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Mathematical Morphology (MM) allows to process

Continuous planes Discrete grids

Continuous manifolds Triangular meshes
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Problem

Is there generic structures that allow MM operators to be studied
and implemented in computers?

Proposition

Graphs constitute such a structure for digital geometric objects
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Graphs

What is a graph ?

Definition

A graph G is a pair (V ,E ) made of:

A set V
whose elements {x ∈ V } are called points or vertices of G

A binary relation E on V (i.e., E ⊆ V × V )
whose elements {(x , y) ∈ E} are called edges of G
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Graphs

What is a graph ?

Definition

The graph (V ,E ) is symmetric whenever:

(x , y) ∈ E =⇒ (y , x) ∈ E

The graph (V ,E ) is reflexive if:

∀x ∈ V , (x , x) ∈ E
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Graphs

What is a graph ?

x

y

4-adjacency 8-adjacency 6-adjacency

Symmetric & reflexive graph for 2D image analysis

The vertex set V is the image domain

The edge set E is given by an “adjacency” relation
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Graphs

What is a graph ?

6-adjacency 18-adjacency 26-adjacency

Symmetric & reflexive graph for 3D image analysis

The vertex set V is the image domain

The edge set E is given by an “adjacency” relation
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Graphs

What is a graph ?

6-adjacency 18-adjacency 26-adjacency

Symmetric & reflexive graph for mesh analysis

The vertex set V is the image domain

The edge set E is given by an “adjacency” relation
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Graphs

Neighborhood

x

Definition

We call neighborhood of a vertex (in G) the set of all vertices
linked (by an edge in G ) to this vertex:

∀x ∈ V , Γ(x) = {y ∈ V | (x , y) ∈ E}
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Graphs

Neighborhood

x y

z

Definition

The neighborhood (in G) of a subset of vertices, is the union of
the neighborhood of the vertices in this set:

∀X ⊆ V , Γ(X ) = ∪x∈X Γ(x)

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 6/34



Graphs

Neighborhood

x y

z

Definition

The neighborhood (in G) of a subset of vertices, is the union of
the neighborhood of the vertices in this set:

∀X ⊆ V , Γ(X ) = ∪x∈X Γ(x)

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 6/34



Graphs

Algebraic Dilation & graph

Property

Whatever the graph G, the map Γ : P(V )→ P(V ) is an
(algebraic) dilation

Γ commutes with the supremum
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Graphs

Morphological Dilation & graph

Property

If V is discrete and equipped with a translation T
If X and B are subsets of V

Then, X ⊕ B = Γ(X ), where E is made of all
pairs (x , y) ∈ V × V such that y ∈ Bx

Conversely,

Property

If V is equipped with a translation T , and an origin o ∈ V

If G is translation invariant (∀x , y ∈ V , Γ(x) = Tt(Γ(y))),

Then, Γ(X ) = X ⊕ B, with B = Γ(o)
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Graphs

Dilation, erosion, opening, closing & graph

Reminder

The adjoint erosion of Γ:

obtained by duality

Elementary openings and closings:

obtained by composition of adjoint dilations and erosion’s
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Graphs

Dilation Algorithm

: Complexity analysis

Algorithm

Input: A graph G = (V ,E ) and a subset X of V

Y := ∅

O(1)

For each x ∈ V do

O(|V |)

if x ∈ X do

O(|V |)

For each y ∈ Γ(x) do Y := Y ∪ {x}

O(|V |+ |E |)

Data Structures

Each element of V is represented by an integer between 0
and |V | − 1

The map Γ is represented by an array of |V | lists

Sets X and Y are represented by Boolean arrays
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Distance transforms

Toward granulometries: iterated dilation

Usual granulometric studies of X require

ΓN(X ) for each possible value of N

How can ΓN(X ) be computed?

Applying N times the preceding algorithm?

Complexity O(N × (|V |+ |E |))

Problem

Efficient computation of ΓN(X )
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Distance transforms

Distance transforms: intuition

X (in black)
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Distance transforms

Distance transforms: intuition

Distance transform of X
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Distance transforms

Distance transforms: intuition

./Figures/zebreDilation.avi
Thresholds: {ΓN}
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Distance transforms

Paths

Let π = 〈x0, . . . , xk〉 be an ordered sequence of vertices

π is a path from x0 to xk if:

any two consecutive vertices of π are linked by an edge:
∀i ∈ [1, k], (xi−1, xi ) ∈ E

x0 x x

x x

1 2

3 4
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Distance transforms

Length of a path

Let π = 〈x0, . . . , xk〉 be a path

The length of π, denoted by L(π), is the integer k

x0 x x

x x

1 2

3 4

Path of length 4

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 14/34



Distance transforms

Length of a path

Let π = 〈x0, . . . , xk〉 be a path

The length of π, denoted by L(π), is the integer k

x0 x x

x x

1 2

3 4

Path of length 4

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 14/34



Distance transforms

Length of a path in a weighted graph

Let ` be a map from E into R: u → `(u), the length of the edge u

The pair (G , `) is called a weighted graph or a network

The length of a path π = 〈x0, . . . , xk〉 is the sum of the length of
the edges along π: L(π) =

