Shortest paths

Jean Cousty

MorphoGraph and Imagery 2011

Outline

1 Shortest path

2 Dijkstra Algorithm

Network

Definition

- A network is a triple $N = (E, \Gamma, \ell)$ such that
 - \bullet (E,Γ) is a graph without loop; and
 - lacksquare ℓ is a map from $\overrightarrow{\Gamma}$ in $\mathbb R$
- If (E,Γ,ℓ) is a network and if $u \in \overrightarrow{\Gamma}$ is an arc, the real number $\ell(u)$ is called the length of u

Network

Definition

- A network is a triple $N = (E, \Gamma, \ell)$ such that
 - (E,Γ) is a graph without loop; and
 - $lackbox{$\ ℓ is a map from $\overrightarrow{\Gamma}$ in \mathbb{R}}$
- If (E,Γ,ℓ) is a network and if $u \in \overrightarrow{\Gamma}$ is an arc, the real number $\ell(u)$ is called the length of u

Notations

- In the sequel of this lecture, $N = (E, \Gamma, \ell)$ denotes a network, and G denotes the graph $G = (E, \Gamma)$
- If u = (x, y) is an arc of G, we write $\ell(x, y)$ instead of $\ell((x, y))$

Length of a path

Definition

- Let $\pi = (x_0, \dots, x_n)$ be a path in G
- The length of π (in N) is the sum of the length of the arcs in π :
 - $L(\pi) = \sum \{\ell(x_i, x_{i+1}) \mid 0 \le i \le n-1\}$

Length of a path

Definition

- Let $\pi = (x_0, \dots, x_n)$ be a path in G
- The length of π (in N) is the sum of the length of the arcs in π :
 - $L(\pi) = \sum \{\ell(x_i, x_{i+1}) \mid 0 \le i \le n-1\}$

 $L((x_0, x_1, x_3)) = 8$

Shortest path

Definition

- Let x and y be two vertices of G
- A shortest path from x to y (in N) is a path π from x to y such that the length of π is less than or equal to the length of any other path from x to y:
 - $\forall \pi'$ path from x to y, $L(\pi) \leq L(\pi')$

$$\pi = (x_0, x_1, x_3)$$

Example

• $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 ($L(\pi) = 8$)

- $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 ($L(\pi) = 8$)
- $\pi = (x_0, x_1, x_4, x_3)$ is a shortest path from x_0 to x_3 $(L(\pi) = 7)$

- ullet $\pi=(x_0,x_1,x_3)$ is not a shortest path from x_0 to x_3 $(L(\pi)=8)$
- $\pi = (x_0, x_1, x_4, x_3)$ is a shortest path from x_0 to x_3 $(L(\pi) = 7)$
- shortest path from x_2 to x_0 ?

- $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 ($L(\pi) = 8$)
- $\pi = (x_0, x_1, x_4, x_3)$ is a shortest path from x_0 to x_3 $(L(\pi) = 7)$
- There is no shortest path from x_2 to x_0

- $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 ($L(\pi) = 8$)
- $\pi = (x_0, x_1, x_4, x_3)$ is a shortest path from x_0 to x_3 $(L(\pi) = 7)$
- There is no shortest path from x_2 to x_0
- shortest path from x_7 to x_9 ?

- $\pi = (x_0, x_1, x_3)$ is not a shortest path from x_0 to x_3 ($L(\pi) = 8$)
- $\pi=(x_0,x_1,x_4,x_3)$ is a shortest path from x_0 to x_3 ($L(\pi)=7$)
- There is no shortest path from x_2 to x_0
- There is no shortest path from x_7 to x_9

Negative circuit

Negative circuit

Definition

■ A negative circuit in N is a circuit of negative length

Negative circuit

Definition

■ A negative circuit in N is a circuit of negative length

<u>Remark.</u> If a strongly connected component has a negative circuit, then there is no shortest path between any two arbitrary vertices of this component

Existence of a shortest path

Property

- There exists a shortest path from x to any other vertex in E if and only if
 - $\forall y \in E$, \exists a path from x to y
 - there is no negative circuit in N

Shortest path or negative circuit?

