Some morphological operators in graph spaces

Jean Cousty, Laurent Najman, and Jean Serra

ISMM'09 – Groningen, The Netherlands August 26, 2009

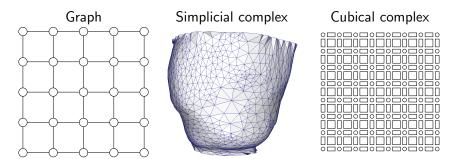
J. Cousty, L. Najman and J. Serra: Some morphological operators in graph spaces

- Digital image processing
 - Transformations on the subsets of \mathbb{Z}^2 (binary images)
 - Transformations on the maps from \mathbb{Z}^2 to \mathbb{N} (grayscale images)

- Digital image processing
 - Transformations on the subsets of \mathbb{Z}^2 (binary images)
 - Transformations on the maps from \mathbb{Z}^2 to \mathbb{N} (grayscale images)
- Mathematical morphology
 - Filtering and segmenting tools very useful in applications
 - Formally studied in lattices $(e.g., 2^{|E|})$

More recently

- Structured digital objects:
 - Points and
 - Elements between points telling how points are "glued" together
- For instance:



More recently

- Cousty et al., Watershed cuts: minimum spanning forests and the drop of water principle TPAMI (2009)
- Cousty et al., Watershed cuts: Thinnings, shortest-path forests and topological watersheds TPAMI (to appear)
- Couprie and Bertrand, New characterizations of simple points in 2D, 3D and 4D discrete spaces, TPAMI (2009)

More recently

- Cousty et al., Watershed cuts: minimum spanning forests and the drop of water principle TPAMI (2009)
- Cousty et al., Watershed cuts: Thinnings, shortest-path forests and topological watersheds TPAMI (to appear)
- Couprie and Bertrand, New characterizations of simple points in 2D, 3D and 4D discrete spaces, TPAMI (2009)

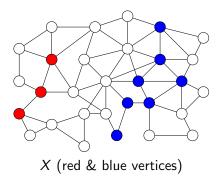
- Najman, Ultrametric Watersheds, ISMM (2009)
- Levillain et al., *Milena: Write Generic Morphological Algorithms Once, Run on Many kinds of Images*, ISMM (2009)

Previous work: morphology on vertices of a graphs

- Vincent, Graphs and Mathematical Morphology, SIGPROC 1989
- Heijmans & Vincent, Graph Morphology in Image Analysis, in Mathematical Morphology in Image Processing, Marcel-Dekker, 1992

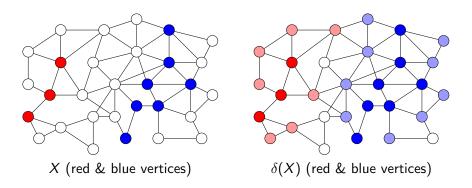
Previous work: morphology on vertices of a graphs

- Vincent, Graphs and Mathematical Morphology, SIGPROC 1989
- Heijmans & Vincent, Graph Morphology in Image Analysis, in Mathematical Morphology in Image Processing, Marcel-Dekker, 1992



Previous work: morphology on vertices of a graphs

- Vincent, Graphs and Mathematical Morphology, SIGPROC 1989
- Heijmans & Vincent, Graph Morphology in Image Analysis, in Mathematical Morphology in Image Processing, Marcel-Dekker, 1992



Problem

- The workspace being a graph
 - What morphological operators on subsets of its vertex set?
 - What morphological operators on subsets of its edge set?
 - What morphological operators on its subgraphs?
- Relation between them?

2 Dilations and erosions

Ordering on graphs

■ A graph is a pair X = (X[•], X[×]) where X[•] is a set and X[×] is composed of unordered pairs of distinct elements in X[•]

Definition

Let X and Y be two graphs.

- If $Y^{\bullet} \subseteq X^{\bullet}$ and $Y^{\times} \subseteq X^{\times}$, then:
 - Y is a subgraph of X
 - we write $Y \sqsubseteq X$
 - we say that Y is smaller than X and that X is greater than Y

- Hereafter, the workspace is a graph $\mathbb{G} = (\mathbb{G}^{\bullet}, \mathbb{G}^{\times})$
- We consider the famillies G[•], G[×] and G of respectively all subsets of G[•], all subsets of G[×] and all subgraphs of G.

