Jean Cousty

MorphoGraph and Imagery 2011

 \sim \sim

 \sim

2 [Dijkstra Algorithm](#page-31-0)

J. Cousty : [MorphoGraph and Imagery](#page-0-0) 2/20

€

メミメメ 店

 \sim

 \leftarrow

Network

Definition

A network is a triple $N = (E, \Gamma, \ell)$ such that (E, Γ) is a graph without loop; and \blacksquare ℓ is a map from $\overrightarrow{\Gamma}$ in $\mathbb R$ If (E, Γ, ℓ) is a network and if $u \in \overrightarrow{\Gamma}$ is an arc, the real number $\ell(u)$ is called the length of u

Network

Definition

A network is a triple $N = (E, \Gamma, \ell)$ such that (E, Γ) is a graph without loop; and \blacksquare ℓ is a map from $\overrightarrow{\Gamma}$ in $\mathbb R$ If (E, Γ, ℓ) is a network and if $u \in \overrightarrow{\Gamma}$ is an arc, the real number $\ell(u)$ is called the length of u

In the sequel of this lecture, $N = (E, \Gamma, \ell)$ denotes a network, and G denotes the graph $G = (E, \Gamma)$

If $u = (x, y)$ is an arc of G, we write $\ell(x, y)$ instead of $\ell((x, y))$

Length of a path

Definition

- Let $\pi = (x_0, \ldots, x_n)$ be a path in G
- The length of π (in N) is the sum of the length of the arcs in π :
	- $L(\pi) = \sum \{ \ell(x_i, x_{i+1}) \mid 0 \le i \le n-1 \}$

 Ω

Length of a path

Definition

- Let $\pi = (x_0, \ldots, x_n)$ be a path in G
- The length of π (in N) is the sum of the length of the arcs in π : ш.
	- $L(\pi) = \sum \{ \ell(x_i, x_{i+1}) \mid 0 \le i \le n-1 \}$

Definition

- \blacksquare Let x and y be two vertices of G
- A shortest path from x to y (in N) is a path π from x to y such that the length of π is less than or equal to the length of any other path from x to y :
	- $\forall \pi'$ path from x to y , $L(\pi) \leq L(\pi')$

Example

$$
\blacksquare \quad \pi = (x_0, x_1, x_3)
$$

J. Cousty : [MorphoGraph and Imagery](#page-0-0) 7/20

∍

 \leftarrow

Example

 $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 ($L(\pi) = 8$)

 \sim \sim

つへへ

Example

 $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 ($L(\pi) = 8$) $\pi = (x_0, x_1, x_4, x_3)$ is a shortest path from x_0 to x_3 ($L(\pi) = 7$)

Example

 $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 ($L(\pi) = 8$) $\pi = (x_0, x_1, x_4, x_3)$ is a shortest path from x_0 to x_3 ($L(\pi) = 7$) shortest path from x_2 to x_0 ?

Example

- $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 ($L(\pi) = 8$)
- $\pi = (x_0, x_1, x_4, x_3)$ is a shortest path from x_0 to x_3 ($L(\pi) = 7$)
- There is no shortest path from x_2 to x_0

Example

- $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 ($L(\pi) = 8$)
- $\pi = (x_0, x_1, x_4, x_3)$ is a shortest path from x_0 to x_3 ($L(\pi) = 7$)
- There is no shortest path from x_2 to x_0

shortest path from x_7 to x_9 ?

Example

- $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 ($L(\pi) = 8$)
- $\pi = (x_0, x_1, x_4, x_3)$ is a shortest path from x_0 to x_3 ($L(\pi) = 7$)
- There is no shortest path from x_2 to x_0
- There is no shortest path from x_7 to x_9

Negative circuit

4 0 8 4 母 → す唐 $\,$ 一 三

J. Cousty : [MorphoGraph and Imagery](#page-0-0) 8/20

E

Negative circuit

Definition

 \blacksquare A negative circuit in N is a circuit of negative length

 \leftarrow

Negative circuit

Definition

 \blacksquare A negative circuit in N is a circuit of negative length

Remark. If a strongly connected component has a negative circuit, then there is no shortest path between any two arbitrary vertices of this component

Existence of a shortest path

Property

- There exists a shortest path from x to any other vertex in E if and only if
	- $\blacksquare \forall y \in E$, \exists a path from x to y
	- \blacksquare there is no negative circuit in N

Shortest path or negative circuit?

