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Introduction

Many kind of hierarchies of partitions are used in image processing

Quad-tree like [Bouman 94]
Watershed based [Beucher 94, Najman 96]
Binary partition tree [Salembier 00]
Energy based [Guigues 06]
Learning techniques based [Arbelaez 08]
etc.

How do we efficiently compute and manage them?
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Introduction

Graphs are adapted for computerized procedures since they are:

adapted to discrete settings
generic structures
a well studied algorithmic field

We present generic tools that can be used for computing and
handling many of these hierarchies with graphs
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Connected hierarchies in graphs

Graph settings

We consider an (undirected) graph G = (V ,E ), where V is a
finite set and E is composed of unordered pairs of distinct
elements in V , i.e., E is a subset of {{x , y} ⊆ V | x 6= y}
Each element of V is called a vertex or a point (of G)

Each element of E is called an edge (of G )

Subsequently, X denotes any subgraph of G ; its vertex and edge
sets are denoted by V (X ) and E (X )

We consider the usual notions of a connected graph and of a
connected component of a graph
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Connected hierarchies in graphs

Connected hierarchies

A partition of V is connected (for G ) if any of its regions is
connected for G

A hierarchy on V is connected (for G ) if any of its partitions is
connected

We only consider connected hierarchies for G

Remark

Any hierarchy on V is connected when G is complete

Thus, any hierarchy can be treated with the proposed tools
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Connected hierarchies in graphs

Quasi-flat zones hierarchy

Significantly used as a scale space since the late 70’s [Nagao 79,
Meyer 99]

Also know as the α-tree [Soille 08]

Also used for Fuzzy Connectedness [Udupa 96]

In fact, it is fundamental tool for handling any hierarchy
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Connected hierarchies in graphs

Quasi-flat zones hierarchy

Consider an edge weighted
graph (G ,w)

w is a map from E to R+

w(u) is the weight of the edge u

For image analysis,

G can be any pixel adjacency
graph (e.g., 4-adjacency
graph)
w can be a gradient of
intensity (e.g., w({x , y} =
|I (x)− I (y)|, where I is an
image)
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Connected hierarchies in graphs

Quasi-flat zones hierarchy

For any subgraph X of G

the λ-level set of X is the set of
all edges of X of weight less
than λ

the λ-level graph of X is the
subgraph of X whose edge set is
the λ-level set of X and whose
vertex set is the one of X
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Connected hierarchies in graphs

Quasi-flat zones hierarchy

The connected components
partition of the λ-level graph
of X is called the λ-level
partition of X

The sequence QX (w) of all
λ-level partitions of X is a
hierarchy called the quasi-flat
zones hierarchy of X
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Connected hierarchies in graphs

Saliency map: the other way round

The cut of a partition P of V , denoted by φ(P), is the set of
edges of G made of two vertices in different classes of P:

φ (P) = {{x , y} ∈ E (G ) | Px 6= Py} .

The saliency map of a hierarchy H = (P0, . . . ,P`) on V is the
map Φ(H) such that the weight of u for Φ(H) is the maximum
value λ such that u belongs to the cut of Pλ:

Φ (H) (u) = max {λ ∈ {0, . . . , `} | u ∈ φ (Pλ)} .
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J. Cousty : Handling and computing hierarchies with graphs 9/44



Connected hierarchies in graphs

Saliency map: the other way round

The cut of a partition P of V , denoted by φ(P), is the set of
edges of G made of two vertices in different classes of P:

φ (P) = {{x , y} ∈ E (G ) | Px 6= Py} .

The saliency map of a hierarchy H = (P0, . . . ,P`) on V is the
map Φ(H) such that the weight of u for Φ(H) is the maximum
value λ such that u belongs to the cut of Pλ:

Φ (H) (u) = max {λ ∈ {0, . . . , `} | u ∈ φ (Pλ)} .

P1

P2

P3

P0

φ(P0) φ(P1) φ(P2) φ(P3) H

J. Cousty : Handling and computing hierarchies with graphs 9/44



Connected hierarchies in graphs

Saliency map: the other way round
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Connected hierarchies in graphs

Hierarchy: equivalent representations

Theorem

The map Φ is a one-to-one correspondence between the connected
hierarchies on V (of depth |E |) and the saliency maps (of
range {0, . . . , |E |}). The inverse Φ−1 of Φ associates to any saliency
map w its quasi-flat zones hierarchy: Φ−1(w) = QG (w).
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Connected hierarchies in graphs

Saliency map: practical interests

Provide a compact visualization of a hierarchy

when the graph has some particular property (e.g., planarity)

Handle a hierarchy differently: a function rather than a tree

[Arbelaez 08] computes saliency maps of gPb contour detector
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Connected hierarchies in graphs

Problem: can we get a more compact representation?

