Master 2 "SIS" Digital Geometry

TOPIC 4: DISCRETE LINES AND PLANES

Yukiko Kenmochi

November 14, 2011

Straight line

Definition (Straight line)

A line in the Euclidean space \mathbb{R}^2 is defined by

$$\mathbf{L} = \{ (x, y) \in \mathbb{R}^2 : \alpha x + \beta y + \gamma = \mathbf{0} \}$$

where $\alpha, \beta, \gamma \in \mathbb{R}$.

In general, we have a normalization such that $|\alpha|+|\beta|=$ 1, $\alpha^2+\beta^2=$ 1.

Discretization of straight line

Definition (Discrete line)

The discrete line of ${\boldsymbol{\mathsf{L}}}$ in \mathbb{Z}^2 is defined by

$$D(\mathbf{L}) = \{(p,q) \in \mathbb{Z}^2 : 0 \le \alpha p + \beta q + \gamma' \le \omega\}$$

where ω is called the thickness.

The values of γ' and ω depend on the model of discretization.

- **Grid-intersection**: grid points closest to the intersections with the grid lines $\gamma' = \gamma + \frac{\max(|\alpha|, |\beta|)}{2}, \ \omega = \max(|\alpha|, |\beta|).$
- **Super-cover (outer Jordan)**: 2-cells intersecting with the line $\gamma' = \gamma + \frac{|\alpha| + |\beta| + 1}{2}$, $\omega = |\alpha| + |\beta| + 1$.
- Gauss (half-plane): 2-cells with center points in the half-plane

2D discrete lines

Freeman code

Freeman code

Starting point

Chain code: 7500013444

Properties of discrete lines

Criteria of Freeman (1974)

For discrete lines (by *grid-intersection* discretization), the **Freeman code** verify the following three properties:

- 1 the code contains at most two different values;
- 2 those two values differ at most by one unit (modulo 8);
- **3** one of the two values **appears isolatedly** and its appearances are uniformly spaced in the code.

Freeman code

Discrete line : 10101001010...

Properties of discrete lines (cont.)

Definition (Chord property (Rosenfeld, 1974))

A set of discrete points **X** satisfies the chord property if for every pair of points **p** and **q** of **X** and for every point $\mathbf{r} = (r_x, r_y)$ of the real segment between **p** and **q**, there exists a point $\mathbf{s} = (s_x, s_y)$ of **X** such that $\max(|s_x - r_x|, |s_y - r_y|) < 1$.

- It proves that a discrete curve is a discrete line segment if and only if it owns the chord property.
- It allows to show the two first criteria of Freeman and to deduce a number of properties that specify the third criterion.
- There are a number of algorithms for recognizing a discrete straight line based on this property.

Bresenham line-drawing algorithm

 $e = e - 2d_x$:

Algorithm: drawing a discrete line (Bresenham, 1962)

Input: Two discrete points (x_1, y_1) , (x_2, y_2) (s.t. $x_2 - x_1 \ge y_2 - y_1 > 0$) **Output:** Line segment between the two points

$$d_x = x_2 - x_1, d_y = y_2 - y_1;$$

initialization

$$e = d_x;$$

initialization

$$e = d_x;$$

initialization
value of initial error
for x from x_1 to x_2 do
uput the pixel (x, y);

$$e = e + 2d_y;$$

if $e \ge 2d_x$ then

$$y = y + 1;$$

Can we consider rounding instead of truncation?

Arithmetic definition of discrete lines

Definition (Arithmetic discrete line)

A discrete line of parameters (a, b, c) and of arithmetic thickness w where $a, b, c \in \mathbb{Z}$ and gcd(a, b) = 1 is defined as

$$D(a,b,c,w) = \{(p,q) \in \mathbb{Z}^2 : 0 \leq ap + bq + c < w\}.$$

The thickness parameter w allows to control the connectedness of the line.

Thickness and connectedness of discrete lines

Theory

Let D(a, b, c, w) be a discrete line, then:

- 1 if $w < \max(|a|, |b|)$, it is not connected;
- 2 if $w = \max(|a|, |b|)$, it is a 8-curve ; naive line
- if max(|a|, |b|) < w < |a| + |b|, it is a *-curve (its two successive points are 4-neighboring or strictly 8-neighboring);</p>

4 if
$$w = |a| + |b|$$
, it is a 4-curve

standard line

5 if w > |a| + |b|, it is said thick.