■ There exist algorithms for

- **1** Finding shortest paths if they exist and
- 2 Detecting if a graph has a negative circuit

For instance, Bellman algorithm

Positive lengths network

A positive length network is a network (E, Γ, ℓ) such that: $\forall u \in \overrightarrow{\Gamma}$, $\ell(u) \geq 0$

つへへ

Positive lengths network

A positive length network is a network (E, Γ, ℓ) such that: $\forall u \in \overrightarrow{\Gamma}$, $\ell(u) \geq 0$

Property

If (E, Γ, ℓ) is a positive lengths network, then $\forall x, y \in E$ ■ \exists a path from x to y \Leftrightarrow \exists a shortest path from x à y

Let $N = (E, \Gamma, \ell)$ be a positive lengths network, let $x \in E$ We define the map $L_x : E \to \mathbb{R} \cup \{\infty\}$ by:

 $L_x(y) = \begin{cases}$ the length of a shortest path from x to y, if such path exists ∞ , otherwise

Illustration: the map L_x

Example

$$
\frac{y = x_0 \cdot x_1}{L_{x_0}(y) = x_1 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x_5 \cdot x_6}
$$

4 0 8

J. Cousty : [MorphoGraph and Imagery](#page-0-0) 13/20

э

Ε

4 重

 \sim \rightarrow

 \sim

Illustration: the map L_x

Example

y = x⁰ x¹ x² x³ x⁴ x⁵ x⁶ Lx⁰ (y) = 0

4 0 8

э

Ε

4 重

 \sim \rightarrow

 \sim

Illustration: the map L_x

Example

y = x⁰ x¹ x² x³ x⁴ x⁵ x⁶ Lx⁰ (y) = 0 3

4 0 8

э

Ε

4 重

 \sim \rightarrow

 \sim

Illustration: the map L_x

Example

$$
\begin{array}{c|ccccc}\ny = & x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\hline\nL_{x_0}(y) = & 0 & 3 & \infty\n\end{array}
$$

4 0 8

э

Ε

Ε

 \sim $\left($ \sim \blacktriangleleft

Illustration: the map L_x

Example

$$
\begin{array}{c|cccccc}\ny = & x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\hline\nL_{x_0}(y) = & 0 & 3 & \infty & 7\n\end{array}
$$

4 0 8

э

Ε

造

 \sim $\left($ \sim \rightarrow

Illustration: the map L_x

Example

$$
\begin{array}{c|cccccc}\ny = & x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\hline\nL_{x_0}(y) = & 0 & 3 & \infty & 7 & 5\n\end{array}
$$

4 0 8

э

Ε

4 重

 \sim \rightarrow

 \sim

Illustration: the map L_x

Example

$$
\begin{array}{c|cccccc}\ny = & x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\hline\nL_{x_0}(y) = & 0 & 3 & \infty & 7 & 5 & 6\n\end{array}
$$

4 0 8

J. Cousty : [MorphoGraph and Imagery](#page-0-0) 13/20

э

Ε

Ε

 \sim $\left($ \sim \rightarrow

Illustration: the map L_x

Example

$$
\begin{array}{c|cccccc}\ny = & x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\
\hline\nL_{x_0}(y) = & 0 & 3 & \infty & 7 & 5 & 6 & 8\n\end{array}
$$

4 0 8

J. Cousty : [MorphoGraph and Imagery](#page-0-0) 13/20

э

Ε

造

 \sim $\left($ \sim \rightarrow

Problems

1 Given a network (E, Γ, ℓ) and two vertices x and y in E

- Find a shortest path from x to y
- Find the length $L_{x}(y)$ of a shortest path from x to y

2 Given a network (E, Γ, ℓ) and a vertex x in E

- Find for each vertex y in E the length $L_x(y)$ of a shortest path from x to z
- **3** Given a network (E, Γ, ℓ)
	- Find, for each pair x, y of vertices in E , the length of a shortest path from x to y
- **4** Having solved problem [2](#page-31-1)
	- Solve problem [1](#page-31-2)

Dijkstra algorithm

1 Given a network (E, Γ, ℓ) and two vertices x and y in E

- Find a shortest path from x to y
- Find the length $L_{x}(y)$ of a shortest path from x to y

2 Given a network (E, Γ, ℓ) and a vertex x in E

- **Find for each vertex y in E the length** $L_x(y)$ **of a shortest path** from x to z
- **3** Given a network (E, Γ, ℓ)
	- Find, for each pair x, y of vertices in E , the length of a shortest path from x to y
- **4** Having solved problem [2](#page-31-1)
	- Solve problem [1](#page-31-2)

Computing the lengths of shortest paths

Algorithm DIJKSTRA (Data: (E, Γ, ℓ) , $n = |E|$, $x \in E$; Result: L_x

$$
\overline{S} := \emptyset;
$$

\nFor each $y \in E$ Do $L_x[y] = \infty$; $\overline{S} := \overline{S} \cup \{y\};$
\n $L_x[x] := 0; k := 0; \mu := 0;$
\nWhile $k < n$ and $\mu \neq \infty$ Do
\n**EXECUTE:** Extend the $L_x[y^*] = \min\{L_x[y], y \in \overline{S}\}$
\n $k + +$; $\mu := L_x[y^*];$
\nFor each $y \in \Gamma(y^*) \cap \overline{S}$ Do
\n $L_x[y] := \min\{L_x[y], L_x[y^*] + \ell(y^*, y)\};$

 \sim \sim

 Ω

Computing the lengths of shortest paths

Exercise. Execute "by hand" Dijsktra algorithm on the following network with $x = a$, and on any positive length network of your choice

