## Master 2 "SIS" Digital Geometry

### TOPIC 5: Geometric measuements of discrete shapes

### Yukiko Kenmochi



November 21, 2011

# Shape geometric measurements

#### Example

Given a (2D) discrete object, we would like to estimate its

- area,
- perimeter,
- **tangent** (field),

```
    curvature (field),
```

• ...

Those geometric measuments are used for

- shape analysis,
- shape recognition,
- shape deformation,
- visualization,

...

## Assumptions and basic notions

#### Mathematical setting

- Let S be a region (original object) in  $\mathbb{R}^2$ ;
- $\gamma$  be its boundary that is a Jordan curve;
- h > 0 be a grid resolution (discrete space:  $\mathbb{Z}_h^2 = \{(\frac{i}{h}, \frac{j}{h}) : i, j \in \mathbb{Z}\}$ );
- $G_h$  be a Gauss discretization of S;
- $\gamma_h$  be a closed *m*-curve (*m* = 4 or 8) that is
  - the (8 m)-interior border of  $G_h$ , or
  - the inter-pixel boundary (it is considered as a closed 4-curve whose sequence elements are 0-cells.

#### Multigrid convergence

Given an object  $S \subset \mathbb{R}^2$ , for each geometric estimator, we verify its multigrid (asymptotic) convergence; the estimated value  $E_h$  tends to the true value T when the image resolution h increases.



(Klette and Rosenfeld, 2003)

# Multigrid convergence for global geometric features

For global geometric features, which are estimated from  $\gamma_h$ , such as perimeter, we use the following definition.

#### Multigrid convergence for global geometric feature

If  $F(\gamma)$  is a global geometric feature of  $\gamma$  and E is an estimator of F, E is asymptotically convergent to F if and only if for any increasing resolution sequence  $h_i$  that tends to  $\infty$ , the sequence  $E(\gamma_{h_i})$  converges to  $F(\gamma)$ .

For area estimation, we replace  $\gamma$  and  $\gamma_{h_i}$  by S and  $G_{h_i}$ .

# Multigrid convergence for local geometric features

For local geometric features, which are calculated locally at each point of  $\gamma_h$ , such as tangent and curvature, we need to give a convergence definition point by point.

#### Point correspondence

A discrete point  $\mathbf{x}_h$  is a *h*-discretization of a point  $\mathbf{x}$  of  $\gamma$  if and only if  $\|\mathbf{x} - \mathbf{x}_h\|_1 \leq \frac{1}{h}$  and  $\mathbf{x}_h \in \gamma_h$ .

#### Multigrid convergence for local geometric feature

If  $F(\gamma, \mathbf{x})$  is a local geometric feature of  $\gamma$  at  $\mathbf{x}$  and E is an estimator of F, E is asymptotically convergent to F if and only if for any increasing resolution sequence  $h_i$  that tends to  $\infty$ , for any point  $\mathbf{x} \in \gamma$  having the  $h_i$ -discretization  $\mathbf{x}_{h_i}$ , the sequence  $E(\gamma_{h_i}, \mathbf{x}_{h_i})$  converges to  $F(\gamma, \mathbf{x})$ .

### Perimeter estimators

- local estimators
- estimators based on polygonalization by discrete lines
- tangent-based estimators

# Local perimeter estimation (BLUE)

Statistic analysis is used to find weights that minimize the mean square error between the estimated and true length of a straight line segment.

Best linear unbiased estimator (Dorst, Smeulders, 1987)

Given a 8-curve  $\gamma_h$ , the perimeter estimator is

$$L_{BLUE}(\gamma_h) = \frac{1}{h}(0.948n_i + 1.343n_d)$$

where  $n_i$  is the number of isothetic steps and  $n_d$  the number of diagonal steps in  $\gamma_h$ .

Similar estimators have been proposed for chamfer distance using a  $3 \times 3$  neighborhood (Borgefors, 1986):

$$L_{chamfer}(\gamma_h) = \frac{1}{h}(0.95509n_i + 1.33693n_d).$$

# Local perimeter estimation (COC)

#### Corner-count estimator (Vossepoel, Smeulders, 1982)

The perimeter estimator is

$$L_{COC}(\gamma_h) = \frac{1}{h}(0.980n_i + 1.406n_d - 0.091n_c)$$

where  $n_c$  is the number of odd-even transitions in the chain code of  $\gamma_h$ .

