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Abstract

Region merging methods consist of improving an initial segmentation by merging some
pairs of neighboring regions. In this paper, we consider a segmentation as a set of connected
regions, separated by a frontier. If the frontier set cannotbe reduced without merging some
regions then we call it a cleft, or binary watershed. In a general graph framework, merging
two regions is not straightforward. We define four classes ofgraphs for which we prove,
thanks to the notion of cleft, that some of the difficulties for defining merging procedures
are avoided. Our main result is that one of these classes is the class of graphs in which
any cleft is thin. None of the usual adjacency relations onZ

2 andZ
3 allows a satisfying

definition of merging. We introduce the perfect fusion grid on Z
n, a regular graph in which

merging two neighboring regions can always be performed by removing from the frontier
set all the points adjacent to both regions.

Key words: Graph theory, region merging, watershed, cleft, fusion graphs, adjacency
relations, connectedness, image segmentation, image processing

Introduction

In the important and difficult task of segmenting an image, connectivity often plays
an essential role: in many cases, a segmentation can be viewed as a set of connected
regions, separated by a background which constitutes the frontiers between regions.
A popular approach to image segmentation, called region merging [17,16], consists
of progressively merging pairs of regions until a certain criterion is satisfied. The
criterion which is used to identify the next pair of regions which will merge, as well
as the stopping criterion are specific to each particular method.
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Fig. 1. (a): Original image (cross-section of a brain, after applying agradient operator).
(b): Watershed of(a) with the 4-adjacency (in black).(c): Inner points for the previous
image (in black).(d): A zoom on a part of(b). The pointsz andw are inner points.(e):
Watershed of(a) with the 8-adjacency (in black). There are no inner points.

Given a grayscale image, how is it possible to obtain an initial set of regions for
a region merging process? The watershed transform [6,14] isa powerful tool for
solving this problem. Let us consider a 2D grayscale image asa topographical
relief, where the dark pixels correspond to basins and valleys, whereas bright pixels
correspond to hills and crests. Suppose that we are interested in segmenting “dark”
regions. Intuitively, the watersheds of the image are constituted by the crests which
separate the basins corresponding to regional minima (see Fig. 1a,b). Due to noise
and texture, real-world images often have a huge number of regional minima, hence
the “mosaic” aspect of Fig. 1b. In [7,4,8,15], the authors developed a framework
based on graph theory, in which some important properties ofgrayscale watersheds
are proved, and efficient algorithms to compute them are proposed. In the case
of a graph (e.g.,an adjacency graph defined on a subset ofZ

2), a watershed may
be thought of as a “separating set” of vertices which cannot be reduced without
merging some connected components of its complementary set. In this context, we
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will use the term ofcleft1 for talking about such a separating set.

A first question arises when dealing with clefts on a graph. Given a subsetE of
Z

2 and the graph(E,Γ1) which corresponds to the usual 4-adjacency relation, we
observe that a cleft may contain some “inner points”,i.e., points which are not
adjacent to any point outside the cleft (see Fig. 1c,d). We can say that a cleft onΓ1

is not necessarily thin. On the other hand, such inner pointsdo not seem to appear in
any cleft onΓ2, which corresponds to the 8-adjacency. Are the clefts onΓ2 always
thin? We will prove that it is indeed true. More interestingly, we provide in this
paper a framework to study the property of thinness of cleftsin any kind of graph,
and we identify the class of graphs in which any cleft is necessarily thin. This result
is one of the main theorems of the article (Th. 32).

Let us now turn back to the region merging problem. What happens if we want to
merge a couple of neighboring regionsA andB, and if each pixel adjacent to these
two regions is also adjacent to a third one, which is not wanted in the merging?
Fig. 1d illustrates such a situation, wherex is adjacent to regionsA,B,C and y
to A,B,D. This problem has been identified in particular by T. Pavlidis (see [16],
section 5.6: “When three regions meet”), and has been dealt with in some practical
ways, but until now a systematic study of properties relatedto merging in graphs
has not been done. A major contribution of this article is thedefinition and the
study of four classes of graphs, with respect to the possibility of “getting stuck”
in a merging process (Sec. 3, Sec. 4). In particular, we say that a graph is afusion
graph if any regionA in this graph can always be merged with another regionB,
while preserving all other regions. The most striking outcome of this study is that
the class of fusion graphs is precisely the class of graphs inwhich any cleft is
thin (Th. 32). We also provide some local characterizationsfor two of these four
classes of graphs, and prove that the two other ones cannot belocally characterized
(Sec. 5).

Using this framework, we analyze the status of the graphs which are the most
widely used for image analysis, namely the graphs corresponding to the 4- and
the 8-adjacency inZ2 and to the 6- and the 26-adjacency inZ

3 (Sec. 6). In one of
the classes of graphs introduced in Sec. 4, that we call the class ofperfect fusion
graphs, any pair of neighboring regionsA,B can always be merged, while preserv-
ing all other regions, by removing all the pixels which are adjacent to bothA and
B. We show that none of these classical graphs is a perfect fusion graph. In Sec. 7,
we introduce a graph onZn (for anyn) that we call the perfect fusion grid, which is
indeed a perfect fusion graph, and which is “between” the direct adjacency graph
(which generalizes the 4-adjacency toZ

n) and the indirect adjacency graph (which
generalizes the 8-adjacency).

1 Notice that, in previous publications [4,9,11], we used theterm of (binary) watershed as
a synonym of cleft.
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A part of these results has been presented, without the proofs, in a conference arti-
cle [9].

1 Basic notions

Let E be a set, we writeX ⊆ E if X is a subset ofE, we write X ⊂ E if X is
a proper subset ofE, i.e., if X is a subset ofE andX 6= E. We denote byX the
complementary set ofX in E, i.e.,X = E \X.

Let E be a finite set, we denote by|E| the number of elements ofE. We denote
by 2E the set composed of all the subsets ofE.

We define a graph as a pair(E,Γ) whereE is a finite set andΓ is a binary relation
on E (i.e.,Γ ⊆ E×E), which is reflexive (for allx in E, (x,x) ∈ Γ) and symmetric
(for all x,y in E, (y,x)∈ Γ whenever(x,y)∈ Γ). Each element ofE is called avertex
or apoint. We will also denote byΓ the map fromE to 2E such that, for allx∈ E,
Γ(x) = {y∈ E | (x,y) ∈ Γ}. If y ∈ Γ(x), we say thaty is adjacent to x. We define
also the relationΓ∗ = Γ \ {(x,x) | x ∈ E}, and the mapΓ∗ such that for allx ∈ E,
Γ∗(x) = Γ(x)\{x}. LetX ⊆E, we defineΓ(X) =∪x∈XΓ(x), andΓ∗(X)= Γ(X)\X.
If y∈Γ(X), we say thaty is adjacent to X. If X,Y⊆E andΓ(X)∩Y 6= /0, we say that
Y is adjacent to X(or thatX is adjacent toY, sinceΓ is symmetric). LetG = (E,Γ)
be a graph and letX ⊆ E, we define thesubgraph of G induced by Xas the graph
GX = (X,Γ∩ [X ×X]). In this case, we also say thatGX is a subgraph of G. Let
G= (E,Γ) andG′ = (E′,Γ′) be two graphs, we say thatG and G′ are isomorphicif
there exists a bijectionf from E to E′ such that, for allx,y∈ E, y belongs toΓ(x)
if and only if f (y) belongs toΓ′( f (x)).

Let (E,Γ) be a graph, letX ⊆ E, apath in X is a sequenceπ = 〈x0, ...,xl〉 such that
xi ∈ X, i ∈ [0, l ], andxi ∈ Γ(xi−1), i ∈ [1, . . . , l ]. We also say thatπ is apath from x0
to xl in X. Let x, y∈ X. We say thatx andy are linked for X if there exists a path
from x to y in X. We say thatX is connectedif any x andy in X are linked forX.

Let Y ⊆ X. We say thatY is a connected component of X, or simplya component
of X, if Y is non-empty, connected and ifY is maximal for this property,i.e., if
Z = Y wheneverY ⊆ Z ⊆ X andZ connected.
We denote byC (X) the set of all the connected components ofX. Let S⊆ E, we
denote byC (X|S) the subset ofC (X) composed of the components ofX which are
adjacent toS.

Notice that the empty set is connected, and that ifX is non-empty, then the empty
set is not a connected component ofX. Notice also that, ifY is a connected compo-
nent of a setX, thenY is not adjacent toX \Y.
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Let us consider a subsetX of E. We can easily see that, ifX is connected, then
any two non-empty subsetsA,B of X such thatA∪B = X must be adjacent to each
other. On the other hand, ifX is not connected, then we have two pointsx andy
in X which are not linked forX. Considering the setA of all the pointsz in X such
thatx andz are linked forX and considering the setB = X \A, we see thatX can
be partitioned into two non-empty subsets which are not adjacent to each other.
These observations lead to the following property which characterizes connected
sets (without the need of considering paths).

Property 1 ([18]). Let (E,Γ) be a graph, let X⊆ E. The set X is connected if and
only if, for any two distinct non-empty subsets A,B of X such that A∪B = X, the
subset A is adjacent to B.

From Prop. 1 we can immediately deduce the following corollary.

