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2D Point set representation

Object boundary in the Euclidean space

For A ⊂ Rd , the set of interior points is defined by

Int(A) = {x ∈ A : ∃r ∈ R+,Ur (x) ⊆ A}
where

Ur (x) = {y ∈ Rd : ‖x− y‖ < r}.

The set of border points is:

Br(A) = A \ Int(A).

Then we obtain the set of boundary points such that

Fr(A) = Br(A) ∪ Br(A) = Fr(A).

(Hausdorff, 1937)
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2D Point set representation

Object boundary in the 2D discrete space

For A ⊂ Z2, the set of m-interior points is defined by

Intm(A) = {x ∈ A : Nm(x) ⊆ A}
where

Nm(x) = {y ∈ Z2 : ‖x− y‖p ≤ 1}
for m = 4, 8 if p = 1,∞ respectively.

The set of m-boundary points is:

Fr(A) = Brm(A) ∪ Brm(A)

where
Brm(A) = A \ Intm(A) m-interior border,
Brm(A) = A \ Intm(A) m-exterior border.

A

Br4(A) Br4(A)
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2D Point set representation

Neighborhoods in the 2D discrete space

Definition (m-neighborhood)

The m-neighborhood of a grid point x ∈ Z2 is defined by:

Nm(x) = {y ∈ Z2 : ‖x− y‖p ≤ 1}

for m = 4, 8 if p = 1,∞ respectively.

Norm on a d-dimensional vector space: ‖x‖p =

(
d∑

i=1
|xi |p

) 1
p

(Manhattan norm for p = 1, Euclidean norm for p = 2, Maximum norm for p =∞)
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2D Point set representation

Object boundary in the 2D discrete space

The set of m-boundary points is:

Fr(A) = Brm(A) ∪ Brm(A)

where
Brm(A) = A \ Intm(A) m-interior border,
Brm(A) = A \ Intm(A) m-exterior border.

In the discrete space, a set A and its complement A do not have the common
boundary. The boundary of A consists of elements in A, and that of A
consists of elements in A. (Clifford, 1956)

Alternative definition of m-border points:

Brm(A) = {x ∈ A : Nm(x) ∩ A 6= ∅}.

A Br4(A) Br4(A)
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2D Graph representation

2D Adjacency graph

Definition (m-adjancency)

If a grid point x is m-neighboring from another distinct grid point y, x
and y are m-adjacent, denoted by x ∈ Am(y) and y ∈ Am(x).

Definition (Adjacency graph (Rosenfeld 1970))

For a given grid point set X ⊂ Z2, the adjacency graph is defined by

G = (X,Em)

where Em = {(x, y) ∈ X× X : y ∈ Am(x)} for m = 4, 8.
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2D Graph representation

Path

Definition (m-Path)

Let X be a set of grid points. An m-path in X joining two points p and
q of X is a sequence π = (p0, . . . ,pn) of points in X such that p0 = p,
pn = q and pi ∈ Am(pi−1) for i = 1, . . . , n.

In general, m = 4, 8 for 2D.
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2D Graph representation

Discrete object (connected component)

Definition (m-object)

A set X of grid points is an m-object if there exists an m-path in X for
every pair p and q of X .

In other words, an m-object is a connected component of a graph
G = (X ,Em).
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2D Graph representation

Discrete object (connected component)

Definition (m-object)

A set X of grid points is an m-object if there exists an m-path in X for
every pair p and q of X .

In other words, an m-object is a connected component of a graph
G = (X ,Em).

Digital Geometry : Topic 2 9/25



2D Graph representation

Connected component labeling (of a graph)

Algorithm (Connected components)

Input: Graph G , starting vertex s

Put s in the queue (or stack) L.

while L 6= ∅ do
pull s from L.
Label all the neighbors of s that are not labelled and put them in L.

It allows to calculate the connected components of a graph in linear
time.

breadth-first search

depth-first search

(Hopcropft and Tarjan, 1973)
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2D Graph representation

Discrete curve

An m-path π is also called an m-curve.