### Perimeter estimation based on polygonalization

Polygonalization of a *m*-curve  $\gamma_h$  is a segmentation of  $\gamma_h$  into a set of discrete line segments.



Most probable original length estimation (Dorst, Smeulders, 1991)

For a 8-connected discrete line segment  $\gamma_h$ ,

$$L_{MPO}(\gamma_h) = \frac{1}{h}n\sqrt{1 + \left(\frac{a}{b}\right)^2}$$

where *n* is the number of elements  $\gamma_h$ ,  $\frac{a}{b}$  is the best possible rational slope estimate.

<sup>(</sup>Feschet, Vialard, 2007)

# Perimeter estimation based on polygonalization (cont.)

#### Polygonalization by discrete lines

We apply the arithmetic line recognition algorithm (Debled-Rennesson, Reveillès, 1995) to obtain an approximated polygon of  $\gamma_h$ , that is represented by a set of discrete line segments.

Note that the polygonalization is not uniquely defined: it depends on the method, the chosen starting point, and the direction in which the curve is traced.

#### MPO based perimeter estimation

For the perimeter estimation, we sum the MPO length estimates of the discrete line segments.

### Tangent-based perimeter estimators

#### Curve length by integrating

Given a curve  $\gamma(t) = (x(t), y(t))$  for  $t \in [a, b]$ , the tangent vector associated with  $\gamma(t)$  is given by  $\mathbf{n}(t) = (x'(t), y'(t))$  and then the curve length between t = a and t = b is

$$L(\gamma) = \int_{a}^{b} \|\mathbf{n}(t)\| \mathrm{d}t$$

## Tangent-based perimeter estimators (cont.)

#### Discrete curve length by integrating

Let us consider  $\gamma_h$  as a 1-complex. For each 1-cell e in  $\gamma_h$ , Let  $\mathbf{n}(e)$  be the normal vector of e and  $\hat{\mathbf{n}}(e)$  the estimated normal vector on e. Then, the length is estimated by

$$\mathcal{L}_{TAN}(\gamma_h) = \sum_{e \in \gamma_h} \hat{\mathbf{n}}(e) \cdot \mathbf{n}(e).$$



(Feschet, Vialard, 2007)

# Multigrid convergences of perimeter estimators

local estimators:

no multigrid convergence.

(Tajine, Daurat, 2003)

estimators based on polygonalization by discrete lines: multigrid convergence with a speed bounded by

$$rac{2\pi}{h}\left(\epsilon(h)+rac{1}{\sqrt{2}}
ight)$$

where  $\epsilon(h)$  corresponds to the distance between the discrete boundary and the approximated polygon (for example,  $\frac{1}{h}$ , depending on the algorithm). (Klette, Zunic, 2000) **The proof is given for all polygonal, convex and** *r***-compact sets**.

#### tangent-based estimators:

if the tangent estimator converge asymptotically, then the perimeter estimator converge as well. (Coeurjolly, Klette, 2004)

### Extension of length estimation to 3D

#### length measurement of a 3D discrete curve:

- local estimator based on curve-point configuration in a 26-neighborhood (Jonas, Kiryati, 1998);
- estimator based on polygonal approximation of a 3D discrete curve, which is realized by applying the algorithm for recognizing 3D discrete line segments (Coeurjolly, et al. 2001);

#### surface area measurement of a 3D discrete surface:

- local estimator based on surface-point configuration in a 6-neighborhood (Mulkin, Verbeek, 1993);
- triangulation methods for polyhedral approximation, which help to estimate the surface area.

- local estimators by using a fixed neighborhood of size 2k + 1,
- estimators by using adaptive neighborhoods.

### Local tangent estimators

There are several tangent estimators by using a finite neighborhood of 2k + 1 points of a discrete curve around a point  $\mathbf{x}_i$ .

- Median tangent (Matas, Shao, Kittler, 1995): The tangent at  $\mathbf{x}_i$  is estimated as the median direction of vectors  $\overrightarrow{\mathbf{x}_i, \mathbf{x}_{i+j}}$  for  $j = -k, \dots, k$ .
- Average tangent (Lenoir, Malgouyres, Revenu, 1996): The tangent at x<sub>i</sub> is defined as the local average orientation and calculated by using a recursive Gaussian filter.
- Best linear approximation tangent (Anderson, Bezdek, 1984): The tangent at x<sub>i</sub> is defined as the best approximation line of the neighborhood of x<sub>i</sub> in the sense of minimizing the sum of squared distance of the 2k + 1 points.