Property

- The set \mathcal{G} of the subgraphs of \mathbb{G} form a complete lattice
- The infimum and the supremum of any family $\mathcal{F} = \{X_1, \dots, X_\ell\}$ of elements in \mathcal{G} are given by:

$$\square \mathcal{F} = (\bigcap_{i \in [1,\ell]} X_i^{\bullet}, \bigcap_{i \in [1,\ell]} X_i^{\times})$$
$$\square \mathcal{F} = (\bigcup_{i \in [1,\ell]} X_i^{\bullet}, \bigcup_{i \in [1,\ell]} X_i^{\times})$$

Property

- The set \mathcal{G} of the subgraphs of \mathbb{G} form a complete lattice
- The infimum and the supremum of any family $\mathcal{F} = \{X_1, \dots, X_\ell\}$ of elements in \mathcal{G} are given by:

$$\square \mathcal{F} = (\bigcap_{i \in [1,\ell]} X_i^{\bullet}, \bigcap_{i \in [1,\ell]} X_i^{\times})$$
$$\square \mathcal{F} = (\bigcup_{i \in [1,\ell]} X_i^{\bullet}, \bigcup_{i \in [1,\ell]} X_i^{\times})$$

■ *G* is sup-generated

Property

- The set \mathcal{G} of the subgraphs of \mathbb{G} form a complete lattice
- The infimum and the supremum of any family $\mathcal{F} = \{X_1, \dots, X_\ell\}$ of elements in \mathcal{G} are given by:

- *G* is sup-generated
- But G is not complemented

Definition

We define the operators δ^{\bullet} , ϵ^{\bullet} , ϵ^{\times} , and δ^{\times} as follows:

$\mathcal{G}^{ imes} ightarrow \mathcal{G}^ullet$	$\mathcal{G}^ullet o \mathcal{G}^ imes$

Definition

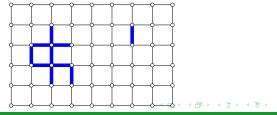
We define the operators δ^{\bullet} , ϵ^{\bullet} , ϵ^{\times} , and δ^{\times} as follows:

	$\mathcal{G}^{ imes} o \mathcal{G}^ullet$	$\mathcal{G}^ullet o \mathcal{G}^ imes$
Provide a graph	$X^{\times} \to \delta^{ullet}(X^{\times})$ such that $(\delta^{ullet}(X^{\times}), X^{\times}) = \sqcap \mathcal{G}_{X^{\times}}$	

Definition

We define the operators δ^{\bullet} , ϵ^{\bullet} , ϵ^{\times} , and δ^{\times} as follows:

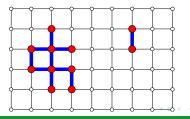
	$\mathcal{G}^{ imes} o \mathcal{G}^ullet$	$\mathcal{G}^{ullet} o \mathcal{G}^{ imes}$
Provide a graph	$X^{ imes} o \delta^{ullet}(X^{ imes})$ such that $(\delta^{ullet}(X^{ imes}), X^{ imes}) = \sqcap \mathcal{G}_{X^{ imes}}$	



Definition

We define the operators δ^{\bullet} , ϵ^{\bullet} , ϵ^{\times} , and δ^{\times} as follows:

· · · · ·	$\mathcal{G}^{ imes} ightarrow \mathcal{G}^ullet$	$\mathcal{G}^{ullet} ightarrow \mathcal{G}^{ imes}$
Provide a graph	$X^{ imes} o \delta^{ullet}(X^{ imes})$ such that $(\delta^{ullet}(X^{ imes}), X^{ imes}) = \sqcap \mathcal{G}_{X^{ imes}}$	



Definition

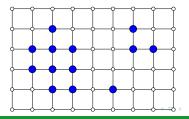
We define the operators δ^{\bullet} , ϵ^{\bullet} , ϵ^{\times} , and δ^{\times} as follows:

	$\mathcal{G}^{ imes} ightarrow \mathcal{G}^ullet$	$\mathcal{G}^ullet o \mathcal{G}^ imes$	
Provide a graph	$X^{\times} \to \delta^{ullet}(X^{\times})$ such that $(\delta^{ullet}(X^{\times}), X^{\times}) = \sqcap \mathcal{G}_{X^{\times}}$	$X^{ullet} o \epsilon^{ imes}(X^{ullet})$ such that $(X^{ullet}, \epsilon^{ imes}(X^{ullet})) = \sqcup \mathcal{G}_{X^{ullet}}$	

Definition

We define the operators δ^{\bullet} , ϵ^{\bullet} , ϵ^{\times} , and δ^{\times} as follows:

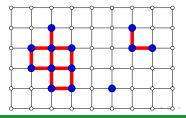
	$\mathcal{G}^{ imes} ightarrow \mathcal{G}^ullet$	$\mathcal{G}^ullet o \mathcal{G}^ imes$	
Provide a graph	$X^{\times} \to \delta^{ullet}(X^{\times})$ such that $(\delta^{ullet}(X^{\times}), X^{\times}) = \sqcap \mathcal{G}_{X^{\times}}$	$X^{ullet} o \epsilon^{ imes}(X^{ullet})$ such that $(X^{ullet}, \epsilon^{ imes}(X^{ullet})) = \sqcup \mathcal{G}_{X^{ullet}}$	



Definition

We define the operators	5δ.	ۥ.	ϵ^{\times} .	and $\delta^{ imes}$	as follows:
-------------------------	-----	----	-----------------------	----------------------	-------------

