Master 2 "SIS"
 Digital Geometry

Topic 6:
Discrete geometric transformations

Yukiko Kenmochi

October 31, 2012

Geometric transformations of digital images

Given a source image A, we generate a target image B depending on the chosen transformation, for example:

Geometric transformations of digital images

Given a source image A, we generate a target image B depending on the chosen transformation, for example:

- translation,

Geometric transformations of digital images

Given a source image A, we generate a target image B depending on the chosen transformation, for example:

- translation,
- rotation,

Geometric transformations of digital images

Given a source image A, we generate a target image B depending on the chosen transformation, for example:

- translation,
- rotation,
- rigid transformation,

Geometric transformations of digital images

Given a source image A, we generate a target image B depending on the chosen transformation, for example:

- translation,
- rotation,
- rigid transformation,
- scaling,

Geometric transformations of digital images

Given a source image A, we generate a target image B depending on the chosen transformation, for example:

- translation,
- rotation,
- rigid transformation,
- scaling,
- affine transformation,

■ ...

Geometric transformations of digital images

Given a source image A, we generate a target image B depending on the chosen transformation, for example:

- translation,
- rotation,
- rigid transformation,
- scaling,
- affine transformation,

Application in 2D

Example: make a panoramic image.

Application in 3D

Example: reconstruct a 3D shape from a point cloud acquired by a laser rangefinder.

Geometric transformation

Definition

For a point $\mathrm{x} \in \mathbb{R}^{d}$, we obtain the point $\mathbf{y} \in \mathbb{R}^{d}$ such that

$$
\mathbf{y}=g(\mathbf{x})
$$

with a geometric transformation g.

Discrete geometric transformation

Definition

For a point $\mathbf{x} \in \mathbb{Z}^{d}$, we obtain the point $\mathbf{y} \in \mathbb{Z}^{d}$ such that

$$
g(\mathbf{x}) \in P(\mathbf{y})
$$

where $P(\mathbf{y})$ is the pixel whose center is \mathbf{y}.

Remark: $\mathbf{y} \neq g(\mathbf{x})$ in general.

Lagrangian model of discrete transformations

Definition

For a discrete point \mathbf{x} of the source image A, we observe the pixel $P(\mathbf{y})$ of the target image B that includes the arrival point $g(x)$, i.e.,

$$
g(\mathbf{x}) \in P(\mathbf{y})
$$

A
B

Eulerian model of discrete transformations

Definition

For a discrete point \mathbf{y} of the target image B, we observe the pixel $P(\mathbf{x})$ of the source image A that includes the starting point $g^{-1}(\mathbf{y})$, i.e.,

$$
g^{-1}(\mathbf{y}) \in P(\mathbf{x})
$$

Discrete rotation - Lagrangian model

Discrete rotation - Eulerian model

Criteria for discrete geometric transformation

Criteria expected to be preserved

Criteria for discrete geometric transformation

Criteria expected to be preserved

- quality (the results equal to the discretized geometric transformation),

Criteria for discrete geometric transformation

Criteria expected to be preserved

- quality (the results equal to the discretized geometric transformation),
■ exact computation (using only integers),

Criteria for discrete geometric transformation

Criteria expected to be preserved

■ quality (the results equal to the discretized geometric transformation),

- exact computation (using only integers),
- bijection,

Criteria for discrete geometric transformation

Criteria expected to be preserved

■ quality (the results equal to the discretized geometric transformation),
■ exact computation (using only integers),

- bijection,
- transitivity,

Criteria for discrete geometric transformation

Criteria expected to be preserved

- quality (the results equal to the discretized geometric transformation),
■ exact computation (using only integers),
- bijection,
- transitivity,

■ incrementalism,

Criteria for discrete geometric transformation

Criteria expected to be preserved

- quality (the results equal to the discretized geometric transformation),
■ exact computation (using only integers),
- bijection,
- transitivity,

■ incrementalism,

- geometry,

Criteria for discrete geometric transformation

Criteria expected to be preserved

■ quality (the results equal to the discretized geometric transformation),

- exact computation (using only integers),
- bijection,
- transitivity,

■ incrementalism,

- geometry,

- topology,

Criteria for discrete geometric transformation

Criteria expected to be preserved

- quality (the results equal to the discretized geometric transformation),
■ exact computation (using only integers),
- bijection,
- transitivity,

■ incrementalism,

- geometry,

■ topology,
■ . . .

Criteria for discrete geometric transformation

Criteria expected to be preserved

- quality (the results equal to the discretized geometric transformation),
■ exact computation (using only integers),
- bijection,
- transitivity,

■ incrementalism,

- geometry,

■ topology,
■ . . .

