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A B S T R A C T

Building energy consumption modeling and forecasting is essential to address buildings energy efficiency pro-
blems and take up current challenges of human comfort, urbanization growth and the consequent energy
consumption increase. In a context of integrated smart infrastructures, data-driven techniques rely on data
analysis and machine learning to provide flexible methods for building energy prediction. The present paper
offers a review of studies developing data-driven models for building scale applications. The prevalent methods
are introduced with a focus on the input data characteristics and data pre-processing methods, the building
typologies considered, the targeted energy end-uses and forecasting horizons, and accuracy assessment. A special
attention is also given to different machine learning approaches. Based on the results of this review, the latest
technical improvements and research efforts are synthesized. The key role of occupants’ behavior integration in
data-driven modeling is discussed. Limitations and research gaps are highlighted. Future research opportunities
are also identified.

1. Introduction

Buildings account for a significant part of the global energy con-
sumption with 30% in average and a third of the associated CO2

emissions (International Energy Agency, 2016). Despite developments
to improve building energy efficiency, the International Energy Agency
has highlighted in 2017 that current investments were not on track for
building sector to achieve the 2 °C-scenario targeted by Paris Climate

Agreement (International Energy Agency, 2017). Meanwhile, some of
the major global warming contributors and signatories of the Agree-
ment such as China – 2538 Mega ton oil equivalent consumed and 8796
Mega ton of CO2 produced in 2016 (“Global Energy Statistical
Yearbook, 2017|World Energy Statistics|Enerdata,” 2017) – are facing
challenges with a growing urbanization and an annual increase of their
building stock (Tsinghua University Building Energy Research Center,
2016).
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To address the stakes of rapidly growing urbanization, the in-
creasing need of human comfort and consequent energy consumption
increase, solutions emerge in the development of smart sustainable
infrastructures (Silva, Khan, & Han, 2018). Smart and low to zero en-
ergy buildings play a significant role (Kylili & Fokaides, 2015) in many
aspects including global energy efficiency, energy conservation mea-
sures and the integration of renewable energy systems. Hence, building
energy consumption modeling and forecasting is a key tool to achieve
smart and sustainable designs. Indeed, it can assist in higher energy
efficient designs by comparing several strategies for both pre-
(Tahmassebi & Gandomi, 2018) and post-occupancy studies
(Ruparathna, Hewage, & Sadiq, 2017). It can also guide energy man-
agement at local and global scales (Xu, Taylor, Pisello, & Culligan,
2012).

Among the three main approaches in building energy consumption
modeling and forecasting (BECMF) – physics-based, data-driven and
hybrid models (Dong, Li, Rahman, & Vega, 2016), data-driven techni-
ques emerge as the most suitable option to ensure the integration of
buildings in smart environments. Smart infrastructures rely on sensor
networks which generate large amounts of energy-related data (Rathore
et al., 2018). For instance, massive smart-meters deployment programs
have been launched with in Europe, the United States of America and
China during the past decade with ambitious goals to achieve by 2020
(Liu, Marnay, Feng, Zhou, & Karali, 2017; Obey, 2009; Smart Metering
deployment in the European Union|JRC Smart Electricity Systems and
Interoperability. (n.d.).; U.S. Energy Information Administration (EIA),
2018). Then, as the name suggests, data-driven methods propose
modeling and forecasting frameworks based on data analysis schemes
rather than on classical physics-based modeling tools (Foucquier,
Robert, Suard, Stéphan, & Jay, 2013). Furthermore, these frameworks
include algorithms that take benefit from the recent significant devel-
opments in the field of machine learning in recent years (Wang &
Srinivasan, 2017), providing flexibility and reliability to modeling and
forecasting tools. Consequently, data-driven building energy con-
sumption modeling techniques have recently drawn an increasing at-
tention, providing new case studies, algorithms and results while
technical challenges remain (Bourdeau, Guo, & Nefzaoui, 2018).

Thus, we report in the present paper a review on data-driven
building energy modeling techniques. It aims to introduce the most
prevalent techniques and to further provide an up-to-date overview of
recent studies and advancements in BECMF studies, as well as research
gaps and promising research directions. The paper is organized as fol-
lows: in Section 2 the data-driven forecasting process is described,
performance assessment metrics are defined, and the prevalent tech-
niques are presented namely autoregressive models (AR), statistical
regressions, k-nearest neighbors (k-NN), decision trees (DT), support
vector machine (SVM) and artificial neural networks (ANN). Section 3
discusses and compares the application of different machine learning
approaches for data-driven techniques. Section 4 summarizes the
characteristics of the data used and pre-processing methods in data-
driven forecasting processes. Section 5 discusses the challenges in terms
of building typologies, energy end-uses, forecasting horizons and the
implications of the lack of occupant-related data. It also summarizes the
current trends and latest technical achievements in machine learning
applications to building energy forecasting studies, while highlighting
their limitations and possible solutions.

1.1. Research methodology

The research methodology followed six steps. The first step relied on
the analysis of existing review papers to highlight (1) the trends in
research and applications of BECMF techniques over the past decade
which has witnessed massive smart-metering deployment programs and
an increasing amount of energy demand data production (Liu et al.,
2017; Obey, 2009; U.S. Energy Information Administration (EIA),
2018), (2) the main existing categories and classes of techniques to (3)

build a classification and to cross-check the corresponding nomen-
clature. Indeed, the many recent applications and technical improve-
ments of BECMF methods have introduced numerous names of tech-
niques that may confuse non-experts.

Based on the developed classification, a key-word search was con-
ducted for the broad field of BECMF and more specifically for each
types of techniques. Google Scholar was used as it provides relevant
information. The number of citations helped target reference articles.
These articles highlighted more recent citing papers that build on pre-
vious research work to introduce novel applications and methods.
Authors’ names were also used to search for related and relevant similar
studies.

A selection of articles retrieved from the key-word search was per-
formed based on three criteria: (1) the publication date in the past
decade to consider relatively recent research work; (2) the focus on
forecasting energy consumption and load demand in buildings (in-
cluding overall energy, thermal energy with combined and separated
cooling and heating loads, and other loads such as lighting or plug
load); (3) the application-scale focusing on building-scale studies
(neighborhoods, cities, regions and countries were excluded).

The fourth step aimed to highlight specific information for each
selected studies, and summarized in a table for study comparisons. It
included the type(s) of technique(s) implemented, the characteristics of
the building(s) case study(ies) (number of case studies, building type(s),
location(s)), the characteristics of the input (data type, granularity,
amount) and output data (type(s) of end-use(s), forecasting horizon,
accuracy) and the modeling tools or software used.

With the collected information, research articles were selected to
serve at least one of the three following purposes: (1) to provide a solid
but accessible theoretical and application reference for one specific type
of technique; (2) to present an original approach in terms of forecasting
technique and/or application case-study, input data, end-use(s) or
multidisciplinary work; (3) to propose a comparative study with in-
sights on the different methods implemented, their performances, ad-
vantages and weaknesses. Also, this step helped identify relevant ap-
proaches not covered by existing review articles.

Finally, a last comparison was conducted with existing state-of-the-
art papers to select the most relevant examples of BECMF methods. An
effort was made to select original research works that were little or not
already reported. Moreover, techniques with few new application stu-
dies compared to these that have already been covered were excluded.
Nevertheless, these techniques were included in the classification of
BECMF methods presented in the following section. They are briefly
introduced when encountered in the selected articles.

1.2. Classification of methods for building energy consumption modeling
and forecasting

Numerous and various techniques have been developed, adapted
and used for BECMF. The significant research efforts on the topic over
the past twenty years have led to several previous reviews describing
the existing methods and using different nomenclatures. To aid the
readers’ understanding of the different techniques, and re-contextualize
the scope of the present review, this part of the study compares the
different classifiers encountered in fifteen reviewed state-of-the-art ar-
ticles (Ahmad, Chen, Guo, & Wang, 2018; Amasyali & El-Gohary, 2018;
ASHRAE, 2009, chap. 19; Chalal, Benachir, White, & Shrahily, 2016;
Deb, Zhang, Yang, Lee, & Shah, 2017; Foucquier et al., 2013; Fumo,
2014; Mat Daut et al., 2017; Pedersen, 2007; Swan & Ugursal, 2009;
Tardioli, Kerrigan, Oates, O‘Donnell, & Finn, 2015; Wang & Srinivasan,
2017; Wei et al., 2018; Yildiz, Bilbao, & Sproul, 2017; Zhao & Magoulès,
2012). A unifying nomenclature is then presented in Fig. 1. The sug-
gested classification is based on the differences in modeling processes,
without building type or energy end-use distinctions and considering
building-scale applications.

The review work has highlighted three main categories of BECMF
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models. The first, physics-based models, is also commonly referred as
“white-box” (Tardioli et al., 2015). It uses a transparent process based
on physics equations solving to describe the energy behavior of build-
ings. Physics-based modeling has been introduced with different names,
either called “forward classical approach” and “calibrated simulation
approach” (ASHRAE, 2009, chap. 19), “energy simulation programs”
(Pedersen, 2007), “engineering methods”/approach (Fumo, 2014; Swan
& Ugursal, 2009; H. Zhao & Magoulès, 2012) “physical modelings”
(Foucquier et al., 2013), or “thermal models” (Yildiz et al., 2017). Sub-
classifications of these models have been proposed as well depending
on the origin of input data (Swan & Ugursal, 2009), the level of details
implemented in the modeling (Foucquier et al., 2013) and the modeling
calibration methods (ASHRAE, 2009, chap. 19; Fumo, 2014).

The second category is data-driven models. They mainly rely on
time-series statistical analyses and machine learning algorithms to as-
sess and forecast the building energy consumption. They are also often
named “black-box” models (ASHRAE, 2009, chap. 19; Tardioli et al.,
2015) to emphasize that the relationship between inputs and outputs
can hardly be transposed to physics-based analysis with these techni-
ques. “Data-driven” techniques (Ahmad et al., 2018; Amasyali & El-
Gohary, 2018; Tardioli et al., 2015; Wei et al., 2018), have also been
named “time series […] techniques” (Deb et al., 2017) and “statistical”
(Chalal et al., 2016; Swan & Ugursal, 2009; Zhao & Magoulès, 2012).
Furthermore, data-driven “statistical analyses”, “regressions-based
models” and “auto-regressive models” regarded as more conventional
methods (Mat Daut et al., 2017; Pedersen, 2007; Yildiz et al., 2017;
Zhao & Magoulès, 2012) have been differentiated from artificial in-
telligence models referred as “intelligent computer systems”/techni-
ques (Pedersen, 2007), “intelligent techniques” (Fumo, 2014), “AI ap-
proach” (Mat Daut et al., 2017) or “machine learning models” (Yildiz
et al., 2017). More recently, Wang and Srinivasan (2017) reviewed
data-driven models in building energy consumption prediction by op-
posing “single models” and “ensemble models”. The former uses a
single algorithm for a straightforward forecasting process, while the
latter build a framework managing the strengths and weaknesses of
techniques. Within all these classes of data-driven models, several

specific popular techniques have been described (Deb et al., 2017; Zhao
& Magoulès, 2012). They are organized as follow in the proposed
classification for data-driven methods: single models are divided be-
tween (1) classical techniques with moving average & exponential
smoothing (MA & ES), autoregressive models (AR) and statistical re-
gressions, (2) classification-based techniques applied to forecasting
purpose with k-nearest neighbors (k-NN) and decision trees (DT), (3)
support vector machines (SVM), (4) artificial neural networks (ANN),
(5) genetic algorithms (GA), (6) grey modeling, (7) case-based rea-
soning and (8) fuzzy models. On the opposite, a category named com-
bined models includes both ensemble models and improved models.
The latter refers to the combination of single data-driven techniques
and optimization methods (Mat Daut et al., 2017).

Finally, the third and last of the main category of models is hybrid
models. It describes the combination of physics-based and data-driven
methods. They are also called “gray-box” or “grey-box approach”
(Foucquier et al., 2013; Tardioli et al., 2015), as the combination of
white-box and black-box methods. Other techniques have also been
named “hybrid models” (Chalal et al., 2016; Mat Daut et al., 2017) but
were referring to the improvement of single data-driven techniques
with optimization methods, or the combination of several machine
learning algorithms. In the proposed classification these are called
improved models as described in the previous paragraph.

1.3. Overview of the papers reviewed

The study covers eight classes of data-driven models with auto-
regressive models (AR), statistical regressions, k nearest neighbors (k-
NN), decision trees (DT), support vector machines (SVM), artificial
neural networks (ANN), ensemble and improved techniques. Hybrid
models are also discussed in the discussions of this review. Based the
research methodology previously described, techniques including
moving average, exponential smoothing, genetic algorithms (GA), grey
models, case-based reasoning and fuzzy-based models are not described
in detail in the present work (black font on white background in Fig. 1).
They have been investigated during the review process, however,

Fig. 1. Summary classification of building energy consumption modeling and forecasting methods (techniques with white font on black background are the tech-
niques covered in this paper).
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results of the literature review highlighted case-based reasoning
(Kolodner, 2014), fuzzy-based models (Song & Chissom, 1993) and grey
models (Deng, 1989) have had few new applications compared to these
already covered in other review papers. Also, for grey modeling, fuzzy-
based models, exponential smoothing and moving average, the appli-
cations were mainly focusing country-scale studies while the present
work limits the applications to building-scale. GA (Mitchell, 1998) can
be found in the literature but have been sparsely applied alone as the
prediction technique for building energy consumption forecasting. They
are mostly implemented as an optimization tool as described later in
this review. Finally, physics-based models are out of the scope of this
paper, focusing on data-driven methods. Hence, these techniques are
only briefly presented when implemented in the reviewed articles.

In the present article, a total number of fifty original research papers
have been reviewed. Moreover, a counting of the number of studies
implementing the different reviewed BECMF techniques has been per-
formed. It is presented in Table 1 with the number of papers per year
and the total number of papers over the 2007–2019 period and for each
specific approach. A distinction is made between more conventional
ANN and deep (learning) neural networks (DNN), as well as between
supervised, unsupervised, reinforcement and transfer learning ap-
proaches.

2. Data-driven techniques

2.1. Data-driven forecasting process: training, validation and testing

Data-driven techniques use statistical and machine learning tools to
develop an energy model of a building. Most techniques focus on time
series data analysis but also frequently include basic knowledge on the
buildings’ characteristics. The data-driven modeling process involves
three steps that rely on three different sets of data. These datasets
usually result from the division of a main original one and include the
same input variables but with different combinations of values and for
different periods of time (Bishop, 2006).

The first step is the training of the algorithm. The model is run on
the training dataset to produce results. These results are compared to
the original training data and based on the results of the comparison,
the different parameters of the algorithm can be adjusted to fit on the
training dataset (Wahid & Kim, 2016). The second step is the validation.
A validation dataset is used to provide an unbiased evaluation of the
implemented algorithm, already fit on training data, and to tune its key
modeling parameters to enhance the fitting of the model. The validation
dataset must be different from the training dataset to prevent over-
fitting (Zhang, Deb, Lee, Yang, & Shah, 2016). Otherwise, it would

result in a model performing very well with a specific set of data but
poorly with other datasets.

Finally, the third step is the testing step when the algorithm de-
veloped is run on the remaining part of the data to provide a final
unbiased evaluation of the modeling and forecasting performances. It is
commonly admitted that the model parameters and structure should
not be modified based on the results of this final step (Fan, Xiao, &
Wang, 2014). Several methods have been used to pre-process the da-
tasets and select relevant input data with adapted training–valida-
tion–testing ratios. They will be presented along with the review of the
different studies in the following sections. Nevertheless, it should be
highlighted that in practice training and validation steps are not always
explicitly separated.