······································				
	$\mathcal{G}^{ imes} o \mathcal{G}^ullet$	$\mathcal{G}^ullet o \mathcal{G}^ imes$		
Provide a graph	$X^{ imes} o \delta^{ullet}(X^{ imes})$ such that $(\delta^{ullet}(X^{ imes}), X^{ imes}) = \sqcap \mathcal{G}_{X^{ imes}}$	$X^{ullet} o \epsilon^{ imes}(X^{ullet})$ such that $(X^{ullet}, \epsilon^{ imes}(X^{ullet})) = \sqcup \mathcal{G}_{X^{ullet}}$		



Definition

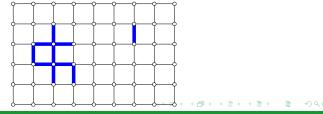
We define the operators δ^{\bullet} , ϵ^{\bullet} , ϵ^{\times} , and δ^{\times} as follows:

	$\mathcal{G}^{ imes} o \mathcal{G}^ullet$	$\mathcal{G}^ullet o \mathcal{G}^ imes$
Provide a graph	$X^{ imes} o \delta^{ullet}(X^{ imes})$ such that $(\delta^{ullet}(X^{ imes}), X^{ imes}) = \sqcap \mathcal{G}_{X^{ imes}}$	$X^{ullet} o \epsilon^{ imes}(X^{ullet})$ such that $(X^{ullet}, \epsilon^{ imes}(X^{ullet})) = \sqcup \mathcal{G}_{X^{ullet}}$
Provide the comple- ment with a graph	$X^{ imes} o \epsilon^{ullet}(X^{ imes})$ such that $(\overline{\epsilon^{ullet}(X^{ imes})}, \overline{X^{ imes}}) = \sqcap \mathcal{G}_{\overline{X^{ imes}}}$	

Definition

We define the operators δ^{\bullet} , ϵ^{\bullet} , ϵ^{\times} , and δ^{\times} as follows:

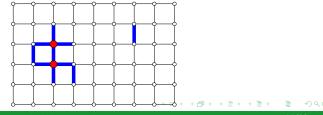
	$\mathcal{G}^{ imes} o \mathcal{G}^ullet$	$\mathcal{G}^ullet o \mathcal{G}^ imes$	
Provide a graph	$X^{ imes} o \delta^{ullet}(X^{ imes})$ such that $(\delta^{ullet}(X^{ imes}), X^{ imes}) = \sqcap \mathcal{G}_{X^{ imes}}$	$X^{ullet} o \epsilon^{ imes}(X^{ullet})$ such that $(X^{ullet}, \epsilon^{ imes}(X^{ullet})) = \sqcup \mathcal{G}_{X^{ullet}}$	
Provide the comple- ment with a graph	$X^{ imes} o \epsilon^{ullet}(X^{ imes})$ such that $(\overline{\epsilon^{ullet}(X^{ imes})}, \overline{X^{ imes}}) = \sqcap \mathcal{G}_{\overline{X^{ imes}}}$		



Definition

We define the operators δ^{\bullet} , ϵ^{\bullet} , ϵ^{\times} , and δ^{\times} as follows:

	$\mathcal{G}^{ imes} o \mathcal{G}^ullet$	$\mathcal{G}^ullet o \mathcal{G}^ imes$
Provide a graph	$X^{ imes} o \delta^{ullet}(X^{ imes})$ such that $(\delta^{ullet}(X^{ imes}), X^{ imes}) = \sqcap \mathcal{G}_{X^{ imes}}$	$X^{ullet} o \epsilon^{ imes}(X^{ullet})$ such that $(X^{ullet}, \epsilon^{ imes}(X^{ullet})) = \sqcup \mathcal{G}_{X^{ullet}}$
Provide the comple- ment with a graph	$X^{ imes} o \epsilon^{ullet}(X^{ imes})$ such that $(\overline{\epsilon^{ullet}(X^{ imes})}, \overline{X^{ imes}}) = \sqcap \mathcal{G}_{\overline{X^{ imes}}}$	



Definition

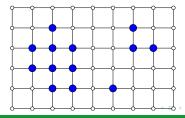
We define the operators δ^{\bullet} , ϵ^{\bullet} , ϵ^{\times} , and δ^{\times} as follows:

	$\mathcal{G}^{ imes} o \mathcal{G}^{ullet}$	$\mathcal{G}^ullet o \mathcal{G}^ imes$
Provide a graph	$X^{ imes} o \delta^{ullet}(X^{ imes})$ such that $(\delta^{ullet}(X^{ imes}), X^{ imes}) = \sqcap \mathcal{G}_{X^{ imes}}$	$X^{ullet} o \epsilon^{ imes}(X^{ullet})$ such that $(X^{ullet}, \epsilon^{ imes}(X^{ullet})) = \sqcup \mathcal{G}_{X^{ullet}}$
Provide the comple- ment with a graph	$X^{ imes} o \epsilon^{ullet}(X^{ imes})$ such that $(\overline{\epsilon^{ullet}(X^{ imes})}, \overline{X^{ imes}}) = \sqcap \mathcal{G}_{\overline{X^{ imes}}}$	$X^{ullet} \xrightarrow{\to} \delta^{\times}(X^{ullet})$ such that $(\overline{X^{ullet}}, \overline{\delta^{\times}(X^{ullet})}) = \sqcup \mathcal{G}_{\overline{X^{ullet}}}$

