(x, y) ∈ X ×X; (y, x) ∈ λ}. For any binary
relation λ, λ2 is defined by λ2 = λ \ {(x, x);x ∈ X}. For each x of X, λ(x) denotes the set {y ∈ X; (x, y) ∈ λ} and
for any subset S of X, λ(S) denotes the set {y ∈ λ(s); s ∈ S}.

An order is a pair (X,αX) where X is a set and αX is a reflexive (for any x in X, x ∈ αX(x)), antisymmetric (if
x ∈ αX(y) and y ∈ αX(x) then x = y) and transitive (if x ∈ αX(y) and y ∈ αX(z) then x ∈ αX(z)) binary relation
on X. When no confusion may occur, the order (X,αX) will be simply denoted by |X|. Fig. 4.a depicts an example
of order. Let x be an element of X, the set αX(x) is called the αX-adherence of x. We denote by βX the inverse of
αX and by θX the union of αX and βX . The set θX(x) is called the θX-neighborhood of x, or simply the neighborhood
of x when no confusion may arise (see Fig. 4.b). We say that two elements x and y of X are neighbors, or comparable,
if y ∈ θX(x).
A path from x0 to xn in |X| is a sequence (x0, . . . , xn) of elements of X such that ∀i ∈ [1 . . . n], xi ∈ θX(xi−1); an
example of path is depicted in Fig. 4.c. A connected component C of |X| is a maximal subset of X such that for all
x, y ∈ C, there exists a path from x to y in C.
Let |X| be an order and let x be an element of X. The rank of x in |X| is the number ρ(x, |X|) such that ρ(x, |X|) = 0
if α2

X(x) = ∅ and ρ(x, |X|) = 1 + max{ρ(y, |X|), y ∈ α2
X(x)} otherwise. The rank of |X| is the number ρ(|X|) such

that ρ(|X|) = max{ρ(x, |X|), x ∈ X}.
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Fig. 4. a) An order |X|, which is composed of squares, their edges (depicted by thin rectangles) and their corners (depicted by
small circles). If x is a square of |X|, then αX(x) is constituted by x and the four edges and four corners which are adjacent
to x. If y is an edge in |X|, then αX(y) is constituted by y and the two corners adjacent to y. b) Three elements of |X| (in
black) and their θ-neighborhoods (themselves and the grey elements surrounding them). c) A path from the black square x
to the black corner y. d) Example of 1-surface in the order |X|. This sub-order is of rank 1 even though it contains elements
whose rank was 2 in the original order.

Any element of an order is called a point or an n-element, n being the rank of this point. An element x of an order
|X| is said to be maximal if β2

X(x) = ∅; it is said to be minimal if α2
X(x) = ∅ (i.e., ρ(x, |X|) = 0).

An order |X| is countable if X is countable, it is locally finite if, for each x ∈ X, θX(x) is a finite set. A CF-order is
a countable locally finite order. In the sequel, we will consider only CF-orders.
Let |X| = (X,αX) and |Y | = (Y, αY ) be two orders, |X| and |Y | are order isomorphic if there exists a bijection
f : X → Y such that, for all x1, x2 ∈ X, x1 ∈ αX(x2)⇔ f(x1) ∈ αY (f(x2)).
If |X| = (X,αX) is an order and S ⊆ X, the sub-order of |X| relative to S is the order (S, αS), with αS = αX∩(S×S).
When no confusion may arise, we also denote |S| = (S, αS).

1.2 Discrete Surfaces

The notion of n-surface, whose definition in the framework of graphs has been proposed by Evako, Kopperman and
Mukhin [14], will be one of the main focus of this article. Here, we restrict ourselves to the framework of orders,
which can be seen as a particular class of graphs. As we will see in the sequel, important properties of n-surfaces can
be easily proved in this purely discrete framework.

Let |X| = (X,αX) be a non-empty CF-order.
• The order |X| is a 0-surface if X is composed of exactly two points x and y such that y /∈ θX(x).
• The order |X| is an n-surface, n > 0, if |X| is connected and if, for each x in X, the order |θ2

X(x)| is an
(n− 1)-surface.
For technical reasons, we will say that the order |X| is a (−1)-surface if X = ∅.

An example of 1-surface is given Fig. 4.d, in such a surface every point has exactly two θ2-neighbors. The or-
der |S2|, depicted in Fig. 5.b, where S2 = {a, b, c, d, e, f}, α2

S2(a) = α2
S2(b) = ∅, α2

S2(c) = α2
S2(d) = {a, b} and

α2
S2(e) = α2

S2(f) = {a, b, c, d}, is the smallest 2-surface; it can be interpreted as a discrete representation of the
tiling of a sphere depicted in Fig. 5.a. The Fig. 5.b shows a representation of this order as a directed graph, where
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Fig. 5. a) Tiling of a (hollow) sphere constituted by two hemispheres e and f separated by a circle made from the segments
c and d which are connected by the points a and b. b) Graph representation of the order |S2| which can be associated to the
tiling (a). This is a 2-surface. c) θ2-neighborhood of the 1-element c in |S2|. This is a 1-surface. d) Tiling of a hollow torus.
e) Graph representation of the order associated to the tiling (d). This is a 2-surface in which the 2-elements are denoted by A,
B, C and D, the 0-elements are denoted by a, b, c and d, and the 1-elements are numbered from 1 to 8. Notice that, in order
to ensure the readability of this figure, the edges which are induced by transitivity of the order relation are not depicted.

a directed edge (x, y) is drawn between the elements x and y whenever y ∈ α2
S2(x). A slightly more complicated

example of 2-surface is depicted in Fig. 5.e, which can be interpreted as the tiling of a torus depicted in Fig. 5.d.

We introduce now an important operator upon orders, which will be useful for demonstrating properties in any
dimension.
Let |X| = (X,αX) and |Y | = (Y, αY ) be two orders such that X ∩Y = ∅. The join |X| ∗ |Y | is the order (X ∪Y, αX ∪
αY ∪X × Y ). When no confusion may arise, we will sometimes write X ∗ Y instead of |X| ∗ |Y |.
Observe that, if X (resp. Y ) is empty, then |X| ∗ |Y | equals |Y | (resp. |X|).

Some basic examples of join can be found in Fig. 6, illustrating in particular the non-commutative nature of the
join operator and the consequence of join upon the rank of elements. More precisely, it can be seen in Fig. 6.b and
6.c that, whenever joining an order |L| to an order |R|, the rank of the elements of |R| remains unchanged in |L| ∗ |R|
while the rank of the elements of |L| is incremented by ρ(|R|) + 1. The reader can also use Fig. 6 to find illustrations
for the following property, which will be used to prove Th. 2.

Property 1 Let |X| and |Y | be two orders, with X ∩ Y = ∅. Let x be an element of |X| and y an element of |Y |.
Then |θ2

X∗Y (x)| = |θ2
X(x)| ∗ |Y | and |θ2

X∗Y (y)| = |X| ∗ |θ2
Y (y)|.

