

Grayscale watersheds on perfect fusion graph

Jean Cousty

Michel Couprie Laurent Najman Gilles Bertrand

Institut Gaspard-Monge Laboratoire A2SI, Groupe ESIEE Cité Descartes, BP99 - 93162 Noisy-le-Grand Cedex - France {j.cousty, m.couprie, l.najman, g.bertrand}@esiee.fr

International Workshop on Combinatorial Image Analysis 19-21 June 2006

Problems

- Region merging methods consist of improving an initial segmentation by iteratively merging pairs of neighboring regions.
- T.Pavlidis. *Structural Pattern Recognition*, chapters 4-5. Segmentation techniques, 1977.

Introduction

In mathematical morphology *hierarchical methods* (saliency [NAJMAN96], waterfall [BEUCHER94]) are based on:

- watershed segmentation; and
- iterative merging of the obtained regions.

Problem 1: grayscale watershed

Problem

Altitudes of passes between the regions of the watersheds are fundamental for region merging methods based on morphology.

Problem 1: grayscale watershed

Problem

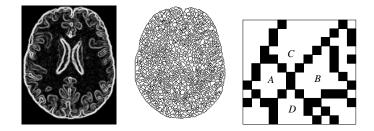
Altitudes of passes between the regions of the watersheds are fundamental for region merging methods based on morphology.

 Only topological based watersheds (*W-thinnings*) [NAJMAN05, BERTRAND05] produce divides correctly placed with respect to the altitude of the pass.

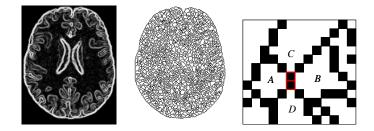
イロト イボト イヨト イヨト

Problem 2: region merging

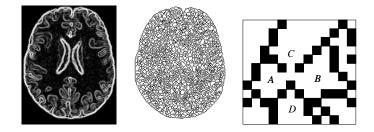
Problem 2: region merging



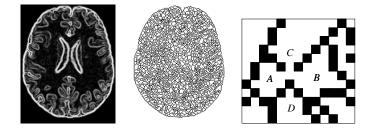
Problem 2: region merging



Problem 2: region merging



Problem 2: region merging



Problem

Is there some graphs in which any pair of neighboring regions can always be merged?

• • • • • • • • • • •

Problem 3: grayscale watersheds & region merging

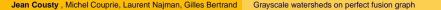
- Some grayscale watershed algorithms can sometimes produce *thick divides*.
- This is a problem for region merging.

Problem 3: grayscale watersheds & region merging

- Some grayscale watershed algorithms can sometimes produce *thick divides*.
- This is a problem for region merging.

Problem

- Is there a class of graphs in which any grayscale watershed is thin?
- How is it linked with region merging?



イロト イポト イヨト イヨト

Grayscale watersheds on perfect fusion graphs

Sets

- Watershed set: a model of frontier
- Fusion graphs

Functions

- W-thinnings and topological watersheds
- Topological watersheds on perfect fusion graphs
- C-watersheds: definition and linear time algorithm

• (1) • (2) • (2) • (3)

Watershed set: a model of frontier Fusion graphs

Basic notion on graphs

Let (E, Γ) be a symmetric graph. Let $X \subseteq E$, and let $Y \subseteq X$.

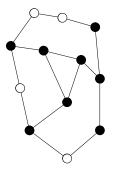
- We say that X is connected if ∀p ∈ X, q ∈ X, there exists a path in X, from p to q.
- We say that Y is a connected component of X if Y is both connected and maximal for this property.

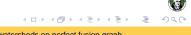
Watershed set: a model of frontier Fusion graphs

 A set X separates its complementary set (X) into connected components that we call regions for X.

Watershed set: a model of frontier Fusion graphs

 A set X separates its complementary set (X) into connected components that we call regions for X.





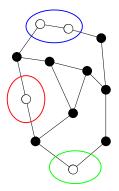
Watershed set: a model of frontier Fusion graphs

イロト イポト イヨト イヨト

3

200

 A set X separates its complementary set (X) into connected components that we call regions for X.



