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Introduction

Shape geometric measurements

Example

Given a (2D) discrete object, we would like to estimate its

area,

perimeter,

tangent (field),

curvature (field),

...

Those geometric measuments are used for

shape analysis,

shape recognition,

shape deformation,

visualization,

...
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Introduction

Assumptions and basic notions

Mathematical setting

Let S be a region (original object) in R2;

γ be its boundary that is a Jordan curve;

h > 0 be a grid resolution (discrete space: Z2
h = {( i

h ,
j
h ) : i , j ∈ Z});

Gh be a Gauss discretization of S ;

γh be a closed m-curve (m = 4 or 8) that is

the (8−m)-interior border of Gh, or
the inter-pixel boundary (it is considered as a closed 4-curve whose
sequence elements are 0-cells.
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Introduction

Multigrid convergence

Multigrid convergence

Given an object S ⊂ R2, for each geometric estimator, we verify its
multigrid (asymptotic) convergence; the estimated value Eh tends to
the true value T when the image resolution h increases.

(Klette and Rosenfeld, 2003)
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Introduction

Multigrid convergence for global geometric features

For global geometric features, which are estimated from γh, such as
perimeter, we use the following definition.

Multigrid convergence for global geometric feature

If F (γ) is a global geometric feature of γ and E is an estimator of F , E
is asymptotically convergent to F if and only if for any increasing
resolution sequence hi that tends to ∞, the sequence E (γhi

) converges
to F (γ).

For area estimation, we replace γ and γhi
by S and Ghi

.
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Introduction

Multigrid convergence for local geometric features

For local geometric features, which are calculated locally at each point
of γh, such as tangent and curvature, we need to give a convergence
definition point by point.

Point correspondence

A discrete point xh is a h-discretization of a point x of γ if and only if
‖x− xh‖1 ≤ 1

h and xh ∈ γh.

Multigrid convergence for local geometric feature

If F (γ, x) is a local geometric feature of γ at x and E is an estimator of
F , E is asymptotically convergent to F if and only if for any increasing
resolution sequence hi that tends to ∞, for any point x ∈ γ having the
hi -discretization xhi

, the sequence E (γhi
, xhi

) converges to F (γ, x).
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Perimeter estimation

Perimeter estimators

local estimators

estimators based on polygonalization by discrete lines

tangent-based estimators
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Perimeter estimation

Local perimeter estimation (BLUE)

Statistic analysis is used to find weights that minimize the mean square
error between the estimated and true length of a straight line segment.

Best linear unbiased estimator (Dorst, Smeulders, 1987)

Given a 8-curve γh, the perimeter estimator is

LBLUE (γh) =
1

h
(0.948ni + 1.343nd)

where ni is the number of isothetic steps and nd the number of
diagonal steps in γh.

Similar estimators have been proposed for chamfer distance using a 3× 3
neighborhood (Borgefors, 1986):

Lchamfer (γh) =
1

h
(0.95509ni + 1.33693nd).
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Perimeter estimation

Local perimeter estimation (COC)

Corner-count estimator (Vossepoel, Smeulders, 1982)

The perimeter estimator is

LCOC (γh) =
1

h
(0.980ni + 1.406nd − 0.091nc)

where nc is the number of odd-even transitions in the chain code of γh.
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Perimeter estimation

Perimeter estimation based on polygonalization

Polygonalization of a m-curve γh is a segmentation of γh into a set of
discrete line segments.

(Feschet, Vialard, 2007)

Most probable original length estimation (Dorst, Smeulders, 1991)

For a 8-connected discrete line segment γh,

LMPO(γh) =
1

h
n

√
1 +

( a

b

)2

where n is the number of elements γh, a
b is the best possible rational slope

estimate.
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Perimeter estimation

Perimeter estimation based on polygonalization (cont.)

Polygonalization by discrete lines

We apply the arithmetic line recognition algorithm (Debled-Rennesson,
Reveillès, 1995) to obtain an approximated polygon of γh, that is
represented by a set of discrete line segments.

Note that the polygonalization is not uniquely defined: it depends on the

method, the chosen starting point, and the direction in which the curve is

traced.

MPO based perimeter estimation

For the perimeter estimation, we sum the MPO length estimates of the
discrete line segments.
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Perimeter estimation

Tangent-based perimeter estimators

Curve length by integrating

Given a curve γ(t) = (x(t), y(t)) for t ∈ [a, b], the tangent vector
associated with γ(t) is given by n(t) = (x ′(t), y ′(t)) and then the
curve length between t = a and t = b is

L(γ) =

∫ b

a
‖n(t)‖dt.
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Perimeter estimation

Tangent-based perimeter estimators (cont.)

Discrete curve length by integrating

Let us consider γh as a 1-complex. For each 1-cell e in γh, Let n(e) be
the normal vector of e and n̂(e) the estimated normal vector on e.
Then, the length is estimated by

LTAN(γh) =
∑
e∈γh

n̂(e) · n(e).