Proof:
Notice that, if x ∈ X, any element of Y belongs to θX∗Y (x) and an element of X belongs to θ2

X∗Y (x) only if it
belongs to θ2

X(x). Thus, using this fact and basic properties of set operators, we derive:

|θ2
X∗Y (x)| = (θ2

X∗Y (x), (αX ∪ αY ∪X × Y ) ∩ (θ2
X∗Y (x)× θ2

X∗Y (x)))

= (θ2
X∗Y (x), (αX ∩ (θ2

X∗Y (x)× θ2
X∗Y (x))) ∪ (αY ∩ (θ2

X∗Y (x)× θ2
X∗Y (x)))

∪((X × Y ) ∩ (θ2
X∗Y (x)× θ2

X∗Y (x))))
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Fig. 6. a) The orders |X| = ({a}, ∅) and |Y | = ({x, y, z}, {(x, y), (x, z)}) in graph (upper) and geometric (lower) representation.
b) The order |X| ∗ |Y | (graph and geometric representation).
c) The order |Y | ∗ |X| (graph and geometric representation).
d) Join between the 0-surfaces ({c, d}, ∅) and ({a, b}, ∅), resulting in the 1-surface |S1| = ({a, b, c, d}, {(c, a), (c, b), (d, a), (d, b)}).
e) Join between the 0-surfaces ({e, f}, ∅) and the 1-surface S1. The result is the 2-surface |S2| already depicted Fig. 5.b.

= (θ2
X∗Y (x), (α[X∩θ2

X∗Y (x)] ∪ α[Y ∩θ2
X∗Y (x)] ∪ (X ∩ θ2

X∗Y (x))× (Y ∩ θ2
X∗Y (x)))

= (θ2
X(x) ∪ Y, αθ2

X(x) ∪ αY ∪ θ2
X(x)× Y )

= |θ2
X(x)| ∗ |Y |

The proof of |θ2
X∗Y (y)| = |X| ∗ |θ2

Y (y)| is similar. 2

The following theorem turns the join operator into a major tool for demonstrating n-surfaces properties. It
improves, in the framework of orders, a theorem proved by Evako et al. [14] in the framework of graphs, by introducing
a necessary and sufficient condition. Examples of join upon n-surfaces can be found in Fig. 6.d and 6.e, where a
1-surface is obtained by joining two 0-surfaces together, and a 2-surface is obtained by joining a 0-surface with a
1-surface.

Theorem 2 Let |X| and |Y | be two orders, with X ∩ Y = ∅ and let n ∈ N. The order |X| ∗ |Y | is an (n+ 1)-surface
if and only if |X| and |Y | are, respectively, p- and (n− p)-surfaces, with −1 ≤ p ≤ n+ 1.

Proof:
The cases p = −1 (where X = ∅) and p = n + 1 (where Y = ∅) are immediate. So, from now on, we will suppose
that neither X nor Y is the empty set.
It may be easily checked that the theorem is true for n = 0, suppose it is true for n − 1, with n ≥ 1. Since neither
X nor Y is the empty set, we observe that |X| ∗ |Y | is necessarily connected. Thus, from the very definition of an
(n+ 1)-surface, we may affirm that |X| ∗ |Y | is an (n+ 1)-surface if and only if, for each x ∈ X ∪ Y , |θ2

X∗Y (x)| is an
n-surface. By Prop. 1, and by the induction hypothesis, it means that |X| ∗ |Y | is an (n+ 1)-surface if and only if:
i) for each x in X, |θ2

X(x)| and |Y | are, respectively, p′- and (n− 1− p′)-surfaces; and
ii) for each y in Y , |X| and |θ2

Y (y)| are, respectively, p′′- and (n− 1− p′′)-surfaces.
It may be seen that the condition “i) and ii)” is equivalent to “|X| and |Y | are, respectively, p- and (n−p)-surfaces”,
with p = p′′ = p′ + 1. 2
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The following property, proved by Evako et al., will be used in subsequent proofs.

Property 3 (Evako et al. [14]) The rank of any n-surface is precisely n.

It may easily be checked that, for any element x of an order |X|, we have θ2(x) = β2(x) ∗α2(x). Thus, by Th. 2
and Prop. 3, we have:

Property 4 Let |X| = (X,αX) be an order. Then, |X| is an n-surface if and only if, for any x in X, |α2
X(x)| is a

(k − 1)-surface and |β2
X(x)| is an (n− k − 1)-surface, with k = ρ(x, |X|).

The last properties of this section are discrete analogs of some basic manifold properties; their proofs can be
found in the appendix at the end of this article.

Considering an element x of an order |X|, it may be seen that ρ(|θX(x)|) = ρ(|θ2
X(x)|) + 1. Thus, a direct

consequence of Prop. 3 is Cor. 5 which states that n-surfaces are “purely n-dimensional”, in other words, each
element of x either has rank n or has a neighbor of rank n.

Corollary 5 Let |X| be an n-surface, each element x of X verifies ρ(|θ(x)|) = n.

Prop. 6 implies in particular that an n-surface cannot have a strict subset which is an n-surface, and thus is the
only n-surface it contains.

Property 6 No proper sub-order of an n-surface is an (n+ k)-surface, n, k ≥ 0.

Let |X| be a connected order and let Y ⊂ X. We say that |Y | separates |X| if |X \ Y | is not connected. Prop. 7
implies in particular that removing a point from a 2-surface or a curve from a 3-surface does not separate this surface
into two disconnected components.

Property 7 Let |X| be an n-surface, n ≥ 1, and let Y ⊂ X. If |Y | is a k-surface, k ≥ 0, and if |Y | separates |X|,
then we have necessarily k = n− 1.

2 SIMPLICIAL COMPLEXES, ORDERS AND SURFACES

Simplicial complexes are closely related to orders. Firstly, an (abstract) simplicial complex can be considered as a
special case of order, hence, the notion of n-surface will be easily transposed to simplicial complexes. Secondly, to
any order can be associated a simplicial complex called the chain complex of this order, and we will prove that, the
chain complex associated to an order is an n-surface if and only if this order itself is an n-surface.
The results of this section will be used in the sequel of the paper, both to compare n-surfaces with combinatorial
manifolds, and to establish the main properties of frontier orders.

2.1 Simplicial Complexes and Partially Ordered Sets

Let Λ be a countable set, any non-empty subset of Λ is called a simplex. A subset constituted of (n + 1) elements
of Λ is also called an n-simplex. Any non-empty subset of a simplex is called a face of this simplex. A proper face of
a simplex is a non-empty proper subset of this simplex. Now, let C be a family of simplexes of Λ, we say that C is
a simplicial complex if it is closed by inclusion, which means that, if s belongs to C, then any face of s also belongs
to C. A (simplicial) n-complex is a simplicial complex in which maximal elements (for the inclusion) are n-simplexes.
The minimal subset ΛC of Λ such that any element of C is a subset of ΛC is called the support of C. Let C be a
simplicial complex, any subset of C which is also a simplicial complex is called a subcomplex of C.
The simplicial complexes we just defined are often called abstract simplicial complexes, as opposed to other notions
of complexes based upon an underlying Euclidean space.