Criteria for discrete geometric transformation

Criteria expected to be preserved

- quality (the results equal to the discretized geometric transformation),
■ exact computation (using only integers),
- bijection,
- transitivity,

■ incrementalism,

- geometry,

■ topology,
■ . .

Discretized translation

Discretized translation

Definition (2D discretized translation)

A translation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{x}{y}+\binom{\left\lfloor a+\frac{1}{2}\right\rfloor}{\left\lfloor b+\frac{1}{2}\right\rfloor}
$$

where $a, b \in \mathbb{R}$

Discretized translation

Definition (2D discretized translation)

A translation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{x}{y}+\binom{\left\lfloor a+\frac{1}{2}\right\rfloor}{\left\lfloor b+\frac{1}{2}\right\rfloor}
$$

where $a, b \in \mathbb{R}$
It is
■ bijective,

Discretized translation

Definition (2D discretized translation)

A translation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{x}{y}+\binom{\left\lfloor a+\frac{1}{2}\right\rfloor}{\left\lfloor b+\frac{1}{2}\right\rfloor}
$$

where $a, b \in \mathbb{R}$
It is
■ bijective,

- transitive (if $a, b \in \mathbb{Z}$),

Discretized translation

Definition (2D discretized translation)

A translation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{x}{y}+\binom{\left\lfloor a+\frac{1}{2}\right\rfloor}{\left\lfloor b+\frac{1}{2}\right\rfloor}
$$

where $a, b \in \mathbb{R}$
It is
■ bijective,
■ transitive (if $a, b \in \mathbb{Z}$),
■ calculated exactly (if $a, b \in \mathbb{Z}$),

Discretized translation

Definition (2D discretized translation)

A translation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{x}{y}+\binom{a}{b}
$$

where $a, b \in \mathbb{Z}$.
It is
■ bijective,
■ transitive (if $a, b \in \mathbb{Z}$),

- calculated exactly (if $a, b \in \mathbb{Z}$),
- geometry,

Discretized translation

Definition (2D discretized translation)

A translation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{x}{y}+\binom{a}{b}
$$

where $a, b \in \mathbb{Z}$.
It is
■ bijective,
■ transitive (if $a, b \in \mathbb{Z}$),

- calculated exactly (if $a, b \in \mathbb{Z}$),
- geometry,
- topology.

Discretized rotation

Definition (2D Euclidean rotation)

A rotation taking a point $(x, y) \in \mathbb{R}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y} .
$$

Discretized rotation

Definition (2D discretized rotation)

A rotation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{\left\lfloor x \cos \theta-y \sin \theta+\frac{1}{2}\right\rfloor}{\left\lfloor x \sin \theta+y \cos \theta+\frac{1}{2}\right\rfloor} .
$$

Discretized rotation

Definition (2D discretized rotation)

A rotation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{\left\lfloor x \cos \theta-y \sin \theta+\frac{1}{2}\right\rfloor}{\left\lfloor x \sin \theta+y \cos \theta+\frac{1}{2}\right\rfloor} .
$$

It is not

- bijective,

Discretized rotation

Definition (2D discretized rotation)

A rotation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{\left\lfloor x \cos \theta-y \sin \theta+\frac{1}{2}\right\rfloor}{\left\lfloor x \sin \theta+y \cos \theta+\frac{1}{2}\right\rfloor} .
$$

It is not
■ bijective,

- transitive,

Discretized rotation

Definition (2D discretized rotation)

A rotation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{\left\lfloor x \cos \theta-y \sin \theta+\frac{1}{2}\right\rfloor}{\left\lfloor x \sin \theta+y \cos \theta+\frac{1}{2}\right\rfloor} .
$$

It is not

- bijective,
- transitive,
- calculated exactly,

Discretized rotation

Definition (2D discretized rotation)

A rotation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{\left\lfloor x \cos \theta-y \sin \theta+\frac{1}{2}\right\rfloor}{\left\lfloor x \sin \theta+y \cos \theta+\frac{1}{2}\right\rfloor} .
$$

It is not

- bijective,
- transitive,
- calculated exactly,
- geometry (distances),

Discretized rotation

Definition (2D discretized rotation)

A rotation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{\left\lfloor x \cos \theta-y \sin \theta+\frac{1}{2}\right\rfloor}{\left\lfloor x \sin \theta+y \cos \theta+\frac{1}{2}\right\rfloor} .
$$

It is not

- bijective,
- transitive,
- calculated exactly,
- geometry (distances),
- topology.

Discrete rotations

1 Quasi-shear rotation is:

2 Discrete rotation by hinge angles is:

Discrete rotations

1 Quasi-shear rotation is:

- calculated exactly,

2 Discrete rotation by hinge angles is:

Discrete rotations

1 Quasi-shear rotation is:

- calculated exactly,
- bijective,

2 Discrete rotation by hinge angles is:

Discrete rotations

1 Quasi-shear rotation is:

- calculated exactly,
- bijective,
- an approximation to the discretized rotation.