Remainder and leaning point of discrete lines

Definition (Remainder)

The remainder associated to a point $\mathbf{p} = (p_x, p_y)$ of D(a, b, c, w) is an integer value defined by

$$R(\mathbf{p}) = ap_x + bp_y + c.$$

- When the remainder is 0, **p** is called a **lower leaning point**.
- When the remainder is w 1, **p** is called a **upper leaning point**.

We can generalize the Bresenham algorithm by using the *remainder* instead of the *error e*.

Arithmetic line drawing algorithm

Algorithm: drawing an arithmetic (naive) line

Input: Two discrete points (x_1, y_1) , (x_2, y_2) and *c* **Output:** Line segment between the two points

•
$$b = x_2 - x_1$$
, $a = y_2 - y_1$;

$$y = y_1$$

•
$$r = ax_1 + by_1 + c;$$

- for x from x_1 to x_2
 - put the pixel (x, y);
 - $\bullet r = r + a;$
 - if $r \ge b$ then
 - y = y + 1;
 r = r − b;

We consider here that $x_2 - x_1 \ge y_2 - y_1 > 0$.

The value of c is initially chosen such that $0 \le ax_1 + by_1 + c < b$.

Discrete line recognition

Problem (Discrete line recognition)

Given a set of discrete points X, do the points of X belong to a discrete line?

Yes or No

If yes, what are the parameters of this discrete line?

There are many recognition algorithms with linear complexity.

1 approach of linear programming:

verify the existence of feasible (real) solutions.

- 2 approach based on preimage (Lindenbaum, Bruckstein, 1993): use the properties of discrete lines in the dual space, called preimages.
- arithmetic approach (Debled-Rennesson, Reveillès, 1995): verify the existence of integer solutions by using arithmetic properties.

4 . . .

Incremental algorithm for arithmetic line recognition: initial situation

Let

- **S** be a segment of naive line D(a, b, c) with $0 \le a < b$,
- $\mathbf{q} = (x_{\mathbf{q}}, y_{\mathbf{q}})$ be the point of the greatest abscissa of **S**,
- I and I' be the lower leaning points of minimum and maximum abscissas of S,
- **u** and **u'** be the upper leaning points of minimum and maximum abscissas of **S**.

By adding a point $\mathbf{p} = (x_{\mathbf{p}}, y_{\mathbf{p}})$ connected to **S** such that $x_{\mathbf{p}} = x_{\mathbf{q}} + 1$, we verify if $\mathbf{S}' = \mathbf{S} \cup \{\mathbf{p}\}$ is still a naive line segment.

Incremental algorithm for arithmetic line recognition

Theory (Debled-Rennesson and Reveillès, 1995)

We have

- **I** if $0 < r(\mathbf{p}) < b$, **S**' is a naive line segment D(a, b, c);
- 2 if $r(\mathbf{p}) < -1$ or $b < r(\mathbf{p})$, then S' is not a naive line segment;

3 if
$$r(\mathbf{p}) = -1$$
, then S' is a naive line segment
 $D(y\mathbf{p} - y\mathbf{u}, x\mathbf{p} - x\mathbf{u}, -ax\mathbf{p} + by\mathbf{p});$

4 if
$$r(\mathbf{p}) = b$$
, then \mathbf{S}' is a naive line segment $D(y\mathbf{p} - y\mathbf{l}, x\mathbf{p} - x\mathbf{l}, -ax\mathbf{p} + by\mathbf{p} + b - 1)$.

Farey sequence

Definition (Farey sequence (Hardy and Write, 1979))

The Farey sequence of order n, F_n , is the sequence of irreducible fractions between 0 and 1, whose denominators are less than or equal to n, in ascending order.

If
$$0 \le h \le k \le n$$
 and $gcd(h, k) = 1$, then $\frac{h}{k}$ is in F_n .

Example (F_5)

$$\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}$$

Structure of the Farey sequence: Stern-Brocot tree

Property (Neighborhood)

If $\frac{a}{b}$ and $\frac{c}{d}$ are neighboring in a Farey sequence, with $\frac{a}{b} < \frac{c}{d}$, then their difference is equal to $\frac{1}{bd}$.

Property (Median)

If
$$\frac{a}{b}$$
, $\frac{p}{q}$ and $\frac{c}{d}$ are neighboring in a Farey sequence such that $\frac{a}{b} < \frac{p}{q} < \frac{c}{d}$, then $\frac{p}{q}$ is the median of $\frac{a}{b}$ and $\frac{c}{d}$ such as

$$\frac{p}{q} = \frac{a+c}{b+d}.$$

These properties allow to construct the *Stern-Brocot tree*.