Watershed set: a model of frontier Fusion graphs

Watershed set: a model of frontier

Let $X \subseteq E$ and $p \in X$

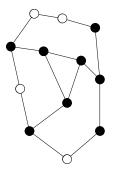
Watershed set: a model of frontier Fusion graphs

코 - - - 코 - -

3

Watershed set: a model of frontier

Let $X \subseteq E$ and $p \in X$



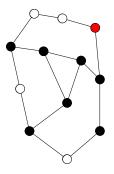
Watershed set: a model of frontier Fusion graphs

코 - - - 코 - -

3

Watershed set: a model of frontier

Let $X \subseteq E$ and $p \in X$



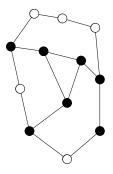
Watershed set: a model of frontier Fusion graphs

코 - - - 코 - -

3

Watershed set: a model of frontier

Let $X \subseteq E$ and $p \in X$



Watershed set: a model of frontier Fusion graphs

Watershed set: a model of frontier

• The set X is a *watershed set* if there is no W-simple point for X.

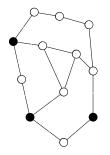
Sets Functions

Watershed set: a model of frontier Fusion graphs

イロト イポト イヨト イヨト

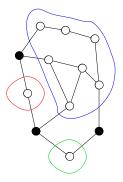
Dac

Watershed set: example



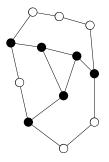
Watershed set: a model of frontier Fusion graphs

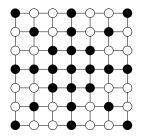
Watershed set: example



Watershed set: a model of frontier Fusion graphs

Watershed set: examples

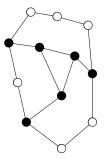


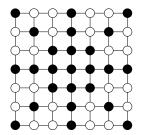


イロト イポト イヨト イヨト

Watershed set: a model of frontier Fusion graphs

Watershed set: examples





< 🗇

★ E > ★ E >

Problem

A watershed set can be thick.

200

3

Watershed set: a model of frontier Fusion graphs

Thin sets

Let $X \subseteq E$.

• We say that X is *thin* if any point in X is adjacent to at least one region for X

Watershed set: a model of frontier Fusion graphs

Region merging

Let $X \subseteq E$ and let A and B be two regions for X with $A \neq B$.

Definition

We say that A and B can be merged (for X) if there exists $S \subseteq X$ such that :

• A and B are the only regions for X adjacent to S; and

S is connected.

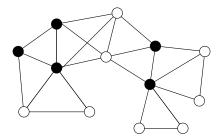
We also say that A and B can be merged through S.

3

Sets Functions

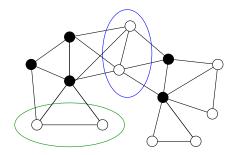
Watershed set: a model of frontier Fusion graphs

Region merging: example



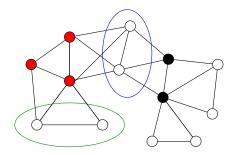
Watershed set: a model of frontier Fusion graphs

Region merging: example



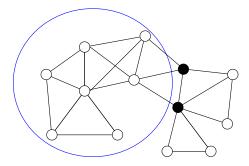
Watershed set: a model of frontier Fusion graphs

Region merging: example



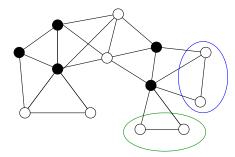
Watershed set: a model of frontier Fusion graphs

Region merging: example



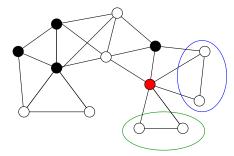
Watershed set: a model of frontier Fusion graphs

Region merging: counter-example



Watershed set: a model of frontier Fusion graphs

Region merging: counter-example



Watershed set: a model of frontier Fusion graphs

Region merging: counter-example



Watershed set: a model of frontier Fusion graphs

Region merging

Let $X \subset E$ and let A be a region for X.

• We say that *A* can be merged (for *X*) if there exists a region *B*, such that *A* and *B* can be merged.

Watershed set: a model of frontier Fusion graphs

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A B K A B K

Region merging and graphs

Remark

Based on region merging properties, we can define four classes of graphs.

- Weak fusion graphs
- Fusion graphs
- Strong fusion graphs
- Perfect fusion graphs

For clarity reasons, we will introduce only two of these four classes.

