Master 2 "SIS"
 Digital Geometry

Topic 4:
 Discrete lines and planes

Yukiko Kenmochi

November 14, 2011

Straight line

Definition (Straight line)

A line in the Euclidean space \mathbb{R}^{2} is defined by

$$
\mathbf{L}=\left\{(x, y) \in \mathbb{R}^{2}: \alpha x+\beta y+\gamma=0\right\}
$$

where $\alpha, \beta, \gamma \in \mathbb{R}$.
In general, we have a normalization such that $|\alpha|+|\beta|=1$, $\alpha^{2}+\beta^{2}=1$.

Discretization of straight line

Definition (Discrete line)

The discrete line of \mathbf{L} in \mathbb{Z}^{2} is defined by

$$
D(\mathbf{L})=\left\{(p, q) \in \mathbb{Z}^{2}: 0 \leq \alpha p+\beta q+\gamma^{\prime} \leq \omega\right\}
$$

where ω is called the thickness.
The values of γ^{\prime} and ω depend on the model of discretization.

- Grid-intersection: grid points closest to the intersections with the grid lines

$$
\gamma^{\prime}=\gamma+\frac{\max (|\alpha|,|\beta|)}{2}, \omega=\max (|\alpha|,|\beta|) .
$$

- Super-cover (outer Jordan): 2-cells intersecting with the line

$$
\gamma^{\prime}=\gamma+\frac{|\alpha|+|\beta|+1}{2}, \omega=|\alpha|+|\beta|+1 .
$$

- Gauss (half-plane): 2-cells with center points in the half-plane
al - \quad, docidac tho m-ronnoctodnoce

3/39

Freeman code

Properties of discrete lines

Criteria of Freeman (1974)

For discrete lines (by grid-intersection discretization), the Freeman code verify the following three properties:

1 the code contains at most two different values;
2 those two values differ at most by one unit (modulo 8) ;
3 one of the two values appears isolatedly and its appearances are uniformly spaced in the code.

Freeman code

Discrete line : 10101001010...

Properties of discrete lines (cont.)

Definition (Chord property (Rosenfeld, 1974))

A set of discrete points \mathbf{X} satisfies the chord property if for every pair of points \mathbf{p} and \mathbf{q} of \mathbf{X} and for every point $\mathbf{r}=\left(r_{x}, r_{y}\right)$ of the real segment between \mathbf{p} and \mathbf{q}, there exists a point $\mathbf{s}=\left(s_{x}, s_{y}\right)$ of \mathbf{X} such that $\max \left(\left|s_{x}-r_{x}\right|,\left|s_{y}-r_{y}\right|\right)<1$.

- It proves that a discrete curve is a discrete line segment if and only if it owns the chord property.
- It allows to show the two first criteria of Freeman and to deduce a number of properties that specify the third criterion.
- There are a number of algorithms for recognizing a discrete straight line based on this property.

Bresenham line-drawing algorithm

Algorithm: drawing a discrete line (Bresenham, 1962)

Input: Two discrete points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\left(\right.$ s.t. $\left.x_{2}-x_{1} \geq y_{2}-y_{1}>0\right)$ Output: Line segment between the two points

■ $d_{x}=x_{2}-x_{1}, d_{y}=y_{2}-y_{1} ;$
■ $y=y_{1}$;
initialization
value of initial error

- for x from x_{1} to x_{2} do
- put the pixel (x, y);
- $e=e+2 d_{y}$;
- if $e \geq 2 d_{x}$ then
- $y=y+1$;
- $e=e-2 d_{x}$;

Can we consider rounding instead of truncation?

Arithmetic definition of discrete lines

Definition (Arithmetic discrete line)
A discrete line of parameters (a, b, c) and of arithmetic thickness w where $a, b, c \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=1$ is defined as

$$
D(a, b, c, w)=\left\{(p, q) \in \mathbb{Z}^{2}: 0 \leq a p+b q+c<w\right\} .
$$

The thickness parameter w allows to control the connectedness of the line.

