
Data Validation and Data Cleaning
Sebastian Schelter
Moore-Sloan Fellow, Center for Data Science, New York University



Overview

● Introduction & Overview

● Exemplary Error Detection and Data Cleaning Techniques

– Quantitative Data: Robust Univariate Outlier Detection

– Categorical Data: String Normalization

– Candidate Key Detection at Scale with Hyperloglog Sketches

– Missing Value Imputation using Supervised Learning

● Summary & References

2



Overview

● Introduction & Overview

● Exemplary Error Detection and Data Cleaning Techniques

– Quantitative Data: Robust Univariate Outlier Detection

– Categorical Data: String Normalization

– Candidate Key Detection at Scale with Hyperloglog Sketches

– Missing Value Imputation using Supervised Learning

● Summary & References

3



https://dilbert.com/strip/2008-05-07

4



Why is Data Quality Important?

● Impact on organisational decisions
– missing or incorrect data can result in wrong decision making

● Legal obligations in certain business scenarios 
– plug type information required for selling electric devices in EU

● Impact on machine learning models
– Cleaner data can greatly improve model performance 

● Potential for causing biased decisions in ML-based systems
– Not well understood, area of active research

● Operational stability: missing and inconsistent data can cause havoc in production systems 
– Crashes (e.g., due to “NullPointerExceptions” for missing attributes)
– Wrong predictions (e.g., change of scale in attributes)
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Data: Academia vs the Real-World

● Academic datasets
– Static
– Often down-sampled, cleaned and aggregated before publication
– Attributes typically well understood
– Most of time: size convenient for processing on desktop machines
– Example: UCI ML datasets

● Real-world data
– Constantly changing
– Often hundreds of attributes
– Data originates from multiple sources / people / teams / systems
– Several potentially inconsistent copies
– Often too large to conveniently handle on a desktop machine
– Often difficult to access (e.g., data compressed and partitioned in a distributed filesystem)
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Changes in Data Collection Strategies

● Pre-Internet Era
– Data collected in transactional, relational databases 
– “Extract-Transform-Load” export to data warehouses for analysis

(relational databases optimized for analytical workloads)
– Modelling of the data and its schema before collection

● Internet Era: “Collect first, analyze later”
– Advent of the internet gave rise to vast amount of semi-structured data
– New data stores established (key-value stores, document databases, data lakes)

● Scale to very large datasets
● Relaxed consistency (e.g. no distributed transactions)
● Enforce fewer modelling decisions at collection time
● “Schema-on-Read”: application has to determine how to interpret data

– Economic incentives 
● Decreasing storage costs
● Data becomes valuable as input to ML-based applications
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Sources of Error in Data

● Data entry errors
– Typos in forms
– Different spellings for the same real-world entity (e.g., addresses, names)

● Measurement errors
– Outside interference in measurement process
– Placement of sensors

● Distillation errors
– Editorial bias in data summaries
– Domain-specific statistical analyses not understood by database manager

● Data integration errors
– Resolution of inconsistencies w.r.t. duplicate entries
– Unification of units, measurement periods

Hellerstein: "Quantitative data cleaning for large databases.", 2008
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Dimensions of Data Quality

● Completeness
– Degree to which data required to describe a real-world object is available

● Consistency: Intra-relation constraints (range of admissible values)
– Specific data type, interval for a numerical column, set of values for a categorical column

● Consistency: Inter-relation constraints
– Validity of references to other data entries (e.g., “foreign keys” in databases)

● Syntactic and semantic accuracy
– Syntactic accuracy compares the representation of a value with a corresponding definition domain

● E.g.: value blue for color attribute syntatically accurate for red product in online shop
– Semantic accuracy compares a value with its real-world representation

● E.g.: value XL for color attribute neither syntactically nor semantically accurate for this product
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Approaches to Improve Data Quality

● Data entry interface design
– Enforce integrity constraints (e.g., constraints on numeric values, referential integrity)
– Can force users to “invent” dirty data

● Organisational management
– Streamlining of processes for data collection and analysis
– Capturing of lineage and metadata

● Automated data auditing and data cleaning
– Application of automated techniques to identify and rectify data errors

● Exploratory data analysis and data cleaning
– Human-in-the-loop approach necessary most of the time
– Interaction between data visualisation and data cleaning
– Iterative process
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Data Cleaning: Types and Techniques

● Quantitative data
– Integers or floating point numbers in different shapes (sets, tensors, time series)
– Challenges: unit conversion (especially for volatile units like currency)
– Foundation of cleaning techniques: outlier detection

● Categorical data
– Names or codes to assign data into groups, no ordering or distance defined
– Common problem: misspelling upon data entry
– Foundation of cleaning techniques: normalization / deduplication

● Postal addresses
– Special case of categorical data, typically entered as free text
– Major challenge: deduplication 

● Identifiers / Keys
– Unique identifiers for data objects (e.g., product codes, phone numbers, SSNs)
– Challenge: detect reuse of identifier across distinct objects
– Challenge: Ensure referential integrity
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The Need for the “Human in the Loop“