3

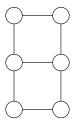
Watershed set: a model of frontier Fusion graphs

Fusion graph

Definition We say that (E, Γ) is a fusion graph if for any subset of vertices $X \subseteq E$, any region for X can be merged.

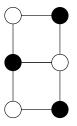
Watershed set: a model of frontier Fusion graphs

Fusion graph: example



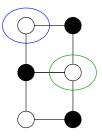
Watershed set: a model of frontier Fusion graphs

Fusion graph: example



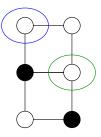
Watershed set: a model of frontier Fusion graphs

Fusion graph: example



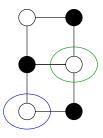
Watershed set: a model of frontier Fusion graphs

Fusion graph: example



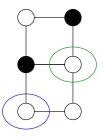
Watershed set: a model of frontier Fusion graphs

Fusion graph: example



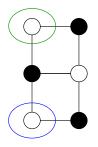
Watershed set: a model of frontier Fusion graphs

Fusion graph: example



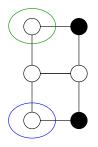
Watershed set: a model of frontier Fusion graphs

Fusion graph: example



Watershed set: a model of frontier Fusion graphs

Fusion graph: example

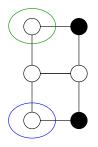


국 미 논 국문 본 국 문 프 프 Jean Cousty , Michel Couprie, Laurent Najman, Gilles Bertrand Grayscale watersheds on perfect fusion graph

500

Watershed set: a model of frontier Fusion graphs

Fusion graph: example



Problem

There exists neighboring regions that can not be merged through their common neighborhood.

Sets

Watershed set: a model of frontier Fusion graphs

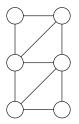
Perfect fusion graphs

Definition

We say that (E, Γ) is a perfect fusion graph if, for any $X \subseteq E$, any two regions for X, which are neighbor, can be merged through their common neighborhood.

Watershed set: a model of frontier Fusion graphs

Perfect fusion graph, example



Watershed set: a model of frontier Fusion graphs

Fusion graphs: properties

Watershed set: a model of frontier Fusion graphs

Fusion graphs: properties

Property

Any perfect fusion graph is a fusion graph. The converse is in general not true.

Watershed set: a model of frontier Fusion graphs

Characterization of Fusion Graphs

Theorem

A graph G is a fusion graph if and only if any non-trivial watershed in G is thin.

Watershed set: a model of frontier Fusion graphs

Characterizations of perfect fusion graphs

Theorem

The three following statements are equivalent: i) (E, Γ) is a perfect fusion graph;

Watershed set: a model of frontier Fusion graphs

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Characterizations of perfect fusion graphs

Theorem

The three following statements are equivalent: i) (E, Γ) is a perfect fusion graph; ii) G^{\blacktriangle} is not a subgraph of (E, Γ) .

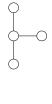
Watershed set: a model of frontier Fusion graphs

イロト イボト イヨト イヨト

Characterizations of perfect fusion graphs

Theorem

The three following statements are equivalent: i) (E, Γ) is a perfect fusion graph; ii) G^{\blacktriangle} is not a subgraph of (E, Γ) . iii) for any non-trivial watershed X in E, any point in X is adjacent to exactly two regions for X.



W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

Problems

Problem

 Given a grayscale image, how can we obtain an initial watershed set that can be used by further merging procedures?

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

Problems

Problem

- Given a grayscale image, how can we obtain an initial watershed set that can be used by further merging procedures?
- Topological grayscale watershed?

Basic notion for vertex-weighted graphs

Let *F* be a map from *E* to \mathbb{N} . Let $k \in \mathbb{N}$.

- We denote by F[k] the set $\{x \in E; F(x) \ge k\}$.
- A connected component of *F*[k] which does not contain a connected component of *F*[k − 1] is a (regional) minimum of *F*.

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

W-destructible point

Let *F* be a map let $p \in E$ and let k = F(p).

Definition

We say that p is W-destructible for F if p is W-simple for F[k].

W-thinnings and topological watersheds

Let *F* and *G* be two maps.