2.2. Accuracy metrics

Forecasting performances of data-driven algorithms are tested using
accuracy metrics. The most common are the mean absolute percentage
error (MAPE), the root mean square error (RMSE), the coefficient of
variation of RMSE (CV-RMSE) and the mean average error (MAE) as-
sessed in 53%, 47%, 38% and 36% of the reviewed studies respectively.
The coefficient of determination (R2), the mean square error (MSE), the
mean relative error (MRE), the mean bias error (MBE) and the nor-
malized mean bias error (NMBE) can also be found in 27%, 16%, 9%,
2% and 4% of reviewed studies respectively. Finally, some authors
defined specific accuracy metrics such as the relative error (Liu, Chen, &
Mori, 2015), average error (Neto & Fiorelli, 2008) and accuracy rate
(Wahid & Kim, 2016; Yu, Haghighat, Fung, & Yoshino, 2010).

Different metrics provide different information on the forecasting
performances and the model behavior for different datasets (Hyndman
& Koehler, 2006). Contrariwise unit-based metrics (i.e. MAE or RMSE
for instance), performance evaluation based on error percentages pro-
vide normalized information. Thus, they should be preferred for com-
parisons between different models, studies and building typologies.
Since MAPE was the most used in reviewed articles, this metric has
been selected as the reference accuracy metric for the present review
work (and in Appendix A). Otherwise, when MAPE was not available
other metrics included CV-RMSE, RMSE, MAE and R2 were provided to
illustrate the forecasting performances of the different implemented
algorithms. The specific definition of each of these metrics can be found
in Eqs. (1)–(9).

∑= −
=

n
y yMean Absolute Error (MAE) 1 | |

i

n

forecasting i observed i
1

, ,
(1)

Table 1
Counting of the number of reviewed research papers implementing the different BECMF techniques from 2007 to 2019.

BECMF techniques 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Total

AR 1 1 2 3 1 8
Statistical regressions Supervised 1 2 3 2 2 3 3 16 17

Unsupervised 1 1
k-NN 2 2 1 5
DT 1 1 1 1 1 2 7
SVM Supervised 1 4 4 3 4 2 18 20

Unsupervised 1 1
Transfer learning 1 1

ANN Supervised 1 1 1 1 4 4 3 2 2 20 22
Unsupervised 1 1
Transfer learning 1 1

DNN Supervised 2 1 1 4 6
Unsupervised 1 1
Reinforcement 1 1

Ensemble Supervised 1 2 1 3 4 11 16
Unsupervised 1 2 3

Improved 2 2 1 1 6
Hybrid 1 1 1 3
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Also called Normalized RMSE (NRMSE) or Root Mean Square
Percentage Error (RMSPE)

= −
∑ −

∑ −

=

=

R
y y

y y

Cofficient of Determination ( ) (unitless)

1
( )

( ¯ )
i
n

forecasting i observed i

i
n

observed i observed

2

1 , ,
2

1 ,
2 (6)

∑= −
=

n
y yMean Bias Error (MBE) (W or kW) 1 ( )

i

n

forecasting i observed i
1

, ,
(7)

=
∑ −

=
y y

y

Normalized Mead Bias Error (NMBE) (%)
( )

¯
*100n i

n
forecasting i observed i

observed

1
1 , ,

(8)

=
−y y

y
Mean Relative Error (MRE)

¯ ¯
¯

forecasting i observed i

observed i

, ,

, (9)

With yforecasting,i is the forecasted energy consumption at time point i,
yobserved,i is the real energy consumption data at time point i, ȳobserved i, is
the average of the real energy data consumption over the considered
timeframe, and n is the total number of data in the dataset considered
for performance evaluation.

2.3. Single models

Single models are data-driven techniques implementing only one
predictive algorithm for a forecasting problem. In this paper, single
models include conventional methods with autoregressive models and
statistical regressions, classification-based methods with k nearest
neighbors and decision trees, support vector machine and artificial
neural networks.

2.3.1. Conventional methods
Conventional methods refer to autoregressive models and statistical

regressions, two popular techniques which have been widely im-
plemented for BECMF. They provide a good balance between im-
plementation simplicity and forecasting accuracy. However, they have
shown significant limitations with respect to the forecasting horizon
and the ability to model nonlinear data patterns.

2.3.1.1. Autoregressive models (AR). Autoregressive modeling is one of
the most classical modeling and forecasting techniques and is based on
statistical analysis of time-series. It only requires the training set to be
stationary: this means that statistical properties of the time-series
should be time-invariant, or in other words that the energy
consumption at a specific time should be similar to this of the recent
past. Common models include AR and auto-regressive integrated
moving average (ARIMA) models, also called Box–Jenkins models

(Box, Jenkins, & Reinsel, 2008). ARIMA(p,d,q) is composed of lagged
terms from the input time series with the autoregressive part AR(p) of
order p, and of lags of the forecasting error with the moving average
part MA(q) of order q. When the input time series is not stationary it
can be differentiated: the order d indicates the degree of differentiation.
When the time series already is stationary, and therefore differentiation
is not necessary, ARIMA can also be noted ARMA(p,q). The output of
ARIMA modeling is a linear equation, combining both the
autoregressive and moving average parts as follows:

∑ ∑= + −
=

−

=

−Y C φX θ εt̂
i

p

t i
j

q

j t j
1 1 (10)

With t the time-step, Ŷ the predicted value and X the time series values.
φ is the coefficient of the autoregressive model, θ the is coefficient of
the moving average model and C is a constant. ε is the forecasting error.

AR models are relatively simple to implement. Basic autoregressive
models only consider the recent past historical load demand data points
to predict its future states. Therefore, they can only provide short-term
forecasting, which limits their application scope and accuracy. Several
technical improvements have been developed to overcome these issues.
SARIMA models (seasonal ARIMA) (Jeong, Koo, & Hong, 2014) append
additional seasonal terms to a standard ARIMA to account for events
and trends happening at a regular pace. They are noted SARIMA(p,d,q)
(P,D,Q)s with p, d and q related to the non-seasonal part of the data as
presented above and P, D, Q the lagged terms of the seasonal part of the
data for a lag of S (the period of the events/trends). Also, ARIMAX
models (ARIMA with inclusion of eXogenous variables) (Newsham &
Birt, 2010) consider the impact of parameters other than the past load
demand on the energy consumption such as weather conditions or oc-
cupancy. They are added to the standard ARIMA models as a linear
combination the past b terms of their corresponding time series. AR-
IMAX models can then be noted ARIMAX(p,d,q,b). Finally, both
SARIMA and ARIMAX can be combined.

Indeed, Newsham and Birt (2010) developed a SARIMAX model
with occupancy data from network logins and daily power seasonality,
using IBM SPSS Statistics (“IBM SPSS Statistics, ” n.d.). It aimed to
forecast occupancy-related electricity load (lighting, office and lab
equipment, plug loads, without chiller power) of an office and research
building in Ontario, Canada. The model was compared to a SARIMA
model and results showed a MAPE of 1.24% and 1.22% for SARIMA and
SARIMAX respectively. Yun, Luck, Mago, & Cho (2012) implemented
four 4th-order ARX models to predict separately ahour-ahead building
cooling and heating loads. Three models were indexed with time (dif-
ferent hours of the day) or time periods and temperature levels. Test
cases were benchmark buildings simulated in EnergyPlus (“EnergyPlus,
” n.d.), a physics-based modeling software. Building typologies in-
cluded small-office, medium-office, midrise apartment and high-rise
apartment buildings. ARX models were compared to a simple AR
model, a multi-linear regression (MLR) model and a back-propagation
neural network (BPNN). The ARX model indexed with three time per-
iods of the day and five OAT levels performed better for every four
building types and for both cooling and heating periods. Dagnely,
Ruette, Tourwé, and Tsiporkova (2015) developed a seventh-order AR
model to forecast the next 72-h electricity load demand of an office
building in Brussels, Belgium. They proposed a comparison with an
ordinary least square regression (OLS) using Python Statsmodels
(“StatsModels: Statistics in Python — statsmodels 0.9.0 documentation,
” n.d.) and a support vector regression (SVR) using Python Scikit-Learn
(Scikit-Learn, 2019“Scikit-Learn: machine learning in Python, ” n.d.).
Various inputs combinations were considered including day type, oc-
cupancy, OAT, SR and previous-week same-day logged energy con-
sumption called “recency”. The AR model gave the best MAE of
2.01 kW. OLS performances ranged between a MAE of 2.05 kW for all
variables and a MAE of 3.74 kW with temperature only. SVM perfor-
mances ranged between a MAE of 1.94 for all variables and “recency”
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only, and a MAE of 3.46 kW with temperature only.

2.3.1.2. Statistical regressions. Statistical regressions aim to model a
relationship between an output and contributing inputs, also called
explanatory variables, in the form of an equation. For BECMF, several
types of statistical regressions can be found in the literature. These
include multiple linear regressions (MLR), also called conditional
demand analysis (CDA) (Parti & Parti, 1980); ordinary least square
regressions (OLS) (Dagnely et al., 2015); piecewise linear regressions
also called segmented regressions (Zheng, Zhuang, Lian, & Yu, 2017);
general linear regressions (Chou & Bui, 2014); elastic net regressions
(Fan, Xiao, & Zhao, 2017); Bayesian regressions (Gelman et al., 2013);
and Gaussian process regressions (Rasmussen & Williams, 2006). In
case that the modeling pattern shows high non-linearity, literatures
reported the efficiency of multivariate adaptive regression splines
(MARS) (Friedman, 1991).

Statistical regressions have been widely implemented for both pre-
occupancy (design phase) and post-occupancy forecasting studies such
as energy retrofit impact assessment. Their popularity is mostly related
to their simple implementation and relatively explicit formulation to
link output energy consumption to input explanatory variables.
Moreover, forecasting performance of statistical regressions are rea-
sonably good for most applications. Nevertheless, if the simplicity of
statistical regressions generally is a strong advantage it also induces one
of their major drawbacks. Indeed, most regression techniques are un-
able to deal with non-linear phenomena which are common in building
energy efficiency studies. Moreover, a large amount of data is also re-
quired to capture all possible scenarios.

For instance, Amber et al. (2017) implemented a MLR to predict the
daily electricity consumption of an administrative building and an
academic building in London, England. Input data included daily mean
OAT, RH, SR and WS, weekday index and building type, and were
narrowed down to daily mean OAT, weekday index and building type
after a collinearity study. Over five years of data collected. Four years
were used to train the regression model and one year to test it. Results
showed a MAPE of 8.58% for the administrative building and a MAPE
of 9.76% for the academic building. Pulido-Arcas, Pérez-Fargallo, and
Rubio-Bellido (2016) developed MLR forecasting models for office
buildings in Chile using a government database. It included building
characteristics with the number of stories, floor area, form ratio, wall-
to-window ratio (WWR), coefficient of performance (COP), energy ef-
ficiency ratio, and heating and cooling emission factors. Models were
adapted to nine locations with specific climate datasets. They were used
to assess total energy consumption (electricity and natural gas), com-
paring 77,000 possible office buildings for each climate locations. Nine
regression models were prepared and energy consumption forecasting
results (MAE) ranged between 0.11 kW and 0.41 kW.

For non-linear dynamics, statistical regressions with MARS can
compete with more complex data-driven methods presented in detail in
the following sections of this review. For cooling and heating load
forecasting Sekhar Roy, Roy, and Balas (2018) compared MARS with a
linear regression, a Gaussian process, a simple ANN, a radial basis
function neural network (RBFNN), an extreme learning machine (ELM)
model and an ensemble model of MARS and ELM. Models were trained
and tested with an open database of 768 building samples. For heating
load prediction, the ensemble model gave the highest accuracy and
MARS ranked second, followed by ANN, Gaussian Process, ELM, Linear
regression and RBFNN with a MAE of 0.037 kW, 0.077 kW, 0.085 kW,
0.175 kW, 0.189 kW, 0.196 kW and 0.354 kW, respectively. For cooling
load, models also ranked the same with the ensemble model first, then
MARS and ELM, with MAE of 0.127 kW, 0.146 kW and 0.238 kW, re-
spectively.

2.3.2. Classification-based methods
Classification-based methods have been successfully implemented

for modeling and forecasting purpose. Two of their most popular

representatives are k-nearest neighbors (k-NN) and decision trees (DT).
Both are intuitive techniques with high forecasting accuracy. However,
both are also limited by the need of comprehensive input dataset. They
allow only qualitative analyses of their results.

2.3.2.1. K-nearest neighbors (k-NN). K-nearest neighbors is a popular
technique for pattern clustering and classification that was first
introduced by Fix and Hodges, Jr (1951). When applied on time-
series, it relies on the idea that similar patterns can be identified and
classified according to their properties: for instance, energy demand or
consumption can be related to occupancy, weather data and other
relevant parameters. Thus, given a set of historic observations (energy
consumption and other variables), clusters are first created. They are
constructed with respect to a user-defined feature: peak load, average,
magnitude of daily load variation, daily consumption (integral), etc.
These features are calculated for each time series and then used for
classification. A less user dependent process relies on the calculation of
distances between each pair of time-series for which a metric is then to
be defined. A simple Euclidian distance for example can be used and
interpreted as a difference of energy consumption (Toffanin, 2016).
Then, new observation data are compared with the clusters by defining
a degree of closeness based on two criteria. The first criteria, the
parameter k, sets the number of neighbors (the closest data points) to
which the target observations should be compared. The second criteria
is the metric for comparison and classification. It is usually the same as
for the previous clustering step. Once the comparison is made and the
new observation data are associated to a specific cluster, energy
forecasting can be performed.

K-NN modeling is intuitive, relatively simple to implement and
shows good forecasting accuracy. In most reviewed studies, it has been
applied for short-term forecasting horizon with hourly time-step.
Similarly, to other classification methods, it has the advantage to enable
the utilization of categorical variables for energy driver considerations
and to create the neighbors groups. However, its forecasting ability
relies on the amount of input data available: the accuracy depends on
the presence of similar “conditions” resulting a similar output in the
database.

Valgaev and Kupzog (2016) developed a k-NN model for 24-h-ahead
overall electricity load forecasting of mixed-use buildings with different
sizes and aggregated end-consumers load. An Irish energy database
comprising over 6000 low-voltage buildings was used to model daily
profiles from smart-metering and day-type was also distinguished.
Three building sizes (25, 50 and 100 end-consumers) were then gen-
erated, with 70% of residential spaces and 30% of commercial spaces,
respectively, and with samples of 100 buildings for each size. Accuracy
results were assessed with MRE and showed that a higher number of
end-consumers induced less accurate forecasting results, with 0.975,
0.968 and 0.940 for 25, 50 and 100 end-consumers, respectively. Wahid
and Kim (2016) implemented k-NN for next-day total electricity con-
sumption forecasting of residential buildings using both MATLAB
(“MATLAB –MathWorks – MATLAB Simulink, ” n.d.) and Weka (“Weka
3 – Data Mining with Open Source Machine Learning Software in Java,
” n.d.) software. Appliance-level hourly energy consumption data were
collected for 520 apartments in Seoul, South Korea. Apartments were
then divided between low and high-power demand ones, considering
the daily profiles generated. Different training-testing ratios were con-
sidered, and results showed that the most robust ratio was 60%
training–40% testing, with 95.96% of accurately forecasted results. Ma,
Song, and Zhang (2017) proposed a method with combined weight
selection of similar days, applied on a government office building in
Jiangsu Province, China. Based on day type and daily weather type
(sunny, cloudy, rainy, and overcast), they extracted hourly OAT,
lighting and plug, and air-conditioning loads to create daily electricity
load profiles. One reference working day and one reference vacation
day were then used with each weather scenario to forecast hourly air
conditioning (AC) load. An eQuest (physics-based) model (“eQUEST, ”
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n.d.) was also implemented for comparison. The relative errors for
physics-based modeling and k-NN models, for working day/vacation
day ranged between [5.59%; 13.6%]/[5.23%; 17.6%] and [1.31%;
5.05%]/[0.83%; 3.68%], respectively. Lachut, Banerjee, & Rollins
(2014) developed 5-NN (k=5) forecasting models to predict building-
level power demand in residential buildings. They used their own da-
taset recorded on seven different buildings. Data provided electricity
loads with 30-s time-step and were aggregated to hourly, 6-h, daily and
weekly time-step, depending on the forecasting horizon. k-NN was
compared with Bayesian regression, SVM and ARMA(1,1) using past
24-h loads with time-related information (hour of the day, day of the
week and quarter of the day). Results showed that k-NN performed
better for both appliance and home levels with a one-week forecasting
horizon. However, it was the least performing algorithms for 1 h-, 6 h-
and one day-ahead forecasting horizons.

