Handling and computing hierarchies with graphs

Jean Cousty

ICIP tutorial on Optimizations on Hierarchies of Partitions 2014

J. Cousty : Handling and computing hierarchies with graphs

Many kind of hierarchies of partitions are used in image processing

- Quad-tree like [Bouman 94]
- Watershed based [Beucher 94, Najman 96]
- Binary partition tree [Salembier 00]
- Energy based [Guigues 06]
- Learning techniques based [Arbelaez 08]
- etc.
- How do we efficiently compute and manage them?

- Graphs are adapted for computerized procedures since they are:
 - adapted to discrete settings
 - generic structures
 - a well studied algorithmic field
- We present generic tools that can be used for computing and handling many of these hierarchies with graphs

Outline of the lecture

1 Connected hierarchies in graphs

- Quasi-flat zones
- Saliency maps
- Minimum spanning trees
- 2 Algorithms for quasi-flat zones hierarchy
 - Binary partition tree by altitude
 - Reduction: quasi-flat zones hierarchy
- 3 Quasi-linear time saliency map algorithm
- 4 Transforming hierarchies
 - Simplification: hierarchy of watershed cuts
 - Hierarchical watersheds
 - Other transformations of hierarchy
- 5 On-line demonstration
- 6 References

Graph settings

- We consider an (undirected) graph G = (V, E), where V is a finite set and E is composed of unordered pairs of distinct elements in V, i.e., E is a subset of {{x, y} ⊆ V | x ≠ y}
- Each element of V is called a vertex or a point (of G)
- Each element of E is called an edge (of G)
- Subsequently, X denotes any subgraph of G; its vertex and edge sets are denoted by V(X) and E(X)
- We consider the usual notions of a *connected graph* and of a *connected component of a graph*

Connected hierarchies

- A partition of V is connected (for G) if any of its regions is connected for G
- A hierarchy on V is connected (for G) if any of its partitions is connected
- We only consider connected hierarchies for G

Remark

- Any hierarchy on V is connected when G is complete
- Thus, any hierarchy can be treated with the proposed tools

- Significantly used as a scale space since the late 70's [Nagao 79, Meyer 99]
- Also know as the α -tree [Soille 08]
- Also used for Fuzzy Connectedness [Udupa 96]
- In fact, it is fundamental tool for handling any hierarchy

- Consider an edge weighted graph (G, w)
- w is a map from E to \mathbb{R}^+
- w(u) is the *weight* of the edge u
- For image analysis,
 - G can be any pixel adjacency graph (*e.g.*, 4-adjacency graph)
 - w can be a gradient of intensity (e.g., w({x, y} = |I(x) − I(y)|, where I is an image)

- For any subgraph X of G
- the λ-level set of X is the set of all edges of X of weight less than λ
- the λ-level graph of X is the subgraph of X whose edge set is the λ-level set of X and whose vertex set is the one of X

- The connected components partition of the λ-level graph of X is called the λ-level partition of X
- The sequence Q_X(w) of all λ-level partitions of X is a hierarchy called the *quasi-flat* zones hierarchy of X

Saliency map: the other way round

The cut of a partition P of V, denoted by φ(P), is the set of edges of G made of two vertices in different classes of P:

$$\phi(\mathbf{P}) = \{\{x, y\} \in E(G) \mid \mathbf{P}_x \neq \mathbf{P}_y\}.$$

Saliency map: the other way round

The cut of a partition P of V, denoted by φ(P), is the set of edges of G made of two vertices in different classes of P:

$$\phi(\mathbf{P}) = \{\{x, y\} \in E(G) \mid \mathbf{P}_x \neq \mathbf{P}_y\}.$$

Saliency map: the other way round

The cut of a partition P of V, denoted by φ(P), is the set of edges of G made of two vertices in different classes of P:

$$\phi(\mathbf{P}) = \{\{x, y\} \in E(G) \mid \mathbf{P}_x \neq \mathbf{P}_y\}.$$

The saliency map of a hierarchy H = (P₀,..., P_ℓ) on V is the map Φ(H) such that the weight of u for Φ(H) is the maximum value λ such that u belongs to the cut of P_λ:

$$\Phi(\mathcal{H})(u) = \max \left\{ \lambda \in \{0, \dots, \ell\} \mid u \in \phi(\mathbf{P}_{\lambda}) \right\}.$$

Hierarchy: equivalent representations

Theorem

The map Φ is a one-to-one correspondence between the connected hierarchies on V (of depth |E|) and the saliency maps (of range $\{0, \ldots, |E|\}$). The inverse Φ^{-1} of Φ associates to any saliency map w its quasi-flat zones hierarchy: $\Phi^{-1}(w) = Q_G(w)$.

