Master 2 "SIS"
 Digital Geometry

Topic 2:
Discrete objects and their boundaries:
ADJACENCY GRAPH REPRESENTATION

Yukiko Kenmochi

October 10, 2012

Representation of discrete objects

- grid point set
- graph
- complex

Representation of discrete objects

- grid point set
- graph (grid points + adjacent relation)
- complex

Representation of discrete objects

- grid point set
- graph (grid points + adjacent relation)

■ complex (grid cells + neighboring relation)

Object boundary in the Euclidean space

For $\mathbf{A} \subset \mathbb{R}^{d}$, the set of interior points is defined by

$$
\operatorname{lnt}(\mathbf{A})=\left\{\mathbf{x} \in \mathbf{A}: \exists r \in \mathbb{R}^{+}, \mathbf{U}_{r}(\mathbf{x}) \subseteq \mathbf{A}\right\}
$$

where

$$
\mathbf{U}_{r}(\mathbf{x})=\left\{y \in \mathbb{R}^{d}:\|\mathbf{x}-\mathbf{y}\|<r\right\} .
$$

Object boundary in the Euclidean space

For $\mathbf{A} \subset \mathbb{R}^{d}$, the set of interior points is defined by

$$
\operatorname{lnt}(\mathbf{A})=\left\{\mathbf{x} \in \mathbf{A}: \exists r \in \mathbb{R}^{+}, \mathbf{U}_{r}(\mathbf{x}) \subseteq \mathbf{A}\right\}
$$

where

$$
\mathbf{U}_{r}(\mathbf{x})=\left\{y \in \mathbb{R}^{d}:\|\mathbf{x}-\mathbf{y}\|<r\right\} .
$$

The set of border points is:

$$
\operatorname{Br}(\mathbf{A})=\mathbf{A} \backslash \operatorname{lnt}(\mathbf{A}) .
$$

Object boundary in the Euclidean space

For $\mathbf{A} \subset \mathbb{R}^{d}$, the set of interior points is defined by

$$
\operatorname{lnt}(\mathbf{A})=\left\{\mathbf{x} \in \mathbf{A}: \exists r \in \mathbb{R}^{+}, \mathbf{U}_{r}(\mathbf{x}) \subseteq \mathbf{A}\right\}
$$

where

$$
\mathbf{U}_{r}(\mathbf{x})=\left\{y \in \mathbb{R}^{d}:\|\mathbf{x}-\mathbf{y}\|<r\right\} .
$$

The set of border points is:

$$
\operatorname{Br}(\mathbf{A})=\mathbf{A} \backslash \operatorname{lnt}(\mathbf{A}) .
$$

Then we obtain the set of boundary points such that

$$
\operatorname{Fr}(\mathbf{A})=\operatorname{Br}(\mathbf{A}) \cup B r(\overline{\mathbf{A}})=\operatorname{Fr}(\overline{\mathbf{A}}) .
$$

Object boundary in the 2D discrete space

For $\mathbf{A} \subset \mathbb{Z}^{2}$, the set of m-interior points is defined by

$$
\ln t_{m}(\mathbf{A})=\left\{\mathbf{x} \in \mathbf{A}: \mathbf{N}_{m}(\mathbf{x}) \subseteq \mathbf{A}\right\}
$$

where

$$
\mathbf{N}_{m}(\mathbf{x})=\left\{y \in \mathbb{Z}^{2}:\|\mathbf{x}-\mathbf{y}\|_{p} \leq 1\right\}
$$

for $m=4,8$ if $p=1, \infty$ respectively.

