
OPTIMIZED IMPLEMENTATION OF APPLICATION SPECIFIC INTEGRATED CIRCUITS
SPECIFIED WITH DEPENDENCE GRAPH

LINDA KAOUANE
�
: PHD STUDENT, MOHAMED AKIL

�
, YVES SOREL

�
�
Groupe ESIEE–Laboratoire A2SI,

�
INRIA Rocquencourt–OSTRE,

BP 99 - 93162 Noisy-le-Grand, France BP 105 - 78153 Le Chesnay Cedex, France
E-mails :kaouanel@esiee.fr, akilm@esiee.fr E-mail : yves.sorel@inria.fr

1 Introduction

The increasing complexity of signal, image and con-
trol processing algorithms in real-time embedded appli-
cations requires efficient system-level design methodolo-
gies to help the designer to solve the specification, vali-
dation and synthesis problems. In order to achieve this
goal, the OSTRE team of INRIA has developped the
AAA (Algorithm-Architecture Adequation) rapid prototyp-
ing methodology which helps the real-time application de-
signer to obtain rapidly an efficient implementation of his
application algorithm on his heterogenous multiprocessors
architecture and to generate automatically the correspond-
ing distributed executive. This methodology is based on
graphs models to exhibit both the potentiel parallelism of
the algorithm and the available parallelism of the multi-
component. The implementation is formalized in terms of
transformations applied on the previously defined graphs.

Indeed the real-time and embedded constraints may be
so strong that the available high performant processors are
not sufficient. Which leads to the use, in complement of
processors, of specific components like ASIC or FPGA.
The aim of our research is to extend the AAA methodol-
ogy to the implementation of real-time applications on spe-
cific integrated circuits. This extension uses a single factor-
ized graph model, from the algorithm specification down
to the architecture implementation, through optimizations
expressed in terms of defactotization transformations.

2 Algorithm model

Basically, the algorithm model is an extention of the di-
rected acyclic graph of operations (DAG), where each node
models an operation, and each oriented hyperedge models a
data, produced as output of a node, and used as input of an
other node or several other nodes (data diffusion). For ex-
ample, in image processing, this specification model based
on data dependence between implementable operations fre-
quently generates repetitions of operation patterns (identi-
cal operations that operate on different data). To reduce
the size of the specification and to highlight these regular
parts we use a graph factorization process which consists in
replacing a repeated pattern, i.e. a subgraph, by only one
instance of the pattern, and in marking each edge crossing
the pattern frontier with a special “factorization” node. The
type of the factorization node depends on the way the data
are managed when crossing a factorization frontier (Fork
node (

�
) for array partition, Join node (�) for array com-

position, Diffusion node (�) for diffusion of a data, Iterate
node (�) for data dependence between iterations).

This extention provides specification of loops through
factorization nodes and conditioned operations (operation
executed or not, depending on its conditioning input) lead-
ing to an algorithm model, that we call Conditioned (con-

ditional execution) Factorized (loop) Data Dependences
Graph (CFDDG).

3 Relationship between factorization frontiers

Every factorization frontier may be a consumer (located
downstream) or/and a producer (located upstream) rela-
tively to another frontier according to the data dependences.
Two frontiers are neighbor if there is at least one relation of
direct dependence that does not cross a third frontier. We
build a graph based on these neighborhood relations where
each node represent the factorization frontier and each ori-
ented edge represent the data flow between factorization
frontiers.

In the case of a sequential implementation of factor-
ization nodes, every factorization frontier separates two
regions, the first one called ”fast”, being repeated rela-
tively to the second one, called ”slow”. Every node of the
neighborhood graph is then subdivided in four parts: slow-
downstream, fast-upstream, fast-downstream and slow-
upstream. This neighborhood graph, deduced automatically
from the CFDDG, is used during the implementation to es-
tablish the control relationships between frontiers.

4 Circuits synthesis

The transformed algorithm graph, obtained after optimiza-
tion by defactorization is transformed in a hardware graph
containing data and control paths. Data path is deduced
by direct translation of each algorithmic node in a hard op-
erator and of each data dependence in a matching physi-
cal communication media. The generated control is a lo-
cal control based on the RTL model that associates to each
frontier node of the neighborhood graph a control unit to
assume data transfers synchronization. This approach al-
lowed us to carry out an automatic generator of synthesiz-
able structural VHDL.

5 Implementation optimization: principles

For a given algorithm graph, there is a large, but finite, num-
ber of possible implementations which are more or less de-
factorized, and among which we need to select the most
efficient one, i.e which satisfies real-time constraints and
which uses as less as possible the hardware ressources,
logic gates for ASIC and number of Configurable Logic
Blocks for FPGA. This optimization problem is known
to be NP-hard, this is why we use heuristics guided by
their cost function in order to compare the performances
of the different defactorizations of the specification. These
heuristics, using tricks related to practice, allows us to ex-
plore only a small subset of all the possible defactorizations
into the implementation space. These cost functions take
into account the three characteristics of an implementation:
hardware ressources required, latency and data-rate.

