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Abstract

Region merging methods consist of improving an initial segtation by merging some
pairs of neighboring regions. In this paper, we considegastation as a set of connected
regions, separated by a frontier. If the frontier set cafmeoteduced without merging some
regions then we call it a cleft, or binary watershed. In a gaingraph framework, merging
two regions is not straightforward. We define four classegraphs for which we prove,
thanks to the notion of cleft, that some of the difficulties defining merging procedures
are avoided. Our main result is that one of these classe®isldss of graphs in which
any cleft is thin. None of the usual adjacency relationsZdrand Z2 allows a satisfying
definition of merging. We introduce the perfect fusion grid4’, a regular graph in which
merging two neighboring regions can always be performedebyaving from the frontier
set all the points adjacent to both regions.

Key words: Graph theory, region merging, watershed, cleft, fusiorpbsa adjacency
relations, connectedness, image segmentation, imagegsiog

Introduction

In the important and difficult task of segmenting an imag@nesxtivity often plays
an essential role: in many cases, a segmentation can bed/esngeset of connected
regions, separated by a background which constitutesahédrs between regions.
A popular approach to image segmentation, called regiogimg{17,16], consists
of progressively merging pairs of regions until a certaiitecion is satisfied. The
criterion which is used to identify the next pair of regionisiah will merge, as well
as the stopping criterion are specific to each particulahougt
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Fig. 1. (a): Original image (cross-section of a brain, after applyingradient operator).
(b): Watershed ofa) with the 4-adjacency (in black)c): Inner points for the previous
image (in black).(d): A zoom on a part ofb). The pointsz andw are inner points(e):
Watershed ofa) with the 8-adjacency (in black). There are no inner points.

Given a grayscale image, how is it possible to obtain anah#et of regions for
a region merging process? The watershed transform [6,1&]pswerful tool for
solving this problem. Let us consider a 2D grayscale image &spographical
relief, where the dark pixels correspond to basins and ys|Mhereas bright pixels
correspond to hills and crests. Suppose that we are inéer@ssegmenting “dark”
regions. Intuitively, the watersheds of the image are dtutst by the crests which
separate the basins corresponding to regional minima (ged d&b). Due to noise
and texture, real-world images often have a huge numbegaimal minima, hence
the “mosaic” aspect of Fig. 1b. In [7,4,8,15], the authorgeli@ped a framework
based on graph theory, in which some important propertigsayfscale watersheds
are proved, and efficient algorithms to compute them are gweg. In the case
of a graph €.g.,an adjacency graph defined on a subseZ3f a watershed may
be thought of as a “separating set” of vertices which canmeotdaluced without
merging some connected components of its complementaringéis context, we



will use the term otleft! for talking about such a separating set.

A first question arises when dealing with clefts on a graplveGia subseE of

7?2 and the grapKE, 1) which corresponds to the usual 4-adjacency relation, we
observe that a cleft may contain some “inner points,, points which are not
adjacent to any point outside the cleft (see Fig. 1c,d). WWeseg that a cleft ofi1

is not necessarily thin. On the other hand, such inner pdimtst seem to appear in
any cleft onl"z, which corresponds to the 8-adjacency. Are the cleft palways
thin? We will prove that it is indeed true. More interestingive provide in this
paper a framework to study the property of thinness of clefeny kind of graph,
and we identify the class of graphs in which any cleft is neagly thin. This result

is one of the main theorems of the article (Th. 32).

Let us now turn back to the region merging problem. What happlewe want to
merge a couple of neighboring regioAsndB, and if each pixel adjacent to these
two regions is also adjacent to a third one, which is not waimethe merging?
Fig. 1d illustrates such a situation, whexas adjacent to regioné,B,C andy
to A B,D. This problem has been identified in particular by T. Pasligiee [16],
section 5.6: “When three regions meet”), and has been déhlimsome practical
ways, but until now a systematic study of properties relatecherging in graphs
has not been done. A major contribution of this article is dednition and the
study of four classes of graphs, with respect to the podsilaf “getting stuck”
in a merging process (Sec. 3, Sec. 4). In particular, we satydlyraph is dusion
graphif any regionA in this graph can always be merged with another redpn
while preserving all other regions. The most striking omeoof this study is that
the class of fusion graphs is precisely the class of graphshich any cleft is
thin (Th. 32). We also provide some local characterizatimmgwo of these four
classes of graphs, and prove that the two other ones canimtdily characterized
(Sec. 5).

Using this framework, we analyze the status of the graphshvhre the most
widely used for image analysis, namely the graphs corredipgnto the 4- and
the 8-adjacency ifZ? and to the 6- and the 26-adjacencyZin (Sec. 6). In one of
the classes of graphs introduced in Sec. 4, that we call #es dfperfect fusion
graphs any pair of neighboring regions, B can always be merged, while preserv-
ing all other regions, by removing all the pixels which ar¢aaént to bothA and

B. We show that none of these classical graphs is a perfectrfggaph. In Sec. 7,
we introduce a graph oA" (for anyn) that we call the perfect fusion grid, which is
indeed a perfect fusion graph, and which is “between” thedliadjacency graph
(which generalizes the 4-adjacencyz®) and the indirect adjacency graph (which
generalizes the 8-adjacency).

1 Notice that, in previous publications [4,9,11], we usedttiren of (binary) watershed as
a synonym of cleft.



A part of these results has been presented, without the grivo& conference arti-
cle [9].

1 Basic notions

Let E be a set, we writeX C E if X is a subset of, we write X C E if X is
a proper subset dE, i.e.,if X is a subset oE andX # E. We denote byX the
complementary set f in E, i.e., X =E\ X.

Let E be a finite set, we denote B| the number of elements &. We denote
by 2 the set composed of all the subsetgEof

We define a graph as a pdE, ") whereE is a finite set andl is a binary relation
onE (i.e.,I' C E x E), which is reflexive (for alk in E, (x,x) € I') and symmetric
(forallx,yin E, (y,x) € I wheneve(Xx,y) € I'). Each element dt is called avertex
or apoint. We will also denote by the map fromE to 2F such that, for alk € E,
Frx)={yeE|(xy) el}. If yerl(x), we say thay is adjacent to x We define
also the relatiom™ =T\ {(x,X) | x € E}, and the map * such that for alk € E,
M(x) =T (x)\ {x}. LetX C E, we defind (X) = Uyxex I (X), andl"(X) =T (X) \ X.
If ye I'(X), we say thay is adjacent to XIf X,Y C E andl'(X)NY # 0, we say that
Y is adjacent to Xor thatX is adjacent t&Y, sincel” is symmetric). LeG = (E,I")
be a graph and let C E, we define thesubgraph of G induced by &s the graph
Gx = (X, N[X x X]). In this case, we also say th@k is a subgraph of GLet
G=(E,lN) andG' = (E',T"") be two graphs, we say th@&and G are isomorphigf
there exists a bijectio from E to E’ such that, for alk,y € E, y belongs td" (x)
if and only if f (y) belongs td™/(f(x)).

Let (E,I") be a graph, leX C E, apath in Xis a sequenca= (X, ...,X ) such that
xi € X,i€0,l],andx € I'(xi—1),i € [1,...,1]. We also say that is apath from X
to x in X. Letx, y € X. We say thak andy arelinked for Xif there exists a path
from xtoyin X. We say thaX is connected any x andy in X are linked forX.

LetY C X. We say thal is a connected component of & simplya component
of X, if Y is non-empty, connected and¥fis maximal for this propertyi.e., if
Z =Y whenevely C Z C X andZ connected.

We denote byC(X) the set of all the connected componentsXofLet SC E, we
denote byC(X|S) the subset of’(X) composed of the componentsXfwhich are
adjacent t&.

Notice that the empty set is connected, and thXt i$ non-empty, then the empty
set is not a connected componenXofNotice also that, i’ is a connected compo-
nent of a seX, thenY is not adjacent t&X \ Y.



Let us consider a subs#t of E. We can easily see that, X is connected, then
any two non-empty subsefsB of X such thatAU B = X must be adjacent to each
other. On the other hand, X is not connected, then we have two poirtandy

in X which are not linked foiX. Considering the sei of all the pointszin X such
thatx andz are linked forX and considering the s&= X\ A, we see thaK can
be partitioned into two non-empty subsets which are notcadjato each other.
These observations lead to the following property whichrabi@rizes connected
sets (without the need of considering paths).