Stern-Brocot tree and discrete lines

Each vertex $\frac{h}{k}$ of the tree corresponds to a pattern (motif) associated to the discrete line of slope $\frac{h}{L}$.

Updating parameters of the incremental discrete line recognition algorithm indicates moving from the tree root to a leaf.

Applications of discrete line recognition

The discrete line recognition allow us to:

- study the *parallelism*, *colinearity*, *orthogonality*, *convexity* in the discrete space;
- estimate geometric properties of discrete object borders, such as the *length* of a curve, *tangent* and *curvature* at a point in a curve, etc.;
- make a segmentation of a discrete curve into line segments (*polygonalisation*).

If there is noise in discrete object border, we need to modify the problem.

3D straight lines and their discretization

Definition (3D straight line)

A straight line in the Euclidean space \mathbb{R}^3 is defined by

$$\mathsf{L} = \{ (\alpha_1 t + \beta_1, \alpha_2 t + \beta_2, \alpha_3 t + \beta_3) \in \mathbb{R}^3 : t \in \mathbb{R} \}$$

where $\alpha_i, \beta_i \in \mathbb{R}$ for i = 1, 2, 3.

The *discretized line* $D(\mathbf{L})$ defined in \mathbb{Z}^3 by the *grid intersection* is the set of discrete points that are closest to the intersection in the plane of the *grid*.

Discretized line and discrete curve

A discretized line is a 26-curve.

Definition (*m*-curve)

An *m*-path π is an *m*-curve if for every element \mathbf{p}_i of π , i = 1, ..., n, \mathbf{p}_i has exactly two *m*-adjacent points in π , except for \mathbf{p}_0 and \mathbf{p}_n that has only one.

Theory (Kim, 1983)

A 26-curve is a discretized line if and only if two of its projections on the xy-, yz- and zx-planes are 8-connected 2D discrete lines.

Arithmetic definition of 3D discrete lines

Definition (3D discrete line)

A set $G \subset \mathbb{Z}^3$ is an arithmetic line defined by seven integer parameters a, b, c, d_1, d_2, w_1 , and w_2 if and only if

 $G = \{(x, y, z) \in \mathbb{Z}^3 : d_1 \le cx - az < d_1 + w_1 \land d_2 \le bx - ay < d_2 + w_2\}.$

For simplification, we consider $0 \le c \le b \le a$ and gcd(a, b, c) = 1.

The parameters d_1 and d_2 are called the *lower bounds* and the parameters w_1 and w_2 define the *arithmetic thickness*

Thickness and connectedness of 3D discrete line

The thickness w_1 and w_2 allow to control the connectedness of the line.

Theory (Coeurjolly et al., 2001)

Let G be a discrete line defined by a, b, c, d_1, d_2, w_1, w_2 \in \mathbb{Z} where $0 \le c < b < a$, then:

- 1 if $a + c \le w_1$ and $a + b \le w_2$, G is 6-connected;
- 2 if $a + c \le w_1$ and $a \le w_2 < a + b$, or if $a + b \le w_2$ and $a \le w_1 < a + c$, G is 18-connected;
- 3 if $a \le w_1 < a + c$ and $a \le w_2 < a + b$, G is 26-connected;
- 4 if $w_1 < a$ or $w_2 < a$, G is not connected.

G is called a <u>3D naive line</u> if and only if $w_1 = w_2 = \max(|a|, |b|, |c|)$.

3D naive line

Theory (Coeurjolly et al., 2001)

A rational line discretized by the grid intersection is a 3D naive line and vice-versa.

According to Theory (Kim, 1983), we obtain the following corollary:

Corollary (Coeurjolly et al., 2001)

A 26-curve is a 3D naive line if and only if two of its projections on the xy-, yz- and zx-planes are 2D naives lines.

3D discrete line recognition

Problem (3D discrete line recognition)

Given a set of 3D discrete points X, do the points of X belong to a 3D discrete line?

Yes or No

If yes, what are the parameters of this discrete line?

We apply the incremental algorithm for arithmetic line recognition (for a 2D naive line) (Debled-Rennesson and Reveillès, 1995) to each projection of X on the *xy*-, *yz*- and *zx*-planes.

If Yes for two of its projections, then "Yes".

Euclidean plane

Definition (Plane)

A plane in the Euclidean space \mathbb{R}^3 is defined by

$$\mathbf{P} = \{ (x, y, z) \in \mathbb{R}^3 : \alpha x + \beta y + \gamma z + \delta = 0 \}$$

where $\alpha, \beta, \gamma, \delta \in \mathbb{R}$.

