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Opening

Aproaches to define discrete surfaces

Simple surface point approach (Morghenthaler, Rosenfeld,1981;

Couprie, Bertrand, 1998)

Adjacency graph approach (Arzy, Frieder, Herman, 1981; Herman

1998)

Cell complex approach = Mesh

cubical complex (Kovalevsky, 1989; Khalimsky, 1990)
simplicial complex (Larensen, Cline, 1987; Lachaud, 2000)
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Simple surface point approach

Simple point and discrete curve

Definition (Simple point (Rosenfeld, 1973))

Given a X ⊂ Zn, let us consider α-connectedness for X and
β-connectedness for X. Then, a point p ∈ X is said to be simple if

X and X \ {p} have the same number of α-connected components;

X and X \ {p} have the same number of β-connected components.

(α, β) must be a good pair: for example,

(4, 8), (8, 4) for n = 2,

(6, 18), (6, 26), (18, 6), (26, 6) for n = 3.

If every point p of a simple closed m-curve C is not simple, then C is a
Jordan curve (C separates Z2 into two regions).

Simple surface point = generalize Jordan curve theorem to 3D
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Cell complex approach

Cell complex

Definition (Cell complex)

A cell complex is a set C of cells such that

the empty cell is included in C ,

all the faces of every cell of C also belong to C ,

the intersection of two cells is one of their common faces.

The r -cell is an r -dimensional convex polyhedron.

Simplicial complex Cubical complex
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Cell complex approach

Face of complex

Definition (Face)

A face of an r-cell σ is an s-cell that is included in the boundary of σ
with s < r .

3-cell its faces
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Cell complex approach

Digital image and complex representations

Grid point set
(digital image) Adjacency graph

Kovalevsky topology Simplicial complex
(cubical complex)
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Cubical complex

Kovalevsky topology

For a digital image,

we define cells as

Definition

Kovalevsky topology is defined by

C = (A,B)

such that A is a set of cells and B ⊂ A× A is a set of their orders.
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Cubical complex

Order of cells

cell order

If an r -cell σ is a face of s-cell τ , then

σ < τ.

Note: r < s.
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Cubical complex

3D discrete object and boundary (Kovalevsky topology)

Definition (3D discrete object (3-complex))

Given an m-object A ⊂ Z3 for m = 6, 18, 26, we obtain the set K3 of 3-cells
whose centroid are the points of A. The 3D discrete object is then represented
by the 3-complex given by

K = K3 ∪ {τ < σ : σ ∈ K3}.

Definition (Boundary (2-cell set))

The boundary of a 3D discrete object in Kovalevky topology is the set of
2-cells located between the interior border and the exterior border.

This definition gives the same boundary as the inter-voxel boundary by using
the adjacency graph.
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Cubical complex

Adjacency of 2-cells

Definition (2-cell adjacency)

Given a complex C , two distinct 2-cells of C are adjacent if they have
the common 1-face.

(Lachaud, Malgouyres, 2003)

Property (Voss, 1993)

In the boundary of a 6-object, each 2-cell is adjacent to
exactly four neighboring 2-cells such that two of them are
its successors and the others are its predecessors.
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Cubical complex

3D boundary following algorithm

Algorithm: 3D boundary following (Aztzy et al., 1981)

Input: 6-object, starting 2-cell s
Output: Set F of 2-cells that form the boundary

Put s in a list F and in a queue Q, and also twice in a list L.

while Q 6= ∅ do
Pull f from Q.
for each successor neighbor g of f do

if g is in L, pull g from L.
otherwise put g in F , in Q and in L.

(Lachaud, Malgouyres, 2003)

The similar idea to the algorithm for connected component labeling is used.
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Cubical complex

Data structure for Kovalevsky topology

Data structure

If the size of input 3D image is N × N × N (3D array size), the number of
elements of its Kovalevsky topology is 2N × 2N × 2N = 8N3.

The dimension of each cell σ is determined by the 3D array index (i , j , k):

if all of the integers i , j , k are even numbers, then σ is a 3-cell;

if one of the integers i , j , k is odd, then σ is a 2-cell;

if one of the integers i , j , k is even, then σ is a 1-cell;

if all of the integers i , j , k are odd numbers, then σ is a 0-cell.