Property 1 ([18]). Let(E,I") be a graph, let XC E. The set X is connected if and
only if, for any two distinct non-empty subset8/of X such that A/B = X, the
subset A is adjacent to B.

From Prop. 1 we can immediately deduce the following corglla

Corollary 2. Let (E,I") be a graph, let X be a non-empty subset of E. If E is
connected and if %4 E, thenl™(X) # 0.

In this paper, we study in particular some thinness propeiif clefts in graphs.
The notions of thinness and interior are closely related.

Definition 3. Let(E,I") be a graph. Let XC E, theinterior of X is the setintX) =
{xe X |I(x) C X}. We say that the set i$ thinif int(X) = 0.

Property 4. Let (E,I") be a graph, let XC E such that intX) # 0, let A be a
non-empty subset of ifX). We haveC(X\ A) = C(X)U C(A). Furthermore, if A

is connected, then A is a connected component \of; more precisely we have
C(X\A) = C(X)U{A}.

The proof of Prop. 4 is elementary and thus omitted. To catelhis section, we
recall the definition of line graphs. This class of graphswadl to make a strong
link between the framework developed in this paper and tipecgehes of water-
shed and region merging based on edges rather than verteeshen regions are
separated by a set of edges.

Let(E,I") be agraph. Thiéne graph of(E,I") is the grapHE’, ") such thaE’ =T*
and(u,v) belongs td”’ whenevewu € ', v e I'*, andu, v share a vertex dE.

We say that a graptE’,I"") is a line graphif there exists a grapkE, ") such that
(E’,T'") is isomorphic to the line graph ¢E,I").

In Fig. 2, we show a graph and its line graph. All graphs arelimet graphs, in
other words, there exist some graphs which are not the liaphgr of any graph.
The following theorem allows to characterize line graphs.

Theorem 5([2]). A graph G is a line graph if and only if none of the graphs of
Fig. 3 is a subgraph of G.
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Fig. 2. A graph (a) and its line graph (b).
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Fig. 3. Graphs for a characterization of line graphs (Th. 5).

As an illustration, we can check that the line graph depiateBig. 2b does not
contain any graph of Fig. 3 as a subgraph. For example, thgrapb induced by
the set{d, e, f,g} of the graph shown in Fig. 2b is not the same as the graph of
Fig. 3a since it contains one more edge.

2 Clefts

Informally, in a graph, a cleft may be thought of as a “sepagaset” of vertices
which cannot be reduced without merging some components obmplementary
set (see for example, the set of black vertices in Fig. 4d)fikdegive formal defini-
tions of these concepts (see [4,7]) and related ones, thelema some properties
which will be used in the sequel.

Important remark. From now, when speaking about a graf. "), we will as-
sume for simplicity that E is non-empty and connected.

Notice that, nevertheless, the subsequent definitions sopkgies may be easily
extended to non-connected graphs.

Definition 6 ([4]). Let(E,I") be a graph. Let XC E, and let pc X.
We say that fis a border point (foiX) if p is adjacent toX.
We say that ps an inner point (forX) if p is not a border point for Xj.e.,



if p € int(X).

We say that s W-simple (forX) if p is adjacent to exactly one connected compo-
nent ofX.

We say that ps separating (fo) if p is adjacent to at least two connected com-
ponents oK.

We say that ps a multiple point (forX) if p is adjacent to at least three connected

components oX.

In this definition and the following ones, the prefix “W-" stinfor watershed. In
Fig. 4a,x is both a border point and a W-simple point for the Xetonstituted

by the black vertices, anglis an inner point. In Fig. 5tz is a border point and a
separating point, and is a border point, a separating point and a multiple point.

Definition 7. Let(E,l") be a graph. Let X E, and let SC X.
We say that $ W-simple (forX) if there exists Ac C(X) such that AJS is con-
nected and”(X|S) = {A}.

Obviously, a poinp is W-simple if and only if the sefp} is W-simple. Notice that,
in the above definitiorSis not necessarily connected. The following property may
be proved easily.

Property 8. Let(E,I") be a graph. Let XC E, and let SC X.
The set S is W-simple (for X) if and only if there exists &(X) such thatC(X U
S) =[CX)\{A}JU{AUS}.

We are now ready to define the notion of cleft which is centrdhts section.

Definition 9 ([4]). Let G= (E,I") be agraph. Let X_ E, letY C X.

We say that Ys a W-thinning ofX , written X \W Y if

)Y =X orif

i) there exists a set Z X which is a W-thinning of X and a pointeZ which is
W-simple for Z, such that ¥ Z\ {p}.

AsetYC X is acleft (in G) if Y \W Z implies Z=Y .

A subsetY of X is eleft of X if Y is a W-thinning of X and if Y is a cleft.

A cleftY isnon-trivialif Y A0 and Y+#E.

It can be seen that we can obtain a W-thinningXoby iteratively removing W-
simple points fromX, and thatY is a cleft of X if Y is a W-thinning ofX which

contains no W-simple point. Fig. 4 shows a ¥eand some W-thinnings of, the
last one being a cleft of. Notice that different clefts may exist for a same Xett

can be also seen that a cl&fis non-trivial if and only if| C(X)| > 2.

The following definition and theorem are borrowed from [4Pawill play an im-
portant role in some subsequent proofs.

Definition 10 ([4]). Let (E,I') be a graph. Let X, Y be subsets of E. We say that
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Fig. 4. lllustration of W-thinning and clefta): A graph(E,I") and a subsexX (black points)

of E. The pointx is a border point which is W-simple, aryds an inner point(b): The set

Y =X\ {x} (black points) is a W-thinning oX. (c): The se (black points) is a W-thinning

of both X andY. The set¥ andZ are not clefts: some W-simple points exist in both sets.
(d): A cleft of X (black points), which is also a cleft af and ofZ. The set of gray points
will be used to illustrate the notion of annexation (Def..15)

Y is an extension oK if X CY and if each connected component of Y contains
exactly one connected component of X.

Theorem 11([4]). Let X and Y be subsets of E. The subsetY is a W-thinning of X
if and only ifY is an extension of.

We can see that if a subsgbf X is W-simple forX, thenX \ Sis an extension oX.
From this observation and Th. 11, we immediatly deduce theviing property.

Corollary 12. Let XC E and SC X. If the subset S is W-simple for X, the ¥
is a W-thinning of X.

o B U,

(d) (€)

Fig. 5. lllustration of thin and non-thin cleft¢a): A graph (E,I") and a subseX (black
points) of E. (b): A subsetY (black points) ofE which is a thin cleft; it is a cleft of the
setX shown in (a). The border poingsandw are both separating fof, only wis a multiple
point. (c,d,e): The subseKX represented by black and gray points is a cleft which is not
thin: int(X) is depicted by the gray points.

A cleft is a set which contains no W-simple point, but someheféxamples given
below show that such a set is not always thin (in the sense Df3peFig. 4d and

Fig. 5b are two examples of clefts which are thin: in both saslee set of black
points has no W-simple point and no inner point. The sets witpavhich are either
black or gray, in Fig. 5c,d,e are three examples of non-tl@fi Let us study what
happens if we remove from a non-thin cl&ft a connected component of ().



Property 13. Let (E,I') be a graph, let XC E be a cleft. Let A be a connected
component of iff). Then, X\ A is a cleft.

Proof: The cases whet@ (X)| < 2 or int(X) = 0 are trivial: if |C(X)| = 0 then
E=X=int(X) =Aand X\ A=0; if |[C(X)| =1 then it may be seen that
must be empty sincE is connected, thuX \ A= 0; and if int(X) = 0 thenA =0,
thusX \ A= X. Suppose from now that’(X)| > 2 and intX) # 0. From Prop. 4,
A€ C(X\A). Letxbe a point oiX \ A, we have to prove thatcannot be W-simple
for X\ A. If x ¢ '*(A), we can easily see that the pointannot be W-simple for
X\ A, otherwise it would also be W-simple f&. Suppose now thate '*(A). The
pointx cannot belong to ifiX) otherwiseA would not be a connected component
of int(X). Thusx must be adjacent to a compondhf C(X), which is also a
component oC(X \ A) (Prop. 4): hencex is adjacent to boti andB, with A # B,
and is not W-simple foX \ A. O

The following corrolary follows straightforwardly.
Corollary 14. Let(E,I') be a graph, let XC E. The set X int(X) is a cleft.

