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Abstract. The control, signal and image processing applications are
complex in terms of algorithms, hardware architectures and real-time/em-
bedded constraints. System level CAD softwares are then useful to help
the designer for prototyping and optimizing these applications. These
tools are oftently based on design flow methodologies. This paper presents
a seamless design flow which transforms a data dependence graph speci-
fying the application into an implementation graph containing both data
and control paths. The proposed approach follows a set of rules based
on the RTL model and on mechanisms of synchronized data transfers
in order to transform automatically the initial algorithmic graph into
the implementation graph. This transformation flow is part of the exten-
sion of our AAA (Algorithm-Architecture Adequation) rapid prototyping
methodology to support the optimized implementation of real-time appli-
cations on reconfigurable circuits. It has been implemented in SynDEx?,
a system level CAD software tool that supports AAA.

1 Introduction

The increasing complexity of signal, image and control processing algorithms
in embedded applications requires high computational power to meet real-time
constraints. This power can be achieved by high performance mixed hardware
architectures built from different types of programmed components (RISC or
CISC processors, DSP,..) to perform high level tasks and/or specific components
(dedicated boards, ASIC, FPGA,...) used to perform efficiently low level tasks
such as signal and image processing and devices control. Implementing these
complex algorithms on such distributed and heterogenous architectures while
verifying the severe real-time constraints is generally a difficult and complex
task. This explain the need for dedicated high level design environnement based
on efficient system-level design methodology to help the real-time application
designer to solve the specification, validation and synthesis problems [1].
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In order to cope with these increasing needs, we have developped the AAA
rapid prototyping methodology [5] wich helps the real-time application designer
to obtain rapidly an efficient implementation of his application algorithm on
his heterogenous multiprocessor architecture and to generate automatically the
corresponding distributed executive. This methodology is based on an unified
model of factorized graphs [2], as well to modelize the applicative algorithm and
the multicomponent architecture, than to deduce the possible implementations
in terms of graphs transformations.

Based on this model, we have extended AAA methodology to support the
implementation of real-time applications on reconfigurable circuits. This exten-
sion uses a single factorized graph model, from the algorithm specification down
to the architecture implementation, through optimizations expressed in terms
of defactorization transformations applied to the algorithmic graph. This opti-
mization aims to satisfy the real-time constraints while minimizing the required
hardware resources [4]. In prospect, this extension is expected to allow the AAA
methodology to be used for optimized hardware/software codesign.

In this paper, we focus on the rules used to synthesize both the data and
the control paths of the circuit corresponding to an algorithm specified as a fac-
torized data dependence graph. It is known that control path synthesis is more
difficult to carry out than data path synthesis. We show here that it is possible
to synthesize the control path in a secure and systematic way by using a tech-
nique of data transfers synchronization based on the RTL model. This approach
allows us to carry out an automatic generator of synthesizable VHDL in a sim-
ple way. The remainder of the paper is organized as follows: in the next section,
we briefly present the transformation flow used by our extented methodology to
automate the hardware implementation process of an application algorithm on
reconfigurable circuits. In section 3, we present the factorized data dependence
graph model proposed to specify the application algorithm. As critical portions
of control, signal and image processing algorithms often consist of regular com-
putations generally expressed as nesteed loop, we will use a motivating example
of matrix-vector product to illustrate the proposed transformation design flow.
Section 4 gives rules to automate the synthesis of data and control paths ex-
tracted from the algorithm specification while the principles of optimization by
defactorization are shown in section 5. We also show in section 6, the results of
the implementation of the matrix-vector product algorithm onto a Xilinz FPGA
following these rules. Finally, section 7 concludes and discusses future work.