Definition

 We say that G is a W-thinning of F, if G may be derived from F by iteratively lowering W-destructible points by one.

W-thinnings and topological watersheds

Let F and G be two maps.

Definition

- We say that G is a W-thinning of F, if G may be derived from F by iteratively lowering W-destructible points by one.
- We say that G is a topological watershed of F if G is a W-thinning of F and if there is no W-destructible points for G.

W-thinnings and topological watersheds

Let *F* and *G* be two maps.

Definition

- We say that G is a W-thinning of F, if G may be derived from F by iteratively lowering W-destructible points by one.
- We say that G is a topological watershed of F if G is a W-thinning of F and if there is no W-destructible points for G.

Definition

 The set of all points which are not in a minimum of F, denoted by M
(F) ⊆ E is the divide of F.

イロト イポト イヨト イヨト

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

Topological watersheds: example

3	5	5	5	10	10	10	10	15
3	5	30	30	30	30	30	15	15
3	5	30			20	30	15	15
40	40	40	20	20	20	40	40	40
10	10	40			20	40	10	10
5	5	40	40	20	40	40	10	5
1	5	10	15	20	15	10	5	0

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

Topological watersheds: example

3	5	5	5	10	10	10	10	15
3	5	30	30	30	30	30	15	15
3	5	30	20		20	30	15	15
40	40	40	20	20	20	40	40	40
10	10	40	20	20	20	40	10	10
5	5	40	40	20	40	40	10	5
1	5	10	15	20	15	10	5	0

3	3	3	3	3	3	3	3	3
3	3	30	30	30	30	30	3	3
3	3	30	1	(20)	0	30	3	3
30	30	30	1	(20)	0	30	30	30
1	1	1	1	(20)	0	0	0	0
1	1	1	1	(20)	0	0	0	0
1	1	1	1	(20)	0	0	0	0

イロト イポト イヨト イヨト

0

3

Sets	
Functions	
Grids	

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

Problem

Problem

- Is the divide of a topological watershed a watershed set?
- Can we extend the thinness property of watershed set on fusion graphs to the grayscale case?

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

Problem

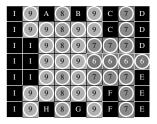
• Counter-example on a fusion graph: the 8-connected graph.

0	9	0	8	0	9	0	7	0
0	9	9	8	9	9	0	7	0
0	0	9	8	9	7	7	7	0
0	0	9	9	9	6	6	6	6
0	0	9	8	9	7	7	7	0
0	9	9	8	9	9	0	7	0
0	9	0	8	0	9	0	7	0

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

Problem

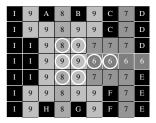
• Counter-example on a fusion graph: the 8-connected graph.



W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

Problem

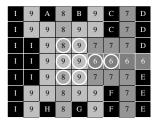
• Counter-example on a fusion graph: the 8-connected graph.



W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

Problem

• Counter-example on a fusion graph: the 8-connected graph.



Problem

 The divide of a topological watershed is not necessarily a watershed set and can be thick, even on fusion graphs.

Sets	W-thinnings and topological watersheds
Functions	Topological watersheds on perfect fusion graphs
Grids	C-watersheds: definition and linear time algorithm

Problem

What about topological watersheds on perfect fusion graphs?

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

M-cliff points

Let *F* be a map and let $x \in E$.

Definition

- We say that x is a cliff point (for F) if x is W-simple for the divide of F (i.e., if it is adjacent to a single minimum of F).
- We say that x is M-cliff (for F) if x is a cliff point with minimal altitude.

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

イロト イポト イヨト イヨト

M-cliff points

Let *F* be a map and let $x \in E$.

Definition

- We say that x is a cliff point (for F) if x is W-simple for the divide of F (i.e., if it is adjacent to a single minimum of F).
- We say that x is M-cliff (for F) if x is a cliff point with minimal altitude.

Property

If (E, Γ) is a perfect fusion graph then any point M-cliff for F is W-destructible for F.

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

Thin topological watershed

Theorem

On a perfect fusion graph, the divide of any topological watershed is:

- a watershed set;
- a thin set.