Let (E,l") be a graph. LeK C E, letA € C(X). Let us consider the familgt/ of
all the sets which are W-simple fot and adjacent té. It may be easily seen that
the family 7/ is closed by unioni.e.,thatSUT belongs to, wheneveiSe M
andT € Wa. From this observation, we deduce that there exists a urgtpment
of W which is maximal for the inclusion, and this element is theuarof all the
elements of the family.

Definition 15. Let (E,I") be a graph. Let XC E, let Ac C(X). We define the
annexation ofA in X, denoted by ar(#\, X), as the union of all the sets which
are W-simple for X and adjacent to A. When no confusion mayroa@ write
ann(A) = ann(A, X).

In Fig. 4c, letA be the (white) component @which “surrounds” the (black) s&t
The set anfA, Z) is depicted in light gray in Fig. 4d.

We have seen that, for arywhich is W-simple forX and adjacent t@, the set
X USis an extension oX. In particular, the seX Uann(A) is an extension oX.

The following properties illustrate the notion of annewratiwhich will serve us to
prove some of the main results of this paper.

Property 16. Let (E,I') be a graph, let Xc E such that|C(X)| > 2. For any
A e C(X), there exists B [C(X) \ {A}] such that *(Auann(A)) NT*(B) # 0.

The proof can be found in the appendix. We leave the proofefalowing prop-
erty to the interested reader.



Property 17. Let(E,I") be agraph, let XC E, let Ac C(X). The set AJann(A, X)
is equal to the connected component of Xt/ A) which contains A.

3 Merging

(@) (b) (©)

Fig. 6. lllustration of merging(a): A graph (E,I) and a subseX of E (black points).
(b): The black points represemt \ S with S= {x,y,z}. (c): The black points represent
X\ S with S = {w}.

Consider the grapfE, ') depicted in Fig. 6a, where a sub3etf E (black vertices)
separates its complementary ¥einto four connected components. If we replace
the setX by, for instance, the set\ SwhereS= {x,y,z}, we obtain a set which
separates its complementary set into three components$;igeéb: we can also
say that we “merged two components ¥fthroughS'. This operation may be
seen as an “elementary merging” in the sense that only twgooents ofX were
merged. On the opposite, replacing theXddy the setX \ S whereS = {w}, see
Fig. 6¢, would merge three componentsofWe also see that the componen®of
which is beloww (in light gray) cannot be merged by an “elementary merging”
since any attempt to merge it must involve the paintand thus also the three
components oK adjacent to this point. In this section, we introduce defini
and basic properties related to such merging operationsjphg.

Definition 18. Let(E,I") be a graph and XC E. Let pe X, let SC X. We say that

p is F-simple (forX) if p is adjacent to exactly two distinct connected compasent
of X.

We say that & F-simple (forX) if S is adjacent to exactly two distinct components
A,B e C(X) such that AJBUS is connected.

In this definition, the prefix “F-" stands for fusion. Obsern&t the pointp is F-
simple if and only if the sefp} is F-simple. For example, in Fig. 6a, the pains
F-simple whilex,y,w are not. Also, the setfz}, {x,y}, {x,z}, {y,z}, {x.y,z} are
F-simple, but the set&<}, {y} and{w} are not.

Notice also that the s&is not necessarily connected. Furthermore, any connected

componen® of Smust be adjacent to eithéror B, or both, and cannot be adjacent
to any other element af (X). Thus we have the following property.

10



Property 19. Let (E,I") be a graph, let XC E, let SC X such that S is F-simple
for X,and let TC S. If T € C(S), then T is either W-simple or F-simple for X.

Definition 20. Let(E,l") be a graph and XZ E. Let A and Bz C(X), with A# B.
We say that Aand B can be merged (foK) if there exists S X such that S is
F-simple for X and such that A and B are precisely the two cotatkcomponents
of X which are adjacent to S. In this case, we also say than@B can be merged
throughS (for X).

We say that Aan be merged (foX) if there exists Bz C(X) such that A and B can
be merged for X.

For example, in Fig. 6a, the component>fin light gray cannot be merged, but
each of the three white components can be mergeH for

Property 21. Let (E,I") be a graph, let XC E, let AB € C(X), A# B, and let
SC X. The components A and B can be merged through S if and onlyBfAS is

a connected componentXf\, S. More precisely, A and B can be merged through S
if and only if C(X\'S) = [C(X) \ {A,B}JU{AUBUS}.

Property 22. Let (E,I") be a graph, let Xc E, let AB € C(X) with A+# B. The
components A and B can be merged for X if and only if thereseRistX such that
S is connected and adjacent to only A and B.

The proof of Prop. 21 can be found in the appendix, and thefbBrop. 22 is
elementary. The following property will be useful for ediabing one of the main
results of this article, namely Th. 32.

Property 23. Let (E,I") be a graph, let XC E, and let Ac C(X). The three fol-
lowing statements are equivalent:

i) A can be merged for X;

i) [AUann(A, X)] can be merged foX \ ann(A, X)];

iii) there exists an extension of X and there exists a vertexexl™(A") which is
F-simple, where Ais the connected componentofvhich contains A.

Proof:

e [i = ii] From i), we know that there exis® € C(X) andSC X such thatS

is F-simple forX and adjacent to botA andB. Let A’ = AUannA,X), and let

Y = X\ annA X). From Def. 15 and the observation which follows this defaniti

Y is an extension oK andC(Y) = [C(X) \ {A}JU{A’}. LetS = SNA/, thusS C Y.
We haveA'US UB = AUSUBUA'. We know that’ is connected, thaaUSUB is
connected and th#& C A, thusAUSUBUA is connected, hence soASUS UB.
This implies thatS is adjacent to bot#’ andB. Since the only components Xf
adjacent todS are A andB and sinceS C S, we deduce that the only components
of Y adjacent t8 are precisel\’ andB, thusS is F-simple forY, hence ii).

o [ii = iii] Let A = AuannA X), letY = X\ ann(A, X). We have seen that is

11



an extension oK and thatA' is the element of"(Y) which containsA. From ii),
we know that there exis8 € C(Y) andSC Y such thatSis F-simple forY and
adjacent to bot®\' andB. There must exist some points 8which are adjacent
to A, letx be any such point. The poirtcannot be W-simple foY, otherwise the
set anifA, X) U {x} would be W-simple forX and adjacent t@, a contradiction
with the definition of anfA, X). Furthermore, sinc8is F-simple it cannot contain
any multiple point, thus is F-simple fory.

e [iii = i] Suppose thatis a point ofl *(A") which is F-simple. Therx is adjacent
to A’ and toB’, with B € C(Y), B' # A’, andA’ UB' U {x} is connected. LeB be the
component of°(X) such thaB C B'. Let us consideS= [A'\ A]U [B'\ B] U {x}.

It can be easily seen th&C X and thatSis adjacent to botl® andB. SinceY

is an extension oK we know thatA’ (resp.B’) cannot be adjacent to any other
connected component ¥fthanA (resp.B). Also, x cannot be adjacent to any other
connected component &fthanA andB, otherwise it could not be F-simple fu.
Furthermore, we havAUBUS= A'UB' U {x}, thusAUBU Sis connected. Thus,
sinceSis adjacent to solelA andB, Sis F-simple forX, andA can be merged
for X. [

From Def. 9 and Th. 11, any extension of a ckfis equal toX. Thus, the following
corollary is an immediate consequence of Prop. 23.

Corollary 24. Let (E,I") be a graph, let XC E be a cleft and let & C(X). The
subset A can be merged for X if and only if there exists a var&ek*(A) which is
F-simple for X.

4 Fusion graphs

Region merging [16,17] is a popular approach to image setatien. Starting with
an initial partition of the image pixels into connected e, which can in some
cases be separated by some boundary pixels, the basic iisates@f progressively
merging pairs of regions until a certain criterion is saéidfiThe criterion which is
used to identify the next pair of regions which will merge veasll as the stopping
criterion are specific to each particular method. Certaithmé@s do not use graph
vertices in order to separate regions, nevertheless eese tmethods fall in the
scope of this study through the use of line graphs (see Sec. 1)

The preceding section and the present one constitute aetieadrbasis for the
study of such methods. The problems encountered by cedgiarr merging meth-
ods (see [16], section 5.6: “When three regions meet”) caavoéded by using
exclusively the notion of merging introduced in the pres@ection. In the sequel,
we investigate several classes of graphs with respect tpdbsibility of “getting
stuck” in a merging process. The most striking result of gastion is a theorem
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which states the equivalence between one of these clasddébeanlass of graphs
in which any cleft is thin.