Object boundary in the 2D discrete space

For $\mathbf{A} \subset \mathbb{Z}^{2}$, the set of m-interior points is defined by

$$
I n t_{m}(\mathbf{A})=\left\{\mathbf{x} \in \mathbf{A}: \mathbf{N}_{m}(\mathbf{x}) \subseteq \mathbf{A}\right\}
$$

where

$$
\mathbf{N}_{m}(\mathbf{x})=\left\{y \in \mathbb{Z}^{2}:\|\mathbf{x}-\mathbf{y}\|_{p} \leq 1\right\}
$$

for $m=4,8$ if $p=1, \infty$ respectively.
The set of m-boundary points is:

$$
\operatorname{Fr}(\mathbf{A})=B r_{m}(\mathbf{A}) \cup B r_{m}(\overline{\mathbf{A}})
$$

where

$$
\begin{array}{ll}
B r_{m}(\mathbf{A})=\mathbf{A} \backslash \operatorname{Int} t_{m}(\mathbf{A}) & m \text {-interior border } \\
B r_{m}(\overline{\mathbf{A}})=\overline{\mathbf{A}} \backslash \operatorname{Int} t_{m}(\overline{\mathbf{A}}) \quad m \text {-exterior border }
\end{array}
$$

$B r_{4}(\mathbf{A})$

Neighborhoods in the 2D discrete space

Definition (m-neighborhood)

The m-neighborhood of a grid point $\mathbf{x} \in \mathbb{Z}^{2}$ is defined by:

$$
\mathbf{N}_{m}(\mathbf{x})=\left\{y \in \mathbb{Z}^{2}:\|\mathbf{x}-\mathbf{y}\|_{p} \leq 1\right\}
$$

for $m=4,8$ if $p=1, \infty$ respectively.

- \boldsymbol{x}
- 0 Its neighbors

Norm on a d-dimensional vector space: $\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{d}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$
(Manhattan norm for $p=1$, Euclidean norm for $p=2$, Maximum norm for $p=\infty$)

Object boundary in the 2D discrete space

The set of m-boundary points is:

$$
\operatorname{Fr}(\mathbf{A})=B r_{m}(\mathbf{A}) \cup B r_{m}(\overline{\mathbf{A}})
$$

where

$$
\begin{array}{ll}
\operatorname{Br}_{m}(\mathbf{A})=\mathbf{A} \backslash \operatorname{Int} t_{m}(\mathbf{A}) & m \text {-interior border, } \\
B r_{m}(\overline{\mathbf{A}})=\overline{\mathbf{A}} \backslash \operatorname{Int} t_{m}(\overline{\mathbf{A}}) \quad m \text {-exterior border } .
\end{array}
$$

In the discrete space, a set \mathbf{A} and its complement $\overline{\mathbf{A}}$ do not have the common boundary. The boundary of \mathbf{A} consists of elements in \mathbf{A}, and that of $\overline{\mathbf{A}}$ consists of elements in $\overline{\mathbf{A}}$.
(Clifford, 1956)

A
$B r_{4}(\mathbf{A})$

$B r_{4}(\overline{\mathbf{A}})$

Object boundary in the 2D discrete space

The set of m-boundary points is:

$$
\operatorname{Fr}(\mathbf{A})=B r_{m}(\mathbf{A}) \cup B r_{m}(\overline{\mathbf{A}})
$$

where

$$
\begin{array}{ll}
\operatorname{Br}_{m}(\mathbf{A})=\mathbf{A} \backslash \operatorname{Int} t_{m}(\mathbf{A}) & m \text {-interior border, } \\
B r_{m}(\overline{\mathbf{A}})=\overline{\mathbf{A}} \backslash \operatorname{Int} t_{m}(\overline{\mathbf{A}}) \quad m \text {-exterior border } .
\end{array}
$$

In the discrete space, a set \mathbf{A} and its complement $\overline{\mathbf{A}}$ do not have the common boundary. The boundary of \mathbf{A} consists of elements in \mathbf{A}, and that of $\overline{\mathbf{A}}$ consists of elements in $\overline{\mathbf{A}}$.
(Clifford, 1956)
Alternative definition of m-border points:

$$
B r_{m}(\mathbf{A})=\left\{\mathbf{x} \in \mathbf{A}: \mathbf{N}_{m}(\mathbf{x}) \cap \overline{\mathbf{A}} \neq \emptyset\right\} .
$$

A

$B r_{4}(\overline{\mathbf{A}})$

2D Adjacency graph

Definition (m-adjancency)

If a grid point \mathbf{x} is m-neighboring from another distinct grid point \mathbf{y}, \mathbf{x} and \mathbf{y} are m-adjacent, denoted by $\mathbf{x} \in A_{m}(\mathbf{y})$ and $\mathbf{y} \in A_{m}(\mathbf{x})$.