∑k
i=1 ` ((xi−1, xi ))

Length of red edges: 1

Length of blue edges:
√

2

Path of length 2 +
√

2 ≈ 3.4
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Distance transforms

Graph distance

Let x and y be two vertices

The distance between x and y is defined by:

D(x , y) = min{L(π) | π is a path from x to y}

x

y

D(x , y) = 4
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Distance transforms

Graph distance

Property

If the graph G is symmetric, then the map D is a distance on V :

∀x ∈ V , D(x , x) = 0
∀x , y ∈ V , x 6= y =⇒ D(x , y) > 0 (positive)
∀x , y ∈ V , D(x , y) = d(y , x) (symmetric)
∀x , y , z ∈ V , D(x , z) ≤ D(x , y) + D(y , z) (triangular inequality)

Terminology

In this case of graph, the distance D is called geodesic
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Distance transforms

Distance Transform

Let X ⊆ V and x ∈ V

The distance between x and X is defined by

D(x ,X ) = min{D(x , y) | y ∈ X}

The distance transform of X is the map from V into R defined by

x → DX (x) = D(x ,X )

x

X black vertices

D(x ,X )
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Distance transforms

Illustration on an image

Original object X in black
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Distance transforms

Illustration on an image

DX in the (non-weighted) graph induced by the 4-adjacency
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Distance transforms

Illustration on an image

DX in the (non-weighted) graph induced by the 8-adjacency
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Distance transforms

Distance transforms & dilations (in non-weighted graphs)

The level-set of DX at level k (X ⊆ V , k ∈ R) is defined by:

DX [k] = {x ∈ V | DX (x) ≤ k}

Theorem

Γk(X ) = DX [k], for any X ⊆ V and any k ∈ N
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Distance transforms

Computing distance transforms (in non-weighted graphs)

Algorithm: Input: X ⊆ V , Results: DX

For each x ∈ V do DX (x) :=∞
S := X ; T := ∅; k := 0;

While S 6= ∅ do

For each x ∈ S do DX := k
For each x ∈ S do

For each y ∈ Γ(x) if DX (y) =∞ do T := T ∪ {y};

DX (y) := −∞

S := T ; T := ∅; k := k + 1;

Example of execution

S in red

T in blue
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Distance transforms

Computing distance transforms (in non-weighted graphs)

Algorithm: Input: X ⊆ V , Results: DX
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Distance transforms
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Distance transforms

Computing distance transforms (in non-weighted graphs)

Algorithm: Input: X ⊆ V , Results: DX

For each x ∈ V do DX (x) :=∞
S := X ; T := ∅; k := 0;

While S 6= ∅ do
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S in red
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Distance transforms

Computing distance transforms (in non-weighted graphs)

Algorithm: Input: X ⊆ V , Results: DX

For each x ∈ V do DX (x) :=∞
S := X ; T := ∅; k := 0;

While S 6= ∅ do

For each x ∈ S do DX := k
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Example of execution

S in red

T in blue

k = 3
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Distance transforms

Computing distance transforms (in non-weighted graphs)

Algorithm: Input: X ⊆ V , Results: DX

For each x ∈ V do DX (x) :=∞
S := X ; T := ∅; k := 0;

While S 6= ∅ do

For each x ∈ S do DX := k
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For each y ∈ Γ(x) if DX (y) =∞ do T := T ∪ {y};

DX (y) := −∞
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Example of execution
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Distance transforms
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Distance transforms

Computing distance transforms (in non-weighted graphs)

Algorithm: Input: X ⊆ V , Results: DX

For each x ∈ V do DX (x) :=∞
S := X ; T := ∅; k := 0;

While S 6= ∅ do

For each x ∈ S do DX := k
For each x ∈ S do

For each y ∈ Γ(x) if DX (y) =∞ do T := T ∪ {y};

DX (y) := −∞

S := T ; T := ∅; k := k + 1;
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Example of execution

S in red

T in blue

k = 6
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Distance transforms

Computing distance transforms (in non-weighted graphs)

Algorithm: Input: X ⊆ V , Results: DX

For each x ∈ V do DX (x) :=∞
S := X ; T := ∅; k := 0;

While S 6= ∅ do

For each x ∈ S do DX := k
For each x ∈ S do

For each y ∈ Γ(x) if DX (y) =∞ do T := T ∪ {y};

DX (y) := −∞

S := T ; T := ∅; k := k + 1;
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Example of execution

S in red

T in blue

k = 7
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Distance transforms

Computing distance transforms (in non-weighted graphs)

Algorithm: Input: X ⊆ V , Results: DX

For each x ∈ V do DX (x) :=∞
S := X ; T := ∅; k := 0;

While S 6= ∅ do

For each x ∈ S do DX := k
For each x ∈ S do

For each y ∈ Γ(x) if DX (y) =∞ do T := T ∪ {y};