We begin with the definition of four classes of graphs.

Definition 25. We say that a graplE,I") is a weak fusion grapli for any X C E
such that C(X)| > 2, there exist A, B= C(X) which can be merged.

Definition 26. We say that a grapkE,I') is a fusion graptif for any X C E such
that|C(X)| > 2, each Ac C(X) can be merged for X.

Let X C E, and letA, B € C(X). We setl *(A,B) = '*(A) N *(B). We say tha#A
and B are neighbor# A # B andl"*(A,B) # 0.

Definition 27. We say that the graptE,IN) is a strong fusion grapff, for any
X C E, any A and B= C(X) which are neighbors can be merged.

Definition 28. We say that the graptE,I") is a perfect fusion grapH, for any
X C E, any A and Bz C(X) which are neighbors can be merged througtfA, B).

Basic examples and counter-examples of weak fusion, fusimoang fusion and
perfect fusion graphs are given in Fig. 7.

These classes are linked by inclusion relations. The fofigwproperty clarifies

these links, and also position our four classes of graphk wspect to general
graphs and line graphs. We denote §y(resp.GL, Gp, Gs, Gr, and Gy) the set

of all graphs (resp. line graphs, perfect fusion graphspsgtifusion graphs, fusion
graphs, and weak fusion graphs).

Property 29. Any line graph is a perfect fusion graph,

any perfect fusion graph is a strong fusion graph,

any strong fusion graph is a fusion graph,

any fusion graph is a weak fusion graph.

More precisely, we have the following strict inclusion tedas:

GLC GpPrC GsC GF C Gw CG.

Proof: We prove in the appendix (Lem. 59) that any strongdiugjraph is a fusion
graph. The other inclusions may be proved easily; let usegtbat these inclusions
are strict. It may be checked from the definitions that theolsa(g), (w), (f) and
(s) in Fig. 7 are indeed counter-examples for the corresipgnclass equalities. It
may also be checked that the graph (p) is a perfect fusiorhgrabile it is not a
line graph, a consequence of Th[5.

The following property is a consequence of Def. 26, Cor. 2d Rrop. 23.
Property 30. The graph G= (E,I") is a fusion graph if and only if, for any non-
trivial cleft X in G and for any Ae C(X), there exists x *(A) which is F-simple.

13
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Fig. 7. Examples and counter-examples for different claségraphs(g): A graph which

is not a weak fusion grapliw): a weak fusion graph which is not a fusion gragh): a
fusion graph which is not a strong fusion grags): a strong fusion graph which is not a
perfect fusion graph, ang): a perfect fusion graph which is not a line graph. In the gsaph
(g,w, f,s), the black vertices constitute a s€twhich serves to prove that the graph does
not belong to the pre-cited class.

Proof: Let(E,I") be a fusion graph, leX be a non-trivial cleft (thu$sC(X)| > 2),
and letA € C(X). Since(E,I) is a fusion graph, we know th#t can be merged
for X, thus by Cor. 24, there existsc I'*(A) which is F-simple.

Suppose now that for any non-trivial clé€tC E and for anyA’ € C(X), there exists
x € [*(A') which is F-simple. LeY C E such thatC(Y)| > 2, letA€ C(Y). LetX
be a cleft ofY, and letA’ € C(X) such thatA C A'. By hypothesis, there exists
x € M (A) which is F-simple forA’. Furthermore, by Th. 11 we know thAtis an
extension ofY, thus by Prop. 23A can be merged for. [

From Prop. 30, we deduce Prop. 31 which will be used in thefpbdh. 41.

Property 31. Let G= (E,I") be a graph. If G is not a fusion graph, then there exist
X C E and xe X such that x is a multiple point for X.

Proof: If G is not a fusion graph, then by Prop. 30, there exists E such that
|C(Y)| > 2, there exists a cleX of Y, there existé\ € C(X) such that anx € [*(A)

is not F-simple. For any such sincex € I'*(A), x is not an inner point; and since
X is a cleft,x is not W-simple; thux must be a multiple point. Furthermore, since
|C(Y)| > 2 and thug C(X)| > 2, we haveA # E, and sinceE is connected, from
Cor. 2 there must exist a poirtin '*(A). O

Notice that the converse of Prop. 31 is false, as shown byabe of Fig. 7f which
is a fusion graph, in which a given subset (black dots) hasyuméple point.

Now, we present the main theorem of this section, which &stads that the class
of graphs for which any cleft is thin is precisely the clasgusion graphs. As an
immediate consequence of this theorem and Prop. 29, weaedltblefts in fusion
graphs, strong fusion graphs, perfect fusion graphs aedjiaphs are thin.

Theorem 32. A graph G is a fusion graph if and only if any non-trivial cleftG
is thin.
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Proof: Let(E,I") be a fusion graph, Iéf C E be a non-trivial cleft. Suppose that
int(Y) # 0, and letA € C(int(Y)). Let Y =Y \ A. By Prop. 13,Y’ is a cleft.
Since(E,IN) is a fusion graph, from Prop. 30 we deduce that there existsra v
texx € [*(A) which is F-simple folY’, i.e., xis adjacent to exactly two connected
components of’. SinceC(Y’) = C(Y) U {A} (Prop. 4), this means thatis only
adjacent to one connected component gfe., xis W-simple forY, a contradiction
with the fact thalY is a cleft. Thusy is thin.

Suppose now thdE, ") is not a fusion graph, by Prop. 30 there exists a non-trivial
cleftY C E, and there existA € C(Y) such that anx € '*(A) cannot be F-simple.
Furthermore, sinc¥ is a cleft we know that any in I'*(A) cannot be W-simple
forY, thus any poinkin '(A) is a multiple point. Consider now the s€t=Y UA,

and lety be a point ofy’. Only three cases are possible: 1yi€ A, then we can
see that is an inner point fory’, thusy is not W-simple forY’; 2) if y € [*(A),
then as seen beforg,is a multiple point forY, thusy is adjacent to at least two
connected components ¥f consequently is not W-simple fory’; 3) if y & [ (A),
theny is not W-simple forY’, otherwiseY could not be a cleft. Thu¥,’ is a cleft.
FurthermoreA C int(Y’) andA # 0, thusY’ is not thin.OJ

Let us look at some examples to illustrate this property. gtagphs of Fig. 5¢ and
Fig. 5d are not fusion graphs, in fact they are not even wealofugraphs; we
see that they may indeed contain a non-thin cleft. On ther ¢tdwed, Fig. 5e is an
example of a weak fusion graph which is not a fusion graph &s®eFig. 7w) with
a cleft which is not thin.

We conclude this section with two nice properties of perfasion graphs (Prop. 33
and Prop. 34), which can be useful to design hierarchicainsegation methods
based on watersheds, and on region merging and splittingopes. Prop. 33 fol-
lows straightforwardly from the definitions of cleft and et fusion graph.

Property 33. Let G= (E,I') be a perfect fusion graph. Let X E be a cleft and
A,B € C(X) such that A and B are neighbors. Then\ K*(A, B) is a cleft.

Consider now the example of Fig. 8a, where a clefiblack points) in the graph

G separateX into two components. Consider now the ¥ggray points) which is

a cleft in the subgraph db induced by one of these components. We can see that
the union of the cleftsXUY, is not a cleft, since the pointis W-simple forX UY.
Property Prop. 34 shows that this problem cannot occur irpanfgct fusion graph.

Property 34. Let G= (E,I") be a graph. If G is a perfect fusion graph, then for
any cleft XC E in G and for any cleft Y- A in G, where Ac C(X) and Gy is the
subgraph of G induced by A, the setX is a cleftin G.

The proof may be found in the appendix. It uses Th. 32 and 4 ébeaacterization
of perfect fusion graphs which will be established in thetrsection. Fig. 8b illus-
trates the property with a perfect fusion graph (theXsés$ depicted in black and
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Fig. 8. lllustrations for Prop. 34.a): The graph is not a perfect fusion graph (see Sec. 6,
Prop. 45), and the union of the clefts is not a cléfi: The graph is a perfect fusion graph
(see Sec. 7, Prop. 55), the property holds.

the setY in gray).

5 Local characterizations

The definitions of weak fusion, fusion, strong fusion andfgrfusion graphs
are based on conditions that must be verified for all the dalisfethe vertex set.
This means, if we want to check whether a graph is, for ingaagerfect fusion
graph, then using the straightforward method based on theitoen will cost an
exponential time with respect to the number of vertices.