(Feschet, Vialard, 2007)
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Perimeter estimation

Multigrid convergences of perimeter estimators

local estimators:
no multigrid convergence. (Tajine, Daurat, 2003)

estimators based on polygonalization by discrete lines:
multigrid convergence with a speed bounded by

2π

h

(
ε(h) +

1√
2

)
where ε(h) corresponds to the distance between the discrete
boundary and the approximated polygon (for example, 1

h ,
depending on the algorithm). (Klette, Zunic, 2000)
The proof is given for all polygonal, convex and r-compact sets.

tangent-based estimators:
if the tangent estimator converge asymptotically, then the
perimeter estimator converge as well. (Coeurjolly, Klette, 2004)
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Perimeter estimation

Extension of length estimation to 3D

length measurement of a 3D discrete curve:

local estimator based on curve-point configuration in a
26-neighborhood (Jonas, Kiryati, 1998);
estimator based on polygonal approximation of a 3D discrete curve,
which is realized by applying the algorithm for recognizing 3D
discrete line segments (Coeurjolly, et al. 2001);

surface area measurement of a 3D discrete surface:

local estimator based on surface-point configuration in a
6-neighborhood (Mulkin, Verbeek, 1993);
triangulation methods for polyhedral approximation, which help to
estimate the surface area.
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Tangent estimation

Tangent estimators

local estimators by using a fixed neighborhood of size 2k + 1,

estimators by using adaptive neighborhoods.
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Tangent estimation

Local tangent estimators

There are several tangent estimators by using a finite neighborhood of 2k + 1
points of a discrete curve around a point xi .

Median tangent (Matas, Shao, Kittler, 1995):
The tangent at xi is estimated as the median direction of vectors −−−−→xi , xi+j

for j = −k , . . . , k .

Average tangent (Lenoir, Malgouyres, Revenu, 1996):
The tangent at xi is defined as the local average orientation and
calculated by using a recursive Gaussian filter.

Best linear approximation tangent (Anderson, Bezdek, 1984):
The tangent at xi is defined as the best approximation line of the
neighborhood of xi in the sense of minimizing the sum of squared
distance of the 2k + 1 points.

Problem

This approach does not allow to adapter the calculation to the local
geometry of the curve.
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Tangent estimation

Maximal segment

Adaptive-neighborhood based tangent estimator need the notion of
maximal segment.

Maximal segment

The maximal segment is a sequence of points of the curve shaping a
discrete line segment such that the discrete line segment cannot be
extended by adding points of the curve to its endpoints.

(Lachaud et al., 2007)
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Tangent estimation

Tangent estimators based on adaptive neighborhoods

Discrete tangents

Symmetric tangent at xi is the longest discrete line segment with the
form xi−l, . . . , xi+l. (Lachaud, Vialard, 2003)

Oriented tangent is the maximal segment with biggest indices that
includes the symmetric tangent. Note that results depend on the
orientation choice. (Feshet, Tougne, 1999)

Extended tangent is obtained from the symmetric tangent; if it can be
extended by either xi−l−1 or xi+l+1, it is equal to the symmetric tangent;
otherwise, it is extended by as much as possible. (Braquelaire, Vialard, 1999)

(Feschet, Vialard, 2007)
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Tangent estimation

Linear combination of adaptive-neighborhood tangents

λ-MST (Lachaud, Vialard, de Vielleville, 2007)

The λ-MST estimator calculates the tangent direction θ of xi as

θ(xi ) =

∑
MS eMS(xi )θMS∑

MS eMS(xi )

where eMS(xi ) is the eccentricity for xi with respect to each maximal segment
MS , defined by

eMS(xi ) =

{
λ
(
‖xi−xk‖1
‖xl−xk‖1

)
if xi ∈ MS(= xk , . . . , xl),

0 otherwise.

(Feschet, Vialard, 2007)
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Tangent estimation

λ-MST algorithm

The λ-MST is based on the incremental algorithm for maximal segments of a
discrete curve, whose time complexity is linear.

Algorithm: incremental algorithm of maximal segments

Input: discrete curve γh, maximal segment (xk , . . . , xl)
Output: next maximal segment

k = k + 1;

l = l + 1;

while ¬S(k , l) do k = k + 1

while S(k , l) do l = l + 1

l = l − 1;

Note that S(i , j) denotes that the sequence (xi , . . . , xj) is a discrete line

segment.
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Tangent estimation

Comparisons of tangent estimators

Multigrid convergence: Oriented tangent, λ-MST
with a speed of average convergence bounded by O(h−

1
3 )

The proof is given for a convex and three-times differentiable border

having continuous curvature.

Precisions:

(Lachaud et al., 2007)

The best choice may be the λ-MST.
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Curvature estimation

Curvature estimators

There are mainly three approaches: curvature is estimated from

the change in the slope angle of the tangent line;

derivatives along the curve;

the radius of the osculating circle.

Further info can be found in the references.
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Applications

Application example

For supporting the non-invasive diagno-
sis of bronchial tree pathologies, auto-
matic quantitative description of an air-
way tree extracted from volumetric CT
data set is useful. (M. Postolski, 2011)
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Applications

Application example: purpose

Tangent estimation from a 3D discrete curve.
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Applications

Application example: experiment 1

Experiments to a 3D tube.

Naive method

ST

λ-MST

Spline

Digital Geometry : Topic 5 26/28



Applications

Application example: experiment 2

Experiments to a bronchial tree.

Naive method

ST

λ-MST

Spline
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