DX (y) := −∞

S := T ; T := ∅; k := k + 1;

Correctness: sketch of the proof by induction

At the end of step k , DX (y) = k if and only if there is a path of
length k from X to y
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Distance transforms

Computing distance transforms (in non-weighted graphs)

Algorithm: Input: X ⊆ V , Results: DX

For each x ∈ V do DX (x) :=∞
S := X ; T := ∅; k := 0;

While S 6= ∅ do

For each x ∈ S do DX := k
For each x ∈ S do

For each y ∈ Γ(x) if DX (y) =∞ do T := T ∪ {y};

DX (y) := −∞

S := T ; T := ∅; k := k + 1;

Data Structures

Elements of V represented by integers in [0, |V | − 1]

Γ represented by an array of |V | lists

S and T implemented as lists
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Distance transforms

Computing distance transforms (in non-weighted graphs)

Algorithm: Input: X ⊆ V , Results: DX

For each x ∈ V do DX (x) :=∞
S := X ; T := ∅; k := 0;

While S 6= ∅ do

For each x ∈ S do DX := k
For each x ∈ S do

For each y ∈ Γ(x) if DX (y) =∞ do T := T ∪ {y}; DX (y) := −∞

S := T ; T := ∅; k := k + 1;

Complexity

O(|V |+ |E |)
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Distance transforms

Computing distance transforms in weighted graphs

Disjkstra Algorithm (1959)

Complexity (using modern data structure)

Same as sorting algorithms

For small integers distances: O(|V |+ |E |)
For floating point numbers distances: O(log log(|V |) + |E |)
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Distance transforms
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Medial axis

Visually, the salient loci of the DT form a “centered skeleton”

Medial axis constitute a first notion of such skeletons

Introduced by Blum in the 60’s
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Medial axis

Medial Axis: grass fire analogy

./Figures/feudeprairie.avi
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Medial axis

Maximal balls

Definition

Γr (x) is called the ball of radius r centered on x

Γr (x) is called a maximal ball in X if:

Γr (x) ⊆ X
∀y ∈ V , ∀r ′ ∈ N, if Γr (x) ⊆ Γr ′(y) ⊆ X , then Γr (x) = Γr ′(y)

x

Γ0(x)

Γ1(x)

Γ2(x)

Γ3(x)
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Medial axis

Maximal balls

Definition

Γr (x) is called the ball of radius r centered on x
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Γr (x) ⊆ X
∀y ∈ V , ∀r ′ ∈ N, if Γr (x) ⊆ Γr ′(y) ⊆ X , then Γr (x) = Γr ′(y)

X in red and black

A ball which is not
maximal in X

A maximal ball
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Medial axis

Medial Axis

Definition

The medial axis of X is the set of centers of maximal balls in X

MA(X ) = {x ∈ X | ∃r ∈ N, Γr (x) is a maximal ball in X}
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Medial axis

Medial Axis: illustration on images
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Medial axis

Example of application: Virtual Coloscopy

./Figures/ct.avi
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Medial axis

Example of application: Virtual Coloscopy

./Figures/segmentation.avi
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Medial axis

Example of application: Virtual Coloscopy

./Figures/paths.avi

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology 29/34



Medial axis

Example of application: Virtual Coloscopy

./Figures/colono.avi
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Medial axis

Computational characterization

The point x ∈ V is a local maximum of DX if

for any y ∈ Γ(x), DX (y) ≤ DX (y)

Property

The medial axis of X is the set of local maxima of DX
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Related problems

Homotopic transform

Medial axis of connected objects can be disconnected

Medial Axis

Kong & Rosenfeld. Digital topology: introduction and survey CVGIP-89

Couprie and Bertrand, New characterizations of simple points in 2D, 3D
and 4D discrete spaces, TPAMI-09
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Related problems

Homotopic transform

Medial axis of connected objects can be disconnected

Homotopic skeleton

Kong & Rosenfeld. Digital topology: introduction and survey CVGIP-89

Couprie and Bertrand, New characterizations of simple points in 2D, 3D
and 4D discrete spaces, TPAMI-09
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Related problems

Euclidean distance and medial axis

Medial axis for the D4 graph distance

Saito & Toriwaki, New algorithms for Euclidean distance transformation
of an n-dimensional digitized picture with applications, PR-94

Remy & Thiel, Exact Medial Axis with Euclidean Distance IVC-05
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Related problems

Euclidean distance and medial axis

Euclidean distance transform

Saito & Toriwaki, New algorithms for Euclidean distance transformation
of an n-dimensional digitized picture with applications, PR-94

Remy & Thiel, Exact Medial Axis with Euclidean Distance IVC-05
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Related problems

Opening function

Vincent, Fast grayscale granulometry algorithms, ISMM’94

Chaussard et al., Opening functions in linear time for chessboard and
city-bloc distances (in preparation)
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Related problems

Opening function

Figures/OpeningFunction.png
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Related problems

Summary

Introduction of the graph formalism for MM

Distance Transform

Linear time algorithm for morphological operators in graphs

Medial axis
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