On the other hand, we know that certain classes of graphs Ibagécharacteri-

zations. For example, line graphs may be recognized thank& 15, a condition

which can be checked independently in a limited neighbadlaieeach vertex. Do
such characterizations exist for the four classes of fugraphs? We prove in this
section that weak fusion graphs and fusion graphs canndtdr@acterized locally,

and we give local conditions for characterizing strong dasand perfect fusion
graphs.

Let (E,T") be a graph, lex € E andk € N, we denote by ¥(x) thek!" order neigh-
borhood of xthat is,F¥(x) = I (T*"1(x)), with F°(x) = {x}.

Property 35. There is no local characterization of weak fusion graphsréjure-
cisely, let k be an arbitrary positive integer. There is nogerty? on graphs such
that an arbitrary graph G= (E,IN) is a weak fusion graph if and only if, for all
x € E, P[G(x,K)] is true, Gx, k) being the subgraph of G induced BY(x).

Proof: It can be seen that the graphs of Fig. 9a are weak fggaphs, while those
of Fig. 9b are not. In addition, for any integlerthe same K-local configurations”
may be found in both families, for a sufficiently large graph.

Property 36. There is no local characterization of fusion graphs. More@sely,
let k be an arbitrary positive integer. There is no propePtyn graphs such that an
arbitrary graph G= (E, ") is a fusion graph if and only if, for all ¢ E, P[G(x,K)]
is true, Gx, k) being the subgraph of G induced B¥(x).
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Fig. 9. Graphs for the proof of Prop. 35. In each graplimf the black vertices denote a
setX such that the condition for a weak fusion graph is not true.

Proof: It can be seen that the graphs of Fig. 10a are fusigshgravhile those of
Fig. 10b are not. In addition, for any integerthe same K-local configurations”
may be found in both families, for a sufficiently large graph.

(a)
Fig. 10. Graphs for the proof of Prop. 36. In each graplb)f the black vertices denote a
setX such that the condition for a fusion graph is not true.

We are now going to prove that strong fusion graphs can beactexized locally.
A few preliminary properties will help us to organize the pfoThe following one
states that in a strong fusion graph, if two neighboring congmtsA andB can
be merged, then they can be merged through &sétich is “close” toA andB,

furthermore (next property), this s8tcan be reduced to one or two points.

Property 37. Let G= (E,I") be a graph. The graph G is a strong fusion graph if
and only if for any XC E, for any A and Bz C(X) such that AB are neighbors,
there exists & [*(A) UI*(B)] such that A and B can be merged through S.

Proof: Suppose th& is a strong fusion graph. L&t C E, letAandB € C(X) such
thatA, B are neighbors. LeX’ = X\ int(X). Thus, each point oX’ is adjacent to
(at least) one component gf X’). Obviously,A, B are also components g¢f(X’),
andl*(A)Nr*(B) # 0. Since(E, ") is a strong fusion graph, there exists a sulsset
of X’ such thatA,B can be merged throug8 that is,Sis F-simple forX’ and
adjacent toA andB. Since intX’) = 0 andSC X’, we have intS) = 0. Thus, it
can be easily seen th&C M (A) Ul *(B). SinceX’ C X and C(X) € ¢(X') (a
consequence of Prop. 4), it follows straightforwardly tBas also F-simple foiX.
This proves the forward implication, the converse is imnagésli]

Property 38. The graph G= (E,I") is a strong fusion graph if and only if, for any
X C E, forany A and B C(X) such that AB are neighbors, there existssal *(A)
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and be I'*(B) such that A and B can be merged throughb}.

Proof: Suppose thab is a strong fusion graph, let C E, let A andB € C(X)
such thatA, B are neighbors. By Prop. 37, there exiSts. [T*(A) UT*(B)] such
thatA andB can be merged through Without loss of generality (by Prop. 22), we
may assume th&is connected. IS contains a poink € '*(A) NI *(B), then the
forward implication is proved witla = b = x. Otherwise Smay be partitioned into
two disjoint set\' = SNI*(A) andB’ = SNI*(B). SinceSis connected, by Prop. 1
the setsA’ andB’ must be adjacent, thus there exiats A’ andb € B’ which are
adjacent, and sincgis F-simple it can be easily seen tHat b} is also F-simple.
This proves the forward implication, the converse is imragsll]

Notice that in the two previous properties, the mergingSéidr {a,b}) must be-
long to the union of *(A) andl *(B), not to the intersection; more informally it
means thaf andB cannot necessarily be merged through a subset of their commo
boundary. To show that it is not necessary tBae included i *(A) NI *(B) for
having a strong fusion graph, it suffices to consider thely@gepicted in Fig. 11.

It may be checked thas is indeed a strong fusion graph. Consider theXsetf
black verticesA = {x} andB = {y} (which are neighbors) can only be merged
throughS= {a,b} which is included i *(A) U *(B) but not inl*(A)NT*(B).

X
a

b
y

Fig. 11. lllustration of Prop. 37 and Prop. 38.

More generally, if two components, B of X can only be merged through a two-
element seS= {a, b}, it can be seen that necessarily bathndb are W-simple.
This means in particular that a configuration like Fig. 11ra@roccur ifX is a cleft.
From this remark, we can derive a simpler characterizatfatrong fusion graphs,
in which we consider only the subsetof E which are clefts.

Property 39. The graph(E,I') is a strong fusion graph if and only if, for any
X C E which is a cleft, for any A and B C(X) such that AB are neighbors, there
exists xc [[*(A) NI*(B)] which is F-simple for X.

We are now ready to prove the local characterization thedm@nstrong fusion
graphs.

Let x andy be two points, we say that and y are 2-adjacenif y ¢ I'(x) and
r*(x)yNr(y) # 0.

Theorem 40. Let G= (E,I") be a graph. The graph G is a strong fusion graph if
and only if, for any two points,¥ € E which are 2-adjacent, there exist&d *(x)
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and be (y) such that be I' (a) andl" ({a,b}) C [F(x) UT (y)].

Proof: Suppose thds is a strong fusion graph. Lety € E which are 2-adjacent,
and consider the s&t = I'*(x) Ul *(y). We observe that the sets= {x} andB =
{y} are two elements of (X). By Prop. 38, there existsc '*(x) andb € '*(y),
b € (a), such thatA andB can be merged througdla, b} for X. Thusa andb must
be mutually adjacent, angh, b} cannot be adjacent to a componenXoivhich is
neither{x} nor{y}, hencd ({a,b}) C [ (x) UT (y)]. Thus the forward implication
is proved, and the converse is straightforward.

We give below seven necessary and sufficient conditionsddept fusion graphs.
Remind that in perfect fusion graphs, any two componént8 of (X) which
are neighbors can be merged through{A) NI*(B). Thus, perfect fusion graphs
constitute an ideal framework for region merging methodshke sequel, we will
use the symbaBA to denote the graph of Fig. 3a.

Theorem 41. Let (E,I") be a graph.

The eight following statements are equivalent:

i) (E,IN) is a perfect fusion graph;

ii) for any x € E, any XC I'(x) contains at most two connected components;
iii) for any non-trivial cleft Y in E, each pointxinY is F-spie;

iv) for any connected subset A of E, the subgraptiof”) induced by A is a fusion
graph;

v) for any subset X of E, there is no multiple point for X;

vi) the graph @ is not a subgraph of G;

vii) any vertices X, y, z which are mutually non-adjacentsreh that” (x) NI (y) N
M(z) =0;

viii) for any xy € E which are 2-adjacent, for any & I'*(x) " I"*(y), we have
M2 C[rUr(y).