2 Discrete rotation by hinge angles is:

Discrete rotations

1 Quasi-shear rotation is:

- calculated exactly,
- bijective,
- an approximation to the discretized rotation.

2 Discrete rotation by hinge angles is:

Discrete rotations

1 Quasi-shear rotation is:

- calculated exactly,
- bijective,
- an approximation to the discretized rotation.

2 Discrete rotation by hinge angles is:

- calculated exactly,

Discrete rotations

1 Quasi-shear rotation is:

- calculated exactly,
- bijective,
- an approximation to the discretized rotation.

2 Discrete rotation by hinge angles is:

- calculated exactly,
- equal to the discretized rotation,

Discrete rotations

1 Quasi-shear rotation is:

- calculated exactly,
- bijective,
- an approximation to the discretized rotation.

2 Discrete rotation by hinge angles is:

- calculated exactly,
- equal to the discretized rotation,
- incremental.

Shear rotation

Decomposition of a rotation into three shears

$$
\begin{aligned}
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) & =\left(\begin{array}{cc}
1 & -\tan \frac{\theta}{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\sin \theta & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\tan \frac{\theta}{2} \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & -\frac{\alpha^{\prime}}{\beta^{\prime}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{\alpha}{\omega} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\frac{\alpha^{\prime}}{\beta^{\prime}} \\
0 & 1
\end{array}\right)
\end{aligned}
$$

where $\omega>0$ is a real value, $\alpha=\omega \sin \theta, \alpha^{\prime}=\omega \sin \frac{\theta}{2}$ and $\beta^{\prime}=\omega \cos \frac{\theta}{2}$.

Shear rotation

Decomposition of a rotation into three shears

$$
\begin{aligned}
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) & =\left(\begin{array}{cc}
1 & -\tan \frac{\theta}{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\sin \theta & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\tan \frac{\theta}{2} \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & -\frac{\alpha^{\prime}}{\beta^{\prime}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{\alpha}{\omega} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\frac{\alpha^{\prime}}{\beta^{\prime}} \\
0 & 1
\end{array}\right)
\end{aligned}
$$

where $\omega>0$ is a real value, $\alpha=\omega \sin \theta, \alpha^{\prime}=\omega \sin \frac{\theta}{2}$ and $\beta^{\prime}=\omega \cos \frac{\theta}{2}$.

- Horizontal shear:

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

Shear rotation

Decomposition of a rotation into three shears

$$
\begin{aligned}
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) & =\left(\begin{array}{cc}
1 & -\tan \frac{\theta}{2} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\sin \theta & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\tan \frac{\theta}{2} \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & -\frac{\alpha^{\prime}}{\beta^{\prime}} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{\alpha}{\omega} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\frac{\alpha^{\prime}}{\beta^{\prime}} \\
0 & 1
\end{array}\right)
\end{aligned}
$$

where $\omega>0$ is a real value, $\alpha=\omega \sin \theta, \alpha^{\prime}=\omega \sin \frac{\theta}{2}$ and $\beta^{\prime}=\omega \cos \frac{\theta}{2}$.

- Horizontal shear:

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

- Vertical shear:

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
1 & 0 \\
m & 1
\end{array}\right)\binom{x}{y}
$$

Quasi-shear

Definition (Andres, 1996)

For $(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$, the horizontal quasi-shear $\operatorname{HQS}(a, b)$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{x+\left\lfloor\frac{a}{b} y+\frac{1}{2}\right\rfloor}{ y}
$$

and the vertical quasi-shear $\operatorname{VQS}(a, b)$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{x}{y+\left\lfloor\frac{a}{b} x+\frac{1}{2}\right\rfloor}
$$

where $a, b \in \mathbb{Z}, b>0$.

Quasi-shear rotation

Definition (Andres, 1996)

The quasi-shear rotation of angle θ is defined by

$$
\operatorname{HQS}\left(-a^{\prime}, b^{\prime}\right) \circ \operatorname{VQS}(a, w) \circ \operatorname{HQS}\left(-a^{\prime}, b^{\prime}\right)
$$

where w is a chosen integer value and

$$
\begin{aligned}
a & =\lfloor w \sin \theta\rfloor, \\
a^{\prime} & =\left\lfloor w \sin \frac{\theta}{2}\right\rfloor, \\
b^{\prime} & =\left\lfloor w \cos \frac{\theta}{2}\right\rfloor .
\end{aligned}
$$

Remark: for example $w=2^{15}$ is used for an image of size 2048×2048.