Thickness and connectedness of discrete lines

Theory

Let $D(a, b, c, w)$ be a discrete line, then:
1 if $w<\max (|a|,|b|)$, it is not connected;
2 if $w=\max (|a|,|b|)$, it is a 8 -curve ;
3 if $\max (|a|,|b|)<w<|a|+|b|$, it is a *-curve (its two successive points are 4-neighboring or strictly 8-neighboring);
4 if $w=|a|+|b|$, it is a 4-curve;
5 if $w>|a|+|b|$, it is said thick.

Remainder and leaning point of discrete lines

Definition (Remainder)

The remainder associated to a point $\mathbf{p}=\left(p_{x}, p_{y}\right)$ of $D(a, b, c, w)$ is an integer value defined by

$$
R(\mathbf{p})=a p_{x}+b p_{y}+c .
$$

- When the remainder is $0, \mathbf{p}$ is called a lower leaning point.
- When the remainder is $w-1, \mathbf{p}$ is called a upper leaning point.

We can generalize the Bresenham algorithm by using the remainder instead of the error e.

Arithmetic line drawing algorithm

Algorithm: drawing an arithmetic (naive) line

Input: Two discrete points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and c
Output: Line segment between the two points
■ $b=x_{2}-x_{1}, a=y_{2}-y_{1} ;$

- $y=y_{1}$;
- $r=a x_{1}+b y_{1}+c$;
- for x from x_{1} to x_{2}
- put the pixel (x, y);
- $r=r+a$;
- if $r \geq b$ then
- $y=y+1$;
- $r=r-b$;

We consider here that $x_{2}-x_{1} \geq y_{2}-y_{1}>0$.
The value of c is initially chosen such that $0 \leq a x_{1}+b y_{1}+c<b$.

Discrete line recognition

Problem (Discrete line recognition)

Given a set of discrete points \mathbf{X}, do the points of \mathbf{X} belong to a discrete line?

Yes or No

If yes, what are the parameters of this discrete line?
There are many recognition algorithms with linear complexity.
1 approach of linear programming:
verify the existence of feasible (real) solutions.
2 approach based on preimage (Lindenbaum, Bruckstein, 1993): use the properties of discrete lines in the dual space, called preimages.
3 arithmetic approach (Debled-Rennesson, Reveillès, 1995): verify the existence of integer solutions by using arithmetic properties.
4 ...

Incremental algorithm for arithmetic line recognition: initial situation

Let

- \mathbf{S} be a segment of naive line $D(a, b, c)$ with $0 \leq a<b$,
$\square \mathbf{q}=\left(x_{\mathbf{q}}, y_{\mathbf{q}}\right)$ be the point of the greatest abscissa of \mathbf{S},
$■$ I and \mathbf{I}^{\prime} be the lower leaning points of minimum and maximum abscissas of \mathbf{S},
■ u and \mathbf{u}^{\prime} be the upper leaning points of minimum and maximum abscissas of \mathbf{S}.
By adding a point $\mathbf{p}=\left(x_{\mathbf{p}}, y_{\mathbf{p}}\right)$ connected to \mathbf{S} such that $x_{\mathbf{p}}=x_{\mathbf{q}}+1$, we verify if $\mathbf{S}^{\prime}=\mathbf{S} \cup\{\mathbf{p}\}$ is still a naive line segment.

Incremental algorithm for arithmetic line recognition

Theory (Debled-Rennesson and Reveillès, 1995)

We have
1 if $0<r(\mathbf{p})<b, \mathbf{S}^{\prime}$ is a naive line segment $D(a, b, c)$;
2 if $r(\mathbf{p})<-1$ or $b<r(\mathbf{p})$, then \mathbf{S}^{\prime} is not a naive line segment;
3 if $r(\mathbf{p})=-1$, then \mathbf{S}^{\prime} is a naive line segment

$$
D\left(y_{\mathbf{p}}-y_{\mathbf{u}}, x_{\mathbf{p}}-x_{\mathbf{u}},-a x_{\mathbf{p}}+b y_{\mathbf{p}}\right)
$$

4 if $r(\mathbf{p})=b$, then \mathbf{S}^{\prime} is a naive line segment

$$
D\left(y_{\mathbf{p}}-y_{\mathbf{l}}, x_{\mathbf{p}}-x_{\mathbf{l}},-a x_{\mathbf{p}}+b y_{\mathbf{p}}+b-1\right) .
$$