Corollary 2. Let (E,Γ) be a graph, let X be a non-empty subset of E. If E is
connected and if X6= E, thenΓ∗(X) 6= /0.

In this paper, we study in particular some thinness properties of clefts in graphs.
The notions of thinness and interior are closely related.

Definition 3. Let (E,Γ) be a graph. Let X⊆ E, theinterior ofX is the set int(X) =
{x∈ X | Γ(x) ⊆ X}. We say that the set Xis thin if int(X) = /0.

Property 4. Let (E,Γ) be a graph, let X⊆ E such that int(X) 6= /0, let A be a
non-empty subset of int(X). We have:C (X \A) = C (X)∪C (A). Furthermore, if A
is connected, then A is a connected component ofX \A; more precisely we have
C (X \A) = C (X)∪{A}.

The proof of Prop. 4 is elementary and thus omitted. To conclude this section, we
recall the definition of line graphs. This class of graphs allows to make a strong
link between the framework developed in this paper and the approaches of water-
shed and region merging based on edges rather than vertices,i.e.,when regions are
separated by a set of edges.

Let (E,Γ) be a graph. Theline graph of(E,Γ) is the graph(E′,Γ′) such thatE′ = Γ∗

and(u,v) belongs toΓ′ wheneveru∈ Γ∗, v∈ Γ∗, andu,v share a vertex ofE.
We say that a graph(E′,Γ′) is a line graphif there exists a graph(E,Γ) such that
(E′,Γ′) is isomorphic to the line graph of(E,Γ).

In Fig. 2, we show a graph and its line graph. All graphs are notline graphs, in
other words, there exist some graphs which are not the line graphs of any graph.
The following theorem allows to characterize line graphs.

Theorem 5 ([2]). A graph G is a line graph if and only if none of the graphs of
Fig. 3 is a subgraph of G.
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Fig. 2. A graph (a) and its line graph (b).
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Fig. 3. Graphs for a characterization of line graphs (Th. 5).

As an illustration, we can check that the line graph depictedin Fig. 2b does not
contain any graph of Fig. 3 as a subgraph. For example, the subgraph induced by
the set{d,e, f ,g} of the graph shown in Fig. 2b is not the same as the graph of
Fig. 3a since it contains one more edge.

2 Clefts

Informally, in a graph, a cleft may be thought of as a “separating set” of vertices
which cannot be reduced without merging some components of its complementary
set (see for example, the set of black vertices in Fig. 4d). Wefirst give formal defini-
tions of these concepts (see [4,7]) and related ones, then wederive some properties
which will be used in the sequel.

Important remark. From now, when speaking about a graph(E,Γ), we will as-
sume for simplicity that E is non-empty and connected.
Notice that, nevertheless, the subsequent definitions and properties may be easily
extended to non-connected graphs.

Definition 6 ([4]). Let (E,Γ) be a graph. Let X⊆ E, and let p∈ X.
We say that pis a border point (forX) if p is adjacent toX.
We say that pis an inner point (forX) if p is not a border point for X,i.e.,

6



if p ∈ int(X).
We say that pis W-simple (forX) if p is adjacent to exactly one connected compo-
nent ofX.
We say that pis separating (forX) if p is adjacent to at least two connected com-
ponents ofX.
We say that pis a multiple point (forX) if p is adjacent to at least three connected
components ofX.

In this definition and the following ones, the prefix “W-” stands for watershed. In
Fig. 4a,x is both a border point and a W-simple point for the setX constituted
by the black vertices, andy is an inner point. In Fig. 5b,z is a border point and a
separating point, andw is a border point, a separating point and a multiple point.

Definition 7. Let (E,Γ) be a graph. Let X⊆ E, and let S⊆ X.
We say that Sis W-simple (forX) if there exists A∈ C (X) such that A∪S is con-
nected andC (X|S) = {A}.

Obviously, a pointp is W-simple if and only if the set{p} is W-simple. Notice that,
in the above definition,S is not necessarily connected. The following property may
be proved easily.

Property 8. Let (E,Γ) be a graph. Let X⊆ E, and let S⊆ X.
The set S is W-simple (for X) if and only if there exists A∈ C (X) such thatC (X∪
S) = [C (X)\{A}]∪{A∪S}.

We are now ready to define the notion of cleft which is central to this section.

Definition 9 ([4]). Let G= (E,Γ) be a graph. Let X⊆ E, let Y⊆ X.
We say that Yis a W-thinning ofX, written XցW Y, if
i) Y = X or if
ii) there exists a set Z⊆ X which is a W-thinning of X and a point p∈ Z which is
W-simple for Z, such that Y= Z\{p}.
A set Y⊆ X is acleft (in G) if Y ցW Z implies Z= Y.
A subset Y of X is acleft of X if Y is a W-thinning of X and if Y is a cleft.
A cleft Y isnon-trivial if Y 6= /0 and Y 6= E.

It can be seen that we can obtain a W-thinning ofX by iteratively removing W-
simple points fromX, and thatY is a cleft ofX if Y is a W-thinning ofX which
contains no W-simple point. Fig. 4 shows a setX and some W-thinnings ofX, the
last one being a cleft ofX. Notice that different clefts may exist for a same setX. It
can be also seen that a cleftX is non-trivial if and only if|C (X)| ≥ 2.

The following definition and theorem are borrowed from [4] and will play an im-
portant role in some subsequent proofs.

Definition 10 ([4]). Let (E,Γ) be a graph. Let X, Y be subsets of E. We say that
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Fig. 4. Illustration of W-thinning and cleft.(a): A graph(E,Γ) and a subsetX (black points)
of E. The pointx is a border point which is W-simple, andy is an inner point.(b): The set
Y = X\{x} (black points) is a W-thinning ofX. (c): The setZ (black points) is a W-thinning
of bothX andY. The setsY andZ are not clefts: some W-simple points exist in both sets.
(d): A cleft of X (black points), which is also a cleft ofY and ofZ. The set of gray points
will be used to illustrate the notion of annexation (Def. 15).

Y is an extension ofX if X ⊆ Y and if each connected component of Y contains
exactly one connected component of X.

Theorem 11([4]). Let X and Y be subsets of E. The subset Y is a W-thinning of X
if and only ifY is an extension ofX.

We can see that if a subsetSof X is W-simple forX, thenX \Sis an extension ofX.
From this observation and Th. 11, we immediatly deduce the following property.

Corollary 12. Let X⊆ E and S⊆ X. If the subset S is W-simple for X, then X\S
is a W-thinning of X.

w

z

(a) (b) (c) (d) (e)

Fig. 5. Illustration of thin and non-thin clefts.(a): A graph (E,Γ) and a subsetX (black
points) ofE. (b): A subsetY (black points) ofE which is a thin cleft; it is a cleft of the
setX shown in (a). The border pointszandw are both separating forY, only w is a multiple
point. (c,d,e): The subsetX represented by black and gray points is a cleft which is not
thin: int(X) is depicted by the gray points.

A cleft is a set which contains no W-simple point, but some of the examples given
below show that such a set is not always thin (in the sense of Def. 3). Fig. 4d and
Fig. 5b are two examples of clefts which are thin: in both cases, the set of black
points has no W-simple point and no inner point. The sets of points which are either
black or gray, in Fig. 5c,d,e are three examples of non-thin clefts. Let us study what
happens if we remove from a non-thin cleftX, a connected component of int(X).
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Property 13. Let (E,Γ) be a graph, let X⊆ E be a cleft. Let A be a connected
component of int(X). Then, X\A is a cleft.

Proof: The cases where|C (X)| < 2 or int(X) = /0 are trivial: if |C (X)| = 0 then
E = X = int(X) = A and X \A = /0; if |C (X)| = 1 then it may be seen thatX
must be empty sinceE is connected, thusX \A = /0; and if int(X) = /0 thenA = /0,
thusX \A = X. Suppose from now that|C (X)| ≥ 2 and int(X) 6= /0. From Prop. 4,
A∈ C (X \A). Letx be a point ofX \A, we have to prove thatx cannot be W-simple
for X \A. If x /∈ Γ∗(A), we can easily see that the pointx cannot be W-simple for
X \A, otherwise it would also be W-simple forX. Suppose now thatx∈ Γ∗(A). The
point x cannot belong to int(X) otherwiseA would not be a connected component
of int(X). Thusx must be adjacent to a componentB of C (X), which is also a
component ofC (X \A) (Prop. 4): hence,x is adjacent to bothA andB, with A 6= B,
and is not W-simple forX \A. �

The following corrolary follows straightforwardly.

Corollary 14. Let (E,Γ) be a graph, let X⊆ E. The set X\ int(X) is a cleft.

Let (E,Γ) be a graph. LetX ⊂ E, let A∈ C (X). Let us consider the familyWA of
all the sets which are W-simple forX and adjacent toA. It may be easily seen that
the familyWA is closed by union,i.e., thatS∪T belongs toWA wheneverS∈WA

andT ∈WA. From this observation, we deduce that there exists a uniqueelement
ofWA which is maximal for the inclusion, and this element is the union of all the
elements of the family.