 Sets
 W-thinnings and topological watersheds

 Functions
 Topological watersheds on perfect fusion graphs

 Grids
 C-watersheds: definition and linear time algorithm

Algorithms for topological watersheds

Problem

The algorithms for topological watershed are quasi-linear but not linear.

Is there a faster (linear) algorithm on perfect fusion graphs?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

C-watersheds: definition

Let F and G be two maps.

Definition

- We say that G is a C-thinning of F if G may be derived from F by iteratively lowering M-cliff point.
- We say that G is a C-watershed of F if G is a C-thinning of F and if there is no M-cliff point for G.

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

C-watersheds: definition

Let F and G be two maps.

Definition

- We say that G is a C-thinning of F if G may be derived from F by iteratively lowering M-cliff point.
- We say that G is a C-watershed of F if G is a C-thinning of F and if there is no M-cliff point for G.

Remark

Let x be a M-cliff point.

 If G is derived from F by lowering the value of x down to the altitude of the only minimum adjacent to x, then G is a C-thinning of F.

3

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

C-watersheds: properties

Suppose that (E, Γ) is a perfect fusion graph. Let *F* be a map and *G* be a C-watershed of *F*.

Property

- G is a W-thinning of F.
- the divide of G is a watershed set.
- the divide of G is thin.

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

イロト イポト イヨト イヨト

C-watersheds: properties

Suppose that (E, Γ) is a perfect fusion graph. Let *F* be a map and *G* be a C-watershed of *F*.

Property

- G is a W-thinning of F.
- the divide of G is a watershed set.
- the divide of G is thin.
- On non-perfect fusion graphs, the previous properties are in general not true.

W-thinnings and topological watersheds Topological watersheds on perfect fusion graphs C-watersheds: definition and linear time algorithm

イロト イポト イヨト イヨト

C-watersheds: algorithm

Data: a perfect fusion graph (E, Γ) , a map F**Result**: F

- 1 $L := \emptyset$; $K := \emptyset$;
- 2 Attribute distinct labels to all minima of F and label the points of M(F) with the corresponding labels;
- $x \in E$ do
- 4 if $x \in M(F)$ then $K := K \cup \{x\}$;
- s else if x is adjacent to M(F) then $L := L \cup \{x\}$; $K := K \cup \{x\}$;

6 while $L \neq \emptyset$ do

z = x := an element with minimal altitude for F in L;

 $L := L \setminus \{x\};$

9 if x is adjacent to exactly one minimum of F then

10 Set F[x] to the altitude of the only minimum of F adjacent to x;

11 Label *x* with the corresponding label;

12 foreach $y \in \Gamma^*(x) \cap \overline{K}$ do $L := L \cup \{y\}; K := K \cup \{y\};$

3

Sets W-thinnings and topological watersheds Functions Topological watersheds on perfect fusion graphs Grids C-watersheds: definition and linear time algorithm

C-watershed: linear time algorithm

Property

• C-watershed algorithm is monotone;

Sets W-thinnings and topological watersheds Functions Topological watersheds on perfect fusion graphs Grids C-watersheds: definition and linear time algorithm

C-watershed: linear time algorithm

Property

- C-watershed algorithm is monotone;
- it runs in linear time with respect to the size of the input graph.

Property

None of the usual grids is a perfect fusion graph.

Property

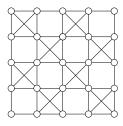
None of the usual grids is a perfect fusion graph.

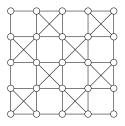
• We introduce the perfect fusion grids.

Property

None of the usual grids is a perfect fusion graph.

• We introduce the perfect fusion grids.



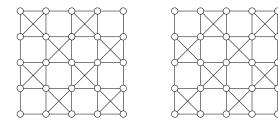


イロト 不得 とうほう 不良 とう

Property

None of the usual grids is a perfect fusion graph.

• We introduce the perfect fusion grids.



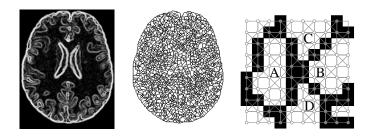
Perfect fusion grids can be defined in dimension over \mathbb{Z}^n , for any integer *n*.