Farey sequence

Definition (Farey sequence (Hardy and Write, 1979))

The Farey sequence of order n, F_{n}, is the sequence of irreducible fractions between 0 and 1 , whose denominators are less than or equal to n, in ascending order.

$$
\text { If } 0<=h<=k<=n \text { and } \operatorname{gcd}(h, k)=1 \text {, then } \frac{h}{k} \text { is in } F_{n} \text {. }
$$

Example (F_{5})

$$
\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}
$$

Structure of the Farey sequence: Stern-Brocot tree

Property (Neighborhood)

If $\frac{a}{b}$ and $\frac{c}{d}$ are neighboring in a Farey sequence, with $\frac{a}{b}<\frac{c}{d}$, then their difference is equal to $\frac{1}{b d}$.

Property (Median)

If $\frac{a}{b}, \frac{p}{q}$ and $\frac{c}{d}$ are neighboring in a Farey sequence such that $\frac{a}{b}<\frac{p}{q}<\frac{c}{d}$, then $\frac{p}{q}$ is the median of $\frac{a}{b}$ and $\frac{c}{d}$ such as

$$
\frac{p}{q}=\frac{a+c}{b+d}
$$

These properties allow to construct the Stern-Brocot tree.

Stern-Brocot tree and discrete lines

Each vertex $\frac{h}{k}$ of the tree corresponds to a pattern (motif) associated to the discrete line of slope $\frac{h}{k}$.

Updating parameters of the incremental discrete line recognition algorithm indicates moving from the tree root to a leaf.

Applications of discrete line recognition

The discrete line recognition allow us to:
■ study the parallelism, colinearity, orthogonality, convexity in the discrete space;

- estimate geometric properties of discrete object borders, such as the length of a curve, tangent and curvature at a point in a curve, etc.;
- make a segmentation of a discrete curve into line segments (polygonalisation).

If there is noise in discrete object border, we need to modify the problem.

3D straight lines and their discretization

Definition (3D straight line)

A straight line in the Euclidean space \mathbb{R}^{3} is defined by

$$
\mathbf{L}=\left\{\left(\alpha_{1} t+\beta_{1}, \alpha_{2} t+\beta_{2}, \alpha_{3} t+\beta_{3}\right) \in \mathbb{R}^{3}: t \in \mathbb{R}\right\}
$$

where $\alpha_{i}, \beta_{i} \in \mathbb{R}$ for $i=1,2,3$.
The discretized line $D(\mathbf{L})$ defined in \mathbb{Z}^{3} by the grid intersection is the set of discrete points that are closest to the intersection in the plane of the grid.

Discretized line and discrete curve

A discretized line is a 26 -curve.
Definition (m-curve)
An m-path π is an m-curve if for every element \mathbf{p}_{i} of $\pi, i=1, \ldots, n, \mathbf{p}_{i}$ has exactly two m-adjacent points in π, except for \mathbf{p}_{0} and \mathbf{p}_{n} that has only one.

Theory (Kim, 1983)

A 26-curve is a discretized line if and only if two of its projections on the $x y$-, $y z$ - and zx-planes are 8-connected 2D discrete lines.

Arithmetic definition of 3D discrete lines

Definition (3D discrete line)

A set $G \subset \mathbb{Z}^{3}$ is an arithmetic line defined by seven integer parameters $a, b, c, d_{1}, d_{2}, w_{1}$, and w_{2} if and only if
$G=\left\{(x, y, z) \in \mathbb{Z}^{3}: d_{1} \leq c x-a z<d_{1}+w_{1} \wedge d_{2} \leq b x-a y<d_{2}+w_{2}\right\}$.

For simplification, we consider $0 \leq c \leq b \leq a$ and $\operatorname{gcd}(a, b, c)=1$.

Thickness and connectedness of 3D discrete line

The thickness w_{1} and w_{2} allow to control the connectedness of the line.