Definition 15. Let (E,Γ) be a graph. Let X⊂ E, let A∈ C (X). We define the
annexation ofA in X, denoted by ann(A,X), as the union of all the sets which
are W-simple for X and adjacent to A. When no confusion may occur, we write
ann(A) = ann(A,X).

In Fig. 4c, letA be the (white) component ofZ which “surrounds” the (black) setZ.
The set ann(A,Z) is depicted in light gray in Fig. 4d.

We have seen that, for anyS which is W-simple forX and adjacent toA, the set
X∪S is an extension ofX. In particular, the setX∪ann(A) is an extension ofX.

The following properties illustrate the notion of annexation, which will serve us to
prove some of the main results of this paper.

Property 16. Let (E,Γ) be a graph, let X⊂ E such that|C (X)| ≥ 2. For any
A∈ C (X), there exists B∈ [C (X)\{A}] such thatΓ∗(A∪ann(A))∩Γ∗(B) 6= /0.

The proof can be found in the appendix. We leave the proof of the following prop-
erty to the interested reader.
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Property 17. Let (E,Γ) be a graph, let X⊂ E, let A∈ C (X). The set A∪ann(A,X)
is equal to the connected component of int(X∪A) which contains A.

3 Merging

y
z

w

x
y
z

w

x
y
z

w

x

(a) (b) (c)

Fig. 6. Illustration of merging.(a): A graph (E,Γ) and a subsetX of E (black points).
(b): The black points representX \S with S= {x,y,z}. (c): The black points represent
X \S′ with S′ = {w}.

Consider the graph(E,Γ) depicted in Fig. 6a, where a subsetX of E (black vertices)
separates its complementary setX into four connected components. If we replace
the setX by, for instance, the setX \SwhereS= {x,y,z}, we obtain a set which
separates its complementary set into three components, seeFig. 6b: we can also
say that we “merged two components ofX throughS”. This operation may be
seen as an “elementary merging” in the sense that only two components ofX were
merged. On the opposite, replacing the setX by the setX \S′ whereS′ = {w}, see
Fig. 6c, would merge three components ofX. We also see that the component ofX
which is beloww (in light gray) cannot be merged by an “elementary merging”
since any attempt to merge it must involve the pointw, and thus also the three
components ofX adjacent to this point. In this section, we introduce definitions
and basic properties related to such merging operations in graphs.

Definition 18. Let (E,Γ) be a graph and X⊂ E. Let p∈ X, let S⊆ X. We say that
p is F-simple (forX) if p is adjacent to exactly two distinct connected components
of X.
We say that Sis F-simple (forX) if S is adjacent to exactly two distinct components
A,B∈ C (X) such that A∪B∪S is connected.

In this definition, the prefix “F-” stands for fusion. Observethat the pointp is F-
simple if and only if the set{p} is F-simple. For example, in Fig. 6a, the pointz is
F-simple whilex,y,w are not. Also, the sets{z}, {x,y}, {x,z}, {y,z}, {x,y,z} are
F-simple, but the sets{x}, {y} and{w} are not.

Notice also that the setS is not necessarily connected. Furthermore, any connected
componentT of Smust be adjacent to eitherA or B, or both, and cannot be adjacent
to any other element ofC (X). Thus we have the following property.
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Property 19. Let (E,Γ) be a graph, let X⊂ E, let S⊆ X such that S is F-simple
for X, and let T⊆ S. If T∈ C (S), then T is either W-simple or F-simple for X.

Definition 20. Let (E,Γ) be a graph and X⊂ E. Let A and B∈ C (X), with A 6= B.
We say that AandB can be merged (forX) if there exists S⊆ X such that S is
F-simple for X and such that A and B are precisely the two connected components
of X which are adjacent to S. In this case, we also say that AandB can be merged
throughS(for X).
We say that Acan be merged (forX) if there exists B∈ C (X) such that A and B can
be merged for X.

For example, in Fig. 6a, the component ofX in light gray cannot be merged, but
each of the three white components can be merged forX.

Property 21. Let (E,Γ) be a graph, let X⊂ E, let A,B ∈ C (X), A 6= B, and let
S⊆ X. The components A and B can be merged through S if and only if A∪B∪S is
a connected component ofX \S. More precisely, A and B can be merged through S
if and only ifC (X \S) = [C (X)\{A,B}]∪{A∪B∪S}.

Property 22. Let (E,Γ) be a graph, let X⊂ E, let A,B ∈ C (X) with A 6= B. The
components A and B can be merged for X if and only if there exists S⊆ X such that
S is connected and adjacent to only A and B.

The proof of Prop. 21 can be found in the appendix, and the proof of Prop. 22 is
elementary. The following property will be useful for establishing one of the main
results of this article, namely Th. 32.

Property 23. Let (E,Γ) be a graph, let X⊂ E, and let A∈ C (X). The three fol-
lowing statements are equivalent:
i) A can be merged for X;
ii) [A∪ann(A,X)] can be merged for[X \ann(A,X)];
iii) there exists an extensionY of X and there exists a vertex x∈ Γ∗(A′) which is
F-simple, where A′ is the connected component ofY which contains A.

Proof:
• [i ⇒ ii ] From i), we know that there existsB ∈ C (X) and S⊆ X such thatS
is F-simple forX and adjacent to bothA andB. Let A′ = A∪ ann(A,X), and let
Y = X \ann(A,X). From Def. 15 and the observation which follows this definition,
Y is an extension ofX andC (Y) = [C (X)\{A}]∪{A′}. LetS′ = S∩A′, thusS′ ⊆Y.
We have:A′∪S′∪B= A∪S∪B∪A′. We know thatA′ is connected, thatA∪S∪B is
connected and thatA⊆ A′, thusA∪S∪B∪A′ is connected, hence so isA′∪S′∪B.
This implies thatS′ is adjacent to bothA′ andB. Since the only components ofX
adjacent toS areA andB and sinceS′ ⊆ S, we deduce that the only components
of Y adjacent toS′ are preciselyA′ andB, thusS′ is F-simple forY, hence ii).

• [ii ⇒ iii ] Let A′ = A∪ann(A,X), let Y = X \ann(A,X). We have seen thatY is
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an extension ofX and thatA′ is the element ofC (Y) which containsA. From ii),
we know that there existsB ∈ C (Y) andS⊆ Y such thatS is F-simple forY and
adjacent to bothA′ andB. There must exist some points inS which are adjacent
to A′, let x be any such point. The pointx cannot be W-simple forY, otherwise the
set ann(A,X)∪ {x} would be W-simple forX and adjacent toA, a contradiction
with the definition of ann(A,X). Furthermore, sinceS is F-simple it cannot contain
any multiple point, thusx is F-simple forY.

• [iii ⇒ i] Suppose thatx is a point ofΓ∗(A′) which is F-simple. Then,x is adjacent
to A′ and toB′, with B′ ∈ C (Y), B′ 6= A′, andA′∪B′∪{x} is connected. LetB be the
component ofC (X) such thatB⊆ B′. Let us considerS= [A′ \A]∪ [B′ \B]∪{x}.
It can be easily seen thatS⊆ X and thatS is adjacent to bothA andB. SinceY
is an extension ofX we know thatA′ (resp.B′) cannot be adjacent to any other
connected component ofX thanA (resp.B). Also,x cannot be adjacent to any other
connected component ofX thanA andB, otherwise it could not be F-simple forY.
Furthermore, we haveA∪B∪S= A′∪B′∪{x}, thusA∪B∪S is connected. Thus,
sinceS is adjacent to solelyA andB, S is F-simple forX, andA can be merged
for X. �

From Def. 9 and Th. 11, any extension of a cleftX is equal toX. Thus, the following
corollary is an immediate consequence of Prop. 23.

Corollary 24. Let (E,Γ) be a graph, let X⊂ E be a cleft and let A∈ C (X). The
subset A can be merged for X if and only if there exists a vertexx∈ Γ∗(A) which is
F-simple for X.

4 Fusion graphs

Region merging [16,17] is a popular approach to image segmentation. Starting with
an initial partition of the image pixels into connected regions, which can in some
cases be separated by some boundary pixels, the basic idea consists of progressively
merging pairs of regions until a certain criterion is satisfied. The criterion which is
used to identify the next pair of regions which will merge, aswell as the stopping
criterion are specific to each particular method. Certain methods do not use graph
vertices in order to separate regions, nevertheless even these methods fall in the
scope of this study through the use of line graphs (see Sec. 1).

The preceding section and the present one constitute a theoretical basis for the
study of such methods. The problems encountered by certain region merging meth-
ods (see [16], section 5.6: “When three regions meet”) can beavoided by using
exclusively the notion of merging introduced in the previous section. In the sequel,
we investigate several classes of graphs with respect to thepossibility of “getting
stuck” in a merging process. The most striking result of thissection is a theorem
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which states the equivalence between one of these classes and the class of graphs
in which any cleft is thin.

We begin with the definition of four classes of graphs.

Definition 25. We say that a graph(E,Γ) is a weak fusion graphif for any X⊂ E
such that|C (X)| ≥ 2, there exist A, B∈ C (X) which can be merged.

Definition 26. We say that a graph(E,Γ) is a fusion graphif for any X⊂ E such
that |C (X)| ≥ 2, each A∈ C (X) can be merged for X.