- There exist algorithms for
 - 1 Finding shortest paths if they exist and
 - Detecting if a graph has a negative circuit
- For instance, Bellman algorithm

Positive lengths network

- A *positive length network* is a network (E, Γ, ℓ) such that:
 - $\forall u \in \overrightarrow{\Gamma}, \ell(u) \geq 0$

Positive lengths network

- A *positive length network* is a network (E, Γ, ℓ) such that:
 - $\forall u \in \overrightarrow{\Gamma}, \ell(u) \geq 0$

Property

- If (E, Γ, ℓ) is a positive lengths network, then $\forall x, y \in E$
 - \exists a path from x to $y \Leftrightarrow \exists$ a shortest path from $x \grave{a} y$

Shortest paths

- Let $N = (E, \Gamma, \ell)$ be a positive lengths network, let $x \in E$
- We define the map $L_x : E \to \mathbb{R} \cup \{\infty\}$ by:

$$L_x(y) = \left\{ \begin{array}{l} \text{the length of a shortest path from } x \text{ to } y, \text{ if such path exists} \\ \infty \text{ , otherwise} \end{array} \right.$$

$$\frac{y = | x_0 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6}{L_{x_0}(y) = |}$$

$$\frac{y = \begin{cases} x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ L_{x_0}(y) = \begin{cases} 0 & 3 & \infty & 7 & 5 & 6 \end{cases}$$

$$\frac{y = \begin{cases} x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ L_{x_0}(y) = \begin{cases} 0 & 3 & \infty & 7 & 5 & 6 & 8 \end{cases}$$

Problems

- **I** Given a network (E, Γ, ℓ) and two vertices x and y in E
 - Find a shortest path from x to y
 - Find the length $L_x(y)$ of a shortest path from x to y
- 2 Given a network (E, Γ, ℓ) and a vertex x in E
 - Find for each vertex \underline{y} in E the length $L_x(\underline{y})$ of a shortest path from \overline{x} to z
- **3** Given a network (E, Γ, ℓ)
 - Find, for each pair x, y of vertices in E, the length of a shortest path from x to y
- 4 Having solved problem 2
 - Solve problem 1

Dijkstra algorithm

- **I** Given a network (E, Γ, ℓ) and two vertices x and y in E
 - Find a shortest path from x to y
 - Find the length $L_x(y)$ of a shortest path from x to y
- **2** Given a network (E, Γ, ℓ) and a vertex x in E
 - Find for each vertex y in E the length $L_x(y)$ of a shortest path from x to z
- **3** Given a network (E, Γ, ℓ)
 - Find, for each pair x, y of vertices in E, the length of a shortest path from x to y
- 4 Having solved problem 2
 - Solve problem 1

Computing the lengths of shortest paths

Algorithm DIJKSTRA (Data: (E,Γ,ℓ) , n=|E|, $x\in E$; Result: $L_x)$

$$\overline{S} := \emptyset;$$

For each $y \in E$ Do $L_x[y] = \infty$; $\overline{S} := \overline{S} \cup \{y\};$
 $L_x[x] := 0; k := 0; \mu := 0;$
While $k < n$ and $\mu \neq \infty$ Do

- Extract a vertex $y^* \in \overline{S}$ such that $L_x[y^*] = \min\{L_x[y], y \in \overline{S}\}$
- $k + +; \mu := L_x[y^*];$
- For each $y \in \Gamma(y^*) \cap \overline{S}$ Do
 - $L_x[y] := \min\{L_x[y], L_x[y^*] + \ell(y^*, y)\};$

Computing the lengths of shortest paths

Exercise. Execute "by hand" Dijsktra algorithm on the following network with x = a, and on any positive length network of your choice

(# 1)

- Let $x \in E$ and $\mu \in \mathbb{R}$
- A subset S of E is called a μ -separating (for x) if the two following conditions hold true:

- Let $x \in E$ and $\mu \in \mathbb{R}$
- A subset S of E is called a μ -separating (for x) if the two following conditions hold true:
 - **1** S contains any vertex y such that the length $L_x(y)$ of a shortest path from x to y is less than μ