2D Adjacency graph

Definition (m-adjancency)

If a grid point \mathbf{x} is m-neighboring from another distinct grid point \mathbf{y}, \mathbf{x} and \mathbf{y} are m-adjacent, denoted by $\mathbf{x} \in A_{m}(\mathbf{y})$ and $\mathbf{y} \in A_{m}(\mathbf{x})$.

Definition (Adjacency graph (Rosenfeld 1970))

For a given grid point set $\mathbf{X} \subset \mathbb{Z}^{2}$, the adjacency graph is defined by

$$
G=\left(\mathbf{X}, E_{m}\right)
$$

where $E_{m}=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbf{X} \times \mathbf{X}: \mathbf{y} \in A_{m}(\mathbf{x})\right\}$ for $m=4,8$.

- $\in \mathbf{A}$

$O \in \mathbb{Z}^{2} \backslash \mathbf{A}$

$$
G=\left(\mathbf{A}, E_{4}\right)
$$

Path

Definition (m-Path)

Let X be a set of grid points. An m-path in X joining two points \mathbf{p} and \mathbf{q} of X is a sequence $\pi=\left(\mathbf{p}_{0}, \ldots, \mathbf{p}_{n}\right)$ of points in X such that $\mathbf{p}_{0}=\mathbf{p}$, $\mathbf{p}_{n}=\mathbf{q}$ and $\mathbf{p}_{i} \in A_{m}\left(\mathbf{p}_{i-1}\right)$ for $i=1, \ldots, n$.

FIGURE 2.15 A 1-path in the grid cell model (left) that corresponds with a 4-path in the grid point model (right).

FIGURE 2.16 A 2-path in the grid cell model (left) that corresponds with a 6-path in the grid point model (right).

Path

Definition (m-Path)

Let X be a set of grid points. An m-path in X joining two points \mathbf{p} and \mathbf{q} of X is a sequence $\pi=\left(\mathbf{p}_{0}, \ldots, \mathbf{p}_{n}\right)$ of points in X such that $\mathbf{p}_{0}=\mathbf{p}$, $\mathbf{p}_{n}=\mathbf{q}$ and $\mathbf{p}_{i} \in A_{m}\left(\mathbf{p}_{i-1}\right)$ for $i=1, \ldots, n$.

FIGURE 2.15 A 1-path in the grid cell model (left) that corresponds with a 4-path in the grid point model (right).

FIGURE 2.16 A 2-path in the grid cell model (left) that corresponds with a 6-path in the grid point model (right).
In general, $m=4,8$ for 2 D .

Discrete object (connected component)

Definition (m-object)

A set X of grid points is an m-object if there exists an m-path in X for every pair \mathbf{p} and \mathbf{q} of X.

Discrete object (connected component)

Definition (m-object)

A set X of grid points is an m-object if there exists an m-path in X for every pair \mathbf{p} and \mathbf{q} of X.

In other words, an m-object is a connected component of a graph $G=\left(X, E_{m}\right)$.

Connected component labeling (of a graph)

Algorithm (Connected components)

Input: Graph G, starting vertex s

- Put s in the queue (or stack) L.
- while $L \neq \emptyset$ do
- pull s from L.
- Label all the neighbors of s that are not labelled and put them in L.
(Hopcropft and Tarjan, 1973)

Connected component labeling (of a graph)

Algorithm (Connected components)

Input: Graph G, starting vertex s

- Put s in the queue (or stack) L.
- while $L \neq \emptyset$ do
- pull s from L.
- Label all the neighbors of s that are not labelled and put them in L.