In general, we have a normalisation such that $|\alpha|+|\beta|+|\gamma|=$ 1, $\alpha^2+\beta^2+\gamma^2=$ 1.

Discretization of planes

Definition (Discretized plane)

The discretized plane of ${\boldsymbol{\mathsf{P}}}$ in \mathbb{Z}^2 is defined by

$$D(\mathbf{P}) = \{(p, q, r) \in \mathbb{Z}^2 : 0 \le \alpha p + \beta q + \gamma r + \delta' \le \omega\}$$

where ω is called the thickness.

The values of δ' and ω depend on the discretization model.

- Grid intersection: grid points closest to the intersections with the grid planes $\delta' = \delta + \frac{\max(|\alpha|, |\beta|, |\gamma|)}{2},$ $\omega = \max(|\alpha|, |\beta|, |\gamma|).$
- **Super-cover (outer Jordan)**: 3-cells intersecting with the line $\delta' = \delta + \frac{|\alpha| + |\beta| + |\gamma| + 1}{2}$, $\omega = |\alpha| + |\beta| + |\gamma| + 1$.
- Gauss (half-space): 3-cells with center

Definition (Kim, 1984)

A set of 3D discrete points X satisfies the chordal triangle property if and only if for any triplet of points \mathbf{p}_1 , \mathbf{p}_2 and \mathbf{p}_3 of X, every point on the triangle $\mathbf{p}_1\mathbf{p}_2\mathbf{p}_3 \in \mathbb{R}^3$ is at L_{∞} -distance < 1 from some point of X.

- This is an extension of Rosenfeld's chord property for 2D discrete lines.
- This is neither a necessary condition nor a sufficient condition for a piece of discrete surface to be a piece of discrete plane.

Characterization based on the convex hull

This is the corrected version whose original one was proposed by Kim.

Theory (Debled-Rennesson, 1995)

A set of discrete points \mathbf{X} is a piece of discrete plane if and only if

- there exists a face F of the convex hull conv(X) of X such that the distance between X and the supporting plane of F is less than 1, or
- there exist two edges A₁ and A₂ of conv(X) such that the distance between X and the plane generated by A₁ and A₂ is less than 1.

There exists an arithmetic algorithm for discrete plane recognition based on this theorem (Debled-Rennesson, 1995); however, its complexity is not analyzable.

The algorithm based on the original characterization of Kim has a complexity $O(n^4)$ where *n* is the size of **X**.

Theory (Stojmentović and Tosić, 1991)

A set of discrete points X is a piece of discrete plane if and only if there exists an Euclidean plane P that separates X and the set X' that is obtained by translating X by 1 along one of the x-, y- and z-axes (this axis is called the principal axis of the plane).

The algorithm based on this theorem has a complexity O(n) by using techniques of linear programming. However, it is not incremental.

The incremental algorithm by using linear programming techniques was proposed and has a complexity O(n) (Buzer, 2003).

Evenness property

The property for the discrete lines (Hung, 1985) is extended to hyperplanes of arbitrary dimensions.

For simplification, we consider the planes with $0 \le \beta \le \gamma$ and $\gamma \ne 0$.

Definition (Veelaert, 1993)

A set of discrete points **X** is said even if and only if

- the projection of **X** on the plane z = 0 is bijective,
- for every quadruplet of points $\mathbf{p}_i = (x_i, y_i)$, i = 1, 2, ..., 4, of **X** such that $x_1 x_2 = x_3 x_4$ and $y_1 y_2 = y_3 y_4$, then $|(z_1 z_2) (z_3 z_4)| \le 1$.
- This is necessary and sufficient to characterize infinite discrete planes and pieces of rectangular planes.
- This criterion can be evaluated in $O(n^2)$, with *n* the size of **X**.

Algorithms for discrete plane recognition

- approach based on the linear programming: O(n) (Stojmenović and Tosić, 1991) O(n) for an incremental algorithm (Buzer, 2003)
- **2** approach based on the convex hull: $O(n^7)$ with a linear behavior in practice (Gérard et al., 2005)
- **3** approach based on the evenness: $O(n^2)$ (Veelaert, 1994)
- **4** arithmetic approach:
 - ? (Debled-Renesson and Reveillès, 1994)
- **5** approach based on the preimage: $O(n^3 \log n)$ (Vittone and Chassary, 2000)

6 ...

Arithmetic definition of discrete planes

Definition (Arithmetic plane (Reveillès, 1991))

A discrete plane of normal vector (a, b, c) with translation parameter d and arithmetic thickness w where $a, b, c, d, w \in \mathbb{Z}$ and gcd(a, b, c) = 1 is defined such that

$$\Pi(a,b,c,d,w) = \{(p,q,r) \in \mathbb{Z}^3 : 0 \leq ap + bq + cr + d < w\}.$$

The thickness parameter w allows to control the connectedness of the plane.