Let X ⊂ E, and letA, B∈ C (X). We setΓ∗(A,B) = Γ∗(A)∩Γ∗(B). We say thatA
and B are neighborsif A 6= B andΓ∗(A,B) 6= /0.

Definition 27. We say that the graph(E,Γ) is a strong fusion graphif, for any
X ⊂ E, any A and B∈ C (X) which are neighbors can be merged.

Definition 28. We say that the graph(E,Γ) is a perfect fusion graphif, for any
X ⊂ E, any A and B∈ C (X) which are neighbors can be merged throughΓ∗(A,B).

Basic examples and counter-examples of weak fusion, fusion, strong fusion and
perfect fusion graphs are given in Fig. 7.

These classes are linked by inclusion relations. The following property clarifies
these links, and also position our four classes of graphs with respect to general
graphs and line graphs. We denote byG (resp.GL, GP, GS, GF , andGW) the set
of all graphs (resp. line graphs, perfect fusion graphs, strong fusion graphs, fusion
graphs, and weak fusion graphs).

Property 29. Any line graph is a perfect fusion graph,
any perfect fusion graph is a strong fusion graph,
any strong fusion graph is a fusion graph,
any fusion graph is a weak fusion graph.
More precisely, we have the following strict inclusion relations:
GL ⊂ GP ⊂ GS⊂ GF ⊂ GW ⊂ G .

Proof: We prove in the appendix (Lem. 59) that any strong fusion graph is a fusion
graph. The other inclusions may be proved easily; let us prove that these inclusions
are strict. It may be checked from the definitions that the graphs (g), (w), (f) and
(s) in Fig. 7 are indeed counter-examples for the corresponding class equalities. It
may also be checked that the graph (p) is a perfect fusion graph, while it is not a
line graph, a consequence of Th. 5.�

The following property is a consequence of Def. 26, Cor. 24 and Prop. 23.

Property 30. The graph G= (E,Γ) is a fusion graph if and only if, for any non-
trivial cleft X in G and for any A∈ C (X), there exists x∈ Γ∗(A) which is F-simple.
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(g) (w) ( f ) (s) (p)

Fig. 7. Examples and counter-examples for different classes of graphs.(g): A graph which
is not a weak fusion graph,(w): a weak fusion graph which is not a fusion graph,( f ): a
fusion graph which is not a strong fusion graph,(s): a strong fusion graph which is not a
perfect fusion graph, and(p): a perfect fusion graph which is not a line graph. In the graphs
(g,w, f ,s), the black vertices constitute a setX which serves to prove that the graph does
not belong to the pre-cited class.

Proof: Let(E,Γ) be a fusion graph, letX be a non-trivial cleft (thus|C (X)| ≥ 2),
and letA ∈ C (X). Since(E,Γ) is a fusion graph, we know thatA can be merged
for X, thus by Cor. 24, there existsx∈ Γ∗(A) which is F-simple.

Suppose now that for any non-trivial cleftX ⊂E and for anyA′ ∈ C (X), there exists
x∈ Γ∗(A′) which is F-simple. LetY ⊂ E such that|C (Y)| ≥ 2, letA∈ C (Y). Let X
be a cleft ofY, and letA′ ∈ C (X) such thatA ⊆ A′. By hypothesis, there exists
x∈ Γ∗(A′) which is F-simple forA′. Furthermore, by Th. 11 we know thatX is an
extension ofY, thus by Prop. 23,A can be merged forY. �

From Prop. 30, we deduce Prop. 31 which will be used in the proof of Th. 41.

Property 31. Let G= (E,Γ) be a graph. If G is not a fusion graph, then there exist
X ⊂ E and x∈ X such that x is a multiple point for X.

Proof: If G is not a fusion graph, then by Prop. 30, there existsY ⊂ E such that
|C (Y)| ≥ 2, there exists a cleftX of Y, there existsA∈ C (X) such that anyx∈Γ∗(A)
is not F-simple. For any suchx, sincex∈ Γ∗(A), x is not an inner point; and since
X is a cleft,x is not W-simple; thusx must be a multiple point. Furthermore, since
|C (Y)| ≥ 2 and thus|C (X)| ≥ 2, we haveA 6= E, and sinceE is connected, from
Cor. 2 there must exist a pointx in Γ∗(A). �

Notice that the converse of Prop. 31 is false, as shown by the case of Fig. 7f which
is a fusion graph, in which a given subset (black dots) has onemultiple point.

Now, we present the main theorem of this section, which establishes that the class
of graphs for which any cleft is thin is precisely the class offusion graphs. As an
immediate consequence of this theorem and Prop. 29, we see that all clefts in fusion
graphs, strong fusion graphs, perfect fusion graphs and line graphs are thin.

Theorem 32. A graph G is a fusion graph if and only if any non-trivial cleftin G
is thin.

14



Proof: Let(E,Γ) be a fusion graph, letY ⊂ E be a non-trivial cleft. Suppose that
int(Y) 6= /0, and letA ∈ C (int(Y)). Let Y′ = Y \ A. By Prop. 13,Y′ is a cleft.
Since(E,Γ) is a fusion graph, from Prop. 30 we deduce that there exists a ver-
tex x∈ Γ∗(A) which is F-simple forY′, i.e., x is adjacent to exactly two connected
components ofY′. SinceC (Y′) = C (Y)∪{A} (Prop. 4), this means thatx is only
adjacent to one connected component ofY, i.e., xis W-simple forY, a contradiction
with the fact thatY is a cleft. Thus,Y is thin.

Suppose now that(E,Γ) is not a fusion graph, by Prop. 30 there exists a non-trivial
cleftY ⊂ E, and there existsA∈ C (Y) such that anyx∈ Γ∗(A) cannot be F-simple.
Furthermore, sinceY is a cleft we know that anyx in Γ∗(A) cannot be W-simple
for Y, thus any pointx in Γ∗(A) is a multiple point. Consider now the setY′ =Y∪A,
and lety be a point ofY′. Only three cases are possible: 1) ify ∈ A, then we can
see thaty is an inner point forY′, thusy is not W-simple forY′; 2) if y ∈ Γ∗(A),
then as seen before,y is a multiple point forY, thusy is adjacent to at least two
connected components ofY′ consequentlyy is not W-simple forY′; 3) if y /∈ Γ(A),
theny is not W-simple forY′, otherwiseY could not be a cleft. Thus,Y′ is a cleft.
Furthermore,A⊆ int(Y′) andA 6= /0, thusY′ is not thin.�

Let us look at some examples to illustrate this property. Thegraphs of Fig. 5c and
Fig. 5d are not fusion graphs, in fact they are not even weak fusion graphs; we
see that they may indeed contain a non-thin cleft. On the other hand, Fig. 5e is an
example of a weak fusion graph which is not a fusion graph (seealso Fig. 7w) with
a cleft which is not thin.

We conclude this section with two nice properties of perfectfusion graphs (Prop. 33
and Prop. 34), which can be useful to design hierarchical segmentation methods
based on watersheds, and on region merging and splitting operations. Prop. 33 fol-
lows straightforwardly from the definitions of cleft and perfect fusion graph.

Property 33. Let G= (E,Γ) be a perfect fusion graph. Let X⊂ E be a cleft and
A,B∈ C (X) such that A and B are neighbors. Then, X\Γ∗(A,B) is a cleft.

Consider now the example of Fig. 8a, where a cleftX (black points) in the graph
G separatesX into two components. Consider now the setY (gray points) which is
a cleft in the subgraph ofG induced by one of these components. We can see that
the union of the clefts,X∪Y, is not a cleft, since the pointx is W-simple forX∪Y.
Property Prop. 34 shows that this problem cannot occur in anyperfect fusion graph.

Property 34. Let G= (E,Γ) be a graph. If G is a perfect fusion graph, then for
any cleft X⊂ E in G and for any cleft Y⊂ A in GA, where A∈ C (X) and GA is the
subgraph of G induced by A, the set X∪Y is a cleft in G.

The proof may be found in the appendix. It uses Th. 32 and a local characterization
of perfect fusion graphs which will be established in the next section. Fig. 8b illus-
trates the property with a perfect fusion graph (the setX is depicted in black and
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x x

(a) (b)

Fig. 8. Illustrations for Prop. 34.(a): The graph is not a perfect fusion graph (see Sec. 6,
Prop. 45), and the union of the clefts is not a cleft.(b): The graph is a perfect fusion graph
(see Sec. 7, Prop. 55), the property holds.

the setY in gray).

5 Local characterizations

The definitions of weak fusion, fusion, strong fusion and perfect fusion graphs
are based on conditions that must be verified for all the subsets of the vertex set.
This means, if we want to check whether a graph is, for instance, a perfect fusion
graph, then using the straightforward method based on the definition will cost an
exponential time with respect to the number of vertices.

On the other hand, we know that certain classes of graphs havelocal characteri-
zations. For example, line graphs may be recognized thanks to Th. 5, a condition
which can be checked independently in a limited neighborhood of each vertex. Do
such characterizations exist for the four classes of fusiongraphs? We prove in this
section that weak fusion graphs and fusion graphs cannot be characterized locally,
and we give local conditions for characterizing strong fusion and perfect fusion
graphs.