2.3.2.2. Decision trees (DT). Decision trees are a popular machine
learning method also applied in regression problems for forecasting
applications. It follows the simple idea of a tree growing from roots to
leaves. Hence, a DT starts with a root node leading to other successive
non-leaf nodes. At each node, a test is performed by considering a
specific condition on an input variable, either binary or categorical, and
the branches keep splitting until leaf-nodes are reached to figure a
possible value of the predicted output (Fig. 2). There is then a path to
follow from the root node to the leaf-nodes through decision-making.

Several types of DT have been developed. The most common for
building energy consumption forecasting are classification and regres-
sion trees (CART) (Breiman, Friedman, Olshen, & Stone, 1984), chi-
squared automatic interaction detector (CHAID) (Kass, 1980), ID3 (J R
Quinlan, 1986), C4.5 (John Ross Quinlan, 1993), and C5.0. CART refer
to classification trees when the predicted output is the class the data
belongs to, and to regression trees when the predicted output is a
number (for forecasting applications). CHAID detects interdependency
between the different variables of a dataset and therefore allows to
study the influence of explanatory variables on the result. Finally, C4.5
is an entropy measurement-based DT and improved version of ID3. C5.0
is an optimized version of C4.5 in terms of computation speed, memory
allocation and tree sizing.

DT are flexible techniques that have been applied for both early
design stage and post-occupancy studies. The accuracy of prediction
results is comparable to other single data-driven techniques such as
artificial neural networks and support vector machines. However, DT
have the significant advantage to be easy to apprehend and with rea-
sonably complicated implementation and operation.

Tso and Yau (2007) compared stepwise regression, multi-layer
perceptron (MLP) and DT models of residential households in Hong-

Kong. 1516 buildings were surveyed during two distinct periods, in
winter and summer. They collected power rating appliances for each
end-use and their corresponding half-hour time-step usage patterns. A
database was then created and divided into three categories with re-
sidential housing types, household characteristics and appliance own-
ership details. Each of the models was trained with the same database,
for both periods. Results for electricity consumption forecasting showed
that the DT performed slightly better for summer time with RMSE of
39.36 kWh, compared to the ANN (RMSE of 39.53 kWh) and the re-
gression (RMSE of 39.42 kWh). However, higher accuracy was achieved
for winter time with the ANN (44.14 kWh) and with the regression
(44.18 kWh) than with DT (44.40 kWh). Chou and Bui (2014) com-
pared several models including CART, CHAID, SVR, ANN, general
linear regression and ensemble models with different combinations of
these techniques. They were implemented in IBM SPSS Modeler (IBM
SPSS Modeler, 2019“IBM SPSS Modeler, ” n.d.) to predict separate
heating and cooling load of twelve different building types. Input
variables were extracted from an open-database of 768 building sam-
ples simulated in Ecotect tool (Tsanas & Xifara, 2012). It included re-
lative compactness, surface area, wall area, roof area, overall height,
orientation, glazing area and glazing area distribution. For cooling load
assessment results (MAPE), methods ranked as follows: SVM with
2.99%, the four different ensemble models between 3.46% and 3.54%,
then CART & CHAID both with 4.02%, ANN with 4.40% and regression
with 4.96%. For heating load (MAPE), the method ranking was: SVR
with 1.13%, the four different ensemble models between 1.56% and
1.61%, CART with 2.10%, ANN with 2.36% CHAID with 2.41% and
regression with 4.59%. Finally, Yu et al. (2010) implemented a C4.5 DT
to model building energy use intensity with Weka Software (“Weka 3 –
Data Mining with Open Source Machine Learning Software in Java, ”
n.d.). It was based on an 80-residential-building database from six
different Japanese districts. The database included energy uses of the
different energy sources in each building and at different time-steps,
with outdoor air temperature, building characteristics and other in-
formation such as occupant number and energy saving measures. The
C4.5 DT assessed the energy use intensity for each building and clas-
sified them as “HIGH” or “LOW”. Results showed a 92% success rate for
the classification.

2.3.3. Support vector machines (SVM)
Support vector machines (Cortes & Vapnik, 1995) are a popular and

efficient technique for non-linear problems solving. It gives accurate
results even with a relatively limited amount of available data. For
forecasting applications, the process is similar to the resolution of a
regression problem and is called support vector regression (SVR)
(Smola & Schölkopf, 2004). Therefore, as for all regression problems,

Fig. 2. Schematic of a DT (decision tree) with input-variable-based conditional separating into non-leaf nodes until final leaf-nodes are reached.
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the goal is to find a best-fitting function which in SVR modeling is
developed based on the search of a decision hyperplane splitting a given
dataset into two sub-datasets. Moreover, the particularity of SVR is that
it tolerates an error in the regression. This error is called largest margin
and is defined as the maximum distance between the separation
boundary of the hyperplane and the closest data samples, named sup-
port vectors (Fig. 3). Finally, the key feature of SVR is the definition of a
kernel function. The idea behind the kernel function is to change the
representation space of the datasets to a higher dimension where there
is probably a linear separation of the two datasets. Indeed, sometimes a
dataset cannot be directly and linearly divided into two sub-datasets.
Then, the kernel selection has a significant impact on the performance
of SVM model. It can be linear, polynomial or a radial basis function
(RBF), also called Gaussian kernel. Several sub-types of SVM can also be
found in the literature such as a simplification of standard SVM called
least-square SVM (LS-SVM) (Li, Lu, Ding, Xu, & Li, 2009), ε-SVR and ν-
SVR (Zhang et al., 2016). However, a detailed description of these
techniques is beyond the scope of this study.

SVR have been implemented with most time-steps, input variables
and considering real or simulated data. Nevertheless, despite competi-
tive forecasting performances and application flexibility, SVM present a
major drawback: the calibration of their parameter is a difficult but
decisive process for prediction accuracy. For instance, the kernel
function for example is challenging to accurately determine and sig-
nificantly affects the accuracy of the forecasting. Therefore, the opti-
mization of SVM parameters has become a key challenge in building
energy studies (Chen & Yang, 2018; Fu, Li, Zhang, ö Xu, 2015). Finally,
as a black-box model SVM is completely non-transparent in terms of
physics-based interpretation.

Paudel et al. (2017) implemented SVM with LIBSVM library (Chang
& Lin, 2013) to a TRNSYS-simulated (“TRNSYS: Transient System
Simulation Tool, ” n.d.) residential low energy building, in four dif-
ferent French cities and with four different climatic conditions. They
aimed to forecast the combined cooling and heating energy demand
with input variables including OAT, SR, solar gain through window and
on walls, past-time steps of these variables, occupancy profile and day
indicator. Two different kernel functions were selected. A linear kernel
was used to train a SVM and determine the weight of weather data on
the energy consumption. A RBF kernel was used for the prediction of
the energy load. Three simulation scenarios were implemented, with
different combinations of input variables after a “relevant data” selec-
tion using the linear kernel SVM. Results gave median RMSE of
13.1 kW, 4.2 kW and 3.2 kW for the three scenarios, respectively. Also,
the relevant data selection was compared to an all-input model for the
third scenario and showed that input selection could improve the

forecasting accuracy with median RMSE of 3.4 kW against 9.1 kW.
Support vector machines also perform rather well compared to

other popular data-driven techniques such as ANN or statistical re-
gressions. For instance, Massana, Pous, Burgas, Melendez, & Colomer
(2015) proposed a comparison of the three methods implemented on
Weka software (Weka, 2019“Weka 3 – Data Mining with Open Source
Machine Learning Software in Java, ” n.d.) for short-term electric load
forecasting of an university office building in Girona, Spain. Seven
different scenarios were tested for different combinations of input
variables with filtered and non-filtered instances. The SVR model had
higher accuracy, followed by a multilayer perceptron (MLP) and a
multilinear regression (MLR) models. This study as for (Paudel et al.,
2017), also highlighted that the modeling accuracy increased with the
selection of variables and the filtering of instances. With all variables
and all instances, the MAPE was of 24.3%, 23.72% and 14.32% while
with filtered instances for occupation and OAT, the MAPE was of 5.2%,
1% and 0.06%, for MLR, MLP and SVR, respectively. Li et al. (2009)
studied short-term cooling load forecasting of a DeST-simulated (“DeST
simulation software, ” n.d.) office building in Guangzhou, China. They
built a LS-SVM model with Gaussian function kernel using mySVM
software kit (mySVM, 2019“mySVM – TU Dortmund, ” n.d.) that was
compared it to a back propagation neural network (BPNN) im-
plemented with MATLAB (“MATLAB – MathWorks – MATLAB
Simulink, ” n.d.). Both models used hourly OAT, RH and SR as input
variables. Results showed that LS-SVM was more accurate than BPNN
with a CV-RMSE of 5.56% and 11.8%, respectively. Fu et al. (2015)
proposed a ε-SVR with Gaussian kernel function for an historical record
storage and office building in Shanghai, China. They aimed to perform
day-ahead prediction of the four major building loads separately and
aggregated using day type indicator, OAT, DPT and previous 48 h
electricity loads. The ε-SVR was compared with ARIMAX, ANN and
reduced-error pruning tree models. The former outperformed all three
other techniques and for all five loads. Total load showed a CV-RMSE of
15.2% compared to 22.4%, 27.2% and 22.1% for ARIMAX, reduced-
error pruning tree and ANN, respectively. Liu et al. (2015) studied total
electricity consumption of a campus building and an office building
with energy-saving measures. They implemented a SVR using MATLAB
with LIBSVM (Chang & Lin, 2013) and its FarutoUltimate (Li, 2011)
toolbox. One month of hourly load data were collected and divided into
three weeks for model training and one week for testing. Results
showed a higher R2 of 0.906 for the first and of 0.921 for the second
building, compared to 0.822 and 0.843 for an ARIMA model. Zhang,
Zhao, Zhang, Fan, and Li (2017) developed support vector regression
(SVR) and multiple linear regression (MLR) in Python Scikit-Learn
(Scikit-Learn, 2019“Scikit-Learn: machine learning in Python, ” n.d.)
environment to model and forecast the cooling load of a virtual large
office building. One year of hourly cooling load was simulated with
EnergyPlus (EnergyPlus, 2019“EnergyPlus, ” n.d.) under Miami cli-
mate, Florida, United States. Inputs of machine algorithms included
OAT, RH, WS, WD, SR and cooling loads at previous 1, 2, 3, 4 and 24 h.
Input data were first selected for modeling using distance-correlation-
based input method. The basic approaches were also improved with a
prediction error correction according to the type of day and hour of the
day. Results showed that the error correction improved the MLR fore-
casting accuracy with a MAPE reduction from 7.10% to 5.51%. How-
ever, it was less effective for SVR with a MAPE reduction from 5.70% to
5.66%.

2.3.4. Artificial neural networks (ANN)
Artificial neural networks modeling is one of the most applied data-

driven BECMF methods. It is a nonlinear machine learning technique
inspired from neural networks in the human brain of which it copies the
information propagation process in a simplified manner. First, an in-
formation coming from a processing element (neuron) is sent with a
weight (synapse) through a link (axon) to following processing ele-
ments. These combine the information received with other incoming

Fig. 3. Representation of the division of a dataset into two subsets using SVR.
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information from other neurons, using a combining function (dendrite).
Finally, the combination of weighted information is sent to other re-
ceivers, depending on an activation function, also called transfer
function (cell body). The process is repeated as many times as the
number of layers in the network and until the model accurately fits the
data (when the error rate converges) or when the maximum number of
iterations is reached (with or without error convergence). The basic
form of ANN is composed of three layers: an input layer used either to
train the model or to get prediction from input data in the testing phase,
an output layer giving the final result(s), and a hidden layer bridging
between inputs and outputs (the number and structure can be modified
depending on the type of ANN and the needs of the modeling) (Fig. 4).
An ANN is usually designed according to three different criteria: (1) the
interconnections between the different neurons of different layers –
how many neurons from how many layers are communicating in what
specific way; (2) the learning method – how the final error is retro-
propagated in the network and how it affects the different weights (the
error retro-propagation is not illustrated in Fig. 4); (3) the activation
functions of each neurons based on the input (Magoulès & Zhao, 2016)
(for different layers, the activation functions can be different).

ANN are highly flexible and adaptable models. They enable most
forecasting problem solving including with non-linear patterns. They
have been applied for short- to long-term forecasting horizon, using any
time-step available and any type of input data. However, as most data-
driven techniques, one of the major disadvantages of ANN application
is the black-box nature of the model with no transparency in terms of
physical interpretation. Moreover ANN models are subject to overfitting
(Chalal et al., 2016; Massana et al., 2015). They tend to perform very
well for one specific dataset but poorly if the same model is applied on
another dataset (for training and testing steps for instance). The risk of
overfitting increases with the degree of complexity of a model that is
usually raised when higher accuracy is targeted. Solutions have been
suggested to prevent this issue. A particular attention should be di-
rected structure modification of hidden layers of ANN (Ahmad,
Mourshed, & Rezgui, 2017) during the training phase. Using regular-
ization techniques is also possible, especially with large input dataset
(L’Heureux, Grolinger, Elyamany, & Capretz, 2017). For example, a pre-
selection on input variables can be performed with respect to their
impact on the energy consumption to reduce the amount of data pro-
cessed and the complexity of the model. Indeed, Massana et al. (2015)
showed that a pre-selection of the input parameters significantly af-
fected their forecasting results. In their study, higher accuracy was
obtained using OAT, occupancy, type of day and hour of the day with
filtered instances, resulting in a reduced MAPE of 0.45% for a MLP
compared to all non-filtered inputs with a MAPE of 23.7%.

It should be highlighted that ANN is a generic term. Therefore,
different specific types of ANN exist to be used in various situations and
with different level of complexity and accuracy. The review of the lit-
erature presented feed forward neural networks (FFNN) (Jovanović,
Sretenović, & Živković, 2015) and back propagation neural networks

(BPNN) (Wang, Wang, Li, Zhu, & Zhao, 2014), radial basis function
neural networks (RBFNN) (Lee & Ko, 2009), a derivative of FFNN called
extreme learning machine (ELM) (Sekhar Roy et al., 2018), adaptive
network-based fuzzy interference systems (ANFIS) (Ghanbari,
Abbasian-Naghneh, & Hadavandi, 2011) and multi-layer perceptron
(MLP) (Amasyali & El-Gohary, 2018) which is the premise of deep
learning ANN. More advanced ANN sub-classes can also be found such
as recurrent neural networks (RNN) (Mocanu, Nguyen, Gibescu, &
Kling, 2016) or nonlinear autoregressive model with exogenous inputs
(NARX) (Mena, Rodríguez, Castilla, & Arahal, 2014) and probabilistic
entropy-based neural networks (PENN) (Kwok & Lee, 2011).