Thickness and topology of discrete plane

Definition (*m*-tunnel (Andres et al., 1997))

A discrete plane $\Pi(a, b, c, d, w)$ has an *m*-tunnel if there exist two *m*-neighbors $\mathbf{p}_A = (x_A, y_A, z_A)$ and $\mathbf{p}_B = (x_B, y_B, z_B)$ such that $ax_a + by_A + cz_A + d < 0$ and $ax_B + by_B + cz_B + d \ge w$.

Theory (Andres et al., 1997)

Let $\Pi(a, b, c, d, w)$ be a discrete plane such that $0 \le a \le b \le c$ and $c \ne 0$, then:

1 if w < c, Π has 6-tunnels ;

2 if
$$c \le w < b + c$$
, Π has 18-tunnels ;

3 if $b + c \le w < a + b + c$, Π has 26-tunnels;

4 if $a + b + c \ge w$, Π has no tunnel.

Thickness and connectivity of discrete planes

Corollary (Andres et al., 1997)

Let $\Pi(a, b, c, d, w)$ be a discrete plane such that $0 \le a \le b \le c$ and $c \ne 0$, then:

- 1 if w = c, Π is 18-connected;
- **2** if c < w < b + c, Π is 18- or 6-connected;
- 3 if $b + c \le w$, Π is 6-connected.
 - We call naive planes the planes of thickness w = max(|a|, |b|, |c|), and standard planes the planes of thickness w = |a| + |b| + |c|.
 - The naive planes are thus the finest 18-connected planes without 6-tunnel, and the standard planes are the finest 6-connected without tunnel.

Combinatorial property of naive planes: (m, n)-pieces

We consider the naive planes in the case of $0 \le a \le b \le c$ and $c \ne 0$. Let *m* and *n* be two positive integers such that $m, n \le c$.

Property (Reveillès, 1995)

In a naive plane, there are at most mn combinatorially different pieces that are projected as rectangles of size $m \times n$ on the xy-plane.

Combinatorial property of naive planes: periodicity

We consider the naive planes in the case of $0 \le a \le b \le c$ and $c \ne 0$. Let *m* and *n* be two positive integers such that $m, n \le c$.

Property (Reveillès, 1995)

All the different configurations of (m, n)-pieces appear in the region that is projected on the xy-plane such as a rectangle of size $(2n - 1) \times (2m - 1)$ whose center is a leaning point.

Property (Kenmochi et Imiya, 2000)

In a naive plane, there are two types of triangular pieces (α and β in the figure) such that

$$A:B:C=\frac{1}{a}:\frac{1}{b}:\frac{1}{c}$$

Normal vectors for the (m, m)-pieces

We consider the naive planes in the case of $0 \le a \le b \le c$ and $c \ne 0$. Let *m* and *n* be two positive integers such that $m, n \le c$.

Property (Vittone, 1999; Buzer ,2006)

For every naive plane of normal vector (a, b, c), the possible (m, m)-pieces are obtained by the 2D Farey sequence $(\frac{a}{c}, \frac{b}{c})$ of order $2(m-1)^2$.

2D Farey sequence (Hurwitz, 1894)

Definition (2D Farey sequence)

The 2D Farey sequence of order n is the set of pairs of fractions:

$$F_n = \left\{ \left(rac{p}{q}, rac{r}{q}
ight) : \textit{gcd}(p, q, r) = 1, 0 \leq p \leq q, 0 \leq r \leq q, q \leq n
ight\}.$$

Distribution of normal vectors (a,b,c) where 0<=a<=b<=c<=8, c is not zero.

Example : F_8

References

- I. Sivignon et I. Debled-Rennesson.
 "Droites et plans discrets," Chapitre 6 dans "Géométrie discrète et images numériques," Hermès, 2007.
- R. Klette and A. Rosenfeld.
 - "2D Straightness", Chapter 9 in "Digital geometry: geometric methods for digital picture analysis," Morgan Kaufmann, 2004.
- R. Klette and A. Rosenfeld.
 - "3D Straightness and Planarity," Chapter 11 in "Digital geometry: geometric methods for digital picture analysis," Morgan Kaufmann, 2004.
- V. Brimkov, D. Coeurjolly and R. Klette.
 "Digital planarity a review," Discrete Applied Mathematics, Vol. 155, Issue 4, pp. 468–495, 2007.