Theory (Coeurjolly et al., 2001)

Let G be a discrete line defined by $a, b, c, d_{1}, d_{2}, w_{1}, w_{2} \in \mathbb{Z}$ where $0 \leq c<b<a$, then:
1 if $a+c \leq w_{1}$ and $a+b \leq w_{2}, G$ is 6-connected;
2 if $a+c \leq w_{1}$ and $a \leq w_{2}<a+b$, or if $a+b \leq w_{2}$ and $a \leq w_{1}<a+c, G$ is 18-connected;
3 if $a \leq w_{1}<a+c$ and $a \leq w_{2}<a+b, G$ is 26-connected;
4 if $w_{1}<a$ or $w_{2}<a, G$ is not connected.
G is called a $3 D$ naive line if and only if $w_{1}=w_{2}=\max (|a|,|b|,|c|)$.

3D naive line

Theory (Coeurjolly et al., 2001)

A rational line discretized by the grid intersection is a 3D naive line and vice-versa.

According to Theory (Kim, 1983), we obtain the following corollary:

Corollary (Coeurjolly et al., 2001)

A 26-curve is a 3D naive line if and only if two of its projections on the $x y-, y z$ - and $z x$-planes are $2 D$ naives lines.

3D discrete line recognition

Problem (3D discrete line recognition)

Given a set of $3 D$ discrete points \mathbf{X}, do the points of \mathbf{X} belong to a $3 D$ discrete line?

Yes or No

If yes, what are the parameters of this discrete line?

We apply the incremental algorithm for arithmetic line recognition (for a 2D naive line) (Debled-Rennesson and Reveillès, 1995) to each projection of \mathbf{X} on the $x y-, y z$ - and $z x$-planes.

If Yes for two of its projections, then "Yes".

Euclidean plane

Definition (Plane)

A plane in the Euclidean space \mathbb{R}^{3} is defined by

$$
\mathbf{P}=\left\{(x, y, z) \in \mathbb{R}^{3}: \alpha x+\beta y+\gamma z+\delta=0\right\}
$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{R}$.
In general, we have a normalisation such that $|\alpha|+|\beta|+|\gamma|=1$, $\alpha^{2}+\beta^{2}+\gamma^{2}=1$.

Discretization of planes

Definition (Discretized plane)

The discretized plane of \mathbf{P} in \mathbb{Z}^{2} is defined by

$$
D(\mathbf{P})=\left\{(p, q, r) \in \mathbb{Z}^{2}: 0 \leq \alpha p+\beta q+\gamma r+\delta^{\prime} \leq \omega\right\}
$$

where ω is called the thickness.
The values of δ^{\prime} and ω depend on the discretization model.

- Grid intersection: grid points closest to the intersections with the grid planes

$$
\begin{aligned}
& \delta^{\prime}=\delta+\frac{\max (|\alpha|,|\beta|,|\gamma|)}{2}, \\
& \omega=\max (|\alpha|,|\beta|,|\gamma|) .
\end{aligned}
$$

- Super-cover (outer Jordan): 3-cells intersecting with the line

$$
\begin{aligned}
& \delta^{\prime}=\delta+\frac{|\alpha|+|\beta|+|\gamma|+1}{2} \\
& \omega=|\alpha|+|\beta|+|\gamma|+1 .
\end{aligned}
$$

■ Gauss (half-space): 3-cells with center

Chordal triangle property

Definition (Kim, 1984)

A set of 3D discrete points \mathbf{X} satisfies the chordal triangle property if and only if for any triplet of points $\mathbf{p}_{1}, \mathbf{p}_{2}$ and \mathbf{p}_{3} of \mathbf{X}, every point on the triangle $\mathbf{p}_{1} \mathbf{p}_{2} \mathbf{p}_{3} \in \mathbb{R}^{3}$ is at L_{∞}-distance <1 from some point of \mathbf{X}.

■ This is an extension of Rosenfeld's chord property for 2D discrete lines.

- This is neither a necessary condition nor a sufficient condition for a piece of discrete surface to be a piece of discrete plane.

Characterization based on the convex hull

This is the corrected version whose original one was proposed by Kim.