Mena et al. (2014) implemented an ANN with NARX architecture
for a bioclimatic university building in Almeria, Spain. One year and a
half of electric load data with 1-min time-step were collected. Input
parameters included the type of days, hour of the day, OAT, SR, state of
several cooling and heating equipment and combined electric power
demand. A full-input model was built and compared to model with
limited input (in that case the solar cooling system information were
removed). Building energy consumption was forecasted with 1-min-
ahead, 1-h-ahead and “infinite” horizons. Kwok and Lee (2011) used a
specific type of ANN called probabilistic entropy-based neural network
(PENN) to forecast the cooling load of an office building in Hong-Kong.
It used hourly weather data including OAT, RH, rainfall, WS, bright
sunshine duration and SR. Occupancy was also considered with occu-
pancy rate and internal load. Three models were designed: (1) only
weather input parameters, (2) weather inputs and occupancy area and
(3) all input parameters. The cooling load was forecasted hourly with a
one week-ahead horizon. Results showed that the third model was the
most accurate with CV-RMSE (95% lower and upper limits) of
11.41%–17.17% compared to the second and first models with
14.84%–30.09% and 40.38%–52.05%, respectively. Bagnasco, Fresi,
Saviozzi, Silvestro, and Vinci (2015) implemented a MLP with MATLAB
(MATLAB, 2019“MATLAB – MathWorks – MATLAB Simulink, ” n.d.) to
forecast total electricity consumption of a hospital complex in Turin,
Italy. They used one year of 15-min load data and divided the year of
observation into quarters to enhance the prediction force of the model.
Input variables were the load of the previous day and of the same-day
previous-week, the average of the previous day energy consumption,
the type of day, the timestamp and the OAT. MLP was implemented for
all four quarters, trained with two months and half of data and tested
with fifteen days of data. Forecasting results showed a mean MAPE of
7%. Finally, Biswas, Robinson, and Fumo (2016) proposed two feed-
forward artificial neural network (FFNN) with optimization of the
convergence speed and accuracy and of the initialization of the algo-
rithms, using MATLAB Neural Network Toolbox (Neural Network
Toolbox, 2019“Neural Network Toolbox – MATLAB, ” n.d.). These
FFNN aimed to predict daily electricity consumption for a research and
demonstration residential building located in Texas, USA, using the
timestamp, daily mean OAT and daily SR. Data were collected for three
months. Models were trained with 70% of the dataset and validated and

Fig. 4. Schematic of a classical three-layer ANN.
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tested with the remaining 30%. The FFNN performances were assessed
with a coefficient of determination, R2, ranging between 0.871 and
0.878.

Compared to other forecasting techniques, ANN rank among the
most accurate. Ahmad et al. (2017) compared FFNN implemented with
Python NeuroLab (“NeuroLab 0.3.5, Neural Network Library for Py-
thon,” n.d.) to random forest decision tree (RF) built with Scikit-Learn
(“Scikit-Learn: machine learning in Python, ” n.d.) for hourly prediction
of combined heating and cooling loads in a hotel building in Madrid,
Spain. They showed that the RF actually performed better than the
FFNN using all variables (RMSE of 4.66 kWh against 4.72 kWh) while
the ANN performed better than the RF with a selection of relevant
variables based on their impact on the energy consumption (4.60 kWh
against 4.84 kWh). Zhao, Zhong, Zhang, and Su (2016) proposed a
comparison of ANN, SVM and ARIMA models to forecast combined
heating and cooling energy consumption in Chinese office buildings in
Shanghai, Nanjing and Changsha. All models where developed using
IBM SPSS Modeler (IBM SPSS Modeler, 2019“IBM SPSS Modeler, ”
n.d.). Results showed that the ANN performed better than the SVM and
that both outperformed the ARIMA with a MAPE of 0.15%–0.11%,
0.21%–0.18% and 0.41%–0.33%, respectively (first–second month
testing samples).

With the recent popularization of the technique, deep learning
models defined as “computational models that are composed of mul-
tiple processing layers to learn representations of data with multiple
levels of abstraction” (LeCun, Bengio, & Hinton, 2015) have sig-
nificantly gained in interest in BECMF studies. Deep learning modeling
can be regarded as a technique similar to ANN. However, while stan-
dard ANN have only three layers (one input, one hidden and one output
layer), deep learning neural networks (DNN) develop more complex
algorithm architecture and training schemes. Hence, the number and
structure of the hidden layers are adapted depending on their function
in the modeling process (Fig. 5). Moreover, the training process is not as
straightforward as in conventional ANN. The definition of specific op-
erators to provide more flexibility to the model and achieve higher
accuracy.

Thus, ANN with more than three layers can be considered as a DNN.
For instance, MLP as implemented in (Bagnasco et al., 2015; Massana
et al., 2015; Tso & Yau, 2007) can contain three or more layers. RNN
(Mocanu, Nguyen, Gibescu, et al., 2016) also fall in this class of neural
networks. Besides, other examples can be found in the literature.
Marino, Amarasinghe, and Manic (2016) compared a deep recurrent
neural network called long short-term memory. They aimed to forecast
the electricity load of a benchmark single residential building. They
used the date and time of the targeted prediction together with the
previous time-step of power demand. Data were collected for four
years: at 1-min time-step for hour-ahead forecasting the DNN gave a
RMSE of 0.667 kW; at 1-h time-step for 60-h ahead forecasting, the
DNN gave a RMSE of 0.625 kW. Amber et al. (2018) compared a two-

layer DNN with genetic programming (GP), ANN, SVR and MLR. ANN
and DNN algorithms were developed with TensorFlow library
(TensorFlow, 2019“TensorFlow, ” n.d.) and SVR was developed with
libSVM (Chang & Lin, 2013). Authors used an administrative university
building located in London, England as a case-study. They aimed to
predict the daily building electricity consumption per unit of surface
using daily mean OAT, RH and WS, and a weekday index. All models
were trained using three years of data and were tested with one year of
data. Results showed that ANN outperformed other techniques with a
MAPE of 6%. The multiple regression gave a MAPE of 8.5%, SVM gave
9% and DNN gave a MAPE of 11.15%. Mocanu, Nguyen, Gibescu, et al.
(2016) proposed two DNN implemented on MATLAB (“MATLAB –
MathWorks – MATLAB Simulink, ” n.d.), namely conditional restricted
Boltzmann machine (CRBM) and factored CRBM (FCRBM). They used
an open dataset with aggregated and sub-metered active power data
from a benchmark single residential housing. Energy consumption
forecast was performed with different time-steps (1 min to one week)
and for different forecasting horizons (15-min-ahead to one-year-
ahead), using past time-steps of electric load demand. The two methods
were compared with ANN, SVM and RNN. The FCRBM gave the best
accuracy for all time-steps and all forecasting horizons. Fan, Wang,
Gang, and Li (2019) compared various approaches and model archi-
tectures for forecasting with deep recurrent neural networks developed
with R software programming (“R: The R Project for Statistical
Computing, ” n.d.) and Keras package (Keras Documentation,
2019“Keras Documentation, ” n.d.). They aimed to forecast the cooling
load demand of an educational building in Hong-Kong with half-hour
time-step at 24-h-ahead prediction horizon. Input variables included
OAT, RH and past time-steps of cooling load power demand, collected
over one year. 70% of the dataset were used for model training and
30% were used for testing. Performances of the algorithms ranged be-
tween a CV-RMSE of 16.0% for the best performing model, a DNN with
gated recurrent unit and direct inference approach, and a CV-RMSE of
38% for the least performing method, a DNN with long short-term
memory and recursive inference approach. Finally, Shi et al. (Shi, Liu, &
Wei, 2016) proposed the study of a type of RNN called echo state
network (ESN) using neuron reservoirs instead of the classical hidden
layer. It was implemented for an office building in China to predict
hourly electricity consumption and using 6 different reservoir topolo-
gies. Four years of breakdown hourly load data were collected, and
OAT and building occupancy were used as inputs. Models considered
only working days to assess the three main building loads (lights, plugs
and AC), total rooms load for four types of rooms and total building
electricity demand. Errors for the whole building (CV-RMSE) were be-
tween 3.72% and 4.97% depending on the typology of reservoir.

2.4. Combined models

Combined models focus on the optimization of forecasting

Fig. 5. Schematic of a Deep Neural Network with n hidden layers.
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techniques to improve the prediction accuracy. Combined modeling
framework either mixes several single algorithms together (ensemble
models) or with optimization methods (improved models).

2.4.1. Ensemble models
Ensemble models are data-driven algorithms designed for fore-

casting applications. They use a specific framework focusing on the
improvement of prediction performance and on the tradeoff of the
strengths and weaknesses of predictive algorithms. The ensemble
modeling framework comprises two main steps (Fan et al., 2014): (1)
several sub-models called “base learners” (for homogenous ensemble
models) or “base models” (for heterogeneous ensemble models) are
obtained; (2) the comparison of their respective forecasting results is
performed, these results are weighted depending on their accuracy and
they are combined to generate the optimal output of the ensemble
model.

The general ensemble modeling process can further adopt different
approaches (Wang & Srinivasan, 2017). A first strategy is called
homogenous modeling. It creates sub-samples from the original dataset
which are processed through one specific single data-driven technique.
The results obtained for each sub-sample, the base learners, are
weighted based on their respective prediction performances and are
combined into the ensemble model. Two additional specific paths can
also be used for homogeneous modeling (Alobaidi, Chebana, & Meguid,
2018): sequential or in-series learning whose classical examples are
boosting algorithms (Schapire & Singer, 1999), and which generates

base learners sequentially to exploit their interdependence (Fig. 6d);
parallel learning which can refer to bagging method (Breiman, 1996) is
also called bootstrap aggregation method and generates base learners in
parallel to exploit their independence (Fig. 6c). The former more spe-
cifically aims to reduce the variance of the estimates of each base
learner, while the latter targets bias reduction. Finally, the second
strategy for ensemble modeling is called heterogeneous modeling and
can refer to stacking techniques (Wolpert, 1992) (Fig. 6b). It uses sev-
eral different single forecasting algorithms trained on the same dataset
(Step 1). The forecasting results from each base model are weighted to
give the ensemble model (Step 2). To compare with the different en-
semble modeling processes, Fig. 6a illustrates single techniques mod-
eling process when a unique dataset is processed by a unique algorithm
to give forecasting results.

Ensemble models have gained in interest for BECMF in the past few
years. They provide better prediction accuracy than regular single
models and they have been applied to various case-studies with dif-
ferent time-steps and types of data. However, the increasing of pre-
diction accuracy is paid in complexity. Indeed, the framework of en-
semble learning is particularly challenging to implement and requires
advanced expertise in machine learning. Moreover, it is completely a
black-box modeling process, and the prediction horizon in the reviewed
studies has been limited to short-term forecasting.

Typical examples of homogenous ensemble learning models are
improved decision trees such as random forest (RF) and boosting de-
cision trees (BDT). They have the main advantage to correct the

Fig. 6. Comparison between (a) single, (b) heterogeneous ensemble, (c) parallel fomogeneous ensemble and (d) sequential homogeneous ensemble models.
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tendency of standard DT to overfit their training set. RF consists in a
group of several decision trees whose results are aggregated into one
final result (Breiman, 2001). They usually use a two-level randomiza-
tion strategy. First each trained with a random subset of observations
and then each tree node is divided by considering a random subset of
variables. BDT, and their modified version called gradient boosted de-
cision trees (GBDT) (Ho, 1995), are based on classification and re-
gression tree (CART) methodology. They use boosting techniques: in
the modeling process a sequence of simple decision trees are developed,
with each successive tree modeling the residuals of the precedent one.
The final model is a weighted additive binary tree model (Elith,
Leathwick, & Hastie, 2008). Tsanas and Xifara (2012) compared an
iterative reweighted least square regression method to a RF model to
predict the heating and cooling load of residential buildings simulated
with Ecotect tool. They created an open database including eight pas-
sive systems variables (Xifara & Tsanas, n.d.). Results showed that RF
outperformed the regression, with a MAE of 0.51 kW/1.42 kW and
2.14 kW/2.21 kW, for heating/cooling loads and for both models, re-
spectively. Wang, Wang, Zeng, Srinivasan, and Ahrentzen (2018)
compared a RF to a regression tree and a SVR for the forecasting of
electricity consumption in two institutional buildings, including a LEED
building, in Florida, USA. Input data were OAT, DPR, RH, pressure,
precipitation, WS, SR, estimated occupancy from daily operation and
class schedule, time of the day, workday type and day type. Data were
collected over a typical year of operation: 80% of the dataset was used
for model training and 20% for testing. RF outperformed both the re-
gression tree and SVR for both buildings. For the LEED building, RF had
a MAPE of 7.75% compared to 8.04% for SVR and 8.90% for the re-
gression tree. For the second building, RF had a MAPE of 11.93%,
compared to 12.21% for SVR and 14.50% for the regression tree.
Papadopoulos, Azar, Woon, & Kontokosta (2017) proposed a compar-
ison of three different ensemble DT-based models implemented with
Python Scikit-Learn (Scikit-Learn, 2019“Scikit-Learn: machine learning
in Python, ” n.d.). They developed a RF, an extra randomized trees and
a GBDT to forecast combined heating and cooling loads. Using an open
database (Xifara & Tsanas, n.d.) they compared their forecasting
method with results from Tsanas and Xifara (Tsanas & Xifara, 2012)
(regression and RF models), Chou and Bui (Chou & Bui, 2014) (SVM
and ensemble ANN-SVM models) and Castelli et al. (genetic program-
ming) (Castelli, Trujillo, Vanneschi, & Popovič, 2015). The perfor-
mances of the GBDT improved heating load forecasting performances
by 8% to 68% for heating and by 51% to 63% for cooling load com-
pared to the three other studies. Wang, Wang, and Srinivasan (2018)
developed a homogeneous ensemble BDT using MATLAB (“MATLAB –
MathWorks – MATLAB Simulink, ” n.d.). It was applied on a LEED in-
stitutional building in the University of Florida for short-term electricity
demand prediction. The model used one year of time-series weather and
occupancy data, together with time of the day and day type. To provide
higher forecasting performance and because of the different usage
period of the building over the year, the dataset was portioned in three
sets for summer, fall and spring seasons. Moreover, a method called
“compact” modeling was proposed and applied to BDT to measure the
influence of the different features and select the most relevant ones for
forecasting. Results showed that BDT and compact BDT performed
better than CART, with 2.97%/4.62%/4.40%, 2.92%/4.40%/4.48%
and 3.08%/5.05%/5.06%, for periods of summer/spring/fall and for
the three models respectively. Nevertheless, it was also highlighted that
feature selection did not significantly improve forecasting accuracy.

Ensemble models have been implemented with other techniques
than based on decision trees. For instance, C. Fan et al. (2014) com-
pared a MLR, an ARIMA, a SVR with Gaussian kernel, a RF, a MLP, a
BDT, a MARS, a k-NN and an heterogeneous ensemble model combining
all eight single models. They were used for daily energy consumption
forecasting of a mixed-use (commercial center, offices and hotel) high-
rise building in Hong-Kong. Data collection included one year of 15-min
time-step building electricity data and one year of daily weather data.

The forecasting process also included an outlier detection and elim-
ination method. The ensemble model performed better with a MAPE of
2.32%. For comparison, the SVR was the second-best performing model
with a MAPE of 3.11% and the ARIMA was the least performing tech-
nique with a MAPE of 5.45%. Alobaidi et al. (2018) developed a
homogeneous MLP-FFNN-based ensemble model to forecast day-ahead
mean daily household electricity use. It was implemented with a smart
energy system in a French household, considering two years and nine
months electricity consumption and OAT datasets. The method aimed
to improve the dataset resampling in the heterogeneous ensemble
modeling process with a two-step strategy to prompt diversity in the
model and to better capture the different trends in the dataset. It also
targeted the improvement of ensemble model generation, using MLR to
combine base learners. The ensemble model was compared to a single
ANN and an ANN-based boosting ensemble model, all applied for every
days of a week one-by-one. The homogeneous ensemble model out-
performed the two latter techniques with a mean weekly MAPE of
14.4%, 18.3% and 15.2%, respectively.