Proof: We will show thafnot ii] = [not iii] = [not iv] = [not v] = [not vi]

= [not vii] = [not viii] = [noti] = [notii], hence the equivalence of the eight
statements.

e [not ii = notiii] Suppose that there exists E and there existX C I'(x) which
contains three distinct connected componén®,C. LetY = E\ (AUBUC), and
let Z be a cleft ofY. Necessarilyx € X and thusx € Y. Furthermore, since is
adjacent to three distinct componentsYgfwe know thatx € Z and thatx is also
adjacent to three distinct componentsZofand thus is not F-simple fa.

e [not iii = not iv] Suppose that there exist a non-trivial clgftand a poinx € Y
which is not F-simple folY. SinceY is a cleft, we know thaxk is not either a W-
simple point. Ifx is an inner point, by Th. 32 we deduce th&, ") cannot be

a fusion graph, and thus conditiom does not hold folA = E. Otherwisex is a
multiple point forY. Then, consider the sét= [[(x) \ Y]U{x}. Let (A, a) be the
subgraph of E,I") induced byA, and letX = {x}. The sefA is connected, and since
x is a multiple point fory, A\ X must contain at least three connected components
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for (A,l'a), furthermore these components cannot be merge& fsincex is the
only point separating them. Thya, " ») is not a fusion graph.

e [not iv= not ] Suppose that there exists a connected suAsHtE such that
the restriction(A,T'") of (E,I") to Ais not a fusion graph. By Prop. 31, there exists
X C Aandx € X such thak is a multiple point forX in (A, T'"). Obviouslyx is also
a multiple point for[E \ AjJuX in (E,T").

e [not v=- not vi] Suppose that there exists a subseif E and a poink € X which
is a multiple pointj.e., xis adjacent to three distinct connected componAnBsC
of X. Letwe F(X)NA, ye(x)NB, andz € I'(x) NC. SinceA,B,C are distinct
connected components &, w,y, z are mutually non-adjacent, thus the subgraph
induced by{x,y,z w} is GA.

e [not vi = not vii] Suppose that the subgraph Gf induced by some points
{x,y,z,w} is G4, the central point being. We havex € I'(w) N (y) NI (z), and
w, Yy, zare mutually non-adjacent.

e [not vii=- not viii] Let w,y, zbe three mutually non-adjacent pointdo$uch that
F(w)yNr(y)nr(z) #0, and letx € I'(w) NI (y) NI (z). We havey andz which are
2-adjacentx € '*(y) N *(z), butl (x) containsw which is not inl" (y) Ul (z) by
hypothesis.

e [not viii = not i] Let y,z € E be two points which are 2-adjacent, and xet
*(y)NIr*(z) such that there exist8c I' (x), w¢ I (y) UT (2). LetX = E\ {y,z,w}.
LetA={y}, B= {z}, andC = {w}. From our hypothesis, we know thaiB andC
belong toC(X). Let S=T*(A,B) =I*(A)NT*(B), clearlyx € S. Sincex is also
adjacent tcC, A andB (which are neighbors) cannot be merged throGgand the
graph is not a perfect fusion graph.

e [not i = not ii] We will prove in fact thatii = i. Suppose thaii holds, and
let X C E, let A,B € C(X) such that™*(A,B) # 0. For anyx in ['*(A,B), from
the hypothesisii) we deduce thak is only adjacent toA and B. Furthermore
AUBUT*(A,B) is obviously connected, thus‘(A,B) is F-simple forX, andA
andB can be merged throudfi (A, B). [

Notice that conditiorviii bears a resemblance with the local characterization of
strong fusion graphs (Th. 40).

Remind that any line graph is a perfect fusion graph (Projp. 2@ can see that,
thanks to Th. 41 (conditioni), perfect fusion graphs can be characterized in a way
similar to Th. 5 which characterizes line graphs, but withiechnsimpler condition.

A consequence of Th. 41 is that all the graphs of Fig. 3 excegtig4 are perfect
fusion graphs, since none of these graphs cont@hss a subgraph. The reader
can also check anyone of the previous eight conditions aetheaphs, as an illus-
tration of Th. 41.

Corollary 42. Let G= (E,I') be a graph, let X be any connected subset of E. If

G is a perfect fusion graph, then the subgraph of G induced yafso a perfect
fusion graph.
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6 Usual grids

The aim of this section and the following one is to answer thesgjon: which

are the grids that may be used in order to perform “safe” nmgrgiperations on
digital images? In this section, we consider the differemdsggcommonly used in
2-dimensional and 3-dimensional image processing. Ouommagult is that none
of these grids is a perfect fusion graph and several are rat fasion graphs. One
of the consequences is that the most natural merging operathich consists in
merging two regions through their common neighborhoodpisari'safe” operation

in these grids.

We start with some basic definitions which allow to structimepixels of an image.
In this section and the following one, we will assume thas$ a strictly positive
integer.

Definition 43. Let E be a set and let'Bbe the Cartesian product of n copies of E.
An element x of Emay be seenasamap frdih, ...,n} to E, foreach e {1,...,n},

X; is the i-th coordinate ox.

Let Z be the set of integers. We consider the families of sgtsH} such that
Hi = {{a} |ac Z}, H] = {{a,a+1} | a€ Z}. A subset S &" which is the Carte-
sian product of exactly it n elements of Hiand (n—m) elements of Biis called

a mcube

In order to recover a graph structure for digital imagesaeéncy relations are
defined orZ". The following definition allows to retrieve the most freanly used
adjacency relations.

Definition 44. Let m< n, we say that x and y ii" are madjacentif there exists a
m-cube that contains both x and y. We defiflgas the binary relation oZ" such
that for any pair x, y in E(x,y) € I'}}, if and only if x and y are m-adjacent.

In order to deal with graphs that can be arbitrary large wendefigrid as a pair
(E,I") whereE is an infinite set andl is a binary relation ork. Let X C E, we
define the restriction ofE, ") to X as the pailX,I'x) wherel'x =T N (X x X). If

X is afinite setX,'x) is a graph. In the sequel, to simplify the notations, we will
write I as a shortcut foF .

6.1 2-dimensional usual grids

Letw, h be two integers strictly greater than 1, called respeactiwetithandheight
we setE = {x € Z? | 0 < x; < w and 0< x, < h}. In this section we study the
connected grapkE, I'%) (resp.(E,3)) which is the restriction 0ofZ?,12) (resp.
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(a) (b)

Fig. 12. (a): Counter-examples for the weak fusion property (&,I'2); The black
points represent a sét; (b): counter-example for the fusion property (&,%) when
{w, h} = {3,4}; the component oK in gray cannot be merged.

RRINeIN
ool

(a) (b)

Fig. 13.(a): Local configurations which are used for proving Lem. 47;fagurationsC;
andC; are the local configurations of multiple points(i,3); (b): counter-example for
the strong fusion property ¢E,3).

(Z2,T3)) to E. Notice thatl'? (resp.I"3) corresponds to the 4 (resp. 8)-adjacency
relation commonly used in the literature.

Property 45. Letw> 2 and h> 2. If {w,h} + {3,4}, (E,I'%) is not a weak fusion
graph. If{w,h} = {3,4} then(E, rf) is a weak fusion graph but not a fusion graph.

Proof: If {w,h} £ {3,4}, let us consider the following set:

(1): if bothwandh are odd X = {(i, ) | i+ ] is odd};

(2):ifonly wis odd,X = {(i,]) | i+ jisodd}\{(0,h—1),(w—1,h—1)};
(3):ifonly his odd, X = {(i,j) |i+jisodd}\ {(w—1,0),(w—1,h—1)};

(4) if bothwandh are evenX = {(i, j) | i+ jisodd} \ {(0,h—1),(w—1,0)}.

Fig. 12a shows the s&t for image domains of size:83, 4x 4 and 5x 4.

It may be easily checked that any connected componeXtoainnot be merged for
X.

Let {w,h} = {3,4}. Then(E,'?) is a weak fusion graph (exhaustive check). The
graph of Fig. 12b shows a s¥tsuch that there exists connected componeni$ of
which cannot be merged, hendg, I'%) is not a fusion graphl

Let X C E, we say thak € X matche<C; (resp.Cy) if the neighborhood ok cor-
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responds to the configurati@) (resp.Cy) depicted in Fig. 13a or to one of itg/2
rotations. In Fig. 13, points labelled B areXy points labelled W are iiX, at least
one of the points labelled is in X and the point is either inX orin X.

Lemma 46. Let X C E be a cleft on(E,I3). Then any x in X which is multiple
matches either Cor C.

Proof: Exhaustive checkl

Lemma 47. Let X C E be a non-trivial cleft on(E,). Then any Ac C(X) can
be merged.

Proof: Suppose that cannot be merged, then ary X NI"3(A) is multiple. Since
(E,I3) is connected and’(X) > 2, such arx exists. Thus by Lem. 4& matches
eitherCy or Cy. Suppose thax matchesC;. If the two points labelled W irCy
belong to the same connected componenX dhen the point at the west ofis
W-simple, a contradiction with the fact th4tis a cleft. Thus necessarily these two
points belong to distinct componentsXfand the point at the west gis F-simple.