Theory (Debled-Rennesson, 1995)

A set of discrete points \mathbf{X} is a piece of discrete plane if and only if

- there exists a face F of the convex hull $\operatorname{conv}(\mathbf{X})$ of \mathbf{X} such that the distance between \mathbf{X} and the supporting plane of F is less than 1 , or
- there exist two edges A_{1} and A_{2} of $\operatorname{conv}(\mathbf{X})$ such that the distance between \mathbf{X} and the plane generated by A_{1} and A_{2} is less than 1 .

There exists an arithmetic algorithm for discrete plane recognition based on this theorem (Debled-Rennesson, 1995); however, its complexity is not analyzable.
The algorithm based on the original characterization of Kim has a complexity $O\left(n^{4}\right)$ where n is the size of \mathbf{X}.

Notion of separating plane

Theory (Stojmentović and Tosić, 1991)

A set of discrete points \mathbf{X} is a piece of discrete plane if and only if there exists an Euclidean plane \mathbf{P} that separates \mathbf{X} and the set \mathbf{X}^{\prime} that is obtained by translating \mathbf{X} by 1 along one of the x-, y - and z-axes (this axis is called the principal axis of the plane).

The algorithm based on this theorem has a complexity $O(n)$ by using techniques of linear programming. However, it is not incremental.

The incremental algorithm by using linear programming techniques was proposed and has a complexity $O(n)$ (Buzer, 2003).

Evenness property

The property for the discrete lines (Hung, 1985) is extended to hyperplanes of arbitrary dimensions.
For simplification, we consider the planes with $0 \leq \beta \leq \gamma$ and $\gamma \neq 0$.

Definition (Veelaert, 1993)

A set of discrete points \mathbf{X} is said even if and only if

- the projection of \mathbf{X} on the plane $z=0$ is bijective,
- for every quadruplet of points $\mathbf{p}_{\mathbf{i}}=\left(x_{i}, y_{i}\right), i=1,2, \ldots, 4$, of \mathbf{X} such that $x_{1}-x_{2}=x_{3}-x_{4}$ and $y_{1}-y_{2}=y_{3}-y_{4}$, then $\left|\left(z_{1}-z_{2}\right)-\left(z_{3}-z_{4}\right)\right| \leq 1$.
- This is necessary and sufficient to characterize infinite discrete planes and pieces of rectangular planes.
- This criterion can be evaluated in $O\left(n^{2}\right)$, with n the size of \mathbf{X}.

Algorithms for discrete plane recognition

1 approach based on the linear programming:
$O(n)$ (Stojmenović and Tosić, 1991)
$O(n)$ for an incremental algorithm (Buzer, 2003)
2 approach based on the convex hull:
$O\left(n^{7}\right)$ with a linear behavior in practice (Gérard et al., 2005)
3 approach based on the evenness:
$O\left(n^{2}\right)$ (Veelaert, 1994)
4 arithmetic approach:
? (Debled-Renesson and Reveillès, 1994)
5 approach based on the preimage:
$O\left(n^{3} \log n\right)(V i t t o n e ~ a n d ~ C h a s s a r y, ~ 2000) ~$
6 ...

Arithmetic definition of discrete planes

Definition (Arithmetic plane (Reveillès, 1991))

A discrete plane of normal vector (a, b, c) with translation parameter d and arithmetic thickness w where $a, b, c, d, w \in \mathbb{Z}$ and $\operatorname{gcd}(a, b, c)=1$ is defined such that

$$
\Pi(a, b, c, d, w)=\left\{(p, q, r) \in \mathbb{Z}^{3}: 0 \leq a p+b q+c r+d<w\right\}
$$

The thickness parameter w allows to control the connectedness of the plane.

Thickness and topology of discrete plane

Definition (m-tunnel (Andres et al., 1997))

A discrete plane $\Pi(a, b, c, d, w)$ has an m-tunnel if there exist two m-neighbors $\mathbf{p}_{A}=\left(x_{A}, y_{A}, z_{A}\right)$ and $\mathbf{p}_{B}=\left(x_{B}, y_{B}, z_{B}\right)$ such that $a x_{a}+b y_{A}+c z_{A}+d<0$ and $a x_{B}+b y_{B}+c z_{B}+d \geq w$.