2.4.2. Improved models
In the present study improved models are defined as the combina-

tion of single models and optimization techniques. This technique has
also been identified by Mat Daut et al. (2017) who referred to them as
“hybrid methods”. Optimization methods can include swarm in-
telligence algorithms such as particle swarm optimization (PSO)
(Kennedy & Eberhart, 1995) Genetic algorithms (GA) (Mitchell, 1998),
a popular sub-class of evolutionary algorithms or differential evolution
(DE) (Storn & Price, 1997).

Zhang et al. (2016) compared the efficiency of swarm intelligence
and evolutionary algorithms by applying three techniques: a GA, a
differential evolution (DE) algorithm and PSO for the optimization of
SVR parameters. All three optimization techniques were implemented
with R programming tool (The R Project for Statistical Computing,
2019“R: The R Project for Statistical Computing, ” n.d.) on ε-SVR and ν-
SVR models separately. Single models were compared to a weighted
combination of both types of SVR and optimized with DE. The different
techniques were tested on an institutional building in Singapore for
half-hour (10-day dataset, 8:2 training-testing ratio) and daily energy
forecasting (260-day dataset, 8:2 training-testing ratio). Inputs only
included the past energy demand of the building. The combination of
both types of SVR and DE showed the highest forecasting accuracy for
both half-hour and daily electricity consumption forecasting, with a
MAPE of 3.77% and 5.84%. For ε-SVR with GA, PSO and DE optimi-
zation, the MAPE were 6.67%, 5.44% and 5.44% for half-hourly time-
step and 5.93%, 5.95%, and 5.95% respectively for daily time-step. For
ν-SVR with GA, PSO and DE optimization, the MAPE was 3.77% for all
three techniques with half-hourly time-step and 6.37%, 6.36% and
6.36%, respectively for daily time-step. Besides, for energy consump-
tion prediction of residential buildings, Castelli et al. (2015) used ge-
netic programming (GP) with symbolic regression to develop an im-
proved model. Using an opened database of benchmark residential
building characteristics (Xifara and Tsanas, 2019Xifara & Tsanas, n.d.),
it performed with MAE of 0.51 kW for heating load and of 1.18 kW for
cooling load forecasting.

Castelli, Trujillo, Vanneschi, & Popovič (2015) compared a PSO-
ANN to simple ANN and GA-ANN (GA was used for the same purpose as
PSO). Two databases were used to predict hourly electricity consump-
tion for: 1) a research building from ASHRAE dataset located in USA
with four-month data collection including WS, SR, RH and OAT; 2) a
campus library located in East China with 100-day data collection in-
cluding estimated occupancy and daily OAT. For the former, 70% of the
data were used for training and 30% for testing. For the latter, 93% of
the data were used for training and the remaining 7% for testing.
Principal component analysis (PCA) (Jolliffe, 2002) was applied with
both case studies for relevant input data selection. PSO-ANN gave
better forecasting results than GA-ANN and ANN, with MAPE of 1.6%,
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1.9% and 2.2%, respectively, for the ASHRAE database. PSO-ANN also
outperformed GA-ANN and ANN when applied on the Chinese library
building with a MAPE of 5.9%, 7.1% and 8.0%. In an author study (K. Li
et al., 2018), authors developed an optimization strategy called
teaching-learning based optimization. It used evolutionary algorithms
combined with BPNN to improve convergence speed and forecasting
performances. A basic combined model was proposed, together with
five improved versions. Models were also coupled with PCA for relevant
input variables selection. Algorithms were compared with the PSO-ANN
and GA-ANN from the previous study (K. Li et al., 2015). Improved
teaching-learning based optimization ANN performed slightly better
than the two latter methods and for both buildings.

3. Machine learning approaches for data-driven techniques

The goal of data-driven techniques in BECMF studies is to model the
relationships between a combination of inputs and outputs under a
specific process. The model is then used to forecast building energy
consumption or power load demand. Model outputs are always known
since they are the target of the whole study. However, there exist dif-
ferent strategies regarding the utilization of input variables and the
extraction of features from an input dataset to train data-driven models.
Two main approaches have been used for input variable selection in
BECMF: supervised and unsupervised learning. Moreover, other tasks
exists such as reinforcement and transfer learning. This section dis-
cusses all four machine learning tasks and their application in BECMF
studies.

3.1. Supervised and unsupervised learning

Supervised learning can be understood as having input variables of
a model that are all labeled, indicating they have been clearly identified
before the modeling process. For building energy studies, it would
mean that inputs used to assess the energy consumption of a building
have been related to their tangible physical meaning (Fan et al., 2017).
For instance, the first variable would be outdoor air temperature, the
second would be occupancy and so on. Then identified variables can be
cleaned and pre-processed to select the most impacting on energy
consumption, or directly used as such for model training. Therefore,
most data-driven applications presented in the previous section use
supervised learning approach.

Unsupervised learning is the second main task of machine learning.
It has been largely implemented to make full use of big data collection
in buildings and its applications include data analytics, optimization,
control, identification of occupants behavior and anomaly detection
(Fan, Xiao, Li, & Wang, 2018; Miller, Nagy, & Schlueter, 2018). Con-
trariwise supervised learning, unsupervised learning uses unlabeled
data to discover relevant relationships within a dataset. Thus, a pre-
definition of specific data types which could influence the modeling
process is not implemented. More precisely, for BECMF applications,
feature extraction within an input variable dataset is independent from
the physical meaning of the variables. Popular techniques for un-
supervised feature extraction and classification include k-means (Jain,
2008), self-organizing maps (SOM) (Kohonen, 1997), hierarchical
clustering algorithms (Rokach & Maimon, 2005) and expectation
maximization algorithms (EM) (Dempster, Laird, & Rubin, 1977). The
detailed description of these classification methods is out of the scope of
this review, but interested reader can refer to Wei et al. (2018) for
further details. Using unsupervised approach, Tang, Kusiak, & Wei
(2014) investigated the impact of input data clustering on the predic-
tion accuracy of commercial combined heating and cooling demand
with short-term forecasting horizon. They first compared several single
(SVR, MLP) and ensemble models (RF, boosting tree and MLP-en-
semble) to highlight that a MLP-ensemble performed best. Then they
further prepared four input data pre-treatment scenarios applied on the
initial supervised MLP-ensemble model, and on a season-based model

and on two cluster-based models. Results showed an improvement of
the forecasting accuracy using clusters, with a MAPE of 3.62%, 3.64%,
3.32% and 3.22% for the single, seasonal-based, first cluster-based and
second-cluster based models respectively. Nilashi et al. (2017) im-
plemented both EM and principal component analysis (PCA) with an
adaptive network-based fuzzy inference system (ANFIS) for cooling and
heating load forecasting of residential buildings. Comparisons were
performed between seven forecasting techniques implemented with
MATLAB (MATLAB, 2019MATLAB –MathWorks –MATLAB Simulink, ”
n.d.): SVR, ANFIS, ANN, CART, MLR, PCA-ANFIS and an improved
model of MARS with artificial bee colony algorithm (Karaboga &
Basturk, 2007). Results showed that the prediction scheme with
EM+PCA+ANFIS performed better for both heating and cooling
loads, with a MAPE of 1.39% and 2.45% respectively. Finally, com-
paring the efficiency of both supervised and unsupervised approaches,
C. Fan et al. (2017) implemented seven forecasting techniques in-
cluding MLR, elastic net regression, RF, gradient boosting machine,
SVR, extreme gradient boosting decision tree (GBDT) and DNN, using
one year of half-hour data. Five input variable datasets were prepared,
based on supervised learning techniques. The first dataset included 1)
seven variables (OAT, RH and five-time indicators). The other four
datasets added 2) the past 24-h cooling load, OAT and RH; 3) the
previous time-step of cooling load, OAT and RH; 4) the previous 24-h
minimum, maximum, mean and standard deviation of the three vari-
ables; 5) the four most dominant frequencies resulting from a discrete
Fourier transform and performed on the previous 24-h for each of the
three time series. A sixth dataset was also prepared using an un-
supervised deep auto-encoder, a DNN, considering the four previous
feature extraction methods. The smallest forecasting error was obtained
using extreme GBDT with the unsupervised dataset (CV-RMSE of
17.8%). On the opposite, supervised learning approach did not show
evident advantages for building cooling load prediction.

3.2. Reinforcement and transfer learning

Reinforcement learning (Busoniu, Ernst, De Schutter, & Babuska,
2011) is an another approach in the field of machine learning and
differs from supervised and unsupervised learning. The process is not
based on feature extraction in input datasets or on data labeling. It is
inspired from psychology and follows a concept of learning through
rewarding. In reinforcement learning, an artificial agent figuring a de-
cision-maker is set up in a determined environment and with a specific
goal to achieve. The agent performs self-decided actions to reach the
predefined goal. For each action it moves within the environment and
receives a retro-fed information as a reward to let it know how far away
from the final target is its position (Fig. 7). Moreover, each performed
action is memorized by the agent to assess its efficiency based on the
reward received. Indeed, it aims to maximize the sum of rewards over
time to achieve the final state. Hence, agent must be able to learn and
decide on a strategy to automatically select a next action without any
intervention from a programmer. Therefore, reinforcement learning is
not supervised since it relies also on the results of agent-based actions
and not only on labeled input data. Reinforcement learning is not un-
supervised either as the nature of the reward is already known. Some
recent applications for building energy and forecasting studies can be
found in the literature. Mocanu, Nguyen, Kling, & Gibescu (2016) im-
plemented two reinforcement algorithms, namely Q-learning and state-
action-reward-state-action (SARSA) algorithms, with an unsupervised
deep belief network (DBN, a type of DNN) in MATLAB (MATLAB,
2019“MATLAB – MathWorks – MATLAB Simulink, ” n.d.). They used
seven years of hourly data to forecast energy consumption in a smart-
grid context. The database was divided between five different building
types and five scenarios were implemented for hour-ahead, day-ahead,
week-ahead and month-ahead forecasting with hourly time-step, and
year-ahead with weekly time-step. Among the tested model, the Q-
learning with DBN obtained the highest accuracy for every scenario and
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for both two transfer learning strategies. It was followed by
DBN+SARSA algorithm, while reinforcement learning algorithms
alone performed less accurately.

Furthermore, in this study the particularity of the training method
based on reinforcement learning algorithms lied in training models with
a dataset from a specific building type to forecast energy consumption
for another building with different characteristics. This method is called
transfer learning (Pan & Yang, 2010). In the specific case of BECMF, it
aims to use and adapt data from specific buildings to train forecasting
models implemented for energy demand prediction in other different
buildings. For instance, Mocanu, Nguyen, Kling, et al. (2016) used
commercial building data as a training set to predict the energy con-
sumption of residential buildings. They also used a similar process to
train a model using data for residential buildings without electric
heating to predict energy consumption of residential buildings with
electric heating. In another study, Ribeiro, Grolinger, ElYamany,
Higashino, & Capretz (2018) developed a specific approach for cross-
building (transfer learning) building energy forecasting using seasonal
and trend adjustment. They selected a case study of four different
schools with relatively similar but different energy behavior and cli-
mate locations. They proposed two modeling schemes based on their
transfer learning method: 1) a training set of one month of data from
the target building coupled with twelve months of data collected on the
other three buildings; 2) a training set of twelve months of data from
the target building coupled with twelve months of data collected on the
other three buildings. These schemes were compared with a classical
supervised machine learning approach with 3) one month and 4) twelve
months of data from one building to forecast the next month same-
building energy demand; (5) a training set combining one month from
the target building and twelve months of data from the other three. All
five schemes were tested with both a SVR and a MLP. Results high-
lighted the efficiency of the proposed transfer learning method over
classical supervised learning and for data-driven both techniques.
Nevertheless, it should be noted that the fourth training scheme also
produced good forecasted performances almost equivalent to these of
the transfer learning method.

4. Input data for data-driven techniques

4.1. Data characteristics

Input data are the driver of all approaches and techniques in the
reviewed studies. Input datasets have different characteristics with a
direct impact on the modeling and forecasting accuracy. First is the
origin of data classified in three main categories with real, simulated

and benchmark data accounting for 64%, 20% and 16% of the studied
in the present review work. Real data are directly collected from bill-
ings, energy meters, environment sensors and onsite surveys. Simulated
data are extracted from physics-based models of existing or unexisting
buildings, using tools such as EnergyPlus (“EnergyPlus, ” n.d.), TRNSYS
(TRNSYS, 2019“TRNSYS: Transient System Simulation Tool, ” n.d.),
DeST (“DeST simulation software, ” n.d.), Ecotect (“Ecotect Analysis |
Autodesk Knowledge Network, ” n.d.)or eQuest (“eQUEST, ” n.d.).
Benchmark data come from publicly-available datasets provided for
researchers to compare forecasting algorithms performances. Bench-
mark databases used in reviewed studies have been summarized in
Table 2.

The features in the dataset can be divided into six main groups: 1)
weather data grouping all data related to outdoor conditions; 2) indoor
environment to characterize the building indoor conditions; 3) occu-
pancy and occupants behavior; 4) time indicators that deliver in-
formation on the building operation and its energy behavior; 5) past
time-steps that account for the potential impact of past events on the
current and predicted states of the building energy; 6) building char-
acteristics with information on the building passive and active systems.
A more detailed list of the different types of input variables found in
reviewed studies and falling under these six main categories is provided
in Table 3. The number of studies referring to these data and the cor-
responding techniques implemented are also indicated. From the ana-
lysis of this table comes out the predominant usage of specific cate-
gories of data. Outdoor air temperature (OAT), outdoor relative
humidity (RH) and solar radiations (SR) are considered in thirty-two,
nineteen and eighteen different studies respectively. Indeed, these
parameters are easily accessible through various open-access or char-
ging weather databases platform (“Iowa Environmental Mesonet, ” n.d.;
“Meteonorm: Irradiation data for every place on Earth, ” n.d.). More-
over, their impact on building energy behavior is well known. Building
and equipment characteristics information are crucial as well to accu-
rately model building energy consumption. They can be accessed
through onsite surveys, design-related documents or energy standards.
On the opposite, some well-identified energy drivers were less con-
sidered, such as building occupancy: real occupancy data have been
reported in only seven reviewed studies. As a matter of fact challenges
lying in occupancy measurements (Yang, Santamouris, & Lee, 2016)
often lead to prefer the use of assumed occupancy schedules (used in
seven reviewed studies). Thus, because of data availability issues time-
related parameters such as the type of day, day of the week indexes and
the time of the day are considered to replace other time-dependent
measurements such as weather information, occupancy and usages or
equipment triggering. Similarly, past load demand data points have
been used in twenty-one reviewed articles. Indeed, past load demand
provides information on past energy behavior related to time periods,
building operation conditions and events similar to the future states of
the building energy demand, but for which specific data are unavail-
able. Finally, it should be mentioned that other parameters were much
less used because of their limited impact on building energy con-
sumption such as barometric pressure, cloud coverage or evaporation.
However, some of these features (indoor environment measurements or
CO2 levels for instance) could be relevant when considering building
comfort which impacts building energy consumption (Allab, Pellegrino,
Guo, Nefzaoui, & Kindinis, 2017).

The third input dataset characteristic is the granularity of the time-
series. Different time-steps may firstly relate to the need of the studies.
Indeed, using a very small time-step such as 1-min provides information
on very short and specific events in buildings energy demand patterns.
However, such precise information induce a very high variability of the
energy demand time series and therefore brings challenges and com-
plexity to obtain accurate forecasting (Mena et al., 2014). On the op-
posite, a larger granularity, such as weekly or monthly reporting pro-
vides information on building design features (Tsanas & Xifara, 2012)
and socio-economic related aspects (Yu et al., 2010). However, large

Fig. 7. Reinforcement learning modeling process with reward-based decision
making from an artificial agent.
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Table 3
Description of the different types of input data in the reviewed studies.