If A contains one of the these two points, labelled WCinthenA is adjacent to
an F-simple point and thus can be merged. OthenAisentains one of the points
labelledU. In this case the same arguments can be used to provétban be
merged, thux does not matcle;.

Suppose that matche<C,. For the same reasonA,is the connected component
that contains the point at the eastxoAs A cannot be merged, necessarily the point
which is at the north ok is multiple. Then the only possible configurationds,
which is depicted in Fig. 13a. In configurati@g, it can be verified that the point at
the north-east ok is necessarily F-simple. Thu#scan be merged, a contradiction.
O

Property 48. Let h> 2 and w> 2, the graph(E, r%) is a fusion graph but is not a
strong fusion graph.

Proof: The fact tha{E, F%) is a fusion graph is a direct corollary of Lem. 47 and
Th. 32. Let us consider the s&t composed by the black points in Fig. 13b. It
can be seen that this type of “global cross configuration’lmaextended whatever
the size oft (with h > 2 andw > 2). In these cross configurations, the connected
components which are diagonally neighbor to each otheratdms merged. Thus
the graph(E, %) is not a fusion graph.J]

6.2 3-dimensional usual grids

Let w, h andd be three integers strictly greater than 1, called respelgtiwidth,
heightanddepth we setE = {x€ Z3| 0 < x; <w,0 < xo < hand 0< x3 < d}. In
the sequel we will consider that > 1,h > 1 andd > 1. In this section we study
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Fig. 14. Counter-examples for the weak fusion propertyeof” f). The black points repre-
sent a seX.

the graph(E,3) (resp.(E,3)) which is the restriction ofZ3,I'3) (resp.(Z3,T'3))
to E. Notice thatrf (resp.rg) corresponds to the 6 (resp. 26)-adjacency relation
commonly used in the literature.

Property 49. The graph(E, Ff) is not a weak fusion graph.

Proof: Let us consider the s¥tsuch thaX = {x € E | the number of odd coordi-
nates ok is equal to 0 or 2 (this set corresponds to a “3-dimensional chessboard”).
Samples of such a set are shown in Fig. 14. It may be easilytkaeany element

of X is a connected component that cannot be merged withoutvimgpht least
two other connected components. Hence the graph is not afwsiak graph]

Property 50. Ifw > 5, h> 5, d > 5, the graph(E, Fg) is not a fusion graph.

Proof: Let us consider the s¥tof white points depicted in Fig. 15a. Whatever the
size ofE and supposing that all points &f outside the figure are iX, it may be
seen that the central poirtis such that{x} is a connected component Xf Any
point 3-adjacent tx (the set of gray points) is adjacent to at least three distinc
connected components &f. Thus any attempt to merggx} will involve three
connected components &t hence{x} cannot be mergedE,T3) is not a fusion
graph.[

Remark 51. It is known in digital topology [13], that in the 2-dimensi@incase,

a skeletoni(e., a set without any simple point) does not contain 8ny3 square
Whenevel"§ (resp.rf) is used for the background (resp. object) [1]. We may won-
der if this property can be extended to the 3-dimensionaé.cBsom the charac-
terization of simple points based on connectivity numbgjsi{ can be seen that
any simple point, wheﬁ% (resp.rf) is used for the background (resp. object), is
W-simple when using the gragk, I'3). From this we see that any cleft, in this
context, is a skeleton (but the converse is not true). FroapP30 and Th. 32, we
deduce that there exists some cleft§EnI3) which are not thin (see an example
Fig. 15b). Such a cleft, which is also a skeleton, containdeast) one3 x 3 x 3
cube.
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Fig. 15. (a): Counter-example (set of black points) for the fusion propef (E,I3).
(b): Black and gray points represent a $ewhich is a non-thin cleft, and also a skele-
ton which includes a & 3 x 3 cube (gray points).

7 Perfect fusion grid

We introduce a grid for structuring-dimensional digital images and prove that it is
a perfect fusion graph, whatever the dimengiott does thus constitute a structure
on which neighboring regions, in ardimensional digital image, can be merged
through their common neighborhood.

Fig. 17b gives an intuitive idea of this grid. Fig. 16a showtsdt of Fig. 1a obtained
on this grid. It can be easily seen that the problems pointeéanathe introduction
do not exist in this case. The cleft does not contain any ipoant. Any pair of
neighboring regions can be merged by simply removing froendleft the points
which are adjacent to both regions (see Fig. 16b,c). Furtbes, the resulting set
is still a cleft.

It may be seen that this grid is “between” the usual grids. Weprove in a forth-
coming paper that this grid is indeed the unique such graph.

LetC" be the set of all n-cubes @, we define the map from C" to Z", such that
for anyc € C", B(c)i = min{x; | x € c}, whereB(c); is thei-th coordinate oB(c).
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Fig. 16.(a): A cleft of Fig. 1 obtained on the perfect fusion grith): a crop of(a) where the
regionA, B, C andD corresponds to the region shown in Fig. 1d; in gray, the spwading
perfect fusion grid is superimpose(;): same agd) after having merge®& andC to form
a new region, calleé.

It may be seen that is equal to the Cartesian produ¢B(c)1,B(c)1 + 1} x ... X
{B(c)n,B(C)n+ 1}. Thus clearlyB is a bijection.

We setB = {0,1}. We sefd = 1 and1 = 0. A binary word of length ris an element
of B". If uis in B", we definethe complement of as the binary wordi such that
foranyi € {1,...,n}, (0); = (Tp).

Before defining perfect fusion grids, we first recall the défam of cliques, and a
property due to Berge which uses maximal cliques to chatizetsome line graphs.
This property will be used in the proof of Prop. 55.

Let E be a set, lef be a binary relation ot and letX C E. We say thaiX is a
clique (for (E,IN)) if X x X CT. In other wordsX is a clique if any two vertices
of X are adjacent. We say thdtis amaximal cliquef, for any cliqueX’, X C X’
impliesX’ = X.

Property 52 (Prop. 7 in [3], chapter 17)Let G= (E,I") be a graph. If for any
x € E, x is in at most two distinct maximal cliques, then G is a Gnaph.

Definition 53. Let f be the map from Tto B" such that for any & C", f(c); is
equal to Bc); mod2, that is the remainder in the integer division ofdj by 2.

Let u be an element @&", we set @ = {cc C" | f(c) = u} and CE/U =CJjuCl.

We define the binary relatioﬁﬂ/U C Z" x Z" as the set of pairgx,y) € Z" x Z"
such that there exists&:CS/U that contains both x and y.

We define?", the family ofperfect fusion grids ove£", as the se" = {(Z", F[]/U) lue
B"}.

Fig. 17 illustrates the above definitions for the two-dimenal case. Fig. 18 shows

a cleft on a 3-dimensional perfect fusion grid. To clarifethgure, we use the
following convention: any two points belonging to a sameeutarked by a gray
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Fig. 17. lllustration of the two perfect fusions grids ov&f (restricted to subsets &?).
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Fig. 18. A 3-dimensional perfect fusion grid. Black pointmstitute a set which is a cleft.

stripe are adjacent to each other.
In the sequel, to simplify the notations, we will writeas a shortcut foB(c);.

Lemma 54. Let ue B" and let xe Z".

i) There exists a unique c if{Guch that x c.

ii) The point x is in exactly two maximal cliques(@f’, FB/U).

Proof: It may be easily seen that any elemenf C" which containscis such that
foranyi € {1,...,n}, ¢ = x — 1 or¢ = X, hence).

We deduce fronn) that there are exactly two distinct elemeatndc’ of CS/U such
thatc € Cl, ¢’ € C} and such thax is in bothc andc’. Thus any element adjacent
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to x is either inc or in ¢’. From the very definition of ", _, any pair of elements of

u/a
c (resp.c) isin FL‘/U. Thusc andc’ are cliques of Z", FB/U), which both contairx.

Since any paify,y’) withy e c\c,y € c\ cis notin FB/U, we conclude that is
in exactly two maximal cliques.]

Property 55. Let uc B" and let X be a finite subset @f" such that(X, FG/U) is
connected. ThefX, I'E/U) is a perfect fusion graph. Furthermore it is a line graph.

Proof: From Lem. 54, anx in X is in at most two maximal cliques. Thus, as a
consequence of Prop. 5", FE/U) is a line graph and from Prop. 29 itis a perfect
fusion graph]

The following property shows that the perfect fusion gridhetween” the usual
adjacency relations oA".