Definition (simple m-curve)

Let π be an m-curve and I be the set of point indexes of π. Then, π is
considered as a mapping π : I → Z2 and said to be simple if it is
injective, i.e., if for all i , j ∈ I , we have

pi = pj ⇒ i = j .
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An m-curve π = (p0, . . . ,pn) is a closed m-curve if p0 = pn.

Definition (simple m-curve)

Let π be an m-curve and I be the set of point indexes of π. Then, π is
considered as a mapping π : I → Z2 and said to be simple if it is
injective, i.e., if for all i , j ∈ I , we have

pi = pj ⇒ i = j .

Definition (simple closed m-curve)

An m-curve π is a simple closed m-curve if every element of π has
exactly two m-adjacent points in π.
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2D Graph representation

Jordan curve theorem

Theorem (Jordan curve theorem (Jordan, 1887))

Let C be a simple closed curve in the plane R2, called a Jordan curve. Then,
its complement R2 \ C consists of exactly two components, the interior and
exterior, and C is their boundary.

Problem

The discrete version of Jordan theorem does not hold for simple closed
m-curve.

If the curve is connected, it does not disconnect its interior from its exterior
(8-connectedness); if it is totally disconnected it does disconnect them (4-connectedness).

(Rosenfeld, Pflatz, 1966)
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2D Graph representation

Good adjacency pairs for 2D binary images

Theorem (Separation theorem (Duda, Hart, Munson, 1967))

A simple closed m-curve C m′-separates all pixels inside C from all pixels
outside C , for (m,m′) = (4, 8), (8, 4).

(Klette, Rosenfeld, 2003)

Definition (Generarisation: good adjacency pairs (Kong, 2001))

(α, β) is called a good pair iff, for (m,m′) ∈ {(α, β), (β, α)}, any simple
closed m-curve m′-separates its (at least one) m′-holes from the background
and any totally m-disconnected set cannot m′-separate any m′-hole from the
background.
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2D Graph representation

2D Border tracing

Border extraction by set operation

The complexity is linear to the object border size (and linear to the
image size at worst).

Border tracing by using the m-neighborhood (Alexander, Thaler, 1971)

By using the cyclic order of the m-neighborhood, we obtain the set of
border points ∂mA by verifying only for the border points their
neighbors.

Example: ∂4A.
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2D Graph representation

2D Border tracing and curve structure

Roughly speaking, the curve structure consisting of a sequence of grid
points each of which has two neighbors is used for tracing the border of
an object.
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2D Graph representation

Relation between the two different discrete borders

Given A ∈ Z2, we have the following relation between

the border defined by the set operation:

Brm(A) = {x ∈ A : Nm(x) ∩ A 6= ∅},

the border traced by the neighborhood: ∂m′A.

Relation between Brm(A) and ∂m′A

For an m-object A,
Brm′(A) = ∂mA

where (m,m′) = (4, 8), (8, 4).

(Rosenfeld, 1970)

Question

Is Brm′(A) (or ∂mA) a simple closed m-curve?

Digital Geometry : Topic 2 16/25



2D Graph representation

Relation between the two different discrete borders

Given A ∈ Z2, we have the following relation between

the border defined by the set operation:

Brm(A) = {x ∈ A : Nm(x) ∩ A 6= ∅},

the border traced by the neighborhood: ∂m′A.

Relation between Brm(A) and ∂m′A

For an m-object A,
Brm′(A) = ∂mA

where (m,m′) = (4, 8), (8, 4).

(Rosenfeld, 1970)

Question

Is Brm′(A) (or ∂mA) a simple closed m-curve?

Digital Geometry : Topic 2 16/25



3D Point set representation

Object boundary in the 3D discrete space

For A ⊂ Z3, the set of m-interior points is defined by

Intm(A) = {x ∈ A : Nm(x) ⊆ A}
where

Nm(x) = {y ∈ Z2 : dm(x, y) ≤ 1}
for m = 6, 18, 26.