It allows to calculate the connected components of a graph in linear time.
(Hopcropft and Tarjan, 1973)

Connected component labeling (of a graph)

Algorithm (Connected components)

Input: Graph G, starting vertex s

- Put s in the queue (or stack) L.
- while $L \neq \emptyset$ do
- pull s from L.
- Label all the neighbors of s that are not labelled and put them in L.

It allows to calculate the connected components of a graph in linear time.

■ breadth-first search
(Hopcropft and Tarjan, 1973)

Connected component labeling (of a graph)

Algorithm (Connected components)

Input: Graph G, starting vertex s

- Put s in the queue (or stack) L.
- while $L \neq \emptyset$ do
- pull s from L.
- Label all the neighbors of s that are not labelled and put them in L.

It allows to calculate the connected components of a graph in linear time.

■ breadth-first search

- depth-first search
(Hopcropft and Tarjan, 1973)

Discrete curve

An m-path π is also called an m-curve.

Discrete curve

An m-path π is also called an m-curve.
Definition (closed m-curve)
An m-curve $\pi=\left(\mathbf{p}_{0}, \ldots, \mathbf{p}_{n}\right)$ is a closed m-curve if $\mathbf{p}_{0}=\mathbf{p}_{n}$.

Discrete curve

An m-path π is also called an m-curve.
Definition (closed m-curve)
An m-curve $\pi=\left(\mathbf{p}_{0}, \ldots, \mathbf{p}_{n}\right)$ is a closed m-curve if $\mathbf{p}_{0}=\mathbf{p}_{n}$.

Definition (simple m-curve)

Let π be an m-curve and I be the set of point indexes of π. Then, π is considered as a mapping $\pi: I \rightarrow \mathbb{Z}^{2}$ and said to be simple if it is injective, i.e., if for all $i, j \in I$, we have

$$
\mathbf{p}_{i}=\mathbf{p}_{j} \Rightarrow i=j
$$

Discrete curve

An m-path π is also called an m-curve.

Definition (closed m-curve)

An m-curve $\pi=\left(\mathbf{p}_{0}, \ldots, \mathbf{p}_{n}\right)$ is a closed m-curve if $\mathbf{p}_{0}=\mathbf{p}_{n}$.

Definition (simple m-curve)

Let π be an m-curve and I be the set of point indexes of π. Then, π is considered as a mapping $\pi: I \rightarrow \mathbb{Z}^{2}$ and said to be simple if it is injective, i.e., if for all $i, j \in I$, we have

$$
\mathbf{p}_{i}=\mathbf{p}_{j} \Rightarrow i=j
$$

Definition (simple closed m-curve)

An m-curve π is a simple closed m-curve if every element of π has exactly two m-adjacent points in π.

Jordan curve theorem

Theorem (Jordan curve theorem (Jordan, 1887))

Let C be a simple closed curve in the plane \mathbb{R}^{2}, called a Jordan curve. Then, its complement $\mathbb{R}^{2} \backslash C$ consists of exactly two components, the interior and exterior, and C is their boundary.

Jordan curve theorem

Theorem (Jordan curve theorem (Jordan, 1887))

Let C be a simple closed curve in the plane \mathbb{R}^{2}, called a Jordan curve. Then, its complement $\mathbb{R}^{2} \backslash C$ consists of exactly two components, the interior and exterior, and C is their boundary.

Problem

The discrete version of Jordan theorem does not hold for simple closed m-curve.

If the curve is connected, it does not disconnect its interior from its exterior (8 -connectedness); if it is totally disconnected it does disconnect them (4-connectedness).
(Rosenfeld, Pflatz, 1966)

Good adjacency pairs for 2D binary images

Theorem (Separation theorem (Duda, Hart, Munson, 1967))

A simple closed m-curve $C m^{\prime}$-separates all pixels inside C from all pixels outside C, for $\left(m, m^{\prime}\right)=(4,8),(8,4)$.