2 AAA methodology for circuits

Given an algorithm graph specifying the application, we transform it to an imple-
mentation graph following a set of graphs transformations as described in Fig.1.
This seamless transformation flow is composed of the generation of the data-path
graph and the control-path graph. Data-path transformations are quite simple,
but control-path transformations are not trivial and require to build first a neigh-
borhod graph. Finally the implementation graph containing both data and con-



trol graphs is charaterized in order to estimate time and area performance. If the
deduced implementation does not meet the user specified constraints, we apply
a defactorization process in order to reduce the latency by increasing the hard-
ware ressources. Since there is a large but finite number of possible defactorized
implementations with different characteristics (FPGA area required, latency,..)
among which we need to select the most efficient one, we need to use heuristics
guided by their cost function. We then generate automatically the VHDL code
corresponding to the resulting optimized implementation.
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Fig. 1. The AAA methodology for circuits

3 Algorithm model

The algorithm specification is the starting point of the process of hardware im-
plementation of an algorithm application onto an architecture. According to the
AAA methodology, the algorithm model is an extention of the directed data
dependence graph (direct acyclic hypergraph DAG), where each node models
an operation (more or less complex, e.g. an addition or a filter), and each ori-
ented hyperedge models a data, produced as output of a node, and used as
input of an other node or several other nodes (data diffusion). The extended
model provides specification of loops through factorization nodes (fork, join,
iterate, diffuse), leading to an algorithm model called Factorized Data Depen-
dence Graph (FDDGQG) [4]. This algorithm graph may be specified directly by the
user or it may be generated from high level specification languages such as the
synchronous languages (Esterel, Signal,...), which perform formal verifications
in terms of events ordering in order to prevent dead-locks [8].

3.1 Factorized Data Dependence Graphs Model

As described in [2], an algorithm specification contains regular parts (repetitive
subgraph) and non-regular parts. This specification must be independent of all
the constraints related to the hardware implementation, it then requires that the
designer decomposes the algorithm into implementable operations. However, this
decomposition frequently generates repetitions of operation patterns (identical



operations that operate on different data). In fact, these spatial repetitions are
usually reduced by a factorization process to reduce the size of the specification
and to highlight its regular parts. Graph factorization consists in replacing a
repeated pattern, i.e. a subgraph, by only one instance of the pattern, and in
marking each edge crossing the pattern frontier with a special “factorization”
node, and the factorization frontier itself by a dashed line crossing these nodes.
The type of the factorization node depends on the way the data are managed
when crossing a factorization frontier, it may be: a Fork node *F” (array partition
in as many subarrays as repetitions of the pattern), a Join node ’J’ (array
composition from results of each repetition of the pattern), a Diffusion node ’D’
(diffusion of a data to all repetitions of the pattern) or an Iterate node "I’ (data
dependence between iterations of the pattern).

Note that from the algorithm specification point of view, the factorization
reduces only the size of the specification, without any modification of its seman-
tics. However, from the implementation point of view, the factorization describes
also in intention all the possible implementations, from the entirely parallel one
to the entirely sequential one, with all the intermediate cases mixing both se-
quential and parallel. Obviously, each of these implementation will have different
characteristics in terms of area and response time.

3.2 Neighborhood graph

Every factorization frontier may be a consumer (located downstream) or/and a
producer (located upstream) relatively to another frontier according to the data
dependences relating them. Two frontiers are neighbors if there is at least one
relation of direct dependence that does not cross a third frontier.

Based on these neighborhood relations between the factorization frontiers, we
build a neighborhood graph of any algorithm graph. The nodes of such graph
represent the factorization frontiers and the oriented edges represent the data
flow between factorization frontiers. The edge orientation describes the consump-
tion/production relation: an edge starts at a producer and ends at a consumer.

In the case of a sequential implementation of factorization nodes, every fac-
torization frontier, called F'F', separates two regions, the first one called ”fast”,
being repeated relatively to the second one, called ”slow”. These slow and fast
sides of a frontier are due to the difference of frequency of the data transfer on
each side of the factorization frontier. Every node of the neighborhood graph is
then subdivided in four parts (see Fig.2).
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This neighborhood graph, deduced automatically from the FDDG, is used
during the implementation in order to establish the control relationships between
frontiers.