The set of m-boundary points is:

Fr(A) = Brm(A) ∪ Brm(A)

where
Brm(A) = A \ Intm(A) m-interior border,
Brm(A) = A \ Intm(A) m-exterior border.

A

Br4(A) Br4(A)
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3D Point set representation

Neighborhoods in the 3D discrete space

Definition (m-neighborhood)

The m-neighborhood of a grid point x ∈ Z3 is defined by:

Nm(x) = {y ∈ Z3 : dm(x, y) ≤ 1}

for m = 6, 18, 26 where

d6(x, y) = ‖x− y‖1,

d26(x, y) = ‖x− y‖∞,

d18(x, y) = max

{
d26(x, y),

⌈
d6(x, y)

2

⌉}
.
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3D Point set representation

3D discrete border and surface structure

Alternative definition of m-border points:

Brm(A) = {x ∈ A : Nm(x) ∩ A 6= ∅}

for m = 6, 18, 26.

Question

How to follow interior border points?

How to define a surface structure in the discrete space?

Digital Geometry : Topic 2 19/25
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3D Graph representation

3D Adjacency graph

Definition (Adjacency graph (Rosenfeld 1970))

For a given grid point set X ⊂ Z3, the adjacency graph is defined by

G = (X,Em)

where Em = {(x, y) ∈ X× X : y ∈ Am(x)} for m = 6, 18, 26.
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3D Graph representation

Inter-voxel boundary of a discrete object

Let us consider a discrete space as a pair (V ,W ) where V is a
countable set and W is a symmetric relation on V × V .

For example: (V ,W ) = (Z2, 4), (Z3, 6).

Definition (Inter-voxel (pixel) boundary)

Let (V ,W ) be a discrete space, and X be a subset of V . The
boundary of X and its complement X is defined by

∂(X,X) = {(u, v) ∈W : u ∈ X ∧ v ∈ X}.

Note that every element of ∂(X,X) is directed.
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3D Graph representation

Inter-voxel surface

Definition (Inter-voxel surface)

Given a discrete space (V ,W ), a discrete surface S is defined as a
non-empty subset of W .

Then, we have

the immediate interior II (S) = {u : (u, v) ∈ S},
the immediate exterior IE (S) = {v : (u, v) ∈ S}.

Definition (Almost-Jordan discrete surface)

Given a discrete space (V ,W ), a discrete surface S is almost-Jordan iff
every W -path from an element of II (S) to an element of IE (S) crosses
S.
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3D Graph representation

κλ-Jordan discrete surface theorem

Definition (κλ-Jordan discrete surface)

A discrete surface S is κλ-Jordan iff it is almost-Jordan, its interior is
κ-connected, and its exterior is λ-connected.

Theorem (κλ-Jordan discrete surface theorem (Herman, 1998))

Let P be a κ-connected subset of V and Q be a λ-connected union of
W -components of the complement of P in V . Then, the boundary
S = ∂(P,Q) is κλ-Jordan.

Examples of pairs of Jordan:

{8, 4}, {8, 8} for the discrete space (Z2, 4),

{18, 6}, {26, 6} for the discrete space (Z3, 6).

(Lachaud, Malgouyres, 2007)
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3D Graph representation

Inter-voxel boundary following

Algorithm: 3D boundary following (Aztzy et al., 1981)

Input: 6-object, starting 2-cell s
Output: Set F of 2-cells that form the boundary

Put s in a list F and in a queue Q, and also twice in a list L.

while Q 6= ∅ do
Pull f from Q.
for each successor neighbor g of f do

if g is in L, pull g from L.
otherwise put g in F , in Q and in L.

The graph structure and the similar idea to the graph traversal are
used.
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Put s in a list F and in a queue Q, and also twice in a list L.

while Q 6= ∅ do
Pull f from Q.
for each successor neighbor g of f do

if g is in L, pull g from L.
otherwise put g in F , in Q and in L.

The graph structure and the similar idea to the graph traversal are
used.
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