Definition

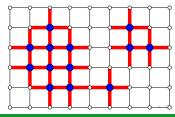
We define the operators δ^{\bullet} , ϵ^{\bullet} , ϵ^{\times} , and δ^{\times} as follows:

	$\mathcal{G}^{ imes} o \mathcal{G}^{ullet}$	$\mathcal{G}^ullet o \mathcal{G}^ imes$
Provide a graph	$X^{ imes} o \delta^{ullet}(X^{ imes})$ such that $(\delta^{ullet}(X^{ imes}), X^{ imes}) = \sqcap \mathcal{G}_{X^{ imes}}$	$X^{ullet} o \epsilon^{ imes}(X^{ullet})$ such that $(X^{ullet}, \epsilon^{ imes}(X^{ullet})) = \sqcup \mathcal{G}_{X^{ullet}}$
Provide the comple- ment with a graph	$X^{ imes} o \epsilon^{ullet}(X^{ imes})$ such that $(\overline{\epsilon^{ullet}(X^{ imes})}, \overline{X^{ imes}}) = \sqcap \mathcal{G}_{\overline{X^{ imes}}}$	$X^{ullet} \xrightarrow{\to} \delta^{\times}(X^{ullet})$ such that $(\overline{X^{ullet}}, \overline{\delta^{\times}(X^{ullet})}) = \sqcup \mathcal{G}_{\overline{X^{ullet}}}$



Definition

······································		
	$\mathcal{G}^{ imes} o \mathcal{G}^{ullet}$	$\mathcal{G}^{ullet} ightarrow \mathcal{G}^{ imes}$
Provide a graph	$X^{ imes} o \delta^{ullet}(X^{ imes})$ such that $(\delta^{ullet}(X^{ imes}), X^{ imes}) = \sqcap \mathcal{G}_{X^{ imes}}$	$X^{ullet} o \epsilon^{ imes}(X^{ullet})$ such that $(X^{ullet}, \epsilon^{ imes}(X^{ullet})) = \sqcup \mathcal{G}_X ullet$
Provide the comple- ment with a graph	$X^{ imes} o \epsilon^{ullet}(X^{ imes})$ such that $(\overline{\epsilon^{ullet}(X^{ imes})}, \overline{X^{ imes}}) = \sqcap \mathcal{G}_{\overline{X^{ imes}}}$	$X^{ullet} \to \delta^{\times}(X^{ullet})$ such that $(\overline{X^{ullet}}, \overline{\delta^{\times}(X^{ullet})}) = \sqcup \mathcal{G}_{\overline{X^{ullet}}}$



Adjunctions: reminder

• Let (\mathcal{L}_1,\leq_1) and (\mathcal{L}_2,\leq_2) be two lattices

Adjunctions: reminder

- Let (\mathcal{L}_1, \leq_1) and (\mathcal{L}_2, \leq_2) be two lattices
- Two operators $\epsilon : \mathcal{L}_1 \to \mathcal{L}_2$ and $\delta : \mathcal{L}_2 \to \mathcal{L}_1$ form an *adjunction* (ϵ, δ) if:
 - $\forall X \in \mathcal{L}_2, \ \forall Y \in \mathcal{L}_1$, we have $\delta(X) \leq_1 Y \Leftrightarrow X \leq_2 \epsilon(Y)$

Adjunctions: reminder

- \blacksquare Let (\mathcal{L}_1,\leq_1) and (\mathcal{L}_2,\leq_2) be two lattices
- Two operators $\epsilon : \mathcal{L}_1 \to \mathcal{L}_2$ and $\delta : \mathcal{L}_2 \to \mathcal{L}_1$ form an *adjunction* (ϵ, δ) if:

• $\forall X \in \mathcal{L}_2, \, \forall Y \in \mathcal{L}_1$, we have $\delta(X) \leq_1 Y \Leftrightarrow X \leq_2 \epsilon(Y)$

- If (ϵ, δ) is an adjunction, then ϵ is an erosion and δ is a dilation:
 - ϵ preserves the infimum
 - $\blacksquare~\delta$ preserves the supremum

Edge-vertex adjunctions

Property

1 Both
$$(\epsilon^{\times}, \delta^{\bullet})$$
 and $(\epsilon^{\bullet}, \delta^{\times})$ are adjunctions

æ

'문▶' ★ 문▶

Edge-vertex adjunctions

Property

- **1** Both $(\epsilon^{\times}, \delta^{\bullet})$ and $(\epsilon^{\bullet}, \delta^{\times})$ are adjunctions
- **2** Operators δ^{\bullet} and δ^{\times} are dilations
- **3** Operators ϵ^{\bullet} and ϵ^{\times} are erosions