To any simplicial complex C, we can associate a canonical order |C| = (C,αC) where αC is the inclusion relation:
t ∈ αC(s) means that t ⊆ s. In this paper, we will often refer to the canonical order associated to a simplicial complex,
especially when it allows simpler formulations or proofs. Let C be a simplicial complex and let s be a simplex of C.
we observe that αC(s) does not depend on C since any simplicial complex is closed by inclusion. Thus we will often
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2) Depicts bx, by and bz, which are the same as αC(x), αC(y) and αC(z).
3) Depicts star(x, C), star(y, C) and star(z, C), which are the same as βC(x), βC(y) and βC(z).
4) Depicts dstar(x, C), dstar(y, C) and dstar(z, C), which are the same as αC(βC(x)), αC(βC(y)) and αC(βC(z)).
5) Depicts x and link(x, C) (which is empty), y and link(y, C) (two points) and z and link(z, C).
6) Depicts βC(αC(x)). Associated to 4) we can see that αC(βC(x)) \ βC(αC(x)) = link(x, C) = ∅.
7) Depicts βC(αC(y)). We can see that αC(βC(y)) \ βC(αC(y)) = link(y, C).
8) Depicts βC(αC(z)). We can see that αC(βC(z)) \ βC(αC(z)) = link(z, C).
9) Depicts θC(x), θC(y) and θC(z).

write α instead of αC when discussing about simplicial complexes. We say that the simplicial complex C is connected
if the order |C| is connected, this is equivalent to the classical definition of connectedness of simplicial complexes.
We can easily see that for any n-simplex of C, for any n ≥ 0, we have ρ(s, |C|) = n.

Let us now introduce the main operators used in the framework of simplicial complexes, and explain how they
are related to previously defined operators on partially ordered sets. These operators are illustrated in Fig. 7.

Closure and Boundary
The closure ŝ of the simplex s is the simplicial complex consisting of s and all its faces. By extension, the closure Ŝ

9



of a set of simplexes S is the union of the closures of its simplexes. The boundary ∂(s) of a simplex s is the simpli-

cial complex constituted by all the proper faces of s. In terms of order, we have ŝ = α(s), Ŝ = α(S) and ∂(s) = α2(s)

Star
The (open) star of the simplex s in the simplicial complex C is defined as star(s, C) = {t ∈ C; s ⊆ t}. Thus star(s, C)
is equal to βC(s). The closed star of s in C is defined as the closure of the star of s, that is, ŝtar(s, C) = {t ∈ C; ∃u ∈
star(s, C), t ⊆ u}. Notice that the star of a simplex is not a simplicial complex in general, while the closed star of a
simplex is always a simplicial complex. In terms of order, we have ŝtar(s, C) = αC(βC(s)).

Simplicial join
Two simplexes are joinable if their intersection is empty. If s and t are joinable simplexes, the simplicial join of s and
t is defined as s ◦ t = s∪ t. The simplicial join of a simplex s with the empty set is defined as being s itself: s ◦ ∅ = s.
Let C and K be two simplicial complexes, they are said to be joinable if every simplex of C is joinable with every
simplex of K. If C and K are joinable, the simplicial join of C and K is then defined as the simplicial complex
C ◦K = C ∪K ∪ {s ◦ t, s ∈ C, t ∈ K}. Notice that, unlike the order join, the simplicial join is commutative.
While the simplicial join cannot be easily expressed in terms of order relation, Prop. 13, in section 2.3, will provide
some insight into the relations between simplicial join and order join.

Link
The link of the simplex s in the simplicial complex C is defined as link(s, C) = {t ∈ C; s ◦ t ∈ C}. Notice that this
is always a simplicial complex.
A direct expression of the link operator in terms of order relation is provided by Prop. 8. However, it is usually more
convenient to use the isomorphism introduced in Prop. 9; this isomorphism is illustrated in Fig. 8 (see appendix for
proofs of both properties).

Property 8 Let s be a simplex of a simplicial complex C, link(s, C) = αC(βC(s)) \ βC(αC(s)).

Property 9 Let s be a simplex of a simplicial complex C, link(s, C) is (order) isomorphic to β2
C(s).

{X
,D

,E}

{X,E,A}

A

B

C

D

E

A

B

C

D

E

X

{E} {D,E} {X,D,E}

{X,A}

{X
,B

}

{X,D}

{X
,E

}

{A,B}
{A}

{B}
{C}

{D}

{E}

{B,C}

{C
,D

}

{D,E}

{E
,A

}

β({Χ}) link({X})

{X
,B

,C
}{X,A,B} {X,C}

{X,C,D}

Fig. 8. The leftmost figure depicts the closed star of the 0-simplex {X}, which can be divided into {X}, β2({X}) (center)
and the link of {X} (right). Notice that the link of {X} can be obtained from β2({X}) by factorization and that the link of
{X} and β2({X}) are order-isomorphic.

2.2 Simplicial Complexes and n-Surfaces

A simplicial complex C is said to be an n-surface if the order (C,⊆) is an n-surface. We will see that it is possible
to give a characterization of these particular n-surfaces, which is not based on order notions. Besides, some proofs
related to n-surfaces are simpler in this framework.
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Those familiar with the notion of (combinatorial) manifold, which will be discussed later in this article, know that
the boundary of an n-simplex is used for deriving a general definition of combinatorial spheres. The next property
establishes that this boundary is always an (n− 1)-surface. While not surprising, this result is quite important since
many proofs, in the framework of simplicial complexes, depend on this property (proof: see appendix).

Property 10 Let s be an n-simplex, with n ≥ 0, then α2(s) (i.e., the boundary of s) is an (n− 1)-surface.

As shown by the following property (whose proof can be found in the appendix), a simpler characterization of
n-surfaces can be derived from Prop. 10 in the case of simplicial complexes:

Property 11 Let C be a connected simplicial complex of support Λ. The simplicial complex C is an n-surface, with
n > 0, if, and only if, ∀x ∈ Λ, link({x}, C) is an (n− 1)-surface.

2.3 Chains of an Order

chain complex

{{a,b,c}}

{{b}}

{{b},{a,b}}

{{a,b}}

{b}

{a,b}

{a}

{a,b,c}

{c}

{{b},{a,b},{a,b,c}}

Fig. 9. Graphical illustration of the notion of chain complex. Left: the initial order |X| which is constituted by the closure of
the simplex {a, b, c}. Right: the chain complex CX constituted by the chains of |X|.

Let |X| be an order, a chain of |X| is a fully ordered subset of X (i.e., a subset S of X such that any two elements
of S are comparable). An n-chain is a chain having n+ 1 elements. We call chain complex of X, and denote by CX ,
the set of all the chains of |X|, i.e., CX = {S ⊆ X, ∀x1, x2 ∈ S, x1 ∈ θX(x2)}. It should be noted that, for any order
|X|, (CX ,⊆) is an order and that CX is a simplicial complex, the support of which is X, as illustrated in Fig. 9.
Moreover, the structure of (CX ,⊆) is strongly related to the structure of |X|, as shown by the following theorem:

Theorem 12 Let |X| be an order. Then, the simplicial complex CX formed by its chains is an n-surface if and only
if |X| is an n-surface.