Main input data type Specific input data Techniques and reference using the data Number of
studies

Weather/outdoor environment Outdoor air temperature (OAT) AR: (Fu et al., 2015; Yun et al., 2012)
Regression: (Amber et al., 2017, 2018; Dagnely et al., 2015; Dong et al., 2016; Fan
et al., 2014, 2017; Massa Gray & Schmidt, 2018; Massana et al., 2015; Yun et al.,
2012; Zhang et al., 2017)
k-NN: (Fan et al., 2014; Ma et al., 2017)
DT: (Fu et al., 2015; Wang, Wang, & Srinivasan, 2018; Wang, Wang, Zeng, et al.,
2018; Yu et al., 2010)
SVM: (Amber et al., 2018; Dagnely et al., 2015; Dong et al., 2016; Fan et al., 2014,
2017; Fu et al., 2015; Li et al., 2009; Massana et al., 2015; Paudel et al., 2017;
Ribeiro et al., 2018; Tang et al., 2014; Wang, Wang, Zeng, et al., 2018; Zhao et al.,
2016)
ANN: (Ahmad et al., 2017; Alobaidi et al., 2018; Amber et al., 2018; Bagnasco et al.,
2015; Biswas et al., 2016; Dong et al., 2016; Fan et al., 2014; Fu et al., 2015; Kwok
& Lee, 2011; Li et al., 2009, 2015; Massana et al., 2015; Mena et al., 2014; Neto &
Fiorelli, 2008; Ribeiro et al., 2018; Tang et al., 2014; Yun et al., 2012; Zhao et al.,
2016)
DNN: (Amber et al., 2018; Fan et al., 2019, 2017; Shi et al., 2016)
Ensemble: (Ahmad et al., 2017; Alobaidi et al., 2018; Fan et al., 2014, 2017; Tang
et al., 2014; Wang, Wang, & Srinivasan, 2018; Wang, Wang, Zeng, et al., 2018)
Improved: (Dong et al., 2016; Li et al., 2015, 2018)
Hybrid: (Collinge et al., 2016; Dong et al., 2016; Massa Gray & Schmidt, 2018)

32

Dew point temperature (DPT) Regression: (Fan et al., 2014)
k-NN: (Fan et al., 2014)
DT: (Fu et al., 2015; Wang, Wang, & Srinivasan, 2018; Wang, Wang, Zeng, et al.,
2018)
SVM: (Fan et al., 2018; Fu et al., 2015; Ribeiro et al., 2018; Wang, Wang, Zeng,
et al., 2018)
ANN: (Ahmad et al., 2017; Fan et al., 2014; Fu et al., 2015; Ribeiro et al., 2018)
Ensemble: (Ahmad et al., 2017; Fan et al., 2014; Wang, Wang, & Srinivasan, 2018;
Wang, Wang, Zeng, et al., 2018)

7

Outdoor relative humidity
(RH)

Regression: (Amber et al., 2017, 2018; Fan et al., 2014, 2017; Massa Gray &
Schmidt, 2018; Massana et al., 2015; Yun et al., 2012; Zhang et al., 2017)
k-NN: (Fan et al., 2014)
DT: (Wang, Wang, & Srinivasan, 2018; Wang, Wang, Zeng, et al., 2018)
SVM: (Amber et al., 2018; Fan et al., 2014, 2017; Li et al., 2009; Massana et al.,
2015; Ribeiro et al., 2018; Tang et al., 2014; Wang, Wang, Zeng, et al., 2018)
ANN: (Ahmad et al., 2017; Amber et al., 2018; Fan et al., 2014; Kwok & Lee, 2011;
Li et al., 2015; Li et al., 2009; Massana et al., 2015; Neto & Fiorelli, 2008; Ribeiro
et al., 2018; Tang et al., 2014; Yun et al., 2012)
DNN: (Amber et al., 2018; Fan et al., 2019, 2017)
Ensemble: (Ahmad et al., 2017; Fan et al., 2014, 2017; Tang et al., 2014; Wang,
Wang, & Srinivasan, 2018; Wang, Wang, Zeng, et al., 2018)
Improved: (Li et al., 2015, 2018)

19

Wind speed (WS) Regression: (Fan et al., 2014; Yun et al., 2012; Zhang et al., 2017)
k-NN: (Fan et al., 2014)
DT: (Wang, Wang, & Srinivasan, 2018; Wang, Wang, Zeng, et al., 2018)
SVM: (Amber et al., 2018; Fan et al., 2014; Tang et al., 2014; Wang, Wang, Zeng,
et al., 2018)
ANN: (Ahmad et al., 2017; Amber et al., 2018; Fan et al., 2014; Kwok & Lee, 2011;
Li et al., 2015; Tang et al., 2014; Yun et al., 2012)
Ensemble: (Ahmad et al., 2017; Fan et al., 2014; Tang et al., 2014; Wang, Wang, &
Srinivasan, 2018; Wang, Wang, Zeng, et al., 2018)
Improved: (Li et al., 2015, 2018)

11

Wind direction (WD) Regression: (Zhang et al., 2017)
k-NN: (Fan et al., 2014)
DT: (Wang, Wang, & Srinivasan, 2018)
SVM: (Tang et al., 2014)
ANN: (Tang et al., 2014)
Ensemble: (Tang et al., 2014; Wang, Wang, Zeng, et al., 2018)

4

Rain level/rainfalls Regression: (Fan et al., 2014)
k-NN: (Fan et al., 2014)
DT: (Wang, Wang, & Srinivasan, 2018; Wang, Wang, Zeng, et al., 2018)
SVM: (Fan et al., 2014; Wang, Wang, Zeng, et al., 2018)
ANN: (Fan et al., 2014; Kwok & Lee, 2011)
Ensemble: (Fan et al., 2014; Wang, Wang, & Srinivasan, 2018; Wang, Wang, Zeng,
et al., 2018)

5

Solar radiation (SR) Regression: (Amber et al., 2017; Dagnely et al., 2015; Dong et al., 2016; Fan et al.,
2014; Massana et al., 2015; Yun et al., 2012; Zhang et al., 2017)
k-NN: (Fan et al., 2014)
DT: (Wang, Wang, & Srinivasan, 2018; Wang, Wang, Zeng, et al., 2018)
SVM: (Dagnely et al., 2015; Dong et al., 2016; Fan et al., 2014; Li et al., 2009;
Massana et al., 2015; Paudel et al., 2017; Tang et al., 2014; Wang, Wang, Zeng,
et al., 2018)

18
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Table 3 (continued)

Main input data type Specific input data Techniques and reference using the data Number of
studies

ANN: (Biswas et al., 2016; Dong et al., 2016; Fan et al., 2014; Kwok & Lee, 2011; Li
et al., 2009, 2015; Massana et al., 2015; Mena et al., 2014; Neto & Fiorelli, 2008;
Tang et al., 2014; Yun et al., 2012)
Ensemble: (Fan et al., 2014; Tang et al., 2014; Wang, Wang, & Srinivasan, 2018;
Wang, Wang, Zeng, et al., 2018)
Improved: (Dong et al., 2016; Li et al., 2018)
Hybrid: (Dong et al., 2016)

Solar gains SVM: (Paudel et al., 2017) 1
Bright sunshine duration ANN: (Kwok & Lee, 2011) 1
Cloud coverage Regression: (Fan et al., 2014)

k-NN: (Fan et al., 2014)
SVM: (Fan et al., 2014)
ANN: (Fan et al., 2014)
Ensemble: (Fan et al., 2014)

1

Evaporation Regression: (Fan et al., 2014)
k-NN: (Fan et al., 2014)
SVM: (Fan et al., 2014)
ANN: (Fan et al., 2014)
Ensemble: (Fan et al., 2014)

1

CO2 SVM: (Tang et al., 2014)
ANN: (Tang et al., 2014)
Ensemble: (Tang et al., 2014)

1

Barometric pressure Regression: (Fan et al., 2014)
k-NN: (Fan et al., 2014)
DT: (Wang, Wang, & Srinivasan, 2018; Wang, Wang, Zeng, et al., 2018)
SVM: (Fan et al., 2014)
ANN: (Fan et al., 2014; Tang et al., 2014)
Ensemble: (Fan et al., 2014; Tang et al., 2014; Wang, Wang, & Srinivasan, 2018;
Wang, Wang, Zeng, et al., 2018)

5

Weather type/category k-NN: (Ma et al., 2017) 1
Statistical data Physics-based: (Ma et al., 2017; Massa Gray & Schmidt, 2018; Neto & Fiorelli, 2008)

Hybrid: (Siddharth et al., 2011)
4

Indoor environment Indoor air temperature (IAT) Regression: (Massana et al., 2015)
SVM: (Massana et al., 2015)
ANN: (Massana et al., 2015)

1

Indoor relative humidity Regression: (Massana et al., 2015)
SVM: (Massana et al., 2015)
ANN: (Massana et al., 2015)

1

Indoor luminosity level Regression: (Massana et al., 2015)
SVM: (Massana et al., 2015)
ANN: (Massana et al., 2015)

1

Occupancy Occupants number/counting
(real data)

Regression: (Yun et al., 2012)
DT: (Wang, Wang, & Srinivasan, 2018; Yu et al., 2010)
SVM: (Paudel et al., 2017)
ANN: (Ahmad et al., 2017; Kwok & Lee, 2011; Yun et al., 2012)
DNN: (Shi et al., 2016)
Ensemble: (Ahmad et al., 2017; Wang, Wang, & Srinivasan, 2018)

7

Occupancy design data/
estimated data

AR: (Newsham & Birt, 2010)
Regression: (Massana et al., 2015)
DT: (Wang, Wang, Zeng, et al., 2018)
SVM: (Massana et al., 2015; Wang, Wang, Zeng, et al., 2018)
ANN: (Ahmad et al., 2017; Li et al., 2015; Massana et al., 2015)
Ensemble: (Ahmad et al., 2017; Wang, Wang, Zeng, et al., 2018)
Improved: (Li et al., 2015, 2018)

7

Occupancy status Regression: (Dagnely et al., 2015)
SVM: (Dagnely et al., 2015)

2

Time-related indicators Time periods AR: (Yun et al., 2012)
Regression: (Lachut et al., 2014)
k-NN: (Lachut et al., 2014)
SVM: (Lachut et al., 2014)

2

Timestamp ANN: (Biswas et al., 2016) 1
Time of the day AR: (Yun et al., 2012)

Regression: (Fan et al., 2014; Lachut et al., 2014; Massa Gray & Schmidt, 2018;
Massana et al., 2015)
k-NN: (Fan et al., 2014; Lachut et al., 2014)
DT: (Wang, Wang, & Srinivasan, 2018; Wang, Wang, Zeng, et al., 2018)
SVM: (Fan et al., 2014, 2017; Lachut et al., 2014; Massana et al., 2015; Wang,
Wang, Zeng, et al., 2018; Zhao et al., 2016)
ANN: (Ahmad et al., 2017; Bagnasco et al., 2015; Fan et al., 2014; Massana et al.,
2015; Zhao et al., 2016)
DNN: (Fan et al., 2017; Marino et al., 2016)
Ensemble: (Ahmad et al., 2017; Fan et al., 2014, 2017; Wang, Wang, & Srinivasan,
2018; Wang, Wang, Zeng, et al., 2018)
Hybrid: (Massa Gray & Schmidt, 2018)

12
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Table 3 (continued)

Main input data type Specific input data Techniques and reference using the data Number of
studies

Day of the week Regression: (Amber et al., 2018; Amber et al., 2017; Fan et al., 2014; Lachut et al.,
2014; Massa Gray & Schmidt, 2018; Massana et al., 2015)
k-NN: (Fan et al., 2014; Lachut et al., 2014)
DT: (Wang, Wang, & Srinivasan, 2018)
SVM: (Amber et al., 2018; Fan et al., 2014; Lachut et al., 2014; Massana et al., 2015;
Ribeiro et al., 2018; Wang, Wang, Zeng, et al., 2018)
ANN: (Ahmad et al., 2017; Fan et al., 2014; Lachut et al., 2014; Massana et al.,
2015; Ribeiro et al., 2018; Wang, Wang, Zeng, et al., 2018)
DNN: (Amber et al., 2018; Fan et al., 2017; Marino et al., 2016)
Ensemble: (Fan et al., 2014, 2017; Wang, Wang, Zeng, et al., 2018)
Hybrid: (Massa Gray & Schmidt, 2018)

13

Type of day Regression: (Dagnely et al., 2015; Fan et al., 2014, 2017; Massana et al., 2015)
k-NN: (Fan et al., 2014; Ma et al., 2017)
DT: (Fu et al., 2015; Wang, Wang, & Srinivasan, 2018; Wang, Wang, Zeng, et al.,
2018)
SVM: (Dagnely et al., 2015; Fan et al., 2014, 2017; Fu et al., 2015; Massana et al.,
2015; Paudel et al., 2017; Wang, Wang, Zeng, et al., 2018; Zhao et al., 2016)
ANN: (Bagnasco et al., 2015; Fan et al., 2014; Fu et al., 2015; Massana et al., 2015;
Mena et al., 2014; Neto & Fiorelli, 2008; Zhao et al., 2016)
Ensemble: (Fan et al., 2014, 2017; Wang, Wang, & Srinivasan, 2018; Wang, Wang,
Zeng, et al., 2018)

13

Specific day indicator Regression: (Fan et al., 2014, 2017; Massana et al., 2015) 2
Month of the year k-NN: (Fan et al., 2014)

SVM: (Fan et al., 2014, 2017; Massana et al., 2015; Ribeiro et al., 2018)
ANN: (Ahmad et al., 2017; Fan et al., 2014; Massana et al., 2015; Ribeiro et al.,
2018)
DNN: (Fan et al., 2017)
Ensemble: (Ahmad et al., 2017; Fan et al., 2014, 2017; Wang, Wang, & Srinivasan,
2018; Wang, Wang, Zeng, et al., 2018)

8

Year SVM: (Ribeiro et al., 2018)
ANN: (Ribeiro et al., 2018)

1

Past time-steps/data points Previous power demand/
energy consumption

AR: (Dagnely et al., 2015; Fan et al., 2014; Fu et al., 2015; Lachut et al., 2014; Liu
et al., 2015; Newsham & Birt, 2010; Yun et al., 2012; Zhao et al., 2016)
Regression: (Dong et al., 2016; Fan et al., 2014; Lachut et al., 2014)
k-NN: (Lachut et al., 2014; Ma et al., 2017; Valgaev & Kupzog, 2016; Wahid & Kim,
2016)
SVM: (Dong et al., 2016; Fan et al., 2017; Lachut et al., 2014; Liu et al., 2015;
Mocanu, Nguyen, Gibescu, et al., 2016; Chaobo Zhang et al., 2017)
ANN: (Alobaidi et al., 2018; Bagnasco et al., 2015; Dong et al., 2016; Kwok & Lee,
2011; Mena et al., 2014; Mocanu, Nguyen, Gibescu, et al., 2016; Yun et al., 2012)
DNN: (Fan et al., 2019; Fan et al., 2017; Mocanu, Nguyen, Gibescu, et al., 2016;
Mocanu, Nguyen, Kling, et al., 2016)
Ensemble: (Alobaidi et al., 2018; Fan et al., 2017; Zhang et al., 2016)
Improved: (Dong et al., 2016; Zhang et al., 2016)
Hybrid: (Dong et al., 2016)

21

Previous OAT Regression: (Fan et al., 2017)
SVM: (Fan et al., 2017; Paudel et al., 2017)
DNN: (Fan et al., 2017)
Ensemble: (Fan et al., 2017)

2

Previous RH Regression: (Fan et al., 2017)
SVM: (Fan et al., 2017)
DNN: (Fan et al., 2017)
Ensemble: (Fan et al., 2017)

1

Previous SR SVM: (Paudel et al., 2017) 1
Previous solar gains SVM: (Paudel et al., 2017) 1

Mathematical characteristics Minimum, maximum and/or
mean of time series

Regression: (Fan et al., 2017)
SVM: (Fan et al., 2017; Ribeiro et al., 2018)
ANN: (Ribeiro et al., 2018)
DNN: (Fan et al., 2017)
Ensemble: (Fan et al., 2017)

2

Fourier transform Regression: (Fan et al., 2017)
SVM: (Fan et al., 2017)
DNN: (Fan et al., 2017)
Ensemble: (Fan et al., 2017)

1

Deep learning-based time series Regression: (Fan et al., 2017)
SVM: (Fan et al., 2017)
DNN: (Fan et al., 2017)
Ensemble: (Fan et al., 2017)

1

Building characteristics and operation
information

Passive system Regression: (Amber et al., 2017; Chou & Bui, 2014; Dong et al., 2016; Massa Gray &
Schmidt, 2018; Nilashi et al., 2017; Pulido-Arcas et al., 2016; Sekhar Roy et al.,
2018; Tsanas & Xifara, 2012; Tso & Yau, 2007)
DT: (Chou & Bui, 2014; Nilashi et al., 2017; Tso & Yau, 2007; Yu et al., 2010)
SVM: (Chou & Bui, 2014; Dong et al., 2016; Nilashi et al., 2017)
ANN: (Chou & Bui, 2014; Dong et al., 2016; Nilashi et al., 2017; Sekhar Roy et al.,

14
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time-steps are not suitable for forecasting applications related to day-to-
day building energy management. In the reviewed papers, the times-
step ranged from 1-min to annual with the following repartition: (1)
three studies with 1-min time-step, (2) one study with 5-min time-step,
(3) three studies with 15-min time-step, (4) three studies with half-hour
time-step, (5) twenty-eight studies with hourly time-step, (6) five stu-
dies with daily time-step, (7) three studies with weekly time-step and
(8) nine studies with annual time-step. The details of the studies with
the corresponding time-steps and other characteristics is available in
Appendix A.