- Let $x \in E$ and $\mu \in \mathbb{R}$
- A subset S of E is called a μ -separating (for x) if the two following conditions hold true:
 - **1** S contains any vertex y such that the length $L_x(y)$ of a shortest path from x to y is less than μ
 - 2 $\overline{S} = E \setminus S$ contains any vertex y such that the length of a shortest path from x to y is greater than μ

(#2)

- Let $x \in E$, let $\mu \in \mathbb{R}$, and let S be a set that is μ -separating for x
- \blacksquare An *S-path* is a path whose intermediary vertices are all in *S*

(#2)

- Let $x \in E$, let $\mu \in \mathbb{R}$, and let S be a set that is μ -separating for x
- \blacksquare An *S-path* is a path whose intermediary vertices are all in *S*
- The length of a shortest S-path from x to y is denoted by $L_x^S(y)$

- Let $x \in E$, let $\mu \in \mathbb{R}$, and let S be a set that is μ -separating for x
- \blacksquare An *S-path* is a path whose intermediary vertices are all in *S*
- The length of a shortest S-path from x to y is denoted by $L_x^S(y)$

Property (proof of Dijkstra algorithm)

• Let $y^* \in \overline{S}$ such that $L_x^S(y^*) = \min\{L_x^s(y) \mid y \in \overline{S}\}$

- Let $x \in E$, let $\mu \in \mathbb{R}$, and let S be a set that is μ -separating for x
- \blacksquare An *S-path* is a path whose intermediary vertices are all in *S*
- The length of a shortest S-path from x to y is denoted by $L_x^S(y)$

Property (proof of Dijkstra algorithm)

- Let $y^* \in \overline{S}$ such that $L_x^S(y^*) = \min\{L_x^S(y) \mid y \in \overline{S}\}$
- $\blacksquare \quad Then, \ L_x^S(y^*) = L_x(y^*)$

- Let $x \in E$, let $\mu \in \mathbb{R}$, and let S be a set that is μ -separating for x
- \blacksquare An *S-path* is a path whose intermediary vertices are all in *S*
- The length of a shortest S-path from x to y is denoted by $L_x^S(y)$

Property (proof of Dijkstra algorithm)

- Let $y^* \in \overline{S}$ such that $L_x^S(y^*) = \min\{L_x^s(y) \mid y \in \overline{S}\}$
- Then, $L_x^S(y^*) = L_x(y^*)$
- Thus, $S \cup \{y^*\}$ is a set that is μ' -separating with $\mu' = L_x^S(y^*)$

Computing the lengths of shortest paths

Algorithm DIJKSTRA (Data: (E,Γ,ℓ) , n=|E|, $x\in E$; Result: $L_x)$

$$\overline{S} := \emptyset;$$

For each $y \in E$ Do $L_x[y] = \infty$; $\overline{S} := \overline{S} \cup \{y\};$
 $L_x[x] := 0; k := 0; \mu := 0;$
While $k < n$ and $\mu \neq \infty$ Do

- Extract a vertex $y^* \in \overline{S}$ such that $L_x[y^*] = \min\{L_x[y], y \in \overline{S}\}$
- $k + +; \mu := L_x[y^*];$
- For each $y \in \Gamma(y^*) \cap \overline{S}$ Do
 - $L_x[y] := \min\{L_x[y], L_x[y^*] + \ell(y^*, y)\};$

Complexity

Complexity

- Initialization: O(n)
- **While** *loop* (*line* 4): *O*(*n*)
- Extract (line 5): $O(n^2)$
- For each loop (line 7): O(n+m)
- DIJKSTRA: O(n²)

Complexity

Complexity

- Initialization: O(n)
- **While** *loop* (*line* 4): *O*(*n*)
- Extract (line 5): $O(n^2)$
- For each loop (line 7): O(n+m)
- DIJKSTRA: O(n²)
- can be easily reduced to $O(n \log(n) + m)$

Exercise

- Propose an algorithm whose **data** are:
 - \blacksquare a positive lengths network N
 - \blacksquare a pair (x, y) of vertices
- and whose result is:
 - a shortest path from x to y if such path exists

<u>Help.</u> Start by computing the lengths $L_x(z)$ for all vertices $z \in E$ using Dijkstra algorithm.