Let (E,Γ) be a graph, letx∈ E andk∈ N, we denote byΓk(x) thekth order neigh-
borhood of x, that is,Γk(x) = Γ(Γk−1(x)), with Γ0(x) = {x}.

Property 35. There is no local characterization of weak fusion graphs. More pre-
cisely, let k be an arbitrary positive integer. There is no propertyP on graphs such
that an arbitrary graph G= (E,Γ) is a weak fusion graph if and only if, for all
x∈ E,P [G(x,k)] is true, G(x,k) being the subgraph of G induced byΓk(x).

Proof: It can be seen that the graphs of Fig. 9a are weak fusiongraphs, while those
of Fig. 9b are not. In addition, for any integerk, the same “k-local configurations”
may be found in both families, for a sufficiently large graph.�

Property 36. There is no local characterization of fusion graphs. More precisely,
let k be an arbitrary positive integer. There is no propertyP on graphs such that an
arbitrary graph G= (E,Γ) is a fusion graph if and only if, for all x∈ E,P [G(x,k)]
is true, G(x,k) being the subgraph of G induced byΓk(x).
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(a) (b)

Fig. 9. Graphs for the proof of Prop. 35. In each graph of(b), the black vertices denote a
setX such that the condition for a weak fusion graph is not true.

Proof: It can be seen that the graphs of Fig. 10a are fusion graphs, while those of
Fig. 10b are not. In addition, for any integerk, the same “k-local configurations”
may be found in both families, for a sufficiently large graph.�

(a) (b)

Fig. 10. Graphs for the proof of Prop. 36. In each graph of(b), the black vertices denote a
setX such that the condition for a fusion graph is not true.

We are now going to prove that strong fusion graphs can be characterized locally.
A few preliminary properties will help us to organize the proof. The following one
states that in a strong fusion graph, if two neighboring componentsA andB can
be merged, then they can be merged through a setS which is “close” toA andB,
furthermore (next property), this setScan be reduced to one or two points.

Property 37. Let G= (E,Γ) be a graph. The graph G is a strong fusion graph if
and only if for any X⊆ E, for any A and B∈ C (X) such that A,B are neighbors,
there exists S⊆ [Γ∗(A)∪Γ∗(B)] such that A and B can be merged through S.

Proof: Suppose thatG is a strong fusion graph. LetX ⊆ E, let A andB∈ C (X) such
thatA,B are neighbors. LetX′ = X \ int(X). Thus, each point ofX′ is adjacent to
(at least) one component ofC (X′). Obviously,A,B are also components ofC (X′),
andΓ∗(A)∩Γ∗(B) 6= /0. Since(E,Γ) is a strong fusion graph, there exists a subsetS
of X′ such thatA,B can be merged throughS, that is,S is F-simple forX′ and
adjacent toA andB. Since int(X′) = /0 andS⊆ X′, we have int(S) = /0. Thus, it
can be easily seen thatS⊆ Γ∗(A)∪ Γ∗(B). SinceX′ ⊆ X andC (X) ⊆ C (X′) (a
consequence of Prop. 4), it follows straightforwardly thatS is also F-simple forX.
This proves the forward implication, the converse is immediate.�

Property 38. The graph G= (E,Γ) is a strong fusion graph if and only if, for any
X ⊆ E, for any A and B∈ C (X) such that A,B are neighbors, there exists a∈ Γ∗(A)

17



and b∈ Γ∗(B) such that A and B can be merged through{a,b}.

Proof: Suppose thatG is a strong fusion graph, letX ⊆ E, let A and B ∈ C (X)
such thatA,B are neighbors. By Prop. 37, there existsS⊆ [Γ∗(A)∪Γ∗(B)] such
thatA andB can be merged throughS. Without loss of generality (by Prop. 22), we
may assume thatS is connected. IfScontains a pointx∈ Γ∗(A)∩Γ∗(B), then the
forward implication is proved witha= b= x. Otherwise,Smay be partitioned into
two disjoint setsA′ = S∩Γ∗(A) andB′ = S∩Γ∗(B). SinceSis connected, by Prop. 1
the setsA′ andB′ must be adjacent, thus there existsa ∈ A′ andb ∈ B′ which are
adjacent, and sinceS is F-simple it can be easily seen that{a,b} is also F-simple.
This proves the forward implication, the converse is immediate.�

Notice that in the two previous properties, the merging setS (or {a,b}) must be-
long to the union ofΓ∗(A) andΓ∗(B), not to the intersection; more informally it
means thatA andB cannot necessarily be merged through a subset of their common
boundary. To show that it is not necessary thatSbe included inΓ∗(A)∩Γ∗(B) for
having a strong fusion graph, it suffices to consider the graph G depicted in Fig. 11.
It may be checked thatG is indeed a strong fusion graph. Consider the setX of
black vertices,A = {x} andB = {y} (which are neighbors) can only be merged
throughS= {a,b} which is included inΓ∗(A)∪Γ∗(B) but not inΓ∗(A)∩Γ∗(B).

x

y

a

b

Fig. 11. Illustration of Prop. 37 and Prop. 38.

More generally, if two componentsA,B of X can only be merged through a two-
element setS= {a,b}, it can be seen that necessarily botha andb are W-simple.
This means in particular that a configuration like Fig. 11 cannot occur ifX is a cleft.
From this remark, we can derive a simpler characterization of strong fusion graphs,
in which we consider only the subsetsX of E which are clefts.

Property 39. The graph(E,Γ) is a strong fusion graph if and only if, for any
X ⊆ E which is a cleft, for any A and B∈ C (X) such that A,B are neighbors, there
exists x∈ [Γ∗(A)∩Γ∗(B)] which is F-simple for X.

We are now ready to prove the local characterization theoremfor strong fusion
graphs.

Let x and y be two points, we say thatx and y are 2-adjacentif y /∈ Γ(x) and
Γ∗(x)∩Γ∗(y) 6= /0.

Theorem 40. Let G= (E,Γ) be a graph. The graph G is a strong fusion graph if
and only if, for any two points x,y∈ E which are 2-adjacent, there exists a∈ Γ∗(x)
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and b∈ Γ∗(y) such that b∈ Γ(a) andΓ({a,b})⊆ [Γ(x)∪Γ(y)].

Proof: Suppose thatG is a strong fusion graph. Letx,y∈ E which are 2-adjacent,
and consider the setX = Γ∗(x)∪Γ∗(y). We observe that the setsA = {x} andB =
{y} are two elements ofC (X). By Prop. 38, there existsa∈ Γ∗(x) andb∈ Γ∗(y),
b∈ Γ(a), such thatA andB can be merged through{a,b} for X. Thusa andb must
be mutually adjacent, and{a,b} cannot be adjacent to a component ofX which is
neither{x} nor{y}, henceΓ({a,b})⊆ [Γ(x)∪Γ(y)]. Thus the forward implication
is proved, and the converse is straightforward.�

We give below seven necessary and sufficient conditions for perfect fusion graphs.
Remind that in perfect fusion graphs, any two componentsA, B of C (X) which
are neighbors can be merged throughΓ∗(A)∩Γ∗(B). Thus, perfect fusion graphs
constitute an ideal framework for region merging methods. In the sequel, we will
use the symbolGN to denote the graph of Fig. 3a.

Theorem 41. Let (E,Γ) be a graph.
The eight following statements are equivalent:
i) (E,Γ) is a perfect fusion graph;
ii) for any x∈ E, any X⊆ Γ(x) contains at most two connected components;
iii) for any non-trivial cleft Y in E, each point x in Y is F-simple;
iv) for any connected subset A of E, the subgraph of(E,Γ) induced by A is a fusion
graph;
v) for any subset X of E, there is no multiple point for X;
vi) the graph GN is not a subgraph of G;
vii) any vertices x, y, z which are mutually non-adjacent aresuch thatΓ(x)∩Γ(y)∩
Γ(z) = /0;
viii) for any x,y ∈ E which are 2-adjacent, for any z∈ Γ∗(x)∩ Γ∗(y), we have
Γ(z) ⊆ [Γ(x)∪Γ(y)].