Proof:
This property is obvious for n = 0. Moreover the equivalence between |X| connectedness and CX connectedness is
straightforward.
Let us now assume that the property is true for n ≥ 0. By Prop. 11 we may affirm that CX is an (n+ 1)-surface if,
and only if, for any 0-simplex s of CX , link(s, CX) is an n-surface.
Let s = {x0} be a 0-simplex of CX , we have:

link(s, CX) = {{x1, . . . , xk}, {x0, x1, . . . , xk} ∈ CX}
= Cθ2

X(x0)

Thus, we deduce from the induction hypothesis that CX is an (n+1)-surface if, and only if, |X| is an (n+1)-surface. 2

While order relations do not allow a simple expression of the simplicial join operator, the next property shows a
deep connection between the order join and the simplicial join (proof: see appendix).

Property 13 Let |X| and |Y | be two orders such that X ∩ Y = ∅, then CX∗Y = CY ∗X = CX ◦ CY .
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3 DISCRETE SURFACES, MANIFOLDS AND PSEUDOMANIFOLDS

The notion of n-surface was introduced quite recently and comparisons with more classical notions of discrete surfaces
are lacking. In this section, we provide an analysis of the relationships between combinatorial manifolds, pseudoman-
ifolds and n-surfaces; and obtain a classification theorem.

3.1 Pseudomanifolds

A simplicial n-complex C is said to be pure if each of its simplexes is a face of an n-simplex of C. A pure n-complex
C is said to be strongly connected if every two n-simplexes of C can be connected by a sequence of n-simplexes such
that any two consecutive simplexes have an (n− 1)-dimensional face in common. More precisely, in terms of order,
a pure n-complex C is strongly connected if for any two distinct n-elements of the order |C| = (C,⊆), there exists
a path (x = x0, . . . , x2r = y) in |C| with r ∈ N such that ∀i ∈ [0, r], x2i is an n-element and ∀j ∈ [0, r[, x2j+1 is
an (n − 1)-element (notice that this definition also makes sense for orders which are n-surfaces but not simplicial
complexes). A strongly connected n-dimensional complex C is called an n-pseudomanifold (without boundary) if every
(n− 1)-simplex of C is a face of exactly two n-simplexes.

3.2 n-Surfaces and Pseudomanifolds

As shown by Cor. 5, every simplicial complex which is an n-surface is pure. We will now show that simplicial
complexes which are n-surfaces have strong connectedness and pseudomanifold properties.

Property 14 Let C be a simplicial complex. If C is an n-surface, n > 0, then C is strongly connected.

Proof:
We will prove that this property is true for all n-surfaces (whether they are simplicial complexes or not). Let x and
y be two distinct n-elements of C. Since x and y both have rank n, we know that y 6∈ θC(x).
If |C| is a 1-surface, then the proof of this property is straightforward. Let us now assume that the property is true
for any k, 0 < k < n and let |C| be an n-surface:
• Since |C| is an n-surface, n > 0, |C| is connected and there exists a path π0 = (x = x0

0, . . . , x
0
r = y) from x to y in

|C| (Fig. 10.1).
• By transitivity of the order relation we can suppress all intermediary elements from π0 and we obtain a path
π1 = (x = x1

0, . . . , x
1
2m = y) such that ∀i ∈]0,m], x1

2i−1 ∈ α2
C(x1

2i) and ∀i ∈ [0,m[, x1
2i+1 ∈ α2

C(x1
2i) (Fig. 10.2).

• By transitivity, and thanks to the purity of n-surfaces (Cor. 5), we can now obtain a path π2 = (x = x2
0, . . . , x

2
2m = y)

such that ∀i ∈]0,m], x2
2i−1 = x1

2i−1 and ∀i ∈]0,m[, x2
2i is an n-element of |C| in β2

C(x1
2i) (Fig. 10.3).

• Now, let i ∈]0,m], and let us consider the element x2
2i−1 of π2. Since |C| is an n-surface, |θ2

C(x2
2i−1)| is an (n− 1)-

surface. The rank of x2
2i−1 is either equal to n − 1 or strictly lower than n − 1. In the latter case, by induction

hypothesis, there exists a path π′ = (x2
2i−2 = z0, . . . , z2p = x2

2i) from x2
2i−2 to x2

2i in |θ2
C(x2

2i−1)| such that ∀j ∈ [0, p],
z2j is an (n − 1)-element of |θ2

C(x2
2i−1)| (and thus an n-element of |C|), and ∀j ∈ [0, p[, z2j+1 is an (n − 2)-element

of |θ2
C(x2

2i−1)| (and thus an (n− 1)-element of |C|).
• By replacing every element of rank strictly lower than n − 1 in π2 by a path π′ built as described previously, we
obtain a path π3 = (x = x3

0, . . . , x
3
2q = y), q ∈ N, such that ∀i ∈ [0, q], x3

2i is an element of rank n and ∀i ∈ [0, q[,
x3

2i+1 is an element of rank (n− 1) (Fig. 10.4). 2

It is now easy to prove that any n-surface is an n-pseudomanifold: Prop. 4 implies that, for any (n− 1)-simplex
s in a simplicial complex C which is an n-surface, β2

C(s) is a 0-surface. Thus, every (n− 1)-simplex of C is a face of
exactly two n-simplexes of C and, as a consequence of Prop. 14 and Prop. 4, we have:

Property 15 Let C be a simplicial complex. If C is an n-surface, n > 0, then C is an n-pseudomanifold without
boundary.

The converse of Prop. 15 is not true. A counter-example is given by the pinched sphere (Fig. 2), which is a
2-pseudomanifold without boundary but not a 2-surface, for the neighborhood of the point S is not a 1-surface (it is
not connected).
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π 2
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a2 a4 a3a1

b2
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b3
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b1
π 1
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π 3
a1
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a3

b6

π

a1 a1

3) replacement of odd points by n−elements 4) subpath substitutions of even points

a2

c1 c1

c1

b5b4

a5 a4a2

Fig. 10. Illustration for the proof of Prop. 14.

3.3 Manifolds

In the introduction, we gave an informal presentation of combinatorial manifolds. We will here provide the necessary
definitions related to stellar manifolds, which have been proved (in [3]) to be equivalent to combinatorial manifolds [1].
For the sake of simplicity we will use the word manifold as a shortcut for stellar manifold in the sequel.
Let s be a simplex in a simplicial complex C and {x} a 0-simplex not in C. The stellar subdivision of s (in C) at point
{x} is defined by (s, {x})C = (C \ ŝtar(s, C))∪ ({x}◦α2

C(s)◦ link(s, C)). This operation is illustrated Fig. 11. As can
be seen in the second example, the stellar subdivision of a given simplex may affect its surrounding, more exactly its
star. The inverse operation, denoted by (s, {x})−1

C is called a stellar weld. More precisely, if {x} ∈ C and s 6∈ C is

such that there exists a subcomplex t ∈ C for which link({x}, C) = α2(s)◦ t, (s, {x})−1
C = (C \ ŝtar({x}, C))∪ (s◦ t).