Finally, the fourth characteristics of input dataset is the amount of
data used for training, validation and testing of the forecasting algo-
rithms. Among the reviewed studies most of the database contained
between one and six months of data (45%). 7% (3 studies) used less
than a month of data, 7% of the database used between 6 months and 1
year of data, 24% used between 1 year and 2 years and 17% used more
than 2 years of data. Moreover, it should be noted that specific studies
such as Yu et al. (2010) or those referring to Tsanas and Xifara (2012)’s
database (Xifara and Tsanas, 2019Xifara & Tsanas, n.d.) did not used
time series as inputs of their models. They referred to the amount of
data they used as test cases or sets of data but without timeframe in-
dication. Training, validation and testing ratios were investigated. Most
datasets in reviewed studies, with a share of 65%, used between 50%
and 90% of their data for training or training and validation combined
(therefore between 10% and 50% for testing). Then 20% of the datasets
were split with more than 90% dedicated to training. Only in (Massa
Gray & Schmidt, 2018) were more data used for testing than for
training (10% of the total number of datasets) and in (Ribeiro et al.,
2018; D. Zhao et al., 2016) were the data divided with a 50%–50%
training–testing ratio. Frequently used ratios were 70%–30% in six
studies and 80%–20% and 75%–25% in five studies. Finally, when the
validation step was dissociated from the training step most data were
dedicated to algorithm training with a training–validation–testing ratio
of 70%–15%–15% in (Fan et al., 2017), 62%–17%–21% in (Mena et al.,
2014) and 80%–10%–10% in (Chaobo Zhang et al., 2017). This high-
lights that if the validation step has a different purpose than the training
step and is supposed to use a different dataset, it is not always clearly
dissociated or even mentioned at all.

4.2. Data pre-processing

As part of the modeling process, input data pre-processing is a very
important. It involves a verification of the input data quality and
eventually an optimization of the types of inputs, time frames and time-
steps selected. Hence many reviewed studies used common methods or
developed specific ones for data pre-processing, as it directly impacts
on the forecasting results, their accuracy and reliability.

Data pre-processing relies on two sub-processes: data cleaning and
input data selection. Data cleaning is a mandatory step to remove all
poor-quality information such as missing data, monitoring issues and

outliers that depict very unusual energy behaviors. It can be done
manually or automatically. For instance, Fan et al. (2014) who devel-
oped an automated outlier detection method.

Input data selection is not mandatory. It aims to select specific
combinations of inputs to retrieve the most influential energy drivers in
order to enhance forecasting performances and reduce calculations
complexity. Several approaches have been highlighted during the re-
view work. Input data selection can first relate to the selection of an
adapted forecasting time-step (Mocanu, Nguyen, Gibescu, et al., 2016;
Mocanu, Nguyen, Kling, et al., 2016) or an adapted training–valida-
tion–testing ratio (Massa Gray & Schmidt, 2018; Wahid ö Kim, 2016).
Also, a common method is the manual selection of different combina-
tions of inputs (Dagnely et al., 2015; Fan et al., 2017; Neto & Fiorelli,
2008; Yun et al., 2012) and the comparison of the forecasting results.
Indeed, some parameters may not have any direct impact on building
energy consumption. Then, to use them for model training can result in
lower forecasting accuracy and in overfitting the models. However, it
should be highlighted that in relevant data pre-selection is not always
effective (Massa Gray & Schmidt, 2018; Wang, Wang, ö Srinivasan,
2018). Input dataset can also be pre-processed using original dataset
manually divided into different periods such as weekdays/weekends
(Newsham & Birt, 2010), days with specific types of weather (Ma et al.,
2017; Mena et al., 2014) or seasons (Tang et al., 2014). By doing so,
specific building operating conditions are isolated and sub-models can
be developed for each or specific periods depending on the focus of the
studies. The same idea can be achieved with clustering algorithms that
automatically identify the trends in the building energy behavior. Ex-
tracted trends can then be associated with different usages or types of
days (Tang et al., 2014). These algorithms can be either supervised
when the clustering is based on user-defined features, or unsupervised if
the features are extracted by using mathematical operators and metrics
(Toffanin, 2016). Then, it relates to machine learning tasks described in
the previous section. Finally, a pre-selection of features can be im-
plemented, using sensitivity analyses (Kristensen & Petersen, 2016),
principal component analysis (PCA) (K. Li et al., 2018; Nilashi et al.,
2017) or other specific methods (Deb & Lee, 2018; Massana et al., 2015;
Paudel et al., 2017; Wang, Wang, Zeng, et al., 2018; Chaobo Zhang
et al., 2017).

5. Discussions

5.1. Building energy modeling and forecasting targets

5.1.1. Building typologies
Reviewed studies have focused on a variety of building typologies.

These typologies have been classified into three main categories:
commercial buildings including educational buildings, residential
buildings and mixed usages buildings representing 66%, 30% and 4% of
the buildings in reviewed studies. Table 4 provides further description
of the different building typologies.

Table 3 (continued)

Main input data type Specific input data Techniques and reference using the data Number of
studies

2018; Tso & Yau, 2007)
Ensemble: (Chou & Bui, 2014; Papadopoulos et al., 2017; Tsanas & Xifara, 2012)
Improved: (Castelli et al., 2015; Dong et al., 2016; Nilashi et al., 2017)
Physics-based: (Ma et al., 2017; Massa Gray & Schmidt, 2018; Neto & Fiorelli, 2008)
Hybrid: (Dong et al., 2016; Massa Gray & Schmidt, 2018; Siddharth et al., 2011)

Active systems Regression: (Pulido-Arcas et al., 2016)
SVM: (Tang et al., 2014)
ANN: (Mena et al., 2014; Tang et al., 2014)
Ensemble: (Tang et al., 2014)
Physics-based: (Ma et al., 2017; Massa Gray & Schmidt, 2018; Neto & Fiorelli, 2008)
Hybrid: (Collinge et al., 2016; Dong et al., 2016; Massa Gray & Schmidt, 2018;
Siddharth et al., 2011)

9
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Therefore, it clearly appears a lack of studies on residential build-
ings and mixed-use buildings. The over-representation of educational
buildings in probably due to data availability since campus buildings
can be more easily instrumented and monitored for research purposes.
On the opposite, sensor-based data for residential building are more
difficult to obtain. Indeed, half of residential buildings considered were
either simulated buildings using benchmark dataset (Xifara & Tsanas,
n.d.) or unoccupied residential buildings used as research demonstra-
tion (Biswas et al., 2016). This clearly highlights an insufficient number
of monitored residential buildings and a lack of data for this building
typology. Another reason could also be the complexity of residential
energy demand forecasting. Because of the smaller size of residential
buildings, the relatively small number of energy consuming appliances
and the complexity to account for occupants’ behavior in energy
models, individual dwelling energy demand is more difficult to assess
than for commercial buildings. Occupant's behavior has a significant
impact on building energy consumption (Pisello & Asdrubali, 2014) and
a higher variability in residential buildings than in commercial or large
office buildings (Xu et al., 2012). Furthermore, advanced occupant
behavior modeling has been lacking in BECMF studies as reported in
Table 3 and real occupancy data are hardly accessible. Thus, they are
replaced by predefined occupancy scenarios resulting in even larger
uncertainties in building energy forecasting (Azar & Menassa, 2012).
Despite obvious challenges accurate residential and mixed-used energy
modeling and forecasting is needed. Indeed, residential energy con-
sumption represented 25.7% of the European final energy consumption
in 2016 against 13.5% for commercial buildings (“European
Environment Agency – Final energy consumption by sector and fuel, ”
n.d.). Therefore, it holds a large share of energy consumption with large
potential energy savings.

Regarding lack of studies on mixed-use buildings, similar problems
as those faced for residential energy exist. Furthermore, combining
different building types induces a larger diversity of appliances, beha-
viors and demand profiles which increases the modeling complexity
(Choi, Cho, & Kim, 2012). Consequently, addressing such cases requires
an even larger amount of data which are not easily available. When
unavailable, data are replaced by assumptions at the expense of realistic
case studies (Valgaev & Kupzog, 2016). Nevertheless, mixed-use
building energy studies are essential as well since this building typology
is gaining ground in some energy-consuming and urbanized countries
(Choi et al., 2012; Woo and Cho, 2018). Hence, future studies should 1)
provide residential buildings case studies with integration of retrofit
impact assessment together with enhanced human behavior capturing
and 2) focus on providing a better mixed-use buildings understanding.

5.1.2. Energy end-uses
Most of reviewed studies (52%) focus on overall energy forecasting

while a smaller part (46%) focus on cooling and heating load demand
prediction (separated or combined) (details on studies targeting
heating, cooling or combined cooling and heating loads are provided in
Table 5). Then only 4% of the reviewed studies targeted other loads.
Newsham and Birt (2010) assessed “occupancy-related” loads with
combined lightings and plugs electricity demand. Shi et al. (2016)
proposed forecasting models for lightings, AC and plug loads separately
and combined at the building scale. Therefore, there is a lack of studies
on other loads than thermal loads and total building energy demand.
However, these loads such as lighting and plug loads represent more
than 19% of residential energy consumption in Europe (“Energy con-
sumption in households – Statistics Explained, ” n.d.). Consequently,
they hold a significant share of energy demand and of consequent po-
tential energy savings (Ghadi, Rasul, & Khan, 2017). Even more so that
both lighting and equipment on plugs are a significant internal heat
source in buildings and they directly impact on cooling load demand
(Dong et al., 2016).

The main reason for this gap could be related to the “occupancy-
based” nature of lighting and plugs energy consumption (Newsham &
Birt, 2010). Indeed, energy standards require specific amounts of
lighting for optimal operating conditions in offices and for activities in
residential buildings (ASHRAE, 2013). Thus, for obvious energy con-
servation measures, lighting might be automated to detect occupancy
(Kandasamy, Karunagaran, Spanos, Tseng, & Soong, 2018) or at least
for non-zero occupancy. Similarly, most equipment usage such as office,
electronic and cooking equipment usage are also occupancy related.
Moreover, as highlighted in Section 4.1 few occupancy and behavior-
related data have been used in the reviewed studies, which induces a
lack of information for other building loads forecasting. Hence, further
studies should focus on lighting and plug energy demand with a better
accounting for occupancy and occupants’ behavior information.

5.1.3. Forecasting horizon
Forecasting horizons can be divided between short-term, medium-

term and long-term (Mocanu, Nguyen, Kling, et al., 2016; Yalcinoz and
Eminoglu, 2005). They aim at different purposes for energy manage-
ment and savings. Short-term horizon can be defined as forecasting
from the next minute to the next week. It is essential for real-time
management of building energy systems (Fan et al., 2019) such as
HVAC systems or to manage local energy generation, storage and pro-
vision (Bouzerdoum, Mellit, & Massi Pavan, 2013). It represents 41% of
the simulations in studies covered by the present review. Medium-term

Table 4
Summary of the different building types in the reviewed studies.

Main building typology Specific building type Number of studies considering the specific building types

Commercial Hotel 1 40%
Hospital 1
Office (real) 10
Office (simulated) 5
Research 2
Library 2
N/S 2

Educational Academic (classrooms & laboratories) 7 26%
Administrative 3
Institutional (classrooms, offices and laboratories) 1
Research center (offices and laboratories) 4

Residential Single family housings (real) 5 30%
Single family housings (simulated) 1
Multifamily building (real) 2
Multifamily building (simulated) 7
Research/demonstration 1
N/S 1

Mixed-use Residential multifamily building and commercial office (simulated) 1 4%
Mixed-use (commercial center, office, hotel) 1
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prediction of energy consumption, from one week to several months
ahead, focuses on energy storage systems management and main-
tenance planning of building equipment (Rahman, Srikumar, & Smith,
2018). This horizon is considered in 35% of reported studies.

Finally, long-term horizon provides information on the next year
and over which is used for design and planning tasks (Rahman et al.,
2018). Thus, as much as short- and medium-term predictions, it is es-
sential, to serve long-term sustainability strategies in built environ-
ment. However, long-term forecasting is targeted by less than 25% of
reviewed studies. This is probably due to data availability problems.
Indeed, the longer the forecasting horizon the larger the diversity of
demand patterns (Mocanu, Nguyen, Gibescu, et al., 2016). Accounting
for a larger diversity requires more data, collected over longer periods
of time. However, as explained in Section 4.1 a majority (59%) of
studies relied on less than one-year measurement campaigns while only
17% used data collected for more than two years and thus rely on re-
levant training sets for long-term prediction. In addition, building en-
ergy systems can exhibit nonlinear behaviors (Li & Wen, 2015). If
nonlinearities can be handled by most forecasting algorithms on a
short-term basis, it becomes much harder for long-term forecasting
horizon. Finally, the forecasting time-step also has a non-negligible
impact (Mena et al., 2014). Among the long-term forecasting studies,
53% used annual time-step, compared to 12% for weekly and daily
time-step, 18% for hourly time-step and 6% for 1-min time-step. Thus,
the smaller the time-step the more challenging the long-term fore-
casting.

5.2. Building energy modeling and forecasting data-driven methods

In the present review, different building energy modeling and
forecasting methods have been presented and described, focusing on
data-driven techniques. These algorithms, even for basic methods, can
achieve relatively high forecasting accuracy while requiring less ex-
pertise regarding the various building energy behavior characteristics
than traditional physics-based modeling process (Ma et al., 2017; Neto
ö Fiorelli, 2008). Thus, they are currently the main research focus in
BECMF (Ahmad et al., 2018; Amasyali ö El-Gohary, 2018; Deb et al.,
2017; Mat Daut et al., 2017; Wang & Srinivasan, 2017; Wei et al., 2018;
Yildiz et al., 2017).