Saliency map: practical interests

- Provide a compact visualization of a hierarchy
 - when the graph has some particular property (*e.g.*, planarity)
- Handle a hierarchy differently: a function rather than a tree
 - [Arbelaez 08] computes saliency maps of gPb contour detector

Problem: can we get a more compact representation?

Question

(P) Given an edge-weighted graph ((V, E), w), find a minimal set $E' \subseteq E$ of edges such that the quasi-flat zones hierarchies of (V, E) and of (V, E') are the same?

Solution to (P) : minimum spanning tree (MST)

Theorem

A subgraph X of G is an MST of (G, w) if and only if the two following statements hold true:

- **1** the quasi-flat zones hierarchies of X and of G are the same; and
- **2** the graph X is minimal for proposition 1, i.e., for any subgraph Y of X, if the quasi-flat zones hierarchy of Y for w is the one of G for w, then we have Y = X.

Consequences

- An MST is enough to handle a connected hierarchy
- Quasi-flat zones hierarchy can be computed with MST algorithms
 - Kruskal proposed a quasi-linear time algorithm, provided a sorting of the edges

Kruskal algorithm for MST (High-Level View)

- 1. create a forest ${\cal F}$ (a set of trees), where each vertex in the graph is a separate tree
- 2. create a set S containing all the edges in the graph
- 3. while S is nonempty and \mathcal{F} is not yet a single tree
 - 4. remove an edge with minimum weight from S
 - 5. if that edge connects two different trees, then add it to the forest, combining two trees into a single tree
 - 6. otherwise discard that edge.
- At the termination of the algorithm, the forest has only one component and forms a minimum spanning tree of the graph
- The if test at line 5 is the time-complexity bottleneck. It can be tested thanks to *disjoint sets* management algorithms

The disjoint set problem consists in maintaining a collection Q of disjoint sets under the operation of union. Each set Q in Q is represented by a unique element of Q, called the *canonical element*.

- MakeSet(q₁)
- FindCanonical(q₁)
- Union (q_1, q_2)

Kruskal algorithm for MST (Implementation)

```
Data: An edge-weighted graph ((V, E), w).
  Result: A minimum spanning tree MST
  Result: A collection \mathcal{O}
  // Collection \mathcal{Q} is initialized to \emptyset
1 e := 0:
2 for all x_i \in V do MakeSet(i);
3 for all edges \{x, y\} by (strict) increasing weight w(\{x, y\}) do
      c_x := \mathcal{Q}.FindCanonical(x); c_y := \mathcal{Q}.FindCanonical(y);
4
    if c_x \neq c_y then
5
   \begin{array}{|c|c|} \mathcal{Q}.\text{Union}(c_x, c_y); \\ \text{MST[e]} := \{x, y\}; e := e + 1; \end{array} 
6
7
```

Main question in Kruskal implementation

Question

■ How to represent and implement the collection *Q*?

Answer

 \blacksquare A good representation for ${\mathcal Q}$ is as a set of trees

Binary Partition Tree by altitude ordering

Edge-weighted graph

Binary Partition Tree by altitude ordering

First edge-node

Binary Partition Tree by altitude ordering

Second edge-node

Binary Partition Tree by altitude ordering

Third edge-node

Fourth edge-node

Binary Partition Tree by altitude ordering

Fifth edge-node

Sixth edge-node

No new node

Seventh edge-node

No new node

No new node

Final Q_{BT}

Q_{BT} Union-Find

Procedure Q_{BT} .MakeSet(q)

1 Q_{BT} .parent[q] := -1; Q_{BT} .size += 1;

Function Q_{BT} .FindCanonical(q)

1 while Q_{BT} .parent[q] ≥ 0 do $q := Q_{BT}$.parent[q];

2 return q;

Function Q_{BT} .Union (c_x, c_y)

- 1 Q_{BT} .parent $[c_x]$:= Q_{BT} .size; Q_{BT} .parent $[c_y]$:= Q_{BT} .size;
- 2 Q_{BT}.MakeSet(Q_{BT}.size);
- 3 return Q_{BT} .size-1;