Question

(P) Given an edge-weighted graph ((V ,E ),w), find a minimal
set E ′ ⊆ E of edges such that the quasi-flat zones hierarchies
of (V ,E ) and of (V ,E ′) are the same?
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Connected hierarchies in graphs

Solution to (P) : minimum spanning tree (MST)

Theorem

A subgraph X of G is an MST of (G ,w) if and only if the two
following statements hold true:

1 the quasi-flat zones hierarchies of X and of G are the same; and

2 the graph X is minimal for proposition 1, i.e., for any subgraph Y
of X , if the quasi-flat zones hierarchy of Y for w is the one of G
for w, then we have Y = X .

Consequences

An MST is enough to handle a connected hierarchy

Quasi-flat zones hierarchy can be computed with MST algorithms

Kruskal proposed a quasi-linear time algorithm, provided a sorting
of the edges
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Algorithms for quasi-flat zones hierarchy

Kruskal algorithm for MST (High-Level View)

1. create a forest F (a set of trees), where each vertex in the graph
is a separate tree

2. create a set S containing all the edges in the graph

3. while S is nonempty and F is not yet a single tree

4. remove an edge with minimum weight from S
5. if that edge connects two different trees, then add it to the forest,

combining two trees into a single tree
6. otherwise discard that edge.

At the termination of the algorithm, the forest has only one
component and forms a minimum spanning tree of the graph

The if test at line 5 is the time-complexity bottleneck. It can be
tested thanks to disjoint sets management algorithms
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Algorithms for quasi-flat zones hierarchy

The disjoint set problem

The disjoint set problem consists in maintaining a collection Q of
disjoint sets under the operation of union.
Each set Q in Q is represented by a unique element of Q, called the
canonical element.

MakeSet(q1)

FindCanonical(q1)

Union(q1, q2)
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Algorithms for quasi-flat zones hierarchy

Kruskal algorithm for MST (Implementation)

Data: An edge-weighted graph ((V ,E ),w).
Result: A minimum spanning tree MST
Result: A collection Q
// Collection Q is initialized to ∅

1 e := 0;
2 for all xi ∈ V do MakeSet(i);
3 for all edges {x , y} by (strict) increasing weight w({x , y}) do
4 cx := Q.FindCanonical(x); cy := Q.FindCanonical(y);
5 if cx 6= cy then
6 Q.Union(cx , cy );
7 MST[e] := {x , y}; e := e + 1;
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Algorithms for quasi-flat zones hierarchy

Main question in Kruskal implementation

Question

How to represent and implement the collection Q?

Answer

A good representation for Q is as a set of trees
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Algorithms for quasi-flat zones hierarchy

Binary Partition Tree by altitude ordering
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Algorithms for quasi-flat zones hierarchy

Binary Partition Tree by altitude ordering
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Algorithms for quasi-flat zones hierarchy

Binary Partition Tree by altitude ordering
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Algorithms for quasi-flat zones hierarchy

Binary Partition Tree by altitude ordering
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Algorithms for quasi-flat zones hierarchy

Binary Partition Tree by altitude ordering
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Algorithms for quasi-flat zones hierarchy

Binary Partition Tree by altitude ordering
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Algorithms for quasi-flat zones hierarchy

Binary Partition Tree by altitude ordering
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Algorithms for quasi-flat zones hierarchy

Binary Partition Tree by altitude ordering
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Algorithms for quasi-flat zones hierarchy

Binary Partition Tree by altitude ordering
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Algorithms for quasi-flat zones hierarchy

Binary Partition Tree by altitude ordering
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Algorithms for quasi-flat zones hierarchy
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Algorithms for quasi-flat zones hierarchy

Binary Partition Tree by altitude ordering
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Algorithms for quasi-flat zones hierarchy

QBT Union-Find

Procedure QBT .MakeSet(q)

1 QBT .parent[q] := −1; QBT .size += 1;

Function QBT .FindCanonical(q)

1 while QBT .parent[q]≥ 0 do q :=QBT .parent[q];
2 return q;

Function QBT .Union(cx , cy )

1 QBT .parent[cx ]:=QBT .size; QBT .parent[cy ]:=QBT .size;
2 QBT .MakeSet(QBT .size);
3 return QBT .size-1 ;
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Algorithms for quasi-flat zones hierarchy

QBT Union-Find

Interest

The produced tree is useful

It is a Binary Partition Tree (BPT) by altitude

BPT are often used in hierarchical segmentation [Salembier 00]

Drawback

The algorithm is slow: O(|V |2)
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Algorithms for quasi-flat zones hierarchy

Tarjan Union-Find

Interest

Quasi-linear complexity

Drawback

The produced tree is not useful for our purpose
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Algorithms for quasi-flat zones hierarchy

Tarjan Union-Find

Procedure QT .MakeSet(q)