Among the techniques described, classical approaches with auto-
regressive and regression models are quite popular because of their
relative implementation simplicity and good forecasting performance.
They are often used as a comparison basis for the implementation of
more advanced algorithms (Fan et al., 2014, 2017). Classification-based
methods with DT and k-NN are intuitive and of significant prediction
force (Chou & Bui, 2014; Ma et al., 2017; Wahid & Kim, 2016). SVM
and ANN are among the best performing and the most implemented
data-driven single techniques for building energy forecasting studies, as
highlighted in Table 1. They can be used as a support tool for more
advanced modeling process such as ensemble (Alobaidi et al., 2018)
and improved models (F. Zhang et al., 2016). Furthermore, recent
machine learning developments have been implemented for BECMF
with deep neural networks (Amber et al., 2018), unsupervised learning

Table 5
Description of the different end-uses targeted in the reviewed studies.

End-use Techniques implemented Number of studies

Overall energy AR: (Dagnely et al., 2015; Fan et al., 2014; Fu et al., 2015; Lachut et al., 2014; Liu et al., 2015)
Regression: (Amber et al., 2017, 2018; Dagnely et al., 2015; Dong et al., 2016; Fan et al., 2014; Lachut et al., 2014;
Massana et al., 2015; Pulido-Arcas et al., 2016)
k-NN: (Fan et al., 2014; Lachut et al., 2014; Valgaev & Kupzog, 2016; Wahid & Kim, 2016)
DT: (Fu et al., 2015; Tso & Yau, 2007; Wang, Wang, & Srinivasan, 2018; Wang, Wang, Zeng, et al., 2018)
SVM: (Amber et al., 2018; Dagnely et al., 2015; Dong et al., 2016; Fan et al., 2014; Fu et al., 2015; Lachut et al., 2014;
Liu et al., 2015; Massana et al., 2015; Mocanu, Nguyen, Gibescu, et al., 2016; Ribeiro et al., 2018)
ANN: (Alobaidi et al., 2018; Amber et al., 2018; Bagnasco et al., 2015; Biswas et al., 2016; Dong et al., 2016; Fan et al.,
2014; Fu et al., 2015; Li et al., 2015; Massana et al., 2015; Mena et al., 2014; Mocanu, Nguyen, Gibescu, et al., 2016;
Neto & Fiorelli, 2008; Ribeiro et al., 2018; Tso & Yau, 2007)
DNN: (Amber et al., 2018; Marino et al., 2016; Mocanu, Nguyen, Gibescu, et al., 2016; Shi et al., 2016)
Ensemble: (Alobaidi et al., 2018; Fan et al., 2014; Wang et al., 2018a; Wang, Wang, Zeng, et al., 2018)
Improved: (Dong et al., 2016; Li et al., 2015, 2018; Zhang et al., 2016)
Hybrid: (Dong et al., 2016; Siddharth et al., 2011)

28

Cooling load AR: (Yun et al., 2012)
Regression: (Chou & Bui, 2014; Fan et al., 2017; Nilashi et al., 2017; Sekhar Roy et al., 2018; Tsanas & Xifara, 2012; Yun
et al., 2012; Chaobo Zhang et al., 2017)
DT: (Chou & Bui, 2014; Nilashi et al., 2017)
SVM: (Chou & Bui, 2014; Fan et al., 2017; Li et al., 2009; Nilashi et al., 2017; Zhang et al., 2017)
ANN: (Chou & Bui, 2014; Kwok & Lee, 2011; Li et al., 2009; Nilashi et al., 2017; Sekhar Roy et al., 2018; Yun et al.,
2012)
DNN: (Fan et al., 2019; Fan et al., 2017)
Ensemble: (Chou & Bui, 2014; Fan et al., 2017; Papadopoulos et al., 2017; Sekhar Roy et al., 2018; Tsanas & Xifara,
2012)
Improved: (Castelli et al., 2015; Nilashi et al., 2017)

12

Heating load AR: (Yun et al., 2012)
Regression: (Chou & Bui, 2014; Nilashi et al., 2017; Sekhar Roy et al., 2018; Tsanas & Xifara, 2012; Yun et al., 2012)
DT: (Chou & Bui, 2014; Nilashi et al., 2017)
SVM: (Chou & Bui, 2014; Nilashi et al., 2017)
ANN: (Chou & Bui, 2014; Nilashi et al., 2017; Sekhar Roy et al., 2018; Yun et al., 2012)
Ensemble: (Chou & Bui, 2014; Papadopoulos et al., 2017; Tsanas & Xifara, 2012)
Improved: (Castelli et al., 2015; Nilashi et al., 2017)

7

Combined heating and cooling
loads

AR: (Zhao et al., 2016)
Regression: (Massa Gray & Schmidt, 2018)
k-NN: (Ma et al., 2017)
SVM: (Paudel et al., 2017; Tang et al., 2014; Zhao et al., 2016)
ANN: (Ahmad et al., 2017; Tang et al., 2014; Zhao et al., 2016)
Ensemble: (Ahmad et al., 2017; Tang et al., 2014)
Hybrid: (Collinge et al., 2016; Massa Gray & Schmidt, 2018)

7

Other loads AR: (Newsham & Birt, 2010)
DNN: (Shi et al., 2016)

2
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(Fan et al., 2017), reinforcement learning (Mocanu, Nguyen, Kling,
et al., 2016) and transfer learning (Ribeiro et al., 2018) (Fig. 8). Such
improvements in machine learning based forecasting algorithms lead
the way to less operator-dependent and more versatile algorithms in
terms of data usage, with much higher prediction accuracy.

Also, machine learning techniques benefit from widespread mod-
eling tools, libraries and packages available that encompass various pre-
embedded functions which makes implementation easier. Some of the
most used are Python (“Python, ” n.d.), R programming (The R Project
for Statistical Computing, 2019“R: The R Project for Statistical Com-
puting, ” n.d.), MATLAB (“MATLAB – MathWorks – MATLAB Simulink,
” n.d.), IBM-SPSS Modeler (“IBM SPSS Modeler, ” n.d.) and Statistics
(“IBM SPSS Statistics, ” n.d.), Weka (“Weka 3 – Data Mining with Open
Source Machine Learning Software in Java, ” n.d.) and mySVM software
(mySVM, 2019“mySVM – TU Dortmund, ” n.d.). Details on the different
packages used for machine learning techniques are provided in Table 6.

5.3. Limitations of data-driven techniques: toward grey-box modeling

Despite great flexibility and good forecasting performances, data-
driven algorithms show several limitations. First, they rely on large
quantities of data that must be representative of the different operating
conditions of the building. Otherwise, they would only capture specific
patterns lack generality. This is a common problem in machine learning
techniques, with overfitting (Chalal et al., 2016), and the reason why a
particular attention is to be paid to training, validation and testing data
samples independence. Nevertheless, such constraint is often limited by
manual data pre-processing as presented in Section 4.1, and the lack of
information and data availability on important energy drivers (Section
4.2). The first problem can be tackled through more advanced or dif-
ferent machine learning techniques with unsupervised, reinforcement
and transfer learning (Sections 3.1 and 3.2). The latter cabs be counter-
balanced by optimizing input data, using time-related parameters for
example instead of physical variables.

Nevertheless, data-driven approaches remain completely black-box
methods. Contrarily to physics-based models, also called white-box
models, they do not provide transparency on the link between inputs
and the final forecasted building energy consumption. However, phy-
sics-based modeling is also a very complex process, requiring advanced
knowledge and information on building to be modeled with high un-
certainties among key energy-drivers. Therefore, hybrid techniques

combining both white- and black-box models a have been the focus of
recent studies.

Hybrid modeling presents two main orientations. A data-driven
method is used to optimize specific parameters of a white-box models.
For instance, Siddharth, Ramakrishna, Geetha, and Sivasubramaniam
(2011) used a genetic algorithm to quickly and realistically create sets
of specific input parameters identified as key energy-drivers for a white-
box model. They aimed to assess hourly total building energy con-
sumption over a year. Then, for satisfactory results a non-linear re-
gression model was implemented between the selected system variables
and the annual energy consumption. It showed very satisfactory coef-
ficients of determination. In the case of (Massa Gray & Schmidt, 2018),
a Gaussian process was combined with a RC-lumped model (Resistance
Capacitance) to predict and adjust error of the physics-based model. It
showed higher forecasting performances than with the Gaussian pro-
cess or the RC-model alone. Another way to combine data-driven and
physics-based models consists in replacing parts of the physics-based
model with machine learning algorithms, for energy equipment load
demand simulation for instance. This is the case for (Collinge, DeBlois,
Landis, Schaefer, & Bilec, 2016) who used sequential linear regression
to assess cooling and heating loads of an HVAC system set in an En-
ergyPlus (EnergyPlus, 2019“EnergyPlus, ” n.d.) physics-based en-
vironment. Similarly, Dong et al. (2016) proposed an hybrid strategy to
predict the total electricity consumption of residential buildings by
dividing the electric loads between AC and non-AC consumption. Non-
AC electricity consumption was forecasted using a LS-SVM model, from
which internal heat gain variations were deduced. Heat gains together
with weather information they were input in a 2R-1C lumped model to
calculate the different building zones temperature. Zone temperatures
results were input in an AC regression model to further AC cooling
power consumption. Finally, both data-driven-based non-AC electricity
consumption and hybrid-based AC electricity consumption were
summed up to forecast the total building electricity consumption. A
comparison between the grey-box model and data-driven algorithms
such as FFNN, SVR, LS-SVM, Gaussian mixture model and Gaussian
process regression showed a significant improvement of forecasting
performances with the proposed hybrid model.

5.4. Occupants’ behavior impact on building energy efficiency

In spite of the significant progress in data-driven modeling in recent

Fig. 8. Illustration of data-driven methods covered in the review and the range of machine learning improvements available.
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years, a large gap remains when trying to accurately account for oc-
cupancy and human behavior impact. Indeed, the review work has
highlighted a lack of real occupancy data used in BECMF studies, often
replaced by theoretical occupancy scenarios and resulting in large
modeling uncertainties (Azar & Menassa, 2012). Furthermore, even
when available, most occupants-related data only considered occu-
pancy schedules (Table 3). This problem is partly due to the scarcity of
residential and mixed-use buildings case studies. Indeed, as one of the
“key factor influencing energy consumption in buildings” (Pisello &
Asdrubali, 2014), accuracy can only be achieved by accessing detailed
occupant-related data such as occupancy but also socio-economic data
(Sütterlin, Brunner, & Siegrist, 2011; Tso ö Yau, 2007), behavior un-
derstanding, equipment usages and social interactions (Peschiera &
Taylor, 2012).

Thus, complex occupants’ behavior modeling has been integrated in
some building energy forecasting studies. Simple approaches have been
implemented to assess the general behavior of occupants (Zhang, Cao,
& Romagnoli, 2018) and it's negative impact on building thermal loads
(Ferracuti et al., 2017). Similarly, methods have been developed for the
evaluation of consumers’ energy efficiency and energy-savings beha-
vior, to assess their impact on cooling load forecasting (Spandagos &
Ng, 2018). The evaluation of peer networks (Peschiera & Taylor, 2012)
and behavioral modifications on the energy consumption have been
investigated as well (Xu et al., 2012). It highlighted specific incentives

on energy efficient behaviors and that social networking within build-
ings and communities could have a significant impact on energy sav-
ings, comparable to typical retrofit actions (Pisello & Asdrubali, 2014).

6. Conclusions

We identified in this paper the main building energy consumption
modeling and forecasting techniques and specifically reviewed data-
driven methods. We covered approaches from the most conventional to
the most recent research efforts on the topic. Six single techniques have
been introduced with autoregressive models, statistical regressions, k
nearest neighbors, decision trees, support vector machines, artificial
neural networks, and two combined approaches: ensemble and im-
proved models. Furthermore, we examined different machine learning
approaches commonly used in the field including supervised, un-
supervised, reinforcement and transfer learning. We presented the basic
concepts and illustrated them through different recent studies. Peculiar
attention was given to input data characteristics (i.e. origin, inputs
types, time-series time-step, amount of data and the training–valida-
tion–testing ratio) and pre-processing methods. Finally, research gaps
and future research directions are identified. Although data-driven
methods offer a very wide range of tools to model and forecast build-
ings energy consumption that can adapt to many different situations,
depending on the types of buildings, available data, modeling purpose,

Table 6
Summary of the software and packages to develop data-driven studies in reviewed studies.

Software and packages Referring studies

IBM SPSS (“IBM SPSS Modeler, ” n.d.; “IBM SPSS Statistics, ” n.d.) AR: (Newsham & Birt, 2010; Zhao et al., 2016)
Regression: (Amber et al., 2017; Chou & Bui, 2014)
DT: (Chou & Bui, 2014)
SVM: (Chou & Bui, 2014; Zhao et al., 2016)
ANN: (Chou & Bui, 2014; Zhao et al., 2016)
Ensemble: (Chou & Bui, 2014)
Improved: (Li et al., 2018)

MATLAB (“MATLAB – MathWorks – MATLAB
Simulink, ” n.d.)

N/S Regression: (Nilashi et al., 2017)
k-NN: (Wahid & Kim, 2016)
DT: (Nilashi et al., 2017; Wang, Wang, & Srinivasan, 2018)
SVM: (Nilashi et al., 2017; Wang, Wang, & Srinivasan,
2018)
ANN: (Bagnasco et al., 2015; Li et al., 2009; Nilashi et al.,
2017)
DNN: (Mocanu, Nguyen, Kling, et al., 2016)
Ensemble: (Wang, Wang, & Srinivasan, 2018)
Improved: (Nilashi et al., 2017)
Hybrid: (Massa Gray & Schmidt, 2018)

LibSVM (Chang & Lin, 2013) SVM: (Amber et al., 2018; Dong et al., 2016; Mocanu,
Nguyen, Gibescu, et al., 2016; Paudel et al., 2017)

LibSVM+FaroUltimate (Li, 2011) SVM: (Liu et al., 2015)
Neural Network Toolbox (“Neural Network Toolbox – MATLAB,
” n.d.)

ANN: (Biswas et al., 2016)

mySVM software (“mySVM – TU Dortmund,” n.d.) SVM: (Li et al., 2009)
Python programming Scikit-Learn package (“Scikit-Learn: machine learning in

Python, ” n.d.)
Regression: (Zhang et al., 2017)
SVM: (Dagnely et al., 2015; Chaobo Zhang et al., 2017)
Ensemble: (Ahmad et al., 2017)

NeuroLab (“NeuroLab 0.3.5, Neural Network Library for Python,
” n.d.)

ANN: (Ahmad et al., 2017)

StatsModel (“StatsModels: Statistics in Python — statsmodels
0.9.0 documentation, ” n.d.)

Regression: (Dagnely et al., 2015)

TensorFlow (“TensorFlow, ” n.d.) Regression: (Amber et al., 2018)
SVM: (Amber et al., 2018)
ANN: (Amber et al., 2018)
DNN: (Amber et al., 2018)

R programming (“R: The R Project for Statistical
Computing, ” n.d.)

N/S Ensemble: (Zhang et al., 2016)
Improved: (Zhang et al., 2016)

Keras package (“Keras Documentation, ” n.d.) DNN: (Fan et al., 2019)
Weka software (“Weka 3 – Data Mining with Open Source Machine Learning Software in Java, ” n.d.) Regression: (Massana et al., 2015)

k-NN: (Wahid & Kim, 2016)
DT: (Yu et al., 2010)
SVR: (Massana et al., 2015)
ANN: (Massana et al., 2015)
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required accuracy and forecasting horizons, a universal protocol that
can tackle the variety of problems faced is still lacking and a tradeoff,
accounting for each problem constraints, is often to be made. In addi-
tion, several specific points still require particular attention such as
long-term energy consumption forecasting, black-box data-driven
techniques enhancement by hybridization with physical models, the
accurate and realistic accounting for occupancy and occupants’ beha-
vior as well as real use cases of residential or mixed-use buildings.
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