Proof: We will show that[not ii] ⇒ [not iii] ⇒ [not iv] ⇒ [not v] ⇒ [not vi]
⇒ [not vii] ⇒ [not viii] ⇒ [not i] ⇒ [not ii] , hence the equivalence of the eight
statements.
• [not ii ⇒ not iii] Suppose that there existsx∈ E and there existsX ⊆ Γ(x) which
contains three distinct connected componentsA,B,C. LetY = E \ (A∪B∪C), and
let Z be a cleft ofY. Necessarily,x ∈ X and thusx ∈ Y. Furthermore, sincex is
adjacent to three distinct components ofY, we know thatx ∈ Z and thatx is also
adjacent to three distinct components ofZ, and thus is not F-simple forZ.
• [not iii ⇒ not iv] Suppose that there exist a non-trivial cleftY and a pointx∈Y
which is not F-simple forY. SinceY is a cleft, we know thatx is not either a W-
simple point. Ifx is an inner point, by Th. 32 we deduce that(E,Γ) cannot be
a fusion graph, and thus conditioniv does not hold forA = E. Otherwise,x is a
multiple point forY. Then, consider the setA = [Γ(x)\Y]∪{x}. Let (A,ΓA) be the
subgraph of(E,Γ) induced byA, and letX = {x}. The setA is connected, and since
x is a multiple point forY, A\X must contain at least three connected components
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for (A,ΓA), furthermore these components cannot be merged forX sincex is the
only point separating them. Thus(A,ΓA) is not a fusion graph.
• [not iv ⇒ not v] Suppose that there exists a connected subsetA of E such that
the restriction(A,Γ′) of (E,Γ) to A is not a fusion graph. By Prop. 31, there exists
X ⊂ A andx∈ X such thatx is a multiple point forX in (A,Γ′). Obviously,x is also
a multiple point for[E \A]∪X in (E,Γ).
• [not v⇒ not vi] Suppose that there exists a subsetX of E and a pointx∈ X which
is a multiple point,i.e., xis adjacent to three distinct connected componentsA,B,C
of X. Let w ∈ Γ(x)∩A, y ∈ Γ(x)∩B, andz∈ Γ(x)∩C. SinceA,B,C are distinct
connected components ofX, w,y,z are mutually non-adjacent, thus the subgraph
induced by{x,y,z,w} is GN.
• [not vi ⇒ not vii] Suppose that the subgraph ofG induced by some points
{x,y,z,w} is GN, the central point beingx. We havex ∈ Γ(w)∩Γ(y)∩Γ(z), and
w,y,zare mutually non-adjacent.
• [not vii⇒ not viii] Let w,y,zbe three mutually non-adjacent points ofE such that
Γ(w)∩Γ(y)∩Γ(z) 6= /0, and letx∈ Γ(w)∩Γ(y)∩Γ(z). We havey andz which are
2-adjacent,x ∈ Γ∗(y)∩Γ∗(z), but Γ(x) containsw which is not inΓ(y)∪Γ(z) by
hypothesis.
• [not viii ⇒ not i] Let y,z∈ E be two points which are 2-adjacent, and letx ∈
Γ∗(y)∩Γ∗(z) such that there existsw∈ Γ(x), w /∈ Γ(y)∪Γ(z). LetX = E\{y,z,w}.
Let A= {y}, B= {z}, andC = {w}. From our hypothesis, we know thatA,B andC
belong toC (X). Let S= Γ∗(A,B) = Γ∗(A)∩Γ∗(B), clearlyx ∈ S. Sincex is also
adjacent toC, A andB (which are neighbors) cannot be merged throughS, and the
graph is not a perfect fusion graph.
• [not i ⇒ not ii] We will prove in fact thatii ⇒ i. Suppose thatii holds, and
let X ⊂ E, let A,B ∈ C (X) such thatΓ∗(A,B) 6= /0. For anyx in Γ∗(A,B), from
the hypothesis (ii ) we deduce thatx is only adjacent toA and B. Furthermore
A∪B∪Γ∗(A,B) is obviously connected, thusΓ∗(A,B) is F-simple forX, andA
andB can be merged throughΓ∗(A,B). �

Notice that conditionviii bears a resemblance with the local characterization of
strong fusion graphs (Th. 40).

Remind that any line graph is a perfect fusion graph (Prop. 29). We can see that,
thanks to Th. 41 (conditionvi), perfect fusion graphs can be characterized in a way
similar to Th. 5 which characterizes line graphs, but with a much simpler condition.

A consequence of Th. 41 is that all the graphs of Fig. 3 except graphGN are perfect
fusion graphs, since none of these graphs containsGN as a subgraph. The reader
can also check anyone of the previous eight conditions on these graphs, as an illus-
tration of Th. 41.

Corollary 42. Let G= (E,Γ) be a graph, let X be any connected subset of E. If
G is a perfect fusion graph, then the subgraph of G induced by Xis also a perfect
fusion graph.
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6 Usual grids

The aim of this section and the following one is to answer the question: which
are the grids that may be used in order to perform “safe” merging operations on
digital images? In this section, we consider the different grids commonly used in
2-dimensional and 3-dimensional image processing. Our major result is that none
of these grids is a perfect fusion graph and several are not even fusion graphs. One
of the consequences is that the most natural merging operation, which consists in
merging two regions through their common neighborhood, is not a “safe” operation
in these grids.

We start with some basic definitions which allow to structurethe pixels of an image.
In this section and the following one, we will assume thatn is a strictly positive
integer.

Definition 43. Let E be a set and let En be the Cartesian product of n copies of E.
An element x of En may be seen as a map from{1, ...,n} to E, for each i∈ {1, ...,n},
xi is the i-th coordinate ofx.
Let Z be the set of integers. We consider the families of sets H1

0 , H1
1 such that

H1
0 = {{a} | a∈Z}, H1

1 = {{a,a+1} | a∈Z}. A subset S ofZn which is the Carte-
sian product of exactly m≤ n elements of H11 and(n−m) elements of H10 is called
a m-cube.

In order to recover a graph structure for digital images, adjacency relations are
defined onZn. The following definition allows to retrieve the most frequently used
adjacency relations.

Definition 44. Let m≤ n, we say that x and y inZn are m-adjacentif there exists a
m-cube that contains both x and y. We defineΓn

m as the binary relation onZn such
that for any pair x, y in E,(x,y) ∈ Γn

m if and only if x and y are m-adjacent.

In order to deal with graphs that can be arbitrary large we define agrid as a pair
(E,Γ) whereE is an infinite set andΓ is a binary relation onE. Let X ⊆ E, we
define the restriction of(E,Γ) to X as the pair(X,ΓX) whereΓX = Γ∩ (X×X). If
X is a finite set(X,ΓX) is a graph. In the sequel, to simplify the notations, we will
write Γ as a shortcut forΓX.

6.1 2-dimensional usual grids

Let w, h be two integers strictly greater than 1, called respectively widthandheight,
we setE = {x ∈ Z

2 | 0 ≤ x1 < w and 0≤ x2 < h}. In this section we study the
connected graph(E,Γ2

1) (resp.(E,Γ2
2)) which is the restriction of(Z2,Γ2

1) (resp.
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(a) (b)

Fig. 12. (a): Counter-examples for the weak fusion property of(E,Γ2
1); The black

points represent a setX; (b): counter-example for the fusion property of(E,Γ2
1) when

{w,h} = {3,4}; the component ofX in gray cannot be merged.
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Fig. 13.(a): Local configurations which are used for proving Lem. 47; configurationsC1

andC2 are the local configurations of multiple points in(E,Γ2
2); (b): counter-example for

the strong fusion property of(E,Γ2
2).

(Z2,Γ2
2)) to E. Notice thatΓ2

1 (resp.Γ2
2) corresponds to the 4 (resp. 8)-adjacency

relation commonly used in the literature.

Property 45. Let w> 2 and h> 2. If {w,h} 6= {3,4}, (E,Γ2
1) is not a weak fusion

graph. If{w,h}= {3,4} then(E,Γ2
1) is a weak fusion graph but not a fusion graph.

Proof: If {w,h} 6= {3,4}, let us consider the following set:
(1): if both w andh are odd,X = {(i, j) | i + j is odd};
(2): if only w is odd,X = {(i, j) | i + j is odd}\{(0,h−1),(w−1,h−1)};
(3): if only h is odd,X = {(i, j) | i + j is odd}\{(w−1,0),(w−1,h−1)};
(4) if both w andh are even,X = {(i, j) | i + j is odd}\{(0,h−1),(w−1,0)}.
Fig. 12a shows the setX for image domains of size 3×3, 4×4 and 5×4.
It may be easily checked that any connected component ofX cannot be merged for
X.
Let {w,h} = {3,4}. Then(E,Γ2

1) is a weak fusion graph (exhaustive check). The
graph of Fig. 12b shows a setX such that there exists connected components ofX
which cannot be merged, hence(E,Γ2

1) is not a fusion graph.�

Let X ⊆ E, we say thatx∈ X matchesC1 (resp.C2) if the neighborhood ofx cor-
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responds to the configurationC1 (resp.C2) depicted in Fig. 13a or to one of itsπ/2
rotations. In Fig. 13, points labelled B are inX, points labelled W are inX, at least
one of the points labelledU is in X and the pointI is either inX or in X.

Lemma 46. Let X ⊆ E be a cleft on(E,Γ2
2). Then any x in X which is multiple

matches either C1 or C2.

Proof: Exhaustive check.�

Lemma 47. Let X⊂ E be a non-trivial cleft on(E,Γ2
2). Then any A∈ C (X) can

be merged.

Proof: Suppose thatA cannot be merged, then anyx∈ X∩Γ2
2(A) is multiple. Since

(E,Γ2
2) is connected andC (X) > 2, such anx exists. Thus by Lem. 46,x matches

eitherC1 or C2. Suppose thatx matchesC1. If the two points labelled W inC1

belong to the same connected component ofX then the point at the west ofx is
W-simple, a contradiction with the fact thatX is a cleft. Thus necessarily these two
points belong to distinct components ofX, and the point at the west ofx is F-simple.
If A contains one of the these two points, labelled W inC1, thenA is adjacent to
an F-simple point and thus can be merged. OtherwiseA contains one of the points
labelledU . In this case the same arguments can be used to prove thatA can be
merged, thusx does not matchC1.
Suppose thatx matchesC2. For the same reasons,A is the connected component
that contains the point at the east ofx. AsA cannot be merged, necessarily the point
which is at the north ofx is multiple. Then the only possible configuration isC3,
which is depicted in Fig. 13a. In configurationC3, it can be verified that the point at
the north-east ofx is necessarily F-simple. ThusA can be merged, a contradiction.
�

Property 48. Let h> 2 and w> 2, the graph(E,Γ2
2) is a fusion graph but is not a

strong fusion graph.