Property 56. Let ue B". We havel ] C FB/U cry.

Proof: From Lem. 54, we know that for amye Z" there exist exactly two maximal
cliquesc € C{} andc’ € Cf} that contairx. Necessarily there exiskssuch thaB(c) =
x—k with k € B" andB(c') = x—k. A pointX is in ['}(x) if there exists a unique
j €{1,...,n} such tha| = xj +1 orx; = xj — 1 and for anyi € [{1,...,n} \ {j}],
X =X Suppose tha{; = x; — 1. The case wherd = x; + 1 is symmetric to this one
and the following arguments hold for both cases. Forian{{1,...,n} \ {]j}], either
kk=0orki=1.1fk =0,thenx =x =ci=c¢+1.Ifk =1, thenx =x =¢ =
¢ +1. On the other hand, Kj = 1 thenx; = xj —1=c;j, hencex € c. Otherwise, if
kj = 0 thenx; = x; — 1 =c¢;, hencex’ € ¢’. Whatever the caséx,x) € '} ;, hence
rNc FE/U. The proof of the second inclusion follows straightforwigirttom the
definition ofFE/U.D

Property 57. The family?" contains2"~! distinct perfect fusion grids.

Proof: From the very definition of perfect fusion grids, We/de'lﬁﬂ/U = Fg/u. Fur-
thermore, if{u,u} # {v,v} then FE/U # FC/V . Since the cardinality aB" is equal

to 2", the cardinality ofP" is equal to 2/2 = 2"-1. 0

Let X C Z" and lett € B". We defineX +t = {x+t | x € X}, we say thaK +tisa
binary translation of X Let mbe a positive integer such thait< n. Remark that if
X is an m-cube theX +1 is also an m-cube.

The following property states that any two n-dimensionafqu fusion grids are
equivalent up to a binary translation.

Property 58. Letu and vinB". Lette B" such that forany € {1,....n},if ui =V
then t = 1, otherwiset= 0. Then for any(x,y) € Z" x Z", (x,y) € I'E/U if and only

if (x+t,y+t)erl?)

v/V*
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Fig. 19. lllustrations of the relation between line graph4-connected graph and perfect—
fusion grids.(a): a restriction of the 2-dimensional perfect fusion giid): a graph (black
points and edges) whose line graph(as; the gray points indicate corresponding vertices
of the line graph(a) of (b); (c): black points and edges depict a local configuration of the
3-dimensional 1-connected grid; the gray points indicateesponding vertices of the line
graph of(c) in which any gray point is adjacent xp(d): a local configuration of the perfect
fusion grid, any black point is adjacentyo

Proof: It can easily be seen that for ang C", f(c) = u (resp.f(c) = 1) if and
only if f(c+t) =v (resp. f(c+t) =V)). The result follows from this observation
and from the definition of the perfect fusion grids.

Let uin B?. Let X be a finite subset dZ?. It can be seen tha(E,I'ﬁ/U) is the
line graph of a grapiE’,I'2), with E’ C Z2. For example, Fig. 19a shows a 2-
dimensional perfect fusion grid, its associated gréffhrf) is depicted in Fig. 19b.
Remark that a similar statement is not true in dimension 8al.oonfigurations of
(ZS,FE) and of its line graph are depicted in Fig. 19c. A local confagion of
(73, rﬁ/u) is depicted in Fig. 19d. It can be checked that the pointFig. 19¢ has
exactly 10 neighbors whereas the pomn Fig. 19d has 14 neighbors. Thus those

two configurations cannot be isomorphic.

Conclusion

This article sets up a theoretical framework for the studynefging properties in
graphs. Using this framework, we obtained a necessary dfidisat condition for
the thinness of clefts, we defined four classes of graphdatoa to these merging
properties and gave local characterizations of theseadasbenever possible. We
also analyzed the status of the graphs which are the mostywided for image
analysis, and proposed a family of graphsZhwhich constitute an ideal support
for region merging.
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In the articles [11,12], we extend this study to the case aglkated graphsi(e.,
graphs with values associated to vertices), which coristaumodel for grayscale
images. The notion of topological watershed [4,7] exterdsriotion of cleft to
weighted graphs, and possess interesting properties vaneinot guaranteed by
most popular watershed algorithms [15]. The major outcoai¢tl,12] are:

i) a proof that any topological watershed on any perfectdagraph is thin;

i) a new, simple and linear-time algorithm to compute tagital watersheds on
perfect fusion graphs.

In a forthcoming article [10], we investigate the case ofpfpgwith values asso-
ciated to edges. Contrarily to previous works, we define thgevgheds following
the intuitive idea of flowing drops of water. We establish tdomsistency of these
watersheds, and prove their optimality in terms of minimyrarming forests. We
introduce a new local transformation on maps which equititelefine these wa-
tersheds, and derive two linear-time algorithms. To outt k@swledge, similar
properties are not verified in other frameworks and the twappsed algorithms
are the most efficient existing ones.
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Appendix

Proof of Prop. 16: Since|C(X)| > 2 we haveAUannA) # E, and sinceE is
connected, from Cor. 2 there must exist a poim I (AUannA)). Furthermore,
X must be adjacent to at least one comporigiwf X distinct fromA, otherwise
ann(A) U {x} would be W-simple forX, a contradiction with the definition of
annA); andx cannot belong td, otherwise anfA) would not be W-simple for
X, also a contradiction with the definition of ai#). [J

Proof of Prop. 2L

Suppose thaAUBUSe C(X\ S). LetC € ¢(X|9), thenAUBUSUC is connected
andAUBUSC AUBUSUC C X\ S SinceX # 0, as a connected componendof
the setC cannot be empty, and sindfeJBUS e C(X\S), we must have either
C=AorC=B.
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Suppose now thelis F-simple forX and adjacent té&\ andB. Thus,AUBUSis
connected, it remains to prove that it is maximal. Zet E such thahUBUSC

Z C X\ 'S andZ connected. LeY =Z\ [AUBUS]. SinceZ C X\ S, we havey C X.
SinceA (resp.B) belongs toC(X), Y cannot be adjacent #(resp. toB), and since
C(X|S) = {A,B}, Y cannot be adjacent & SinceZ is connected, by Prop. 1 we
deduce tha¥ must be empty, thuZ = AUBUS andAUBUSis a component
of X\ S. The other components of \ S are clearly the components & which
differ from A andB. [J

Lemma 59. Any strong fusion graph is a fusion graph.

Proof: LetG = (E,I") be a strong fusion graph, 1& C E such that C(X)| > 2,
and letA € C(X). By Prop. 16, there exisB € C(X), B # A, such thaAuUannA)
andB are neighbors. Sind8 is a strong fusion graph, there exi&s [X\ ann(A)]
such thatAu annA) and B can be merged throug8 for X \ annA). Consider
S = SuannA), it can easily be seen th8tis adjacent to exactly two components
of X, namelyA andB, thusA can be merged foX. [J

Lemma 60. Let (E,I") be a graph. Let X_ E, let Ac C(X), and let YC A. Then,
we haveC(XUY) = [C(X) \ {A}JUC(A\Y).

The proof is elementary. This lemma is useful in the follogvproof.

Proof of Prop. 34 We have to prove that anyin X UY cannot be W-simple. If
Y = 0thenXUY = X which is a cleft. Suppose from now théat£ 0.

Let x € Y. SinceY C AandY # 0 andY is a cleft, there exist8,C € C(A\Y)
which are adjacent teand by Lem. 60B andC also belong ta”(XUY), thusx is
not W-simple forX UY.

Let x € X. SinceX is a cleft forE andG is a perfect fusion graph, by Th. 3X,

is thin and thus is adjacent to exactly two elemersC of C(X). If B # A and
C # Athen from Lem. 60 we deduce thais also F-simple foX UY, suppose now
thatB = A (the caseC = A is identical). IfF*(x) NY = 0 thenx is adjacent tcC
and to a component @&\ Y, it is thus not W-simple foX UY. Suppose now that
there existy € *(x) NY. SinceY is a cleft forA there exists two pointa, b in
*(y) which belong to distinct componentsAf Y (thus,aandb are not adjacent).
Furthermorey € I'(x) N I"(a) NI (b) and sinceG is a perfect fusion graph and by
the converse of Th. 44{ji), x must be adjacent to eitheror b. Hencex is not
W-simple.OO
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