If the simplicial complex C can be obtained from the simplicial complex D by a sequence of stellar subdivisions
and welds, C and D are said to be stellar equivalent. In the following definitions, sn will denote an n-simplex. An
n-sphere is a simplicial complex which is stellar equivalent to the boundary of sn+1 (i.e., to α2(sn+1)). An n-manifold
(without boundary) M is a connected simplicial complex such that for every 0-simplex {v} of M , link({v},M) is a
stellar (n− 1)-sphere.

CCC

b

d d

b

a

c

x

b

x

a

c

({a,c},{x}) ({a,b,c},{x})

c

a d

Fig. 11. Examples of stellar moves. Left: original simplicial complex C. Center: result of the stellar subdivision ({a, c}, {x})C .
Right: result of the stellar subdivision ({a, b, c}, {x})C .

3.4 n-Surfaces and Manifolds

Property 16 Let M be an n-manifold without boundary, with n > 0, then M is an n-surface.
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Proof:
The following proof will use the property (which can be found in [1]) that an n-sphere, with n > 0, is an n-manifold
without boundary.
A 0-surface and a 0-sphere are both made of two isolated points.
Let M be a 1-manifold, by definition the link of every 0-simplex of M is a 0-sphere. Thus it is a 0-surface and,
according to Prop. 11, M is a 1-surface.
Let us now assume that the property is true for any n-manifold and let M be an (n+ 1)-manifold. By definition, the
link of any 0-simplex x of M is an n-sphere. Then, since an n-sphere is an n-manifold, it is an n-surface by induction
hypothesis. Thus, according to Prop. 11, M is an (n+ 1)-surface. 2

As it was the case with Prop. 15, the converse of Prop. 16 is not true. A counter-example is the order join of a
0-surface and the torus depicted in Fig. 5.d, which is a 2-surface. The result is a 3-surface, according to Th. 2, and
so is its chain complex (Th. 12). Yet, this chain complex is not a 3-manifold, since (roughly speaking) there are two
points whose neighborhood is a torus and not a sphere.
Nevertheless, since 0-spheres are equivalent to 0-surfaces, it can be deduced that 1-manifolds without boundary are
equivalent to 1-surfaces. Furthermore, it can easily be seen that all 1-manifolds without boundary are 1-spheres, thus
all 2-surfaces are 2-manifolds without boundary.

3.5 Concluding Property

The following theorem summarizes this entire section, establishing a classification between pseudomanifolds, mani-
folds and n-surfaces.

Theorem 17 Let n ∈ N∗, let Pn be the set of all n-pseudomanifolds without boundary, Sn the set of all the simplicial
complexes which are n-surfaces and Mn the set of all n-manifolds without boundary. We have M1 = S1 = P1,
M2 = S2 ⊂ P2 and, for any n > 2, Mn ⊂ Sn ⊂ Pn.

4 FRONTIER ORDERS

In former articles [26, 27], we have introduced frontier orders as a way of extracting boundaries of objects in arbitrary
orders. The aim of this section is to prove that, in any n-surface |X|, the frontier order associated to any subset of
X is a union of disjoint (n− 1)-surfaces.

a) b) c) d)

Fig. 12. a) A simplicial complex C with support X. b) The point set X is partitioned into two subsets: K [object, white
points] and K [background, black points]. c) This bi-partition of the point set induces a tri-partition of the simplicial complex
between an object complex [white], a background complex [black] and a frontier order (this is not a simplicial complex) [grey].
d) Embedding of the frontier order [black squares and the lines connecting them].
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4.1 Definition

If we consider a simplicial complex C with support X (Fig. 12.a), the partition of X between a set K, the object,
and its complementary K, the background (Fig. 12.b), induces a partition of C into three sets (Fig. 12.c):
• CK , the set of all the simplexes which are subsets of K
• CK , the set of all the simplexes which are subsets of K
• CK/K , the set of the simplexes being neither subset of K nor subset of K

We call frontier order of K in X, relatively to C, the suborder |CK/K | of |C| relative to CK/K . Notice that, since a

singleton (0-simplex) is either a subset of K or a subset of K, CK/K is not closed for the inclusion and, consequently,
is not a simplicial complex.

4.2 Surface Properties

By definition, |CK/K | is both symmetrical, since CK/K = CK/K , and separating, since any path from any x ∈ K to

any y ∈ K crosses CK/K . The purpose of this section is to prove that, if a simplicial complex is an n-surface, n > 1,

then the frontier order induced by any bi-partition of its support is a union of disjoint (n− 1)-surfaces.
This proof will be divided, so that it might be more easily understood. First, we will prove that the frontier order
associated to the bi-partition of the vertices of the boundary of an n-simplex is an (n− 2)-surface.

Property 18 Let s be an n-simplex, n ≥ 2, and let the simplicial complex C = α2(s) be the boundary of s. Let K
be a non-empty proper subset of s. Then the frontier order |CK/K | is an (n− 2)-surface.

Proof:
We first examine the case n = 2. In this case, s is of the form {x, y, z}. Up to permutation and complementation we
can assume that K = {x, y}, in which case |CK/K | = ({{x, z}, {y, z}},⊆), a 0-surface.

Now, we assume that the property is true for all i ≤ n, with n ≥ 2. Let s be an (n + 1)-simplex and let K be a
non-empty proper subset of s. Let t be a k-simplex, k ≤ n, t ∈ CK/K (notice that k ≥ 1).

(a) By Prop. 10, |C| = |α2(s)| is an n-surface.
(b) By definition of surfaces, we know that |θ2

C(t)| is an (n− 1)-surface.
(c) By Prop. 10, |α2

C(t)| is a (k − 1)-surface.
(d) By induction hypothesis at rank k, |[α2

C(t)]K/K | is a (k − 2)-surface.

(e) By Th. 2, |β2
C(t)| is an (n− k − 1)-surface (from (b) and (c)).

(f) Moreover, since t ∈ CK/K , |β2
C(t)| = |[β2

C(t)]K/K |.
(g) So, |[θ2

C(t)]K/K | = |[β2
C(t)]K/K | ∗ |[α2

C(t)]K/K | is an (n− 2)-surface (from (e), (f) and (d)).

Consequently |CK/K | is a union of disjoint (n− 1)-surfaces.

We now have to prove that |CK/K | is connected, i.e., that any two elements of |CK/K | are linked by a path in |CK/K |.
Let us consider two simplexes s1 and s2 of |CK/K |. There exists four points a, b, c and d (not necessarily all distinct)

such that a ∈ s1 ∩K, b ∈ s1 ∩K, c ∈ s2 ∩K and d ∈ s2 ∩K. Suppose that {a, b, c, d} = s, then it may be verified
that |CK/K | = ({{a, b}, {a, b, c}, {b, c}, {b, c, d}, {c, d}, {c, d, a}, {d, a}, {d, a, b}},⊆), which is obviously a connected

1-surface. Otherwise, {a, b, c, d} is a proper subset of s and belongs to CK/K , and (s1, {a, b}, {a, b, c, d}, {c, d}, s2) is

a path from s1 to s2 in |CK/K |. 2

The previous property being established for the boundary of an n-simplex, we can now prove the main theorem
of this section:

Theorem 19 Let C be a simplicial complex which is an n-surface, n > 1, and let X be its support. Let K be a
non-empty proper subset of X. Then the frontier order |CK/K | is a union of disjoint (n− 1)-surfaces.