Edge-vertex adjunctions

Property

- **1** Both $(\epsilon^{\times}, \delta^{\bullet})$ and $(\epsilon^{\bullet}, \delta^{\times})$ are adjunctions
- **2** Operators δ^{\bullet} and δ^{\times} are dilations
- **3** Operators ϵ^{\bullet} and ϵ^{\times} are erosions

Important idea

■ To obtain operators acting on the lattices G[•], G[×] and G, we will compose the operators of these basic adjunctions

Vertex-dilation, vertex-erosion

Definition

• We define δ and ϵ that act on \mathcal{G}^{\bullet} (i.e., $\mathcal{G}^{\bullet} \to \mathcal{G}^{\bullet}$) by:

•
$$\delta = \delta^{\bullet} \circ \delta^{\times}$$
 and $\epsilon = \epsilon^{\bullet} \circ \epsilon^{\times}$

Vertex-dilation, vertex-erosion

Definition

• We define
$$\delta$$
 and ϵ that act on \mathcal{G}^{\bullet} (i.e., $\mathcal{G}^{\bullet} \to \mathcal{G}^{\bullet}$) by:
• $\delta = \delta^{\bullet} \circ \delta^{\times}$ and $\epsilon = \epsilon^{\bullet} \circ \epsilon^{\times}$

Property

• The pair (ϵ, δ) is an adjunction

æ

글 🖌 🔺 글 🕨

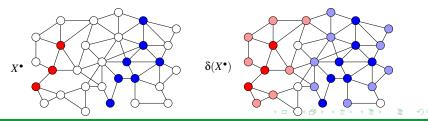
Vertex-dilation, vertex-erosion

Definition

• We define
$$\delta$$
 and ϵ that act on \mathcal{G}^{\bullet} (i.e., $\mathcal{G}^{\bullet} \to \mathcal{G}^{\bullet}$) by:
• $\delta = \delta^{\bullet} \circ \delta^{\times}$ and $\epsilon = \epsilon^{\bullet} \circ \epsilon^{\times}$

Property

- The pair (ϵ, δ) is an adjunction
- They correspond exactly to the operators defined by Vincent



J. Cousty, L. Najman and J. Serra: Some morphological operators in graph spaces

Edge-dilation, edge-erosion

Definition (edge-dilation, edge-erosion)

Property

• The pair (\mathcal{E}, Δ) is an adjunction

同 ト く ヨ ト く ヨ ト

Definition

We define, for any X ∈ G, the operators δ ⊙ Δ and ε ⊙ E by:
δ ⊙ Δ(X) = (δ(X[•]), Δ(X[×])) and
ε ⊙ E(X) = (ε(X[•]), E(X[×]))

Definition

We define, for any X ∈ G, the operators δ ℚ Δ and ε ℚ E by:
 δ ℚ Δ(X) = (δ(X[•]), Δ(X[×])) and
 ε ℚ E(X) = (ε(X[•]), E(X[×]))

Theorem

• The lattice \mathcal{G} is closed under the operators $\delta \oslash \Delta$ and $\epsilon \oslash \mathcal{E}$

Definition

We define, for any X ∈ G, the operators δ ⊙ Δ and ε ⊙ E by:
 δ ⊙ Δ(X) = (δ(X[•]), Δ(X[×])) and
 ε ⊙ E(X) = (ε(X[•]), E(X[×]))

Theorem

- The lattice \mathcal{G} is closed under the operators $\delta \odot \Delta$ and $\epsilon \odot \mathcal{E}$
- The pair $(\epsilon \otimes \mathcal{E}, \delta \otimes \Delta)$ is an adjunction

Definition

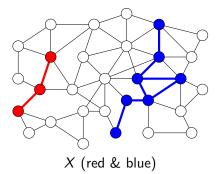
We define, for any X ∈ G, the operators δ ⊙ Δ and ε ⊙ E by:
 δ ⊙ Δ(X) = (δ(X[•]), Δ(X[×])) and
 ε ⊙ E(X) = (ε(X[•]), E(X[×]))

Theorem

- The lattice \mathcal{G} is closed under the operators $\delta \oslash \Delta$ and $\epsilon \oslash \mathcal{E}$
- The pair $(\epsilon \otimes \mathcal{E}, \delta \otimes \Delta)$ is an adjunction
- The operators δ ⊙ Δ and ε ⊙ E are respectively a dilation and an erosion acting on the lattice (G, ⊑)

Dilations and erosions

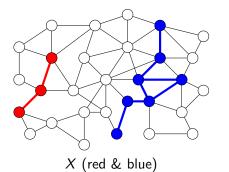
Graph-dilation: example

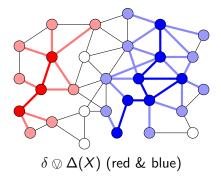


17/26

Dilations and erosions

Graph-dilation: example





A *filter* is an operator α acting on a lattice L, which is
 increasing: ∀X, Y ∈ L, α(X) ≤ α(Y) whenever X ≤ Y; and
 idempotent: ∀X ∈ L, α(α(X)) = α(X)