The order between two cells is also defined depending on their 3D array

indices.
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Cubical complex

Properties obtained in Kovalevsky topology

Any m-object in the n-dimensional space is represented by an
n-complex (the maximum dimension of its cells is n).

Any m-object in the n-dimensional space is represented by a pure
n-complex (the object include no part of less than n dimension).

useful for thinning operation

The boundary is common to the interior and the exterior.

the inter-voxel boundary

The boundary of a 6-object is a combinatorial 2-manifold.

useful for geometric measurement
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Combinatorial manifold

Combinatorial manifold

Definition (2-dimensional combinatorial manifold)

A pure 2-complex C is said to be 2-dimensional combinatorial
manifold, if

every 1-cell of C is adjacent to exactly two 2-cells, and

for every 0-cell v , the 2-cells each of which has v as its 0-face can
be organized in a circular permutation (f0, f1, . . . , fk−1), k > 1,
called the umbrella of v , such that for all i , fi is adjacent to fi+1

(indices taken modulo k).

topologically equivalent to a disk
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Combinatorial manifold

Local configurations of “cubical” 2-manifold

Property

Let us consider a cubical 2-complex C that is 2-manifold. Then, every
0-cell in C has one of the following local configurations.

(Françon, 1995)

This local property is often used for geometric measurement of
boundary.
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Combinatorial manifold

Topological properties of discrete surfaces

We expect that discrete surfaces as discrete object boundaries have
correct topology; for example, they are

Jordan surfaces,

combinatorial manifolds.

Question

Is there a discrete surface notion that allows to has the combinatorial
manifold property for any connectedness?
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Simplicial complex

Isosurface

If we accept the inter-voxel boundary, why not isosurface?

Definition (Isosurface)

For a scalar function f : R3 ← R, we call the isosurface of value s the
implicit surface defined by f (x , y , z) = s.

Marching cubes algorithm constructs the isosurface of value s with an
approximation of the function f from the binary function

f (x) =

{
1 if x ∈ A,
0 otherwise,

or the gray-value function.
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Simplicial complex

Marching cubes : construction of isosurface

Algorithm : Marching cubes (Lorensen, Cline, 1987)

Input: 3D image I
Output: Isosurface T

for each unit cube in I , obtain triangles by referring to the table
of configurations and put them in T .

Example :
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Simplicial complex

Table of configurations of Marching cubes
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Simplicial complex

Results of Marching cubes

Voxel data: Al (Capone?)
(50× 50× 50 size) Isosurface
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Simplicial complex

Problems of Marching cubes

We observe the following disadvantages:

the original method (Lorensen, Cline, 1987) does not maintain
topological guarantee (neither Jordan surface nor combinatorial
manifold);

the complexity is linear to the image size, O(N3), while that of 3D
boundary following based on cubical complex is linear to the
number of border points, O(N2).

Both of them can be solved!
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Simplicial complex

Continuous analog Jordan κλ-boundary

The triangulated surface generated by the following table guarantees
the topology. (Lachaud, Montanvert, 2000)

(Lachaud, Malgouyres, 2003)

This still has a linear complexity O(N3) to the image size.
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Simplicial complex

Duality between cubical complex boundary and κλ-Jordan
isosurface

Between cubical complex boundary B and κλ-Jordan isosurface S , there
are the following correspondences:

2-cells of B vs 0-cells of S ,

1-cells of B vs 1-cells of S ,

0-cells of B vs 2-cells of S ,

which lead the duality between B and S .

(Lachaud, Valette, 2003)
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Simplicial complex

Improvement of κλ-Jordan isosurface

Complexity

Thanks to the duality, we can obtain the topological correct triangulated
isosurface with a similar complexity to that of the 3D boundary following
algorithm, O(N2), instead of O(N3).

Once you have a topologically correct mesh, then you can

improve your mesh,

compute geometrical and topological properties,

visualize your object,

deform your object, etc.

(Lachaud, Valette, 2003)
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