(*) = (*) = (*)

Q_{BT} Union-Find

Interest

- The produced tree is useful
- It is a Binary Partition Tree (BPT) by altitude
 - BPT are often used in hierarchical segmentation [Salembier 00]

Drawback

The algorithm is slow: $O(|V|^2)$

Tarjan Union-Find

Interest

Quasi-linear complexity

Drawback

The produced tree is not useful for our purpose

Tarjan Union-Find

Procedure Q_T .MakeSet(q)

1 Q_T .parent $[Q_T$.size $] := -1; \quad Q_T$.Rnk $[Q_T$.size $] := 0; \quad Q_T$.size+= 1;

Function Q_T .FindCanonical(q)

$$1 \ r := q;$$

- 2 while $Q_T.parent[r] \ge 0$ do $r := Q_T.parent[r]$;
- 3 while Q_T .parent $[q] \ge 0$ do

4
$$tmp := q; q := Q_T.parent[q]; Q_T.parent[tmp] := r$$

Function Q_T .Union (c_x, c_y)

1 if
$$(Q_T.Rnk[c_x] > Q_T.Rnk[c_y])$$
 then $swap(c_x, c_y)$;
2 if $(Q_T.Rnk[c_x] = Q_T.Rnk[c_y])$ then $Q_T.Rnk[c_y] = 1$

2 If
$$(Q_T.Rnk[c_x] == Q_T.Rnk[c_y])$$
 then $Q_T.Rnk[c_y] += 1$

- 3 Q_T .parent $[c_x] := c_y;$
- 4 **return** c_y;

Q_{EBT} : Efficient Q_{BT} Union-Find

Interest

- Combination of both Q_{BT} and Q_T .
- Quasi-linear time complexity with respect to |E| + |V|
- One of the produced trees, Q_{BT} , is useful.

Q_{EBT} : Efficient Q_{BT} Union-Find

Procedure Q_{EBT} .MakeSet(q)

1 Q_{EBT} .Root[q]:=q; Q_{BT} .MakeSet(q); Q_T .MakeSet(q);

Function Q_{EBT} .Union (c_x, c_y)

- 1 $t_u := Q_{EBT}.Root[c_x]; t_v := Q_{EBT}.Root[c_y];$
- 2 Q_{BT} .parent $[t_u] := Q_{BT}$.parent $[t_v] := Q_{BT}$.size;
- 3 Q_{BT} .children[Q_{BT} .size].add({ t_u });
- 4 Q_{BT} .children[Q_{BT} .size].add($\{t_v\}$);
- 5 c:= Q_T .Union (c_x, c_y) ; // Union in Q_T (with compression)
- 6 Q_{EBT} .Root[c] := Q_{BT} .size; // Update the root of Q_{EBT}
- 7 Q_{BT}.MakeSet(Q_{BT}.size);
- 8 return Q_{BT}.size-1;

Function Q_{EBT} .FindCanonical(q)

return *Q*_T.*FindCanonical(q)*;

Q_{CT} : Quasi-flat zones hierarchy

Function getEdge(*n*)

Data: a (non-leaf) node *n* of Q_{BT} **Result**: the edge *e* of the MST corresponding to the *n*th node **return** n - |V|;

Function weightNode(n)

Data: a (non-leaf) node of the tree **Result**: the weight of the MST edge associated with the n^{th} node of Q_{BT}

1 return w(MST[getEdge(n)]);

Procedure Canonize Q_{BT}

Data: Q_{BT} Result: Q_{CT} , a canonized version of Q_{BT} 1 for all nodes n of Q_{BT} do Q_{CT} .parent[n]:= Q_{BT} .parent[n]; Q_{CT} .size+=1; 2 for each non-leaf and non-root node n of Q_{BT} by decreasing order do 3 $p := Q_{CT}$.parent[n]; 4 if (weightNode(p) == weightNode(n)) then 5 $\int Q_{CT}$.parent[n]:=n; // Delete node n of Q_{CT} // If needed, build the list of children: 7 for all nodes n of Q_{CT} do

8 $p:=Q_{CT}$.parent[n]; if $p \ge 0$ and $p \ne n$ then Q_{CT} .children[p].add(n);

Complexity analysis

- Q_{CT} is the quasi-flat zone hierarchy of (G, w)
- The time-complexity of Canonize Q_{BT} is linear with respect to |V|
- Thus, the overall time-complexity for computing the quasi-flat zones hierarchy of (G, w) is quasi-linear with respect to |E| + |V|, provided a sorting of the edges of G

Q_{BT} or Q_{CT} ?