- A *filter* is an operator α acting on a lattice L, which is
 increasing: ∀X, Y ∈ L, α(X) ≤ α(Y) whenever X ≤ Y; and
 idempotent: ∀X ∈ L, α(α(X)) = α(X)
- A *closing on* \mathcal{L} is a filter α on \mathcal{L} which is:
 - extensive: $\forall X \in \mathcal{L}, X \leq \alpha(X)$

- A *filter* is an operator α acting on a lattice L, which is
 increasing: ∀X, Y ∈ L, α(X) ≤ α(Y) whenever X ≤ Y; and
 idempotent: ∀X ∈ L, α(α(X)) = α(X)
- A *closing on* \mathcal{L} is a filter α on \mathcal{L} which is:
 - extensive: $\forall X \in \mathcal{L}, X \leq \alpha(X)$

An opening on \mathcal{L} is a filter α on \mathcal{L} which is anti-extensive

- A *filter* is an operator α acting on a lattice L, which is
 increasing: ∀X, Y ∈ L, α(X) ≤ α(Y) whenever X ≤ Y; and
 idempotent: ∀X ∈ L, α(α(X)) = α(X)
- A *closing on* \mathcal{L} is a filter α on \mathcal{L} which is:
 - extensive: $\forall X \in \mathcal{L}, X \leq \alpha(X)$
- An opening on \mathcal{L} is a filter α on \mathcal{L} which is anti-extensive
- Composing the two operators of an adjunction yields an opening or a closing depending on the composition order

Definition

We define

1
$$\gamma_1$$
 and ϕ_1 , $\mathcal{G}^{\bullet} \to \mathcal{G}^{\bullet}$, by $\gamma_1 = \delta \circ \epsilon$ and $\phi_1 = \epsilon \circ \delta$

글 > - < 글 >

Definition

We define

- **1** γ_1 and ϕ_1 , $\mathcal{G}^{\bullet} \to \mathcal{G}^{\bullet}$, by $\gamma_1 = \delta \circ \epsilon$ and $\phi_1 = \epsilon \circ \delta$
- **2** Γ_1 and Φ_1 , $\mathcal{G}^{\times} \to \mathcal{G}^{\times}$, by $\Gamma_1 = \Delta \circ \mathcal{E}$ and $\Phi_1 = \mathcal{E} \circ \Delta$

Definition

We define

- **1** γ_1 and ϕ_1 , $\mathcal{G}^{\bullet} \to \mathcal{G}^{\bullet}$, by $\gamma_1 = \delta \circ \epsilon$ and $\phi_1 = \epsilon \circ \delta$
- **2** Γ_1 and Φ_1 , $\mathcal{G}^{\times} \to \mathcal{G}^{\times}$, by $\Gamma_1 = \Delta \circ \mathcal{E}$ and $\Phi_1 = \mathcal{E} \circ \Delta$
- 3 $\gamma \otimes \Gamma_1$ and $\phi \otimes \Phi_1$ by respectively $\gamma \otimes \Gamma_1(X) = (\gamma_1(X^{\bullet}), \Gamma_1(X^{\times}))$ and $\phi \otimes \Phi_1(X) = (\phi_1(X^{\bullet}), \Phi_1(X^{\times}))$, for any graph X in \mathcal{G}

Definition

We define

- **1** γ_1 and ϕ_1 , $\mathcal{G}^{\bullet} \to \mathcal{G}^{\bullet}$, by $\gamma_1 = \delta \circ \epsilon$ and $\phi_1 = \epsilon \circ \delta$
- **2** Γ_1 and Φ_1 , $\mathcal{G}^{\times} \to \mathcal{G}^{\times}$, by $\Gamma_1 = \Delta \circ \mathcal{E}$ and $\Phi_1 = \mathcal{E} \circ \Delta$
- 3 $\gamma \otimes \Gamma_1$ and $\phi \otimes \Phi_1$ by respectively $\gamma \otimes \Gamma_1(X) = (\gamma_1(X^{\bullet}), \Gamma_1(X^{\times}))$ and $\phi \otimes \Phi_1(X) = (\phi_1(X^{\bullet}), \Phi_1(X^{\times}))$, for any graph X in \mathcal{G}

Theorem (graph-openings, graph-closings)

- The operators γ₁ and Γ₁ are openings. The operators Φ₁ and φ₁ are closings
- The operator γ ⊙ Γ₁ is an opening. The operator φ ⊙ Φ₁ is a closing

(本部) (本語) (本語)

Definition

We define

$$\blacksquare \ \gamma_{1/2} \text{ and } \phi_{1/2}, \ \mathcal{G}^{\bullet} \to \mathcal{G}^{\bullet}, \text{ by } \gamma_{1/2} = \delta^{\bullet} \circ \epsilon^{\times} \text{ and } \phi_{1/2} = \epsilon^{\bullet} \circ \delta^{\times}$$