#### Problem

This approach does not allow to adapter the calculation to the local geometry of the curve.

# Maximal segment

Adaptive-neighborhood based tangent estimator need the notion of maximal segment.

#### Maximal segment

The maximal segment is a sequence of points of the curve shaping a discrete line segment such that the discrete line segment cannot be extended by adding points of the curve to its endpoints.



(Lachaud et al., 2007)

## Tangent estimators based on adaptive neighborhoods

#### Discrete tangents

- Symmetric tangent at x<sub>i</sub> is the longest discrete line segment with the form x<sub>i-1</sub>,..., x<sub>i+1</sub>. (Lachaud, Vialard, 2003)
- Oriented tangent is the maximal segment with biggest indices that includes the symmetric tangent. Note that results depend on the orientation choice. (Feshet, Tougne, 1999)
- Extended tangent is obtained from the symmetric tangent; if it can be extended by either x<sub>i-l-1</sub> or x<sub>i+l+1</sub>, it is equal to the symmetric tangent; otherwise, it is extended by as much as possible. (Braquelaire, Vialard, 1999)



## Linear combination of adaptive-neighborhood tangents

#### $\lambda$ -MST (Lachaud, Vialard, de Vielleville, 2007)

The  $\lambda$ -MST estimator calculates the tangent direction  $\theta$  of  $\mathbf{x}_i$  as

$$\theta(\mathbf{x}_i) = \frac{\sum_{MS} e_{MS}(\mathbf{x}_i) \theta_{MS}}{\sum_{MS} e_{MS}(\mathbf{x}_i)}$$

where  $e_{MS}(\mathbf{x}_i)$  is the eccentricity for  $\mathbf{x}_i$  with respect to each maximal segment MS, defined by

$$e_{MS}(\mathbf{x}_i) = egin{cases} \lambda\left(rac{\|\mathbf{x}_i-\mathbf{x}_k\|_1}{\|\mathbf{x}_l-\mathbf{x}_k\|_1}
ight) & ext{ if } \mathbf{x}_i \in MS(=\mathbf{x}_k,\dots,\mathbf{x}_l), \\ 0 & ext{ otherwise}. \end{cases}$$



# $\lambda$ -MST algorithm

The  $\lambda$ -MST is based on the incremental algorithm for maximal segments of a discrete curve, whose time complexity is linear.

Algorithm: incremental algorithm of maximal segments

**Input:** discrete curve  $\gamma_h$ , maximal segment  $(\mathbf{x}_k, \dots, \mathbf{x}_l)$ **Output:** next maximal segment

• 
$$k = k + 1;$$

```
■ l = l + 1;
```

- while  $\neg S(k, l)$  do k = k + 1
- while S(k, l) do l = l + 1

```
■ l = l − 1;
```

Note that S(i,j) denotes that the sequence  $(\mathbf{x}_i, \ldots, \mathbf{x}_j)$  is a discrete line segment.

### Comparisons of tangent estimators

- Multigrid convergence: Oriented tangent, λ-MST with a speed of average convergence bounded by  $O(h^{-\frac{1}{3}})$ The proof is given for a convex and three-times differentiable border having continuous curvature.
- Precisions:



The best choice may be the  $\lambda$ -MST.

There are mainly three approaches: curvature is estimated from

- the change in the slope angle of the tangent line;
- derivatives along the curve;
- the radius of the osculating circle.

Further info can be found in the references.

## Application example

For supporting the non-invasive diagnosis of bronchial tree pathologies, automatic quantitative description of an airway tree extracted from volumetric CT data set is useful. (M. Postolski, 2011)



# Application example: purpose

Tangent estimation from a 3D discrete curve.



# Application example: experiment 1



Digital Geometry : Topic 5



# Application example: experiment 2





F. Feschet et A. Vialard.

"Attributs de bord," Chapitre 13 dans "Géométrie discrète et images numériques," Hermès, 2007.

- R. Klette and A. Rosenfeld.
   "2D arc length; curvature and corners", Chapter 10 in "Digital geometry: geometric methods for digital picture analysis," Morgan Kaufmann, 2004.
- J.-O. Lachaud, A. Vialard, and F. de Vieilleville.
   "Fast, accurate and convergent tangent estimation on digital contours," Image and Vision Computing, Vol. 25, pp. 1572–1587, 2007.