Proof: The fact that(E,Γ2
2) is a fusion graph is a direct corollary of Lem. 47 and

Th. 32. Let us consider the setX, composed by the black points in Fig. 13b. It
can be seen that this type of “global cross configuration” canbe extended whatever
the size ofE (with h > 2 andw > 2). In these cross configurations, the connected
components which are diagonally neighbor to each other cannot be merged. Thus
the graph(E,Γ2

2) is not a fusion graph.�

6.2 3-dimensional usual grids

Let w, h andd be three integers strictly greater than 1, called respectively width,
heightanddepth, we setE = {x∈ Z

3 | 0≤ x1 < w,0≤ x2 < h and 0≤ x3 < d}. In
the sequel we will consider thatw > 1,h > 1 andd > 1. In this section we study
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Fig. 14. Counter-examples for the weak fusion property of(E,Γ3
1). The black points repre-

sent a setX.

the graph(E,Γ3
1) (resp.(E,Γ3

3)) which is the restriction of(Z3,Γ3
1) (resp.(Z3,Γ3

3))
to E. Notice thatΓ3

1 (resp.Γ3
3) corresponds to the 6 (resp. 26)-adjacency relation

commonly used in the literature.

Property 49. The graph(E,Γ3
1) is not a weak fusion graph.

Proof: Let us consider the setX such thatX = {x∈ E | the number of odd coordi-
nates ofx is equal to 0 or 2} (this set corresponds to a “3-dimensional chessboard”).
Samples of such a set are shown in Fig. 14. It may be easily seenthat any element
of X is a connected component that cannot be merged without involving at least
two other connected components. Hence the graph is not a weakfusion graph.�

Property 50. If w ≥ 5, h≥ 5, d≥ 5, the graph(E,Γ3
3) is not a fusion graph.

Proof: Let us consider the setX of white points depicted in Fig. 15a. Whatever the
size ofE and supposing that all points ofE outside the figure are inX, it may be
seen that the central pointx is such that{x} is a connected component ofX. Any
point 3-adjacent tox (the set of gray points) is adjacent to at least three distinct
connected components ofX. Thus any attempt to merge{x} will involve three
connected components ofX, hence{x} cannot be merged,(E,Γ3

3) is not a fusion
graph.�

Remark 51. It is known in digital topology [13], that in the 2-dimensional case,
a skeleton (i.e., a set without any simple point) does not contain any3×3 square
wheneverΓ2

2 (resp.Γ2
1) is used for the background (resp. object) [1]. We may won-

der if this property can be extended to the 3-dimensional case. From the charac-
terization of simple points based on connectivity numbers [5], it can be seen that
any simple point, whenΓ3

3 (resp.Γ3
1) is used for the background (resp. object), is

W-simple when using the graph(E,Γ3
3). From this we see that any cleft, in this

context, is a skeleton (but the converse is not true). From Prop. 50 and Th. 32, we
deduce that there exists some clefts in(E,Γ3

3) which are not thin (see an example
Fig. 15b). Such a cleft, which is also a skeleton, contains (at least) one3×3×3
cube.
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(a) (b)

Fig. 15. (a): Counter-example (set of black points) for the fusion property of (E,Γ3
3).

(b): Black and gray points represent a setX which is a non-thin cleft, and also a skele-
ton which includes a 3×3×3 cube (gray points).

7 Perfect fusion grid

We introduce a grid for structuringn-dimensional digital images and prove that it is
a perfect fusion graph, whatever the dimensionn. It does thus constitute a structure
on which neighboring regions, in ann-dimensional digital image, can be merged
through their common neighborhood.
Fig. 17b gives an intuitive idea of this grid. Fig. 16a shows acleft of Fig. 1a obtained
on this grid. It can be easily seen that the problems pointed out in the introduction
do not exist in this case. The cleft does not contain any innerpoint. Any pair of
neighboring regions can be merged by simply removing from the cleft the points
which are adjacent to both regions (see Fig. 16b,c). Furthermore, the resulting set
is still a cleft.
It may be seen that this grid is “between” the usual grids. We will prove in a forth-
coming paper that this grid is indeed the unique such graph.

LetCn be the set of all n-cubes ofZ
n, we define the mapB fromCn to Z

n, such that
for anyc∈Cn, B(c)i = min{xi | x∈ c}, whereB(c)i is thei-th coordinate ofB(c).
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Fig. 16.(a): A cleft of Fig. 1 obtained on the perfect fusion grid;(b): a crop of(a) where the
regionA, B, C andD corresponds to the region shown in Fig. 1d; in gray, the corresponding
perfect fusion grid is superimposed;(c): same as(d) after having mergedB andC to form
a new region, calledE.

It may be seen thatc is equal to the Cartesian product:{B(c)1,B(c)1 + 1}× ...×
{B(c)n,B(c)n+1}. Thus clearlyB is a bijection.
We setB = {0,1}. We set0= 1 and1 = 0. A binary word of length nis an element
of B

n. If u is in B
n, we definethe complement of uas the binary wordu such that

for any i ∈ {1, ...,n}, (u)i = (ui).

Before defining perfect fusion grids, we first recall the definition of cliques, and a
property due to Berge which uses maximal cliques to characterize some line graphs.
This property will be used in the proof of Prop. 55.
Let E be a set, letΓ be a binary relation onE and letX ⊆ E. We say thatX is a
clique (for (E,Γ)) if X ×X ⊆ Γ. In other words,X is a clique if any two vertices
of X are adjacent. We say thatX is amaximal cliqueif, for any cliqueX′, X ⊆ X′

impliesX′ = X.

Property 52 (Prop. 7 in [3], chapter 17). Let G= (E,Γ) be a graph. If for any
x∈ E, x is in at most two distinct maximal cliques, then G is a linegraph.

Definition 53. Let f be the map from Cn to B
n such that for any c∈ Cn, f(c)i is

equal to B(c)i mod2, that is the remainder in the integer division of B(c)i by2.
Let u be an element ofBn, we set Cnu = {c∈Cn | f (c) = u} and Cn

u/u = Cn
u ∪Cn

u.

We define the binary relationΓn
u/u ⊆ Z

n×Z
n as the set of pairs(x,y) ∈ Z

n×Z
n

such that there exists c∈Cn
u/u that contains both x and y.

We defineP n, the family ofperfect fusion grids overZn, as the setP n = {(Zn,Γn
u/u) | u∈

B
n}.

Fig. 17 illustrates the above definitions for the two-dimensional case. Fig. 18 shows
a cleft on a 3-dimensional perfect fusion grid. To clarify the figure, we use the
following convention: any two points belonging to a same cube marked by a gray

26



0 1 2 3
0
1
2
3

0 1 2 3
0
1
2
3

01 0100 00

01 0100 00
10 10 11

10 11 10 11

0 1 2 3
0
1
2
3

11

(a) (b) (c)

Fig. 17. Illustration of the two perfect fusions grids overZ
2 (restricted to subsets ofZ2).

(a): The mapf ; (b): (Z2,Γ2
11/00); (c): (Z2,Γ2

10/01).

=

Fig. 18. A 3-dimensional perfect fusion grid. Black points constitute a set which is a cleft.

stripe are adjacent to each other.

In the sequel, to simplify the notations, we will writeci as a shortcut forB(c)i.

Lemma 54. Let u∈ B
n and let x∈ Z

n.
i) There exists a unique c in Cnu such that x∈ c.
ii) The point x is in exactly two maximal cliques of(Zn,Γn

u/u).

Proof: It may be easily seen that any elementc of Cn which containsx is such that
for any i ∈ {1, ...,n}, ci = xi −1 orci = xi , hencei).
We deduce fromi) that there are exactly two distinct elementsc andc′ of Cn

u/u such

thatc∈Cn
u, c′ ∈Cn

u and such thatx is in bothc andc′. Thus any element adjacent
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to x is either inc or in c′. From the very definition ofΓn
u/u, any pair of elements of

c (resp.c′) is in Γn
u/u. Thusc andc′ are cliques of(Zn,Γn

u/u), which both containx.

Since any pair(y,y′) with y∈ c\ c′, y′ ∈ c′ \ c is not inΓn
u/u, we conclude thatx is

in exactly two maximal cliques.�

Property 55. Let u∈ B
n and let X be a finite subset ofZ

n such that(X,Γn
u/u) is

connected. Then(X,Γn
u/u) is a perfect fusion graph. Furthermore it is a line graph.

Proof: From Lem. 54, anyx in X is in at most two maximal cliques. Thus, as a
consequence of Prop. 52,(Xn,Γn

u/u) is a line graph and from Prop. 29 it is a perfect
fusion graph.�

The following property shows that the perfect fusion grid is“between” the usual
adjacency relations onZn.

Property 56. Let u∈ B
n. We have:Γn

1 ⊆ Γn
u/u ⊆ Γn

n.