▶ < 문 > < 문 >

Definition

We define

$$I \gamma_{1/2} \text{ and } \phi_{1/2}, \mathcal{G}^{\bullet} \to \mathcal{G}^{\bullet}, \text{ by } \gamma_{1/2} = \delta^{\bullet} \circ \epsilon^{\times} \text{ and } \phi_{1/2} = \epsilon^{\bullet} \circ \delta^{\times}$$

2 $\Gamma_{1/2}$ and $\Phi_{1/2}$, $\mathcal{G}^{\times} \to \mathcal{G}^{\times}$, by $\Gamma_{1/2} = \delta^{\times} \circ \epsilon^{\bullet}$ and $\Phi_{1/2} = \epsilon^{\times} \circ \delta^{\bullet}$

▲聞▶ ▲屋▶ ▲屋▶

Definition

We define

1
$$\gamma_{1/2}$$
 and $\phi_{1/2}$, $\mathcal{G}^{\bullet} \to \mathcal{G}^{\bullet}$, by $\gamma_{1/2} = \delta^{\bullet} \circ \epsilon^{\times}$ and $\phi_{1/2} = \epsilon^{\bullet} \circ \delta^{\times}$
2 $\Gamma_{1/2}$ and $\Phi_{1/2}$, $\mathcal{G}^{\times} \to \mathcal{G}^{\times}$, by $\Gamma_{1/2} = \delta^{\times} \circ \epsilon^{\bullet}$ and $\Phi_{1/2} = \epsilon^{\times} \circ \delta^{\bullet}$
3 $\gamma \otimes \Gamma_{1/2}$ and $\phi \otimes \Phi_{1/2}$ by $\gamma \otimes \Gamma_{1/2}(X) = (\gamma_{1/2}(X^{\bullet}), \Gamma_{1/2}(X^{\times}))$
and $\phi \otimes \Phi_{1/2}(X) = (\phi_{1/2}(X^{\bullet}), \Phi_{1/2}(X^{\times}))$, for any graph X in \mathcal{G}

→ 문 → → 문 →

Definition

We define

1
$$\gamma_{1/2}$$
 and $\phi_{1/2}$, $\mathcal{G}^{\bullet} \to \mathcal{G}^{\bullet}$, by $\gamma_{1/2} = \delta^{\bullet} \circ \epsilon^{\times}$ and $\phi_{1/2} = \epsilon^{\bullet} \circ \delta^{\times}$
2 $\Gamma_{1/2}$ and $\Phi_{1/2}$, $\mathcal{G}^{\times} \to \mathcal{G}^{\times}$, by $\Gamma_{1/2} = \delta^{\times} \circ \epsilon^{\bullet}$ and $\Phi_{1/2} = \epsilon^{\times} \circ \delta^{\bullet}$
3 $\gamma \otimes \Gamma_{1/2}$ and $\phi \otimes \Phi_{1/2}$ by $\gamma \otimes \Gamma_{1/2}(X) = (\gamma_{1/2}(X^{\bullet}), \Gamma_{1/2}(X^{\times}))$
and $\phi \otimes \Phi_{1/2}(X) = (\phi_{1/2}(X^{\bullet}), \Phi_{1/2}(X^{\times}))$, for any graph X in \mathcal{G}

Theorem (half-openings, half-closings)

- The operators $\gamma_{1/2}$ and $\Gamma_{1/2}$ are openings. The operators $\phi_{1/2}$ and $\Phi_{1/2}$ are closings
- The operator γ ⊙ Γ_{1/2} is an opening. The operator φ ⊙ Φ_{1/2} is a closing.

э

- 注入 - 注入

Illustration: openings

A graph X (red)

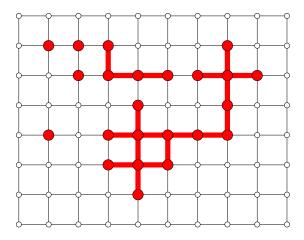
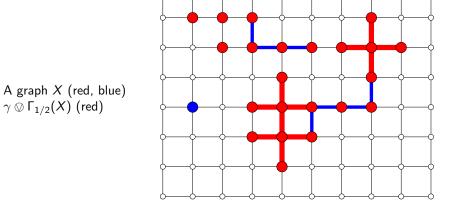
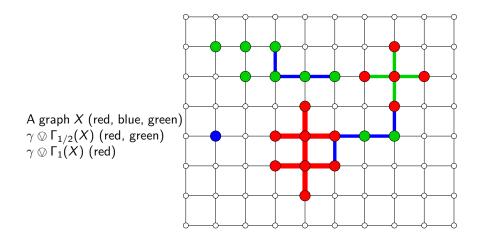


Illustration: openings



Filters

Illustration: openings



21/26

Building hiearchies

Definition

Let $\lambda \in \mathbb{N}$. Let *i* and *j* be the quotient and the remainder in the integer division of λ by 2.