(Klette, Rosenfeld, 2003)

Good adjacency pairs for 2D binary images

Theorem (Separation theorem (Duda, Hart, Munson, 1967))

A simple closed m-curve $C m^{\prime}$-separates all pixels inside C from all pixels outside C, for $\left(m, m^{\prime}\right)=(4,8),(8,4)$.

(Klette, Rosenfeld, 2003)
Definition (Generarisation: good adjacency pairs (Kong, 2001))
(α, β) is called a good pair iff, for $\left(m, m^{\prime}\right) \in\{(\alpha, \beta),(\beta, \alpha)\}$, any simple closed m-curve m^{\prime}-separates its (at least one) m^{\prime}-holes from the background and any totally m-disconnected set cannot m^{\prime}-separate any m^{\prime}-hole from the background.

2D Border tracing

Border extraction by set operation

The complexity is linear to the object border size (and linear to the image size at worst).

2D Border tracing

Border extraction by set operation

The complexity is linear to the object border size (and linear to the image size at worst).

Border tracing by using the m-neighborhood (Alexander, Thaler, 1971)
By using the cyclic order of the m-neighborhood, we obtain the set of border points $\partial_{m} \mathbf{A}$ by verifying only for the border points their neighbors.

Example: $\partial_{4} \mathbf{A}$.

2D Border tracing

Border extraction by set operation

The complexity is linear to the object border size (and linear to the image size at worst).

Border tracing by using the m-neighborhood (Alexander, Thaler, 1971)
By using the cyclic order of the m-neighborhood, we obtain the set of border points $\partial_{m} \mathbf{A}$ by verifying only for the border points their neighbors.

Example: $\partial_{4} \mathbf{A}$.

2D Border tracing

Border extraction by set operation

The complexity is linear to the object border size (and linear to the image size at worst).

Border tracing by using the m-neighborhood (Alexander, Thaler, 1971)
By using the cyclic order of the m-neighborhood, we obtain the set of border points $\partial_{m} \mathbf{A}$ by verifying only for the border points their neighbors.

Example: $\partial_{4} \mathbf{A}$.

2D Border tracing

Border extraction by set operation

The complexity is linear to the object border size (and linear to the image size at worst).

Border tracing by using the m-neighborhood (Alexander, Thaler, 1971)

By using the cyclic order of the m-neighborhood, we obtain the set of border points $\partial_{m} \mathbf{A}$ by verifying only for the border points their neighbors.

Example: $\partial_{4} \mathbf{A}$.

2D Border tracing

Border extraction by set operation

The complexity is linear to the object border size (and linear to the image size at worst).

Border tracing by using the m-neighborhood (Alexander, Thaler, 1971)
By using the cyclic order of the m-neighborhood, we obtain the set of border points $\partial_{m} \mathbf{A}$ by verifying only for the border points their neighbors.

Example: $\partial_{4} \mathbf{A}$.

2D Border tracing

Border extraction by set operation

The complexity is linear to the object border size (and linear to the image size at worst).

Border tracing by using the m-neighborhood (Alexander, Thaler, 1971)
By using the cyclic order of the m-neighborhood, we obtain the set of border points $\partial_{m} \mathbf{A}$ by verifying only for the border points their neighbors.

Example: $\partial_{4} \mathbf{A}$.

2D Border tracing and curve structure

Roughly speaking, the curve structure consisting of a sequence of grid points each of which has two neighbors is used for tracing the border of an object.

Relation between the two different discrete borders

Given $\mathbf{A} \in \mathbb{Z}^{2}$, we have the following relation between
\square the border defined by the set operation:

$$
B r_{m}(\mathbf{A})=\left\{\mathbf{x} \in \mathbf{A}: \mathbf{N}_{m}(\mathbf{x}) \cap \overline{\mathbf{A}} \neq \emptyset\right\}
$$

- the border traced by the neighborhood: $\partial_{m^{\prime}} \mathbf{A}$.