Proof:
Let S be a k-simplex of CK/K (thus k ≥ 1). In order to establish the theorem, it is sufficient to prove that for any S

in CK/K , |θ2
CK/K

(S)| is a (n− 2)-surface. We observe that:

(a) By definition of surfaces, we know that |θ2
C(S)| is an (n− 1)-surface.

(b) By Prop. 10, |α2
C(S)| is a (k − 1)-surface.
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(c) By Prop. 18, |[α2
C(S)]K/K | is a (k − 2)-surface.

(d) By Th. 2, |β2(S)| is an (n− k − 1)-surface (from (a) and (b)).
(e) Moreover, since S ∈ CK/K , |β2

C(S)| = |[β2
C(S)]K/K |.

(f) Now, using Th. 2, we deduce that |[θ2
C(S)]K/K | = |[β2

C(S)]K/K | ∗ |[α2
C(S)]K/K | is an (n − 2)-surface (from

(d), (e) and (c)).
Moreover, [θ2

C(S)]K/K = {e ∈ θ2
C(S), e 6⊆ K, e 6⊆ K} and θ2

CK/K
(S) = {e ∈ θ2

C(S)} ∩ {e ∈ C, e 6⊆ K, e 6⊆ K}, so

θ2
CK/K

(S) = [θ2
C(S)]K/K . We conclude that for any S in CK/K , |C| being an n-surface, |θ2

CK/K
(S)| is an (n−2)-surface.

2

We give now a result which relates the connectedness of the object to the connectedness of its boundary. Of
course, a connected object may have a disconnected boundary (think about a ball with a cavity), but we will show
that, roughly speaking, a disconnected object must have a disconnected boundary.

Let C be a simplicial complex and let X be its support. Let K and L be two disjoint subsets of X, we say that K
and L are unrelated (in C) if ∀s ∈ K, ∀t ∈ L, {s, t} is not a simplex of C.

Let |X| = (X,αX) be an order. We say that two suborders |K| and |L| of |X| are adjacent if, for some x ∈ K
and some y ∈ L, we have x ∈ θX(y). We say that two suborders |K| and |L| of |X| are mutually disconnected if they
are not adjacent.

Property 20 Let C be a simplicial complex and let X be its support. Let K and L be two unrelated subsets of X.
Then CK/K and CL/L are mutually disconnected.

4.3 Partially Ordered Sets and Frontier Orders

Using chain complexes, frontier orders can be defined for any partially ordered set. More exactly, if |X| is a partially
ordered set and K is a subset of X we define the frontier order of K in |X| as |CX

K/K
| where CX is the chain complex

of |X|. The following property is a direct consequence of Th. 12 and Th. 19:

Corollary 21 Let |X| = (X,αX) be an order and K a non-empty proper subset of X. If |X| is an n-surface then
the frontier order |CX

K/K
| is a union of disjoint (n− 1)-surfaces.

Prop. 22 and Cor. 23 relate the connectedness of a suborder to the connectedness of its chain complex and its
frontier order, respectively. The proofs are straightforward and will be ommited.

Property 22 Let |X| an order, let |K| and |L| be two suborders of |X| (hence K and L are subsets of the support
of CX , the chain complex of |X|). Then K and L are unrelated in CX if and only if |K| and |L| are mutually
disconnected.

Corollary 23 Let |X| be an order, let |K| and |L| be two mutually disconnected sub-orders of |X|. Then, the frontier
orders |CX

K/K
| and |CX

L/L
| are mutually disconnected.

5 MARCHING CUBES-LIKE ALGORITHM

The goal of this section is to give an application of the preceding theory to the fields of computer graphics and
visualization of discrete objects. There is a number of theoretical, but also practical works (see e.g. [28–34]) which
promote the frameworks of cell complexes, simplicial complexes and orders for image processing. Thus, the need for
visualization programs for objects in such spaces is real.

Notice that an object in the three-dimensional Khalimsky grid H 3 may be obtained through different ways:
in particular, by a transformation applied to a subset of Z3 (see [10] for examples of such transformations and
connections with the “classical” digital topology), by discretization of an analytically specified geometrical form,
using a specific discretization scheme (see [34]); or as the result of an operator acting in H 3 (e.g. skeletonization
operators, see [30, 31]).

We provide here the first “marching cubes-like” algorithm for the three-dimensional Khalimsky grid, the proof of
its correctness straightforwardly follows from Cor. 21.

The Marching Cubes algorithm [24] provides an efficient way to extract a polygonal surface from an object ex-
pressed as a subset of Z3, or an approximated isosurface from a regular (cubic grid based) sampling of a function
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φ : R3 → R. The main feature of this algorithm is a look-up table associating a surface patch to each possible parti-
tion of the corners of a unit cube between two sets of points. Given a map f : Z3 → R and a value n, the Marching
Cubes algorithm aims at building a frontier which separates the sets K = {x ∈ Z3, f(x) > n} and K = Z3 \ K.
For each unit cube c of the cubic grid Z3, the algorithm uses c ∩K and c ∩K as a key for finding the appropriate
surface patch in the look-up table, interpolates the position of its support points according to the values of the eight
corners of this unit cube, and memorizes the resulting surface element. The union of all those elements constitutes
a polygonal mesh, which is the result of the Marching Cubes algorithm. In the case of binary images, it is sufficient
to take the look-up table elements as they are, without any interpolation.

Nevertheless, the polygonal meshes generated by this algorithm are not guaranteed to be sound surfaces. In
particular, artefacts such as holes might appear. We will now detail how to design an n-dimensional Marching
Cubes-like algorithm, based on frontier orders, in the case where the image is considered as a subset of Zn equipped
with the Khalimsky topology. The surfaces generated by our algorithm are guaranteed to be (n− 1)-surfaces.

5.1 Embedding of the frontier order

Let us first notice that, given any set X of points in Rn upon which a simplicial complex C is built, the frontier
order of a subset K of X can unambiguously be embedded in Rn using the following scheme:
• To any 0-element {p0, p1} of CK/K is associated the point (p0 + p1)/2.
• To any n-element of CK/K is associated the convex hull of the points it contains.

Such an embedding is illustrated in Fig. 12.d.