3.3 Example: Specification of MVP (Matrix-Vector Product)

We now use a Matrix-Vector Product example (MVP) to illustrate the algorithm
model of specification and its use for the building of the neighborhood graph.
The choice of this example was motivated for a purely academic interest: first, it
is so easy to understand and it presents regular computation on different array
data which highlight the use of the factorization process. Second, this example
concentrates its computation in nested loops that manipulate multidimensional
array data structures and such complex but regular computations are of interest
in signal and image processing applications. So the MVP of one matrix A €
R™ x R™ by a vector B € R" gives a vector C' € R™, and can be written in a

n m
factorized form as follows: C' = {Z aijbj}
j=1 i=1

This equation allows us to obtain the graph corresponding to the algorithm
specification of the factorized MVP (Fig. 3). The interface with the physical
environment is delimited by input (F3° et Fg°) and by output (J&°). It cor-
responds to the factorization frontier of the infinitely repeated pattern of the
graph (F'F1) due to the reactive aspect of embedded real-time applications. The
square brackets [ |7, correspond to a second frontier (F'F5), delimited by fac-
torization nodes of a finitely repeated pattern. This frontier selects the m lines
of the matrix A (F»;), diffuses the vector B (Ds;) and collects the result vector

n

C (J21). The functor ) corresponds to a third frontier (FFj), also delimited
i=1

by factorization nodesjof a second finitely repeated pattern. This frontier selects

the a;; elements of the ith line of the matrix A (F31) and the elements b; of the

vector B (F32) and it supplies the result of the sum of products between a;; et

b; for every line of matrix A (I31). The “slow” and “fast” sides of each frontier

are labeled “s” and “f”, respectively.

The neighborhood graph between factorization frontiers, obtained from the
factorized data dependence graph specifying the MVP algorithm, is shown in
Fig.4. Because the factorization frontier F'F} is infinite, it does not have neighbor
on its ”slow” side which corresponds to the physical environment. F'Fj is, at the
same time, a producer (edges A and B) and a consumer (edge C) compared
to F'Fy. FF, is also a producer (edges A; and B) and a consumer (edge Cj)
compared to F'F3. F'F3is a producer and a consumer, compared to itself through
the arithmetic operations mul and add.

4 Circuit synthesis from a neighborhood graph

High-level circuit synthesis transforms a high-level behavioral specification into
a register-transfert-level implementation (RTL) [6]. The resulting RTL design
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containing both the data path and control path can then be synthesized using
logic synthesis tools that map components such as adders, multipiers,... to gates,
perform optimization and finally generate the netlist of the final design. The
automation of this synthesis process reduces significantly the development cycle
of the circuit, and allows the exploration of different hardware implementations,
seeking for an efficient compromise between area and response time of the circuit.
Afterward we will present the rules used to automatically generate the data path
and the control path of the circuit, from the factorized data dependence graph
and the neighborhood graph.

4.1 Data path synthesis

The hardware implementation of operations consists in providing for every node
of the factorized data dependence graph a matching operator (by instanciating
the corresponding component of a VHDL library). The matching operator is a
logic function in the case of an operation node, or it is composed of a multiplexer
and/or registers in the case of a factorization node (F is implemented by a
multiplexer, J by a demultiplexer with a memory array, I by a register with
initialization value,..). The hardware implementation of the data dependences
between operations consists in providing, for each edge of the FDDG graph, a
matching connection between operators. The resulting graph of operators and
their interconnections compose the data path of the circuit.