Relation between $\operatorname{Br}_{m}(\mathbf{A})$ and $\partial_{m^{\prime}} \mathbf{A}$

For an m-object A,

$$
B r_{m^{\prime}}(\mathbf{A})=\partial_{m} \mathbf{A}
$$

where $\left(m, m^{\prime}\right)=(4,8),(8,4)$.
(Rosenfeld, 1970)

Relation between the two different discrete borders

Given $\mathbf{A} \in \mathbb{Z}^{2}$, we have the following relation between

- the border defined by the set operation:

$$
B r_{m}(\mathbf{A})=\left\{\mathbf{x} \in \mathbf{A}: \mathbf{N}_{m}(\mathbf{x}) \cap \overline{\mathbf{A}} \neq \emptyset\right\}
$$

- the border traced by the neighborhood: $\partial_{m^{\prime}} \mathbf{A}$.

Relation between $\operatorname{Br}_{m}(\mathbf{A})$ and $\partial_{m^{\prime}} \mathbf{A}$
For an m-object A,

$$
B r_{m^{\prime}}(\mathbf{A})=\partial_{m} \mathbf{A}
$$

where $\left(m, m^{\prime}\right)=(4,8),(8,4)$.
(Rosenfeld, 1970)

Question

Is $B r_{m^{\prime}}(\mathbf{A})\left(\right.$ or $\left.\partial_{m} \mathbf{A}\right)$ a simple closed m-curve?

Object boundary in the 3D discrete space

For $\mathbf{A} \subset \mathbb{Z}^{3}$, the set of m-interior points is defined by

$$
\ln t_{m}(\mathbf{A})=\left\{\mathbf{x} \in \mathbf{A}: \mathbf{N}_{m}(\mathbf{x}) \subseteq \mathbf{A}\right\}
$$

where

$$
\mathbf{N}_{m}(\mathbf{x})=\left\{y \in \mathbb{Z}^{2}: d_{m}(\mathbf{x}, \mathbf{y}) \leq 1\right\}
$$

for $m=6,18,26$.

Object boundary in the 3D discrete space

For $\mathbf{A} \subset \mathbb{Z}^{3}$, the set of m-interior points is defined by

$$
I n t_{m}(\mathbf{A})=\left\{\mathbf{x} \in \mathbf{A}: \mathbf{N}_{m}(\mathbf{x}) \subseteq \mathbf{A}\right\}
$$

where

$$
\mathbf{N}_{m}(\mathbf{x})=\left\{y \in \mathbb{Z}^{2}: d_{m}(\mathbf{x}, \mathbf{y}) \leq 1\right\}
$$

for $m=6,18,26$.
The set of m-boundary points is:

$$
\operatorname{Fr}(\mathbf{A})=B r_{m}(\mathbf{A}) \cup B r_{m}(\overline{\mathbf{A}})
$$

where

$$
\begin{array}{ll}
\operatorname{Br}_{m}(\mathbf{A}) & =\mathbf{A} \backslash \operatorname{lnt} t_{m}(\mathbf{A}) \\
\operatorname{Br}_{m}(\overline{\mathbf{A}})=\overline{\mathbf{A}} \backslash \ln t_{m}(\overline{\mathbf{A}}) \quad m \text {-interior border }, \\
\end{array}
$$

$B r_{4}(\mathbf{A})$

$B r_{4}(\overline{\mathbf{A}})$

Neighborhoods in the 3D discrete space

Definition (m-neighborhood)