1 QT .parent[QT .size] := −1; QT .Rnk[QT .size] := 0; QT .size += 1;

Function QT .FindCanonical(q)

1 r := q;
2 while QT .parent[r ] ≥ 0 do r :=QT .parent[r ];
3 while QT .parent[q] ≥ 0 do
4 tmp := q; q :=QT .parent[q]; QT .parent[tmp] := r

Function QT .Union(cx , cy )

1 if (QT .Rnk[cx ] >QT .Rnk[cy ]) then swap(cx , cy );
2 if (QT .Rnk[cx ] == QT .Rnk[cy ]) then QT .Rnk[cy ] += 1;
3 QT .parent[cx ] := cy ;
4 return cy ;
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Algorithms for quasi-flat zones hierarchy

QEBT : Efficient QBT Union-Find

Interest

Combination of both QBT and QT .

Quasi-linear time complexity with respect to |E |+ |V |
One of the produced trees, QBT , is useful.
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Algorithms for quasi-flat zones hierarchy

QEBT : Efficient QBT Union-Find

Procedure QEBT .MakeSet(q)

1 QEBT .Root[q]:=q; QBT .MakeSet(q); QT .MakeSet(q);

Function QEBT .Union(cx , cy )

1 tu:=QEBT .Root[cx ]; tv := QEBT .Root[cy ];
2 QBT .parent[tu] := QBT .parent[tv ] := QBT .size;
3 QBT .children[QBT .size].add({tu});
4 QBT .children[QBT .size].add({tv});
5 c:=QT .Union(cx ,cy ); // Union in QT(with compression)

6 QEBT .Root[c] := QBT .size; // Update the root of QEBT

7 QBT .MakeSet(QBT .size);
8 return QBT .size-1 ;

Function QEBT .FindCanonical(q)

1 return QT .FindCanonical(q);
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Algorithms for quasi-flat zones hierarchy

QCT : Quasi-flat zones hierarchy
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Algorithms for quasi-flat zones hierarchy

Some helper functions

Function getEdge(n)

Data: a (non-leaf) node n of QBT

Result: the edge e of the MST corresponding to the nth node
1 return n − |V |;

Function weightNode(n)

Data: a (non-leaf) node of the tree
Result: the weight of the MST edge associated with the nth node of

QBT

1 return w(MST[getEdge(n)]);
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Algorithms for quasi-flat zones hierarchy

Quasi-flat zones hierarchy

Procedure CanonizeQBT

Data: QBT

Result: QCT , a canonized version of QBT

1 for all nodes n of QBT do QCT .parent[n]:=QBT .parent[n]; QCT .size+=1;
2 for each non-leaf and non-root node n of QBT by decreasing order do
3 p := QCT .parent[n];
4 if (weightNode(p) == weightNode(n)) then
5 for all c ∈ QBT .children[n] do QCT .parent[c]:=p ;
6 QCT .parent[n]:=n; // Delete node n of QCT

// If needed, build the list of children:
7 for all nodes n of QCT do
8 p:=QCT .parent[n]; if p ≥ 0 and p 6= n then QCT .children[p].add(n);
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Algorithms for quasi-flat zones hierarchy

Quasi-flat zones hierarchy

Complexity analysis

QCT is the quasi-flat zone hierarchy of (G ,w)

The time-complexity of CanonizeQBT is linear with respect to |V |
Thus, the overall time-complexity for computing the quasi-flat
zones hierarchy of (G ,w) is quasi-linear with respect to |E |+ |V |,
provided a sorting of the edges of G

QBT or QCT ?

It is possible to merge the QBT and QCT computation steps in
order to obtain QCT in one step

QBT contains more information than QCT
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Quasi-linear time saliency map algorithm

Quasi-linear time saliency map algorithm

1. Given a weighted graph (G ,w)

2. Compute the quasi-flat zones hierarchy QCT of (G ,w)

3. For each edge {x , y} of G

4. Set Φ({x , y}) to the weight of the lowest common ancestor of {x}
and {y} in the tree QCT

Property

Φ is the ultrametric opening / ultrametric contour map of w (i.e.,
the saliency map of the quasi-flat zones hierarchy of w)

Step 4 can be done in constant time [Bender 08] provided a linear
time preprocessing

The overall time complexity is quasi-linear with respect
to |V |+ |E |
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Transforming hierarchies

Watershed cuts/minimum spanning forests

Partitions defined thanks to the drop of water principle [Cousty 09]
Or equivalently thanks to

minimum spanning forests relative to the regional minima of w

A minimum spanning forest (MSF) rooted in a subgraph X of G is
a minimum weight spanning subgraph Y such that each connected
component of Y includes exactly one connected component of X
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Transforming hierarchies

Watershed cuts from QBT : intuition
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Transforming hierarchies