- It is possible to merge the Q_{BT} and Q_{CT} computation steps in order to obtain Q_{CT} in one step
- Q_{BT} contains more information than Q_{CT}

Quasi-linear time saliency map algorithm

- 1. Given a weighted graph (G, w)
- 2. Compute the quasi-flat zones hierarchy Q_{CT} of (G, w)
- 3. For each edge $\{x, y\}$ of G
 - Set Φ({x, y}) to the weight of the lowest common ancestor of {x} and {y} in the tree Q_{CT}

Property

- Φ is the ultrametric opening / ultrametric contour map of w (i.e., the saliency map of the quasi-flat zones hierarchy of w)
- Step 4 can be done in constant time [Bender 08] provided a linear time preprocessing
- The overall time complexity is quasi-linear with respect to |V| + |E|

(人間) イヨン イヨン ニヨ

Watershed cuts/minimum spanning forests

- Partitions defined thanks to the *drop of water* principle [Cousty 09]
- Or equivalently thanks to
 - minimum spanning forests relative to the regional minima of w
- A minimum spanning forest (MSF) rooted in a subgraph X of G is a minimum weight spanning subgraph Y such that each connected component of Y includes exactly one connected component of X

Watershed cuts from Q_{BT} : intuition

Watershed cuts from Q_{BT}

Function watershed

```
Data: QRT
   Result: A binary array ws indicating which MST edges are watershed
  for all leaf-nodes n of Q_{BT} do minima[n]:=0;
  for each non-leaf node n of Q_{BT} by increasing order do
2
       flag := TRUE; nb := 0;
3
       for all c \in Q_{BT}.children[n] do
4
           m := \min[c]; nb := nb + m;
5
           if (m == 0) then flag := FALSE;
6
       ws[getEdge(n)] := flag;
7
       if (nb \neq 0) then minima[n] := nb;
8
       else
9
            if (n is the root of Q_{BT}) then minima[n] := 1;
10
           else
11
                p := Q_{BT}.parent[n];
12
                if (weightNode[n]<weightNode[p]) then minima[n] := 1;
13
                else minima[n]:=0 ;
14
```

Watershed cuts from Q_{BT}

Property

- The connected component partition induced by the set of edges {u ∈ E | ws[u] = TRUE} flaged true by the algorithm is a watershed cut of w
- The time complexity of watershed procedure is linear with respect to |V|
- A first hierarchical watershed is obtained by
 - setting to 0 the edges flaged true by the algorithm and keeping the weight of all other edges
 - considering the quasi-flat zones hierarchy of this new weight map
- Other interesting hierarchical watersheds can be designed

Hierarchical watersheds/MSFs

- Let $\prec = \langle M_1, \dots, M_\ell \rangle$ be the sequence of regional minima of w ranked by importance according to some given criterion
- A hierarchical watershed for ≺ is a hierarchy (P₀,..., P_ℓ) of partitions such that, for any i ∈ [0, ℓ]:
 - P_i is the connected component partition of an MSF rooted in the minima ranked after i

Remark

- Every partition of a hierarchical watershed is an optimal cut of the original graph
- The ordering ≺ can be obtained from morphological flooding of w (e.g., dynamics, area, volume, range, energy based filters) which amounts of taking non horizontal cuts in the quasi-flat zones hierarchy of w [COUSTY 2014]

Algorithmic scheme: MST re-weighting

- 1 Consider the hierarchy of quasi-flat zones through
 - Q_{BT} and its associated MST
- 2 Compute some attributes on the regions directly from Q_{BT} and/or from external data (*e.g.*, the original image)
- **3** Rank the minima of *w* based on these attributes (extinction values)
- 4 Re-weight the edges of MST with a map w' such that
 - The hierarchical watershed is the quasi-flat zones hierarchy of (MST, w')