4.2 Control path synthesis

The control path corresponds to the logic functions that must be added to the
data path, in order to control the multiplexers/demultiplexers and the transi-
tions of the registers composing the factorization operators. It is then obtained by
data transfer synchronization between registers. However, two conditions must
be satisfied to allow a register to change state: the new upstream data to the
register must be stable, and all downstream consumers of the register must have



finished the utilisation of previous data. If moreover upstream data of a circuit
comes from various producers with different propagation time, it is necessary to
have a synchronized circuit. This synchronization is possible through the use of
a request/acknowledge communication protocol. Consequently, the synchroniza-
tion of the circuit implementing the algorithm is reduced to the synchronization
of the request/acknowledge signals of the set of factorization operators.

Given that these operators are gathered in factorization frontier and their
data consumption and production are done in a synchronous way at the level of
the frontier, the generated control must be a local control at each frontier. We
propose then a control system where each factorization frontier will have its own
control unit. This delocalized control approach allows the CAD tools used for
the synthesis to place the control units closer to the operators to control rather
then a centralized control approach.

Control unit As mentioned above, each factorization frontier has upstream and
downstream relations on both sides, “slow” and “fast”. The relations between
upstream/downstream and request/acknowledge signals on both sides of a fron-
tier are implemented by the “control unit” of the factorization frontier (Fig.5).
This control unit contains a counter C' with d states (corresponding to the d
factorized repetitions) and an additional logic function in order to generate, in
the one hand the communication protocol between frontiers (the slow and fast,
request and acknowledge signals at the upstream and downstream sides), and in
the other hand the counter value ent and the enable signal (en), that control the
frontier operators. The counter value (cnt) controls the frontier operators: F, J
and I. The enable signal (en) determines the clock cycles where the registers
of the frontier operators (J, I, F*”sensor”, J°”actuator”) will change state.
Note that, the signal (init) resets the counter while the signal (end) indicates
that the counter is in its last state (d — 1).

All the other signals are the request () and acknowledge (a) signals generated
by the frontier(s) located upstream or diffused to the frontier(s) located down-
stream. They are separated in two groups: those which relate to the frontier(s)
located on the ”slow” side and those which relate to the frontier(s) located on the
"fast” side, corresponding to the four parts of the control unit: slow-upstream
(su), slow-downstream (sd), fast-upstream (fu) and fast-downstream (fd).

As mentioned above, the control path is mainly composed of the set of control
units associated to the factorization frontiers of the application algorithm graph.
These control units can then be inter-connected in an automatic way based on
relationships between the factorization frontiers deduced from the neighborhood
graph. In this control graph, the nodes correspond to the control units and
the edges correspond to the request signals transmitted between the control
units. The acknowledge signals are transmitted, in the opposite direction of the
associated request signals, between the same control units. When several signals
are at the same input of a control unit, one takes the conjunction by a logical
gate AND.



5 Implementation optimization: principles

As previouly mentioned, the optimized implementation of a factorized algorithm
graph onto an application specific integrated circuit or a FPGA, is formalized
in terms of graph transformations, i.e defactorization. When we defactorize a
graph we expect to reduce the latency by increasing the number of hardware
ressources. Thus, the implementation space, which must be explored in order to
find the best solution, is composed of all the possible defactorizations of a factor-
ized algorithm graph. For instance, for a given algorithm graph with n frontiers,
we have at least 2" defactorized implementations. Moreover, each frontier can
be partially defactorized: a factorization frontier of r repetitions can be decom-
posed in f factorization frontiers of r/f repetitions. Consequently, for a given
algorithm graph, there is a large, but finite, number of possible implementations
which are more or less defactorized, and among which we need to select the most
efficient one, i.e which satisfies real-time constraints (upper bound on latency),
and which uses as less as possible the hardware ressources, logic gates for ASIC
and number of Configurable Logic Blocks CLB for FPGA. This optimization
problem is known to be NP-hard, and its size is usually huge for realistic ap-
plications. This is why we use heuristics guided by their cost function, in order
to compare the performances of different defactorizations of the specification.
These heuristics, using tricks related to practice, allows us to explore only a
small subset of all the possible defactorizations into the implementation space.
These cost functions take into account the characteristics of an implementation:
hardware ressources required (number of gates or CLBs) and latency.