We set:

•
$$\gamma \otimes \Gamma_{\lambda/2} = (\delta \otimes \Delta)^i \circ (\gamma \otimes \Gamma_{1/2})^j \circ (\epsilon \otimes \mathcal{E})^i$$

• $\phi \otimes \Phi_{\lambda/2} = (\epsilon \otimes \mathcal{E})^i \circ (\phi \otimes \Phi_{1/2})^j \circ (\delta \otimes \Delta)^j$

Building hiearchies

Definition

Let $\lambda \in \mathbb{N}$. Let *i* and *j* be the quotient and the remainder in the integer division of λ by 2.

We set:

•
$$\gamma \otimes \Gamma_{\lambda/2} = (\delta \otimes \Delta)^i \circ (\gamma \otimes \Gamma_{1/2})^j \circ (\epsilon \otimes \mathcal{E})^i$$

• $\phi \otimes \Phi_{\lambda/2} = (\epsilon \otimes \mathcal{E})^i \circ (\phi \otimes \Phi_{1/2})^j \circ (\delta \otimes \Delta)^i$

Property

- The families $\{\gamma \otimes \Gamma_{\lambda/2} \mid \lambda \in \mathbb{N}\}\$ and $\{\phi \otimes \Phi_{\lambda/2} \mid \lambda \in \mathbb{N}\}\$ are granulometries:
 - $\forall \lambda \in \mathbb{N}, \ \gamma \otimes \Gamma_{\lambda/2}$ is an opening on \mathcal{G} and $\phi \otimes \Phi_{\lambda/2}$ is a closing on \mathcal{G}
 - $\forall \mu, \nu \in \mathbb{N} \text{ and } \forall X \in \mathcal{G}, \ \mu \leq \nu \text{ implies}$ $\gamma \otimes \Gamma_{\nu/2}(X) \sqsubseteq \gamma \otimes \Gamma_{\mu/2}(X) \text{ and } \phi \otimes \Phi_{\mu/2}(X) \sqsubseteq \phi \otimes \Phi_{\nu/2}(X)$

3

イロト イポト イヨト イヨト

Iterated filters

Definition

• We define $ASF_{\lambda/2}$

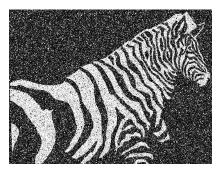
- by the identity on graphs when $\lambda = 0$
- by $ASF_{\lambda/2} = \gamma \odot \Gamma_{\lambda/2} \circ \phi \odot \Phi_{\lambda/2} \circ ASF_{(\lambda-1)/2}$ otherwise

Property

- The family $\{ASF_{\lambda/2} \mid \lambda \in \mathbb{N}\}$ is a family of alternate sequential filters:
 - $\forall \mu, \nu \in \mathbb{N}, \ \mu \geq \nu \text{ implies } ASF_{\mu/2} \circ ASF_{\nu/2} = ASF_{\mu/2}$

(日) (目) (日)

Original



Noisy

graph ASF

Classical ASF

graph ASF

Classical ASF of double size

graph ASF

Classical ASF (double resolution)

Other adjunctions on graphs

- $(\alpha_1, \beta_1) \text{ such that } \forall X \in \mathcal{G}, \ \alpha_1(X) = (\mathbb{G}^{\bullet}, X^{\times}) \text{ and } \\ \beta_1(X) = (\delta^{\bullet}(X^{\times}), X^{\times})$
- 2 (α_2, β_2) such that $\forall X \in \mathcal{G}, \ \alpha_2(X) = (X^{\bullet}, \epsilon^{\times}(X^{\bullet}))$ and $\beta_2(X) = (X^{\bullet}, \emptyset)$
 - α_1 and α_2 are both a closing and an erosion; β_1 and β_2 are both an opening and dilation
- **3** (α_3, β_3) such that $\forall X \in \mathcal{G}, \ \alpha_3(X) = (\epsilon^{\bullet}(X^{\times}), \epsilon^{\times} \circ \epsilon^{\bullet}(X^{\times}))$ and $\beta_3(X) = (\delta^{\bullet} \circ \delta^{\times}(X^{\bullet}), \delta^{\times}(X^{\bullet}))$
 - α₃ depends only on the edge-set;
 β₃ only on the vertex-set

Extension to node and edge-weighted graphs

- Extension to node and edge-weighted graphs
- Study of levellings in this framework

- Extension to node and edge-weighted graphs
- Study of levellings in this framework
- Extension to simplicial/cubical complexes

- Extension to node and edge-weighted graphs
- Study of levellings in this framework
- Extension to simplicial/cubical complexes
- Relation with connexion and hyper-connexion

- Extension to node and edge-weighted graphs
- Study of **levellings** in this framework
- Extension to simplicial/cubical complexes
- Relation with connexion and hyper-connexion
- Embedding of the vertices in a metric space