● Unrealistic assumptions about error detection in academia:
– Existence of error detecting rules assumed: 

Integrity Constraints, Functional Dependencies, 

Conditional Functional Dependencies, Denial Constraints
– Often focus on most efficient and accurate way to 

apply cleaning steps according to rules

● In practice: error detection already a very hard problem
– Consequence: Human-in-the-loop solutions required
– Data exploration and visualisation crucial
– Iterative cleaning
– Popular implementations: Open Refine, Trifacta

https://trifacta.com

https://practicaldatamanagement.files.wordpress.com/
2014/05/glbrc-bees-openrefine2.jpg
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Robust Univariate Outlier Detection

● Univariate analysis
– Simple approach: investigate the set of values of a single attribute of our dataset
– Statistical perspective: values considered to be a sample of some data generating process

● Center & Dispersion
– Set of values has a center that defines what is “average”
– Set of values has a dispersion that defines what is “far from average”

● Outlier detection
– Assumption: erroneous values “far away” from typical values in the set
– Approach: identify outliers using statistical techniques
– Problem: How to reliably compute them when the data is dirty / erroneous?

Hellerstein: "Quantitative data cleaning for large databases", 2008
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Example: Age Data

● Set of age values of employees in a company:

12  13  14  21  22  26  33  35  36  37  39  42  45  47  54  57  61  68  450 
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Example: Age Data

● Set of age values of employees in a company:

12  13  14  21  22  26  33  35  36  37  39  42  45  47  54  57  61  68  450 

impossible ageminors
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Example: Age Data

● Set of age values of employees in a company:

12  13  14  21  22  26  33  35  36  37  39  42  45  47  54  57  61  68  450 

● Potential approach:
– Assume normal distribution of age values
– Compute mean and standard deviation
– Flag values more 2 standard devations away from mean
– Interval is [96 – 2 * 59, 9 + 2 * 59] = [-22, 214]
– Misses first three values!

● Problem: “Masking”
– Magnitude of one outlier shifts center and dispersion
– “Masks” other outliers

18



Robust Statistics

● Idea: consider effect of corrupted data values on distribution
– Estimators should be robust to such corruptions
– Breakdown point: threshold of corrupt values before estimator produces arbitrarily erroneous results

● Robust Centers
– Median: value for which half of the dataset is smaller (affected by position not magnitude of outliers)
– Trimmed Mean: remove k% of highest and lowest values, compute mean from rest

● Robust Dispersion
– Mean Absolute Deviation: robust analogy to standard deviation
– Measures median distance of all values from the sample median
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Example: Age Data

● Set of age values of employees in a company:

12  13  14  21  22  26  33  35  36  37  39  42  45  47  54  57  61  68  450 

● Cleaned set of age values:

21  22  22  23  24  26  33  35  36  37  39  42  45  45  47  54  57  61  68

● Robust centers in example closer to center on clean data:
– Median    37  (dirty)   39  (clean)
– Mean    ~96  (dirty) ~40  (clean)  
– 10%-Trimmed mean    ~39  (dirty)

● Robust dispersion provides better interval on dirty data: 
– 1 standard deviation [37, 155] (includes six non-outliers)
– 1.48 MAD  [16, 61] (includes one non-outlier)
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Normalization of String Data

● Free-text entry of categorical attributes very error-prone:
– Different spellings (Jérôme vs Jerome)
– Different punctuation (ACME Inc. vs ACME, Inc)
– Typos (Alice → Ailce)
– Misunderstandings (Rupert → Robert) 

● Normalization with simple heuristic clustering algorithm:
– Keying function k
– Compute key k(s) per string s
– group pairs (s, k(s)) by k(s) and count pairs 
– Automatic: Replace all strings in a group with 

string with highest cardinality
– Human-in-the-Loop: shows groups and 

statistics to user

● Extensively used in 

http://www.padjo.org/files/tutorials/open-refine/fingerprint-cluster-popup.png
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String Normalization

● “Fingerprint keying”: remove punctuation and case sensitivity

– remove whitespace around the string
– lowercase the string
– remove all punctuation and control characters
– find ASCII equivalents of characters
– tokenize (split by whitespace)
– order fragments and deduplicate them

ACT,INC. → act inc

ACT INC  → act inc

ACT,Inc  → act inc

Act Inc  → act inc
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String Normalization

● “SOUNDEX”: Algorithm for phonetic indexing of English strings

– Save the first letter. 
– Remove all occurrences of a, e, i, o, u, y, h, w
– Replace all consonants (include the first letter) with digits as follows:

    b, f, p, v → 1  ;  c, g, j, k, q, s, x, z → 2  ;  d, t → 3, l → 4   ;   m, n → 5   ;   r → 6
– Replace all adjacent same digits with one digit.
– If the saved letter's digit is the same as the resulting first digit, remove the digit (keep the letter).
– Append 3 zeros if result contains less than 3 digits. Remove all except first letter and 3 digits after it 

Robert → R163

Rupert → R163

Knuth: “The art of computer programming: sorting and searching”, Vol. 3., 1997
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Frequency Statistics of Categorical Data