Let us now introduce the Khalimsky grids as the family of orders |Hn| = (Hn,⊆), defined by:

H1
0 = {{a}, a ∈ Z}

H1
1 = {{a, a+ 1}, a ∈ Z}

H1 = H1
0 ∪H1

1

Hn = {h1 × . . .× hn, ∀i ∈ [1, n], hi ∈ H1}, n > 1

In [14], Evako et al. have proved that |Hn| is an n-surface for all n ∈ N∗. By Cor. 21, this implies that the frontier
defined for any subset of an order |Hn| is a union of disjoint (n− 1)-surfaces.
A natural encoding of the set Hn by elements of Zn is defined as follows [11]: to every element h1 × . . .× hn of Hn

is assigned the vertex of coordinates (z1, . . . , zn) in Zn, such that ∀i ∈ [1 . . . n], zi = 2vi if hi = {vi} and zi = 2vi + 1
if hi = {vi, vi + 1}.
Then, as explained in section 4, we can use the chain complex of |Hn| to define the frontier order of any subset K
of Hn, and we can use the embedding scheme introduced earlier:
• We have seen that 0-elements of a frontier order are of the form {A,B}. To each such element we assign the

point (of Rn) (a+ b)/2 where a = (a1, . . . , an) (resp. b = (b1, . . . , bn)) is the vertex assigned to A (resp. B) in Zn.
• To each 1-element we assign the segment joining the points associated to the 0-elements of its α-adherence.
• To each 2-element we assign the corresponding polygon (which is in fact either a triangle or a parallelogram).
• And so on. . .

5.2 Look-up tables

In the 3-dimensional case, the embedding process described above results in the look-up table depicted in Fig. 13. It
should be noted that, |H3| being an heterogeneous space, the corners of the unit cube are depicted using different
shapes, so as to represent the different types of element composing |H 3|: the cube stands for a 3-element, the square
faces stand for 2-elements, the cylinders stand for 1-elements and the sphere stands for a 0-element. Look-up tables
corresponding to higher dimensions can easily be obtained in the same way, however the size of such tables grows
exponentially as dimension increases.
Since they are based upon tetrahedra (3-chains) rather than directly upon cubes, the configurations shown in Fig. 13
are more facetized than those of the original Marching Cubes algorithm. It is however possible to simplify the surface
patches associated to the various configurations, while ensuring that the overall topology of the surface is preserved
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Fig. 13.
Configurations obtained for the look-up table of the Marching Cubes-like algorithm in the H3 case. Whenever several configu-
rations are identical up to rotations and symmetries, only one is presented here. While the original Marching-Cube Algorithm
generates from 1 to 4 triangles for each configuration, the count here range from 2 to 12 triangles (2 to 6 frontier orders
elements, yet some are embedded as parallelograms).

and that the surface still separates the object from the background.

The simplification process, illustrated in Fig. 14, is as follows: the configurations are first triangulated (at worst,
the chain complex of the frontier order can be used for this purpose), then stellar moves [3] are applied to reduce
the number of faces. In particular, in order to ensure the coherence of the frontier between adjacent unit cubes (in
dimension 3), whenever the intersection of a cube face with the triangulated embedded frontier order F contains a
point A belonging to two 1-simplexes (i.e., segments) {A,B} and {A,C} we apply the stellar weld ({B,C}, {A})−1

F .
This move, illustrated in Fig. 14.b-c, replaces both {A,B} and {A,C} by the 1-simplex {B,C} (it also replaces
appropriately any other simplex in which A was included).
It should be noted that, while the present article does not provide any proof that stellar moves applied to an n-surface
result in an n-surface, it is well known that such moves preserve manifold properties. Thus, this method can at least
be used safely in dimension 3 (see Th. 17), resulting in the look-up table depicted in Fig. 15.
We depict in Fig. 16 the surface obtained by our Marching Cubes-like algorithm, using the original look-up table
in Fig. 16.a and the simplified look-up table in Fig. 16.b. The original data and the method used to obtain them are
described in [31].

Similarly to the original Marching Cubes algorithm, the complexity of our algorithm is inO(N×2n), whereN is the
size (number of object and background points) of the input data and n is the dimension of the space. Some implemen-
tation details (including the lookup tables) may be found at the address: www.esiee.fr/∼info/xavier/work/MC04.html

CONCLUSION

We presented new results on n-surfaces and frontier orders. In particular, we obtained a classification theorem (Th. 17)
which shows that, in the framework of simplicial complexes, n-surfaces are particular cases of pseudomanifolds, and
that combinatorial manifolds are particular cases of n-surfaces. An important consequence of this theorem is that
n-surfaces verify a discrete analog of the Jordan-Brouwer theorem, for any n.
We also proved that the frontier order of any object in an n-dimensional “regular” space is an (n − 1)-surface, and
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Fig. 14. a) is an original configuration. b) is a triangulation of a). c) is obtained from b) by the anti-stellar move replacing
the vertex A by the 1-simplex {B,C}, this same move being applied to all points located on the centers of the faces (this is
the important part since this move has effect not only on this cube but on the neighboring ones as well). d) and e) are then
obtained by consecutive stellar moves.

presented an application of this result to the design of topologically sound Marching Cubes-like algorithms.
In another article [35], we use some of the properties of this paper to show the strong link between frontier orders
and the notion of regular neighborhood, as known in the framework of piecewise linear topology.

APPENDIX: Proofs of secondary properties

Proof of Prop. 6
No proper sub-order of an n-surface is an (n+ k)-surface, n, k ≥ 0.
The case k > 0 is an immediate consequence of Prop. 3, suppose now k = 0.
The property is obvious for n = 0, assume that it is true for a given n ≥ 0.
Let |Y | be an (n+ 1)-surface which is a sub-order of an (n+ 1)-surface |X|. For any y in Y , |θ2

Y (y)| and |θ2
X(y)| are

n-surfaces and θ2
Y (y) ⊆ θ2

X(y). Thus, by recurrence hypothesis, we have θ2
Y (y) = θ2

X(y).
Since |X| is connected, we easily deduce that |Y | = |X|. 2

Lemma A
Let |X| be an order. Let Y ⊆ X and let z ∈ Y . Then |Y ∩ θ2

X(z)| = |θ2
Y (z)|.

By definition of an induced sub-order, it is sufficient to prove that Y ∩ θ2
X(z) = θ2

Y (z). We have:

θ2
Y (z) = {y ∈ Y, (z, y) ∈ θ2

X ∩ (Y × Y )}
= {y ∈ X, (z, y) ∈ θ2

X} ∩ Y
= θ2

X(z) ∩ Y

2

Proof of Prop. 7
Let |X| be an n-surface, n ≥ 1, and let Y ⊂ X. If |Y | is a k-surface, k ≥ 0, and if |Y | separates |X|, then we have
necessarily k = n− 1.
The property is trivially true for n = 1.
Then, considering that the property is true for n−1, let us suppose that |X| is an n-surface and that |Y | is a k-surface
which separates |X|, with 0 ≤ k < n− 1. Consequently, there are two points x and y in X \Y and a maximal integer
i > 0 such that :
(1) No path from x to y in |X| contains less than i elements of Y .
Considering a path (x = z0, . . . , zm = y) containing exactly i elements of Y , x ∈ X \ Y implies that some j > 0
exists such that {x = z0, . . . , zj−1} ⊆ X \ Y while zj ∈ Y . The θ2-neighborhood of zj in |X| is an (n − 1)-surface
and its neighborhood in |Y | is a (k − 1)-surface, consequently, by induction hypothesis, the neighborhood of zj in
|X \ Y | is connected. Moreover, by lemma A, we see that |θ2