6 Example: Synthesis of MVP implementation on
FPGA’s circuit

The Fig.6 represents the hardware implementation of the factorized MVP corre-
sponding to the algorithm specification given in Fig.3. The data path is composed
of the factorization frontier operators (F; ;, D; j;, J;; and I; ;) and of the combi-
natorial operators mul and add delimited by a dotted box. The control path is
composed of the control units UC, UCy and UC3, and of the control signals r
(request), a (acknowldge), ept and en. The interconnections between the request
and acknowledge signals, is based on the relationships between the factorization
frontiers, namely the neiborhood graph (Fig.4) built from the algorithm graph.

In Fig.7 we present the hardware implementation of a defactorized solution
corresponding to the partial defactorization of the frontier F'F; by a factor of 2.
The FF2 frontier has been replaced by two frontiers F'Fy,, F Fy, being repeated
m/2 times (m : factor of repetitions of F'Fy). The factorization frontier FFj
remain inchanged but it has been duplicated (FF3,, FF3) due to the partial
defactorization of F'F,. The data path is then composed of the factorization
frontier operators, the combinatorial operators delimited by dotted boxes and
of the operators X; (array-decomposition operation), M; (array-composition
operation). The control path is composed of the control units UC}, UCs,, UCay,
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U3, and UCj3p, The synchronisation of frontiers F'F5,, F Fy is assured by the
AND gate at the upstream request and the downstream acknowledge of UC} .

Tab.8 shows the synthesis result of the generated VHDL code of hardware
implementation of MVP (6 x 6 matrix and 6 elements vector, coded on 3 bits)
onto a Xilinz FPGA XL4000XL-3 4005xIPC84, using the CAD tool Leonardo
Spectrum 2003, developed by Ezxemplar Logic Inc.. The implementation results
are presented in function of, the area (hardware ressources: number of CLBs),
the number of clock cycles required by the algorithm execution, the maximum
frequency of operators in MHz, and finally the latency in ns.

7 Conclusion and future work

We have shown that from an algorithm specification based on a factorized data
dependence graph model it is possible to generate automatically hardware im-
plementation onto an FPGA circuit, employing a set of rules for the data path
and the control path synthesis. The delocalized control approach presented in
this paper allows the CAD tools used for the synthesis to place the control units
closer to the operators to control rather then a centralized control approach. We
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Fig. 8. Optimization results for the implementation of MVP onto FPGA

validated this design flow on several examples of low-level image processing ap-
plications that includes interesting cases of data factorization like: mean filtering
[4], edge detector operators (sobel, deriche, ...).

This work is part of the extension of the AAA methodology implemented in
the software SynDEx to support implementation on reconfigurable circuits. Ba-
sically, AAA/SynDEx for multiprocessors, allows to generate automatically the
dead-lock free executive for the optimized implementation of the given algorithm
onto the specified multiprocessor architecture [3].

The principles described in this paper allowed us to carry out an automatic
generator of structural synthesizable VHDL for mono-FPGA (one FPGA) archi-
tectures, that has been added to SynDEx [7]. The generated VHDL code which
corresponds to the optimized FPGA implementation obtained by successive de-
factorizations of the factorized algorithm graph, is then used by a CAD tool in
order to generate the netlist needed for the FPGA configuration.

Presently we are working on the control involved by the conditioning in
the algorithm specification, in addition to the control involved by repetition of
operation. We intend to extend the proposed methodology to the case of multi-
FPGAs architectures. To support such architectures, the optimization heuristic
will adress both defactorization and partitioning issues.

Thanks to this extension, the AAA methodology will be used for optimized
hardware/software codesign, leading to the generation of either executives for
the programmable parts of the architecture (network of processors), or structural
synthesizable VHDL for the non-programmable parts (network of application
specific circuits and/or FPGA).
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