Loop invariant of Dijkstra algorithm $(\# 1)$

- **Let** $x \in E$ and $\mu \in \mathbb{R}$
- A subset S of E is called a μ -separating (for x) if the two following conditions hold true:

 Ω

Loop invariant of Dijkstra algorithm $(\# 1)$

- **Let** $x \in E$ and $\mu \in \mathbb{R}$
- A subset S of E is called a μ -separating (for x) if the two following conditions hold true:
	- 1 S contains any vertex y such that the length $L_x(y)$ of a shortest path from x to y is less than μ

Loop invariant of Dijkstra algorithm $(\# 1)$

- **Let** $x \in E$ and $\mu \in \mathbb{R}$
- A subset S of E is called a μ -separating (for x) if the two following conditions hold true:
	- **1** S contains any vertex y such that the length $L_x(y)$ of a shortest path from x to y is less than μ
	- $\overline{S} = E \setminus S$ contains any vertex y such that the length of a shortest path from x to y is greater than μ

Loop invariant of Dijkstra algorithm $(# 2)$

- **Let** $x \in E$, let $\mu \in \mathbb{R}$, and let S be a set that is μ -separating for x
- An S -path is a path whose intermediary vertices are all in S

- **Let** $x \in E$, let $\mu \in \mathbb{R}$, and let S be a set that is μ -separating for x
- An S -path is a path whose intermediary vertices are all in S
- The length of a shortest S-path from x to y is denoted by $L_x^S(y)$

Loop invariant of Dijkstra algorithm $\sqrt{2}$

- **Let** $x \in E$, let $\mu \in \mathbb{R}$, and let S be a set that is μ -separating for x
- An S -path is a path whose intermediary vertices are all in S
- The length of a shortest S-path from x to y is denoted by $L_x^S(y)$

Property (proof of Dijkstra algorithm)

Let
$$
y^* \in \overline{S}
$$
 such that $L_x^S(y^*) = \min\{L_x^s(y) \mid y \in \overline{S}\}$

Loop invariant of Dijkstra algorithm $(# 2)$

- **Let** $x \in E$, let $\mu \in \mathbb{R}$, and let S be a set that is μ -separating for x
- An S -path is a path whose intermediary vertices are all in S
- The length of a shortest S-path from x to y is denoted by $L_x^S(y)$

Property (proof of Dijkstra algorithm)

Let
$$
y^* \in \overline{S}
$$
 such that $L_x^S(y^*) = \min\{L_x^s(y) \mid y \in \overline{S}\}$
\nThen, $L_x^S(y^*) = L_x(y^*)$

- **Let** $x \in E$, let $\mu \in \mathbb{R}$, and let S be a set that is μ -separating for x
- An S -path is a path whose intermediary vertices are all in S
- The length of a shortest S-path from x to y is denoted by $L_x^S(y)$

Property (proof of Dijkstra algorithm)

Let
$$
y^* \in \overline{S}
$$
 such that $L_x^S(y^*) = \min\{L_x^s(y) \mid y \in \overline{S}\}$

Then,
$$
L_x^S(y^*) = L_x(y^*)
$$

Thus, $S \cup \{y^{\star}\}\$ is a set that is μ' -separating with $\mu' = L_{X}^{S}(y^{\star})$

Computing the lengths of shortest paths

Algorithm DIJKSTRA (Data: (E, Γ, ℓ) , $n = |E|$, $x \in E$; Result: L_x

$$
\overline{S} := \emptyset;
$$

\nFor each $y \in E$ Do $L_x[y] = \infty$; $\overline{S} := \overline{S} \cup \{y\};$
\n $L_x[x] := 0; k := 0; \mu := 0;$
\nWhile $k < n$ and $\mu \neq \infty$ Do
\n**EXECUTE:** Extend the $L_x[y^*] = \min\{L_x[y], y \in \overline{S}\}$
\n $k + +$; $\mu := L_x[y^*];$
\nFor each $y \in \Gamma(y^*) \cap \overline{S}$ Do
\n $L_x[y] := \min\{L_x[y], L_x[y^*] + \ell(y^*, y)\};$

 \sim \sim

 Ω

Complexity

Complexity

- **Initialization:** $O(n)$
- **While** loop (line 4): $O(n)$
- Extract (line 5): $O(n^2)$
- For each loop (line 7): $O(n + m)$
- DIJKSTRA: $O(n^2)$

化原子 化原

 \leftarrow

Complexity

Complexity

- **Initialization:** $O(n)$
- **While** loop (line 4): $O(n)$
- Extract (line 5): $O(n^2)$
- For each loop (line 7): $O(n + m)$
- DIJKSTRA: $O(n^2)$
- **can** be easily reduced to $O(n \log(n) + m)$

 Ω

Propose an algorithm whose data are:

- \blacksquare a positive lengths network N
- a pair (x, y) of vertices
- and whose result is:
	- **a** a shortest path from x to y if such path exists

Help. Start by computing the lengths $L_x(z)$ for all vertices $z \in E$ using Dijkstra algorithm.