● In some cases: frequency of values more important than actual values
– Especially for categorical data attributes (where values have no ordering and no distance)
– E.g. “species code” in a dataset of animal sightings

● Application: Discovery of “Candidate Keys”
– Key: attribute or combination of attributes that uniquely identifies a tuple in a relation
– In clean data: 

● Frequency of every value of the candidate key attribute should be 1
● Number of distinct values equals number of tuples

– Both conditions can be violated in case of dirty data
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Heuristics for Discovering “Dirty Keys”

● Idea: discover attributes intended to be used as keys in dirty data

● “Unique Row Ratio”
– Ratio of distinct values of an attribute to the number of tuples
– Attribute is potential key if heuristic close to 1.0
– Problem: “frequency outliers”: small number of values 

with very high frequency often caused by UIs forcing users to 

“invent” common “dummy values” like 00000 or 12345

● “Unique Value Ratio”
– Ratio of unique values to number of distinct values
– Attribute is potential key if heuristic close to 1.0
– More robust against frequency outliers

● Problem of both approaches: high memory requirements during computation 
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Cardinality Estimation with HLL Sketches

● Problem: exact counting requires memory linear in the number of distinct elements
– E.g., to maintain a hashtable with values and counts
– Does not scale to large or unbounded datasets

● HyperLogLog (HLL) Sketch
– “sketch” data structure: approximate counting with drastically less memory
– Uses randomization to approximate the cardinality of a multiset

Flajolet "Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm.", Discrete Mathematics and Theoretical Computer Science, (2007).
Heule: "HyperLogLog in practice: algorithmic engineering of a state of the art cardinality estimation algorithm.", EDBT, (2013). 28



HyperLogLog: Idea

● Apply hash function h to every element to be counted 

(h must produce uniformely distributed outputs)

● Keep track of the maximum number of leading zeros of 

the bit representations of all observed hash values

● Intuitively: hash values with more leading zeros are less likely 

and indicate a larger cardinality

● If bit pattern 0q-11 is observed at the beginning of a hash value, 

estimate size of multiset as 2q

h(“hello”) → 10011
h(“world”) → 11011
h(“hello”) → 10011
h(“alice”) → 00101
h(“world”) → 11011
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HyperLogLog: Details

● Algorithm applies several techniques to reduce variability of these measurements
– Input stream divided into m substreams Si with m = 2p 
– p number of bits of hash values to store 
– array of registers M, M[i] stores max number of leading zeros + 1 from stream Si
– Final estimate uses bias-corrected harmonic mean of the estimations on the substreams

● Extremely powerful in practice
– Low memory requirements: e.g., SparkSQL implementation uses less than 3.5 KB for the registers, 

works on billions of elements
– Easy to parallelize as registers can be cheaply merged via max function
– Allows to run cardinality estimation on multiple columns of huge tables with a single scan

● Basis of key detection in data validation library “deequ” 

https://github.com/awslabs/deequ

αmm2∑i=1

m
2−M [i]
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Missing Value Imputation

● Missing data is a central data quality problem
● Missing for various reasons

– Missing Completely at Random (MCAR)
– Missing at Random (MAR)
– Not Missing at Random (NMAR)

● Various ways to handle missing data for ML applications
– Complete-case analysis (remove examples with missing attributes)
– Add placeholder symbol for missing values
– Impute missing values

● Often implemented with techniques from popular ML libraries, 
like mean and mode imputation

● ML: supervised learning for missing value imputation
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Imputation of Categorical Data (1)

● Assume tabular data
● Want to impute missing values in a column 

with categorical data

● Idea: apply techniques from supervised learning

● Example: product catalog, colors missing

p(color=yellow | other columns, imputation model)

● Treat imputation problem as multi-class classification problem

Biessmann, et al. "Deep Learning for Missing Value Imputation in Tables with Non-Numerical Data." ACM CIKM (2018).
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Imputation of Categorical Data (2)

● Must encode table data from feature columns 

to a numerical representation

● Standard encoding techniques
– “One-hot” encoding of categorical columns

(zero vector with as many dimensions as distinct

values, 1 in corresponding dimensions)
– Standardisation of numerical columns

(substract mean, divide by standard deviation)
– Character sequences for textual columns
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Imputation of Categorical Data (3)

● Train neural network to predict likelihood of values to impute

● Concatenation of featurizers into single feature vector

● Standard featurization techniques
– Embeddings for one-hot encoded categories
– Hashed n-grams or LSTMs for character sequences

● Open source implementation “datawig” available at

https://github.com/awslabs/datawig
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Summary

● Data quality important for: decision making, conforming to legal obligations, improving the performance 

of ML models, operation of data processing systems
● Real-world data is always messy and difficult to handle

● Dimensions of data quality: completeness, consistency, syntactic & semantic accuracy

● Data cleaning techniques
– Quantitative data: outlier detection
– Categorical data: normalisation / deduplication
– Postal addresses: deduplication
– Identifiers / keys: ensuring referential integrity

● Error detection is already a very hard problem: typically requires iterative cleaning, visualisation 

and a human-in-the-loop
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