The m-neighborhood of a grid point $\mathbf{x} \in \mathbb{Z}^{3}$ is defined by:

$$
\mathbf{N}_{m}(\mathbf{x})=\left\{y \in \mathbb{Z}^{3}: d_{m}(\mathbf{x}, \mathbf{y}) \leq 1\right\}
$$

for $m=6,18,26$ where

$$
\begin{aligned}
d_{6}(\mathbf{x}, \mathbf{y}) & =\|\mathbf{x}-\mathbf{y}\|_{1} \\
d_{26}(\mathbf{x}, \mathbf{y}) & =\|\mathbf{x}-\mathbf{y}\|_{\infty} \\
d_{18}(\mathbf{x}, \mathbf{y}) & =\max \left\{d_{26}(\mathbf{x}, \mathbf{y}),\left\lceil\frac{d_{6}(\mathbf{x}, \mathbf{y})}{2}\right\rceil\right\}
\end{aligned}
$$

3D discrete border and surface structure

Alternative definition of m-border points:

$$
B r_{m}(\mathbf{A})=\left\{\mathbf{x} \in \mathbf{A}: \mathbf{N}_{m}(\mathbf{x}) \cap \overline{\mathbf{A}} \neq \emptyset\right\}
$$

for $m=6,18,26$.

3D discrete border and surface structure

Alternative definition of m-border points:

$$
B r_{m}(\mathbf{A})=\left\{\mathbf{x} \in \mathbf{A}: \mathbf{N}_{m}(\mathbf{x}) \cap \overline{\mathbf{A}} \neq \emptyset\right\}
$$

for $m=6,18,26$.

Question

- How to follow interior border points?

3D discrete border and surface structure

Alternative definition of m-border points:

$$
\operatorname{Br}_{m}(\mathbf{A})=\left\{\mathbf{x} \in \mathbf{A}: \mathbf{N}_{m}(\mathbf{x}) \cap \overline{\mathbf{A}} \neq \emptyset\right\}
$$

for $m=6,18,26$.

Question

- How to follow interior border points?

■ How to define a surface structure in the discrete space?

3D Adjacency graph

Definition (Adjacency graph (Rosenfeld 1970))

For a given grid point set $\mathbf{X} \subset \mathbb{Z}^{3}$, the adjacency graph is defined by

$$
G=\left(\mathbf{X}, E_{m}\right)
$$

where $E_{m}=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbf{X} \times \mathbf{X}: \mathbf{y} \in A_{m}(\mathbf{x})\right\}$ for $m=6,18,26$.

- $\in \mathbf{A}$
$\bigcirc \mathbb{Z}^{3} \backslash \mathbf{A}$

$G=\left(\mathbf{A}, E_{6}\right)$

Inter-voxel boundary of a discrete object

Let us consider a discrete space as a pair (V, W) where V is a countable set and W is a symmetric relation on $V \times V$.

For example: $(V, W)=\left(\mathbb{Z}^{2}, 4\right),\left(\mathbb{Z}^{3}, 6\right)$.

Inter-voxel boundary of a discrete object

Let us consider a discrete space as a pair (V, W) where V is a countable set and W is a symmetric relation on $V \times V$.

For example: $(V, W)=\left(\mathbb{Z}^{2}, 4\right),\left(\mathbb{Z}^{3}, 6\right)$.

Definition (Inter-voxel (pixel) boundary)

Let (V, W) be a discrete space, and \mathbf{X} be a subset of V. The boundary of \mathbf{X} and its complement $\overline{\mathbf{X}}$ is defined by

$$
\partial(\mathbf{X}, \overline{\mathbf{X}})=\{(\mathbf{u}, \mathbf{v}) \in W: \mathbf{u} \in \mathbf{X} \wedge \mathbf{v} \in \overline{\mathbf{X}}\}
$$

Note that every element of $\partial(\mathbf{X}, \overline{\mathbf{X}})$ is directed.

Inter-voxel surface

Definition (Inter-voxel surface)

Given a discrete space (V, W), a discrete surface S is defined as a non-empty subset of W.

Then, we have

- the immediate interior $I I(S)=\{u:(u, v) \in S\}$,

■ the immediate exterior $\operatorname{IE}(S)=\{v:(u, v) \in S\}$.

Inter-voxel surface

Definition (Inter-voxel surface)

Given a discrete space (V, W), a discrete surface S is defined as a non-empty subset of W.