MST re-weighting

Procedure AttributeBasedHierarchy **Data**: Q_{BT} , $\prec = \langle M_1, \ldots, M_{\ell} \rangle$ **Result**: a re-weighting w' of MST whose quasi-flat zone hierarchy is the attribute-based hierarchy 1 for any *i* in $\{1, ..., \ell\}$ do Extract one vertex n of M_i ; 2 attribute[n] := i;3 for any non-leaf node n of Q_{BT} by increasing order do $a_1 := attribute[children[n].left];$ 5 $a_2 := attribute[children[n].right];$ 6 $attribute[n] := \max(a_1, a_2);$ 7 $w'[getEdge(n)] := min(a_1, a_2);$ 8

Algorithmic scheme: MST re-weighting

- **1** Consider the hierarchy of quasi-flat zones through
 - Q_{BT} and its associated MST
- **2** Compute some attributes on the regions directly from Q_{BT} and/or from external data (*e.g.*, the original image)
- **3** Rank the minima of *w* based on the attributes (extinction value)
- 4 Re-weight the edges of MST with a map w' such that
 - The hierarchical watershed is the quasi-flat zones hierarchy of (MST, w')

Property

- The time-complexity of AttributeBasedHierarchy (step 4) is linear with respect to |V|
- When step 2 can be done in linear-time, the overall time-complexity is quasi-linear with respect to |V| + |E|

Other transformations of hierarchy

• The exact same algorithmic scheme can be used for:

- [Soille 08]: constrained connectivity
- [Guimaraes 12]: hierarchy based on observation scale [Felzenszwalb 04]
- Saliency map algorithm can be used for
 - [Arbelaez 08]: GPB ultrametric contour map hierarchy
- The scheme has to be adapted for efficient implementations of
 - [Guigues 06, Kiran 14] Hierarchies by scale increasing energies

On-line demonstration/source codes

- On-line tool for marker-based segmentation in hierarchies: http://www.esiee.fr/~perretb/ISeg/
- Source codes in C of some of the presented algorithms: http://www.esiee.fr/~info/sm/

- Versatile and efficient framework for computing hierarchies
- Open issue : how to evaluate hierarchy of partitions?
 - [Arbelaez 11] or [Pont-Tuset 13]
- The topic is hot:
 - [Arbelaez 11] has already 686 citations on google scholar
 - The PhD defense of Kiran on 10/31/2014
 - Your presence today !

References # 1: handling hierarchies in graphs

- Najman, On the Equivalence Between Hierarchical Segmentations and Ultrametric Watersheds, JMIV 2011
- Cousty & Najman, Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts, ISMM 2011
- Cousty, Najman & Perret Constructive links between some morphological hierarchies on edge-weighted graphs, ISMM 2013
- Najman, Cousty & Perret Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs, ISMM 2013
- The proofs of the two theorems of this lecture are going to be given in a forthcoming article

References # 2: Pioneering work

- Nagao, Matsuyama & Ikeda Region extraction and shape analysis in aerial photographs, CGIP 1979
- Bouman & Shapiro A multiscale random field model for Bayesian image segmentation, TIP 1994
- Beucher, Watershed, hierarchical segmentation and waterfall algorithm, ISMM 1994
- Najman & Schmitt Geodesic saliency of watershed contours and hierarchical segmentation, PAMI 1996
- Udupa & Samarasekera Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation, GMIP 1996
- Meyer & Maragos Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs, Scale-Space 1999
- Salembier & Garrido Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval, TIP 2000

References # 3: more recent work

- Felzenszwalb & Huttenlocher Efficient Graph-Based Image Segmentation, IJCV 2004
- Guigues & Cocquerez Scale-sets image analysis, IJCV 2006
- Soille Constrained connectivity for hierarchical image partitioning and simplification, PAMI 2008
- Arbelaez & Cohen, Constrained image segmentation from hierarchical boundaries, CVPR 2008
- Cousty, Bertrand, Najman & Couprie, Watershed cuts: minimum spanning forests, and the drop of water principle, PAMI 2009

References # 4: more recent work

- Arbelaez, Maire, Fowlkes & Malik, Contour Detection and Hierarchical Image Segmentation, PAMI 2011
- Guimaraes, Cousty, Kenmochi & Najman, A Hierarchical Image Segmentation Algorithm Based on an Observation Scale, SSSPR 2012
- Pont-Tuset & Marques, Measures and Meta-Measures for the Supervised Evaluation of Image Segmentation, CVPR 2013
- Cousty & Najman, Morphological Floodings And Optimal Cuts In Hierarchies, ICIP 2014
- Kiran, Energetic-Lattice based optimization, PhD Thesis, to be defended at ESIEE Paris on 10/31/2014