3

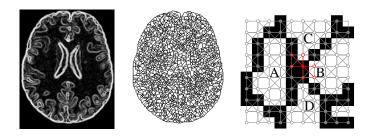
Jean Cousty, Michel Couprie, Laurent Najman, Gilles Bertrand Grayscale wat

Grayscale watersheds on perfect fusion graph

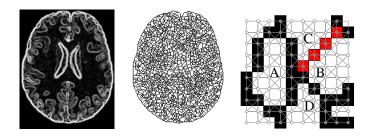
To conclude by an example



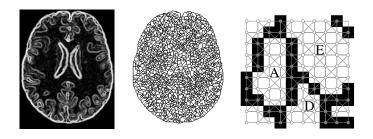
To conclude by an example

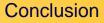


To conclude by an example



To conclude by an example





• Perfect fusion graphs: framework adapted for region merging methods based on grayscale watersheds

 Introduction of a simple linear-time algorithm to compute grayscale watersheds in this framework

Perspectives

• Drop of water principle:

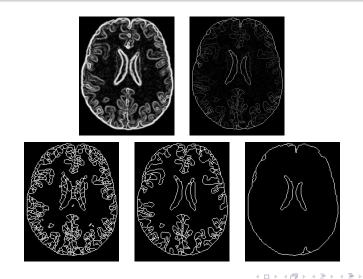
- A framework that guarantees the existence of such watersheds;
- New simple and linear algorithms to compute those watersheds;
- Region merging schemes:
 - Links bewteen minimum spanning trees and watersheds;

・ロト ・ 同 ト ・ 回 ト ・ 回 ト

3

• Saliency and watershed hierachies.

Perspectives: saliancy on perfect fusion grids



Jean Cousty, Michel Couprie, Laurent Najman, Gilles Bertrand Grays

Grayscale watersheds on perfect fusion graph

Publications (Grayscale watersheds)

Theoretical foundations

G. Bertrand. *On topological watersheds.* vol. 22, n. 2-3, pp. 217-230 Journal of Mathematical Imaging and Vision, May 2005. (Special issue on Mathematical Morphology after 40 years)

Comparisons with flooding and the emergence paradigm

L. Najman, M. Couprie, and G. Bertrand. *Watersheds, mosaics and the emergence paradigm.* vol. 147, n. 2-3, pp. 301-324. Discrete Applied Mathematics, April 2005. (Special issue on DGCI)

A D A A D A A D A A D A

Publications (Fusion graphs)

Fusion graphs

J. Cousty, G. Bertrand, M. Couprie, and L. Najman. *Fusion graphs: merging properties and watershed.* Computer Vision and Image Understanding, 2006. Submitted, Special Issue commemorating the career of Prof. Azriel Rosenfeld. Also in IGM2005-04.

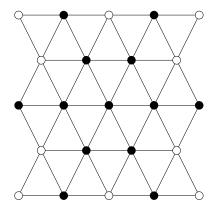
Fusion graphs and grayscale watersheds

J. Cousty, M. Couprie, L. Najman and G. Bertrand. *Grayscale Watersheds on Perfect Fusion Graphs.* pp. 60-73. IWCIA 2006, LNCS 4040, proceedings, June 2006.

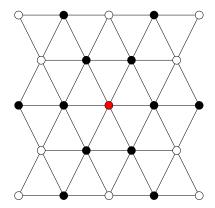
1

・ロト ・ 同ト ・ ヨト ・ ヨト

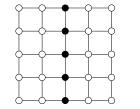
Grille hexagonale

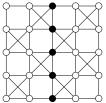


Grille hexagonale

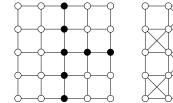


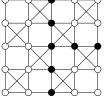
Division de régions



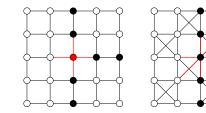


Division de régions





Division de régions



() < ロ > < 団 > < ミ > < ミ > ミ の へ の > < <

Division de régions

Property

Soit (E, Γ) un graphe de fusion parfait. Soit $X \subseteq E$, une LPE et A une région pour X. Si $Y \subseteq A$ est une LPE sur $(A, \Gamma \cap [A \times A])$ alors $X \cup Y$ est une LPE sur (E, Γ) .

La propriété n'est pas vérifiée sur les graphes de fusion.