Advantages and disadvantages of quasi-shear rotation

Advantages

- memory saving (not necessary to store the original image),
- parallel computing (only shift).

Disadvantages

- large approximation errors around $\theta=\pi$.

(Andres, 1996)

Hinge angles

Definition (Nouvel, 2006)

An angle α is a hinge angle for a discrete point $(p, q) \in \mathbb{Z}^{2}$ if the result of its rotation by α is a point on the half-grid.

Properties of hinge angels

Property (Nouvel, 2006; Thibault, 2009)

Properties of hinge angels

Property (Nouvel, 2006; Thibault, 2009)

- The hinge angles are dense in \mathbb{R}.

Properties of hinge angels

Property (Nouvel, 2006; Thibault, 2009)

- The hinge angles are dense in \mathbb{R}.
- Each hinge angle α is represented by a triplet of integer numbers (p, q, k) with the uniqueness such that

$$
\begin{aligned}
\cos \alpha & =\frac{p \lambda+q\left(k+\frac{1}{2}\right)}{p^{2}+q^{2}} \\
\sin \alpha & =\frac{p\left(k+\frac{1}{2}\right)-q \lambda}{p^{2}+q^{2}}
\end{aligned}
$$

$$
\text { where } \lambda=\sqrt{p^{2}+q^{2}-\left(k+\frac{1}{2}\right)^{2}} \text { and } k<\sqrt{p^{2}+q^{2}} .
$$

Properties of hinge angels

Property (Nouvel, 2006; Thibault, 2009)

- The hinge angles are dense in \mathbb{R}.
- Each hinge angle α is represented by a triplet of integer numbers (p, q, k) with the uniqueness such that

$$
\begin{aligned}
\cos \alpha & =\frac{p \lambda+q\left(k+\frac{1}{2}\right)}{p^{2}+q^{2}}, \\
\sin \alpha & =\frac{p\left(k+\frac{1}{2}\right)-q \lambda}{p^{2}+q^{2}}
\end{aligned}
$$

$$
\text { where } \lambda=\sqrt{p^{2}+q^{2}-\left(k+\frac{1}{2}\right)^{2}} \text { and } k<\sqrt{p^{2}+q^{2}} .
$$

- The comparison between two hinge angles can be made in constant time by using only integers.

Properties of hinge angels

Property (Nouvel, 2006; Thibault, 2009)

- The hinge angles are dense in \mathbb{R}.
- Each hinge angle α is represented by a triplet of integer numbers (p, q, k) with the uniqueness such that

$$
\begin{aligned}
\cos \alpha & =\frac{p \lambda+q\left(k+\frac{1}{2}\right)}{p^{2}+q^{2}} \\
\sin \alpha & =\frac{p\left(k+\frac{1}{2}\right)-q \lambda}{p^{2}+q^{2}}
\end{aligned}
$$

$$
\text { where } \lambda=\sqrt{p^{2}+q^{2}-\left(k+\frac{1}{2}\right)^{2}} \text { and } k<\sqrt{p^{2}+q^{2}} .
$$

- The comparison between two hinge angles can be made in constant time by using only integers.
- For an image of size $n \times n$, we have $8 n^{3}$ hinge angles.

Incremental discrete rotation

Algorithm (Thibault, 2009)
Input: an image A
Output: all the possible rotations of A

Incremental discrete rotation

Algorithm (Thibault, 2009)

Input: an image A
Output: all the possible rotations of A
■ for each point (p, q) of A, calculate its hinge angles $\alpha(p, q, k)$ for all k, and store them in a sorted list $T_{(p, q)}$;

Incremental discrete rotation

Algorithm (Thibault, 2009)

Input: an image A
Output: all the possible rotations of A
■ for each point (p, q) of A, calculate its hinge angles $\alpha(p, q, k)$ for all k, and store them in a sorted list $T_{(p, q)}$;

- fusion all the lists $T_{(p, q)}$ into a sorted list T;

Incremental discrete rotation

Algorithm (Thibault, 2009)

Input: an image A
Output: all the possible rotations of A
■ for each point (p, q) of A, calculate its hinge angles $\alpha(p, q, k)$ for all k, and store them in a sorted list $T_{(p, q)}$;

- fusion all the lists $T_{(p, q)}$ into a sorted list T;
- for each angle $\alpha(p, q, k)$ in T, move the point whose original coordinate is (p, q) from the current pixel $\left(k,\left\lfloor\lambda+\frac{1}{2}\right\rfloor\right)$ to the adjacent pixel $\left(k+1,\left\lfloor\lambda+\frac{1}{2}\right\rfloor\right)$.

Incremental discrete rotation

Algorithm (Thibault, 2009