Then, we have
■ the immediate interior $I(S)=\{u:(u, v) \in S\}$,
■ the immediate exterior $\operatorname{IE}(S)=\{v:(u, v) \in S\}$.

Definition (Almost-Jordan discrete surface)

Given a discrete space (V, W), a discrete surface S is almost-Jordan iff every W-path from an element of $I I(S)$ to an element of $I E(S)$ crosses S.

$\kappa \lambda$-Jordan discrete surface theorem

Definition ($\kappa \lambda$-Jordan discrete surface)
A discrete surface S is $\kappa \lambda$-Jordan iff it is almost-Jordan, its interior is κ-connected, and its exterior is λ-connected.

$\kappa \lambda$-Jordan discrete surface theorem

Definition ($\kappa \lambda$-Jordan discrete surface)

A discrete surface S is $\kappa \lambda$-Jordan iff it is almost-Jordan, its interior is κ-connected, and its exterior is λ-connected.

Theorem ($\kappa \lambda$-Jordan discrete surface theorem (Herman, 1998))
Let P be a κ-connected subset of V and Q be a λ-connected union of W-components of the complement of P in V. Then, the boundary $S=\partial(P, Q)$ is $\kappa \lambda$-Jordan.

$\kappa \lambda$-Jordan discrete surface theorem

Definition ($\kappa \lambda$-Jordan discrete surface)

A discrete surface S is $\kappa \lambda$-Jordan iff it is almost-Jordan, its interior is κ-connected, and its exterior is λ-connected.

Theorem ($\kappa \lambda$-Jordan discrete surface theorem (Herman, 1998))

Let P be a κ-connected subset of V and Q be a λ-connected union of W-components of the complement of P in V. Then, the boundary $S=\partial(P, Q)$ is $\kappa \lambda$-Jordan.

Examples of pairs of Jordan:

- $\{8,4\},\{8,8\}$ for the discrete space $\left(\mathbb{Z}^{2}, 4\right)$,
- $\{18,6\},\{26,6\}$ for the discrete space $\left(\mathbb{Z}^{3}, 6\right)$.

$(\kappa, \lambda)=(4,4)$
$(\kappa, \lambda)=(8,4)$

(Lachaud, Malgouyres, 2007) Q ৯

Inter-voxel boundary following

Algorithm: 3D boundary following (Aztzy et al., 1981)

Input: 6-object, starting 2-cell s
Output: Set F of 2-cells that form the boundary
■ Put s in a list F and in a queue Q, and also twice in a list L.

- while $Q \neq \emptyset$ do
- Pull f from Q.
- for each successor neighbor g of f do
- if g is in L, pull g from L.
- otherwise put g in F, in Q and in L.

Inter-voxel boundary following

Algorithm: 3D boundary following (Aztzy et al., 1981)

Input: 6-object, starting 2-cell s
Output: Set F of 2-cells that form the boundary
■ Put s in a list F and in a queue Q, and also twice in a list L.

- while $Q \neq \emptyset$ do
- Pull f from Q.
- for each successor neighbor g of f do
- if g is in L, pull g from L.
- otherwise put g in F, in Q and in L.

The graph structure and the similar idea to the graph traversal are used.

References

■ Reinhard Klette and Azriel Rosenfeld. Chapters 4 and 7 in "Digital geometry: geometric methods for digital picture analysis", San Diego: Morgan Kaufmann, 2004.
■ David Coeurjolly, Annick Montanvert, et Jean-Marc Chassery. "Eléments de base", Chapitre 1 dans "Géométrie discrète et images numériques", Hermès Lavoisier, 2007.
■ Jacques-Olivier Lachaud et Rémy Malgouyres. "Topologie, courves et surfaces discrètes", Chapitre 3 dans "Géométrie discrète et images numériques", Hermès Lavoisier, 2007.

- Gabor T. Herman.
"Geometry of digital spaces", Birkhäuser, 1998.