Proof: From Lem. 54, we know that for anyx∈ Z
n there exist exactly two maximal

cliquesc∈Cn
u andc′ ∈Cn

u that containx. Necessarily there existsk such thatB(c) =
x−k with k ∈ B

n andB(c′) = x−k. A point x′ is in Γn
1(x) if there exists a unique

j ∈ {1, ...,n} such thatx′j = x j +1 or x′j = x j −1 and for anyi ∈ [{1, ...,n} \ { j}],
x′i = xi . Suppose thatx′j = x j −1. The case wherex′j = x j +1 is symmetric to this one
and the following arguments hold for both cases. For anyi ∈ [{1, ...,n}\{ j}], either
ki = 0 or ki = 1. If ki = 0, thenx′i = xi = ci = c′i +1. If ki = 1, thenx′i = xi = c′i =
ci +1. On the other hand, ifk j = 1 thenx′j = x j −1= c j , hencex′ ∈ c. Otherwise, if
k j = 0 thenx′j = x j −1 = c′j , hencex′ ∈ c′. Whatever the case,(x,x′) ∈ Γn

u/u, hence
Γn

1 ⊆ Γn
u/u. The proof of the second inclusion follows straightforwardly from the

definition ofΓn
u/u.�

Property 57. The familyP n contains2n−1 distinct perfect fusion grids.

Proof: From the very definition of perfect fusion grids, we have Γn
u/u = Γn

u/u. Fur-
thermore, if{u,u} 6= {v,v} thenΓn

u/u 6= Γn
v/v . Since the cardinality ofBn is equal

to 2n, the cardinality ofP n is equal to 2n/2 = 2n−1. �

Let X ⊆ Z
n and lett ∈ B

n. We defineX + t = {x+ t | x∈ X}, we say thatX + t is a
binary translation of X. Let mbe a positive integer such thatm≤ n. Remark that if
X is an m-cube thenX + t is also an m-cube.
The following property states that any two n-dimensional perfect fusion grids are
equivalent up to a binary translation.

Property 58. Let u and v inBn. Let t∈ B
n such that for any i∈ {1, ...,n}, if ui = vi

then ti = 1, otherwise ti = 0. Then for any(x,y) ∈ Z
n×Z

n, (x,y) ∈ Γn
u/u if and only

if (x+ t,y+ t) ∈ Γn
v/v.
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x

(a) (b) (c) (d)

y

Fig. 19. Illustrations of the relation between line graphs of 1-connected graph and perfect–
fusion grids.(a): a restriction of the 2-dimensional perfect fusion grid;(b): a graph (black
points and edges) whose line graph is(a); the gray points indicate corresponding vertices
of the line graph(a) of (b); (c): black points and edges depict a local configuration of the
3-dimensional 1-connected grid; the gray points indicate corresponding vertices of the line
graph of(c) in which any gray point is adjacent tox; (d): a local configuration of the perfect
fusion grid, any black point is adjacent toy.

Proof: It can easily be seen that for anyc ∈ Cn, f (c) = u (resp. f (c) = u) if and
only if f (c+ t) = v (resp. (f (c+ t) = v)). The result follows from this observation
and from the definition of the perfect fusion grids.�

Let u in B
2. Let X be a finite subset ofZ2. It can be seen that(E,Γ2

u/u) is the

line graph of a graph(E′,Γ2
1), with E′ ⊂ Z

2. For example, Fig. 19a shows a 2-
dimensional perfect fusion grid, its associated graph(E′,Γ2

1) is depicted in Fig. 19b.
Remark that a similar statement is not true in dimension 3. Local configurations of
(Z3,Γ3

1) and of its line graph are depicted in Fig. 19c. A local configuration of
(Z3,Γ3

u/u) is depicted in Fig. 19d. It can be checked that the pointx in Fig. 19c has
exactly 10 neighbors whereas the pointy in Fig. 19d has 14 neighbors. Thus those
two configurations cannot be isomorphic.

Conclusion

This article sets up a theoretical framework for the study ofmerging properties in
graphs. Using this framework, we obtained a necessary and sufficient condition for
the thinness of clefts, we defined four classes of graphs in relation to these merging
properties and gave local characterizations of these classes whenever possible. We
also analyzed the status of the graphs which are the most widely used for image
analysis, and proposed a family of graphs onZ

n which constitute an ideal support
for region merging.
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In the articles [11,12], we extend this study to the case of weighted graphs (i.e.,
graphs with values associated to vertices), which constitute a model for grayscale
images. The notion of topological watershed [4,7] extends the notion of cleft to
weighted graphs, and possess interesting properties whichare not guaranteed by
most popular watershed algorithms [15]. The major outcomesof [11,12] are:
i) a proof that any topological watershed on any perfect fusion graph is thin;
ii) a new, simple and linear-time algorithm to compute topological watersheds on
perfect fusion graphs.

In a forthcoming article [10], we investigate the case of graphs with values asso-
ciated to edges. Contrarily to previous works, we define the watersheds following
the intuitive idea of flowing drops of water. We establish theconsistency of these
watersheds, and prove their optimality in terms of minimum spanning forests. We
introduce a new local transformation on maps which equivalently define these wa-
tersheds, and derive two linear-time algorithms. To our best knowledge, similar
properties are not verified in other frameworks and the two proposed algorithms
are the most efficient existing ones.
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Appendix

Proof of Prop. 16: Since |C (X)| ≥ 2 we haveA∪ ann(A) 6= E, and sinceE is
connected, from Cor. 2 there must exist a pointx in Γ∗(A∪ann(A)). Furthermore,
x must be adjacent to at least one componentB of X distinct from A, otherwise
ann(A) ∪ {x} would be W-simple forX, a contradiction with the definition of
ann(A); andx cannot belong toB, otherwise ann(A) would not be W-simple for
X, also a contradiction with the definition of ann(A). �

Proof of Prop. 21:
Suppose thatA∪B∪S∈ C (X \S). LetC∈ C (X|S), thenA∪B∪S∪C is connected
andA∪B∪S⊆ A∪B∪S∪C⊆ X \S. SinceX 6= /0, as a connected component ofX
the setC cannot be empty, and sinceA∪B∪S∈ C (X \S), we must have either
C = A or C = B.
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Suppose now thatS is F-simple forX and adjacent toA andB. Thus,A∪B∪S is
connected, it remains to prove that it is maximal. LetZ ⊂ E such thatA∪B∪S⊆
Z⊆ X \S, andZ connected. LetY = Z\ [A∪B∪S]. SinceZ⊆X \S, we haveY ⊆X.
SinceA (resp.B) belongs toC (X), Y cannot be adjacent toA (resp. toB), and since
C (X|S) = {A,B}, Y cannot be adjacent toS. SinceZ is connected, by Prop. 1 we
deduce thatY must be empty, thusZ = A∪B∪S, andA∪B∪S is a component
of X \S. The other components ofX \S are clearly the components ofX which
differ from A andB. �

Lemma 59. Any strong fusion graph is a fusion graph.

Proof: LetG = (E,Γ) be a strong fusion graph, letX ⊂ E such that|C (X)| ≥ 2,
and letA∈ C (X). By Prop. 16, there existsB∈ C (X), B 6= A, such thatA∪ann(A)
andB are neighbors. SinceG is a strong fusion graph, there existsS⊆ [X \ann(A)]
such thatA∪ ann(A) and B can be merged throughS for X \ ann(A). Consider
S′ = S∪ann(A), it can easily be seen thatS′ is adjacent to exactly two components
of X, namelyA andB, thusA can be merged forX. �

Lemma 60. Let (E,Γ) be a graph. Let X⊂ E, let A∈ C (X), and let Y⊆ A. Then,
we haveC (X∪Y) = [C (X)\{A}]∪C (A\Y).

The proof is elementary. This lemma is useful in the following proof.

Proof of Prop. 34: We have to prove that anyx in X ∪Y cannot be W-simple. If
Y = /0 thenX∪Y = X which is a cleft. Suppose from now thatY 6= /0.

Let x ∈ Y. SinceY ⊂ A andY 6= /0 andY is a cleft, there existsB,C ∈ C (A\Y)
which are adjacent tox and by Lem. 60,B andC also belong toC (X∪Y), thusx is
not W-simple forX∪Y.

Let x ∈ X. SinceX is a cleft forE andG is a perfect fusion graph, by Th. 32,X
is thin and thusx is adjacent to exactly two elementsB,C of C (X). If B 6= A and
C 6= A then from Lem. 60 we deduce thatx is also F-simple forX∪Y, suppose now
that B = A (the caseC = A is identical). IfΓ∗(x)∩Y = /0 thenx is adjacent toC
and to a component ofA\Y, it is thus not W-simple forX∪Y. Suppose now that
there existsy ∈ Γ∗(x)∩Y. SinceY is a cleft forA there exists two pointsa,b in
Γ∗(y) which belong to distinct components ofA\Y (thus,a andb are not adjacent).
Furthermore,y∈ Γ(x)∩Γ(a)∩Γ(b) and sinceG is a perfect fusion graph and by
the converse of Th. 41(viii ), x must be adjacent to eithera or b. Hence,x is not
W-simple.�
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