Watershed cuts from QBT

Function watershed
Data: QBT

Result: A binary array ws indicating which MST edges are watershed
1 for all leaf-nodes n of QBT do minima[n]:=0;
2 for each non-leaf node n of QBT by increasing order do
3 flag := TRUE; nb := 0;
4 for all c ∈ QBT .children[n] do
5 m := minima[c]; nb := nb + m;
6 if (m == 0) then flag := FALSE;

7 ws[getEdge(n)] := flag;
8 if (nb 6= 0) then minima[n] := nb;
9 else

10 if (n is the root of QBT ) then minima[n] := 1;
11 else
12 p := QBT .parent[n];
13 if (weightNode[n]<weightNode[p]) then minima[n] := 1;
14 else minima[n]:=0 ;
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Transforming hierarchies

Watershed cuts from QBT

Property

The connected component partition induced by the set of
edges {u ∈ E | ws[u] = TRUE} flaged true by the algorithm is a
watershed cut of w

The time complexity of watershed procedure is linear with respect
to |V |

A first hierarchical watershed is obtained by

setting to 0 the edges flaged true by the algorithm and keeping the
weight of all other edges
considering the quasi-flat zones hierarchy of this new weight map

Other interesting hierarchical watersheds can be designed
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Transforming hierarchies

Hierarchical watersheds/MSFs

Let ≺= 〈M1, . . . ,M`〉 be the sequence of regional minima of w
ranked by importance according to some given criterion

A hierarchical watershed for ≺ is a hierarchy 〈P0, . . . ,P`〉 of
partitions such that, for any i ∈ [0, `]:

Pi is the connected component partition of an MSF rooted in the
minima ranked after i

Remark

Every partition of a hierarchical watershed is an optimal cut of the
original graph

The ordering ≺ can be obtained from morphological flooding of w
(e.g., dynamics, area, volume, range, energy based filters) which
amounts of taking non horizontal cuts in the quasi-flat zones
hierarchy of w [COUSTY 2014]
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Transforming hierarchies

Algorithmic scheme: MST re-weighting

1 Consider the hierarchy of quasi-flat zones through

QBT and its associated MST

2 Compute some attributes on the regions directly from QBT and/or
from external data (e.g., the original image)

3 Rank the minima of w based on these attributes (extinction
values)

4 Re-weight the edges of MST with a map w ′ such that

The hierarchical watershed is the quasi-flat zones hierarchy
of (MST ,w ′)
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Transforming hierarchies

MST re-weighting

Procedure AttributeBasedHierarchy

Data: QBT , ≺= 〈M1, . . . ,M`〉
Result: a re-weighting w ′ of MST whose quasi-flat zone hierarchy is

the attribute-based hierarchy
1 for any i in {1, . . . , `} do
2 Extract one vertex n of Mi ;
3 attribute[n] := i ;

4 for any non-leaf node n of QBT by increasing order do
5 a1 := attribute[children[n].left];
6 a2 := attribute[children[n].right];
7 attribute[n] := max(a1, a2);
8 w ′[getEdge(n)] := min(a1, a2);
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Transforming hierarchies

Algorithmic scheme: MST re-weighting

1 Consider the hierarchy of quasi-flat zones through
QBT and its associated MST

2 Compute some attributes on the regions directly from QBT and/or
from external data (e.g., the original image)

3 Rank the minima of w based on the attributes (extinction value)
4 Re-weight the edges of MST with a map w ′ such that

The hierarchical watershed is the quasi-flat zones hierarchy
of (MST ,w ′)

Property

The time-complexity of AttributeBasedHierarchy (step 4) is linear
with respect to |V |
When step 2 can be done in linear-time, the overall
time-complexity is quasi-linear with respect to |V |+ |E |
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Transforming hierarchies

Other transformations of hierarchy

The exact same algorithmic scheme can be used for:

[Soille 08]: constrained connectivity
[Guimaraes 12]: hierarchy based on observation scale
[Felzenszwalb 04]

Saliency map algorithm can be used for

[Arbelaez 08]: GPB ultrametric contour map hierarchy

The scheme has to be adapted for efficient implementations of

[Guigues 06, Kiran 14] Hierarchies by scale increasing energies
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On-line demonstration

On-line demonstration/source codes

On-line tool for marker-based segmentation in hierarchies:
http://www.esiee.fr/~perretb/ISeg/

Source codes in C of some of the presented algorithms:
http://www.esiee.fr/~info/sm/
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On-line demonstration

Conclusion

Versatile and efficient framework for computing hierarchies

Open issue : how to evaluate hierarchy of partitions?

[Arbelaez 11] or [Pont-Tuset 13]

The topic is hot:

[Arbelaez 11] has already 686 citations on google scholar
The PhD defense of Kiran on 10/31/2014
Your presence today !
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