26-tunnel

Theory (Andres et al., 1997)

Let $\Pi(a, b, c, d, w)$ be a discrete plane such that $0 \leq a \leq b \leq c$ and $c \neq 0$, then:

1 if $w<c, \Pi$ has 6 -tunnels ;
2 if $c \leq w<b+c, \Pi$ has 18-tunnels;
3 if $b+c \leq w<a+b+c$, П has 26-tunnels ;
4 if $a+b+c \geq w, \Pi$ has no tunnel.

Thickness and connectivity of discrete planes

Corollary (Andres et al., 1997)

Let $\Pi(a, b, c, d, w)$ be a discrete plane such that $0 \leq a \leq b \leq c$ and $c \neq 0$, then:
1 if $w=c, \Pi$ is 18 -connected;
2 if $c<w<b+c$, П is 18- or 6-connected;
3 if $b+c \leq w, \Pi$ is 6 -connected.

- We call naive planes the planes of thickness $w=\max (|a|,|b|,|c|)$, and standard planes the planes of thickness $w=|a|+|b|+|c|$.
- The naive planes are thus the finest 18 -connected planes without 6 -tunnel, and the standard planes are the finest 6 -connected without tunnel.

Combinatorial property of naive planes: (m, n)-pieces

We consider the naive planes in the case of $0 \leq a \leq b \leq c$ and $c \neq 0$. Let m and n be two positive integers such that $m, n \leq c$.

Property (Reveillès, 1995)

In a naive plane, there are at most $m n$ combinatorially different pieces that are projected as rectangles of size $m \times n$ on the $x y$-plane.

Combinatorial property of naive planes: periodicity

We consider the naive planes in the case of $0 \leq a \leq b \leq c$ and $c \neq 0$. Let m and n be two positive integers such that $m, n \leq c$.

Property (Reveillès, 1995)

All the different configurations of (m, n)-pieces appear in the region that is projected on the xy-plane such as a rectangle of size $(2 n-1) \times(2 m-1)$ whose center is a leaning point.

Property (Kenmochi et Imiya, 2000)

In a naive plane, there are two types of triangular pieces (α and β in the figure) such that

$$
A: B: C=\frac{1}{a}: \frac{1}{b}: \frac{1}{c}
$$

Normal vectors for the (m, m)-pieces

We consider the naive planes in the case of $0 \leq a \leq b \leq c$ and $c \neq 0$. Let m and n be two positive integers such that $m, n \leq c$.

Property (Vittone, 1999; Buzer ,2006)

For every naive plane of normal vector (a, b, c), the possible (m, m)-pieces are obtained by the 2D Farey sequence $\left(\frac{a}{c}, \frac{b}{c}\right)$ of order $2(m-1)^{2}$.

2D Farey sequence (Hurwitz, 1894)

Definition (2D Farey sequence)

The 2D Farey sequence of order n is the set of pairs of fractions:

$$
F_{n}=\left\{\left(\frac{p}{q}, \frac{r}{q}\right): \operatorname{gcd}(p, q, r)=1,0 \leq p \leq q, 0 \leq r \leq q, q \leq n\right\} .
$$

Example: F_{8}

Distribution of normal vectors (a,b,c) where $0<=\mathrm{a}<=\mathrm{b}<=\mathrm{c}<=8, \mathrm{c}$ is not zero.

References

$■$ I. Sivignon et I. Debled-Rennesson.
"Droites et plans discrets," Chapitre 6 dans "Géométrie discrète et images numériques," Hermès, 2007.
\square R. Klette and A. Rosenfeld.
"2D Straightness", Chapter 9 in "Digital geometry: geometric methods for digital picture analysis," Morgan Kaufmann, 2004.

- R. Klette and A. Rosenfeld.
"3D Straightness and Planarity," Chapter 11 in "Digital geometry: geometric methods for digital picture analysis," Morgan Kaufmann, 2004.
- V. Brimkov, D. Coeurjolly and R. Klette.
"Digital planarity - a review," Discrete Applied Mathematics, Vol. 155, Issue 4, pp. 468-495, 2007.