X(zj) ∩ θ2
X(zj+1)| = |θ2

Z(zj+1)| with Z = θ2
X(zj). Since

|Z| is an (n-1)-surface, we deduce that |θ2
X(zj) ∩ θ2

X(zj+1)| is an (n− 2)-surface, and thus is not a proper sub-order
of |Y | (Prop. 6). Furthermore |θ2

X(zj) ∩ θ2
X(zj+1)| 6= |Y | since zj belongs to Y but not to θ2

X(zj). Thus, there exists
a path from zj−1 to zj′ , with zj′ ∈ θ2

X(zj+1) in |X \Y |, and, consequently, a path from x to y in |X| containing i− 1
elements of Y , which is in contradiction with (1). 2
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Fig. 15. Simplified configurations obtained for look-up table of the Marching Cubes-like algorithm in case of H3, derived from
the configurations presented in figure 13. It should be noticed that different frontiers may have identical simplifications. Most
simplified configurations are equivalent to the corresponding configuration of the original Marching-Cubes algorithm; that is,
they have the same number of triangles, the same intersection with the cube boundary and are stellar equivalent. Nevertheless
some new configurations appear whenever two points located on the opposite corner of a face or cube are adjacent according
to |H3| topology; and one of the original algorithm configurations, assuming four non-adjacent corners, has no equivalent here.

Proof of Prop. 8
Let s be a simplex of a simplicial complex C, link(s, C) = αC(βC(s)) \ βC(αC(s)).
Let t be a simplex in link(s, C). Since t is joinable with s their intersection is empty, which implies t 6∈ βC(αC(s))
(i.e. t does not contain any subset of s). Then, since s◦ t = s∪ t, we can deduce that s◦ t ∈ βC(s) while t ∈ αC(s◦ t).
Thus t ∈ αC(βC((s))) \ βC(αC(s)).
Let t be a simplex in αC(βC(s)) \ βC(αC(s)). Since t 6∈ βC(αC(s)), t ∩ s = ∅, i.e., s and t are joinable. Then, since
t ∈ αC(βC(s)), there exists some element u ∈ βC(s) such that s ⊆ u and t ⊆ u; thus s◦ t ⊆ u (consequently s◦ t ∈ C)
and t ∈ link(s, C). 2

Proof of Prop. 9
Let s be a simplex of a simplicial complex C, link(s, C) is (order) isomorphic to β2

C(s).
Let us consider the transformation Φs which associates to any element u of β2

C(s) the element t = u \ s of link(s, C).
It is obvious that Φs is a bijection from β2

C(s) to link(s, C) which preserves the inclusion. 2

Proof of Prop. 10
Let s be an n-simplex, with n ≥ 0, then α2(s) ( i.e., the boundary of s) is an (n− 1)-surface.
The property is obviously true for n = 0, 1. Let us now assume that the property is true for all i ≤ n, with n > 0.
Let s be an (n+ 1)-simplex and let C = α2(s).
Let t be a k-simplex of C, 0 ≤ k ≤ n. By induction hypothesis |α2

C(t)| is a (k− 1)-surface. Remind that β2
C(t) is the

set of all (strict) subsets of s including (strictly) t. It can be easily seen that the transformation Φt which associates
to any element u of β2

C(t) the element u \ t of α2
C(s \ t) is an isomorphism between the orders |β2

C(t)| and |α2
C(s \ t)|.

Moreover, |α2
C(s \ t)| is an (n− k − 1)-surface by induction hypothesis.

By Th. 2, |θ2
C(t)| = |β2

C(t)| ∗ |α2
C(t)| is an (n − 1)-surface. Thus, since C is obviously connected, C = α2(s) is an

n-surface. 2
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a) b)

Fig. 16. Results for a segmented cortex (in |H3|), a) using initial configurations b) using simplified configurations.

Proof of Prop. 11
Let C be a connected simplicial complex of support Λ. The simplicial complex C is an n-surface, with n > 0, if, and
only if, ∀x ∈ Λ, link({x}, C) is an (n− 1)-surface.
Let us first remind that, for any 0-simplex s of C, the link of s in C is isomorphic to β2

C(s) (Prop. 9). The direct
implication is obvious, let us prove the converse.
By Cor. 5, applied to |θ2

C({x})|, C is an n-complex. Let s be a k-simplex of C, 0 ≤ k ≤ n. We will proceed by
induction on k to prove that |θ2

C(s)| is an (n− 1)-surface.
• By Prop. 10, |α2

C(s)| is a (k − 1)-surface.
• By hypothesis (and Prop. 9), if k = 0 then |β2

C(s)| = |θ2
C(s)| is an (n− 1)-surface.

• Let us now suppose that k > 0 and that, for some (k − 1)-simplex sk−1 of C in θ2
C(s), |X| = |β2

C(sk−1)| is an
(n− k)-surface. Then |β2

C(s)| = |θ2
X(s)| is an (n− k − 1)-surface.

Thus, by Th. 2, |θ2
C(s)| is an (n− 1)-surface for any s and, C being connected, C is an n-surface. 2

Proof of Prop. 13
Let |X| and |Y | be two orders such that X ∩ Y = ∅, CX∗Y = CY ∗X = CX ◦ CY .
Obviously, we have CX∗Y = CY ∗X . By definition:
CX∗Y = {{s0, . . . , sk} ⊆ X ∗ Y, ∀i, j ∈ [0, k], si ∈ θX∗Y (sj)}

and:
CX ◦ CY = CX ∪ CY ∪ {{x0, . . . , xi−1, yi, . . . , yk}, {x0, . . . , xi−1} ∈ CX , {yi, . . . , yk} ∈ CY }

Let si ∈ θX∗Y (sj). We have three possible cases:
• either si ∈ X, sj ∈ X and si ∈ θX(sj)
• or si ∈ Y , sj ∈ Y and si ∈ θY (sj)
• or {si, sj} = {x, y}, x ∈ X, y ∈ Y .
Consequently, any element of CX∗Y is either a chain of |X| (if it is composed uniquely of elements of |X|), or

a chain of |Y | (if it is composed uniquely of elements of |Y |) or the union of a chain of |X| and a chain of |Y |.
Conversely any chain of |X| or |Y | obviously belongs to CX∗Y , as well as the join of any chain of |X| with any chain
of |Y |. 2

Proof of Prop. 20
Let C be a simplicial complex and let X be its support. Let K and L be two unrelated subsets of X. Then CK/K and
CL/L are mutually disconnected.

Let K and L be two unrelated (and thus disjoint) subsets of C and let us suppose that CK/K is adjacent to CL/L.

Let s be a simplex of CK/K and let t be a simplex of CL/L such that s ∈ θC(t). Without loss of generality, we can

assume that s ∈ αC(t) . Since s ∈ CK/K , we know that s ∩ K 6= ∅ and, consequently t ∩ K 6= ∅. Since t ∈ CL/L,

there exists a simplex {tL, tK} ⊆ t, with tL ∈ L and tK ∈ K. Then, either tL = tK implying K and L are not even
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disjoint, or {tL, tK} is a 1-simplex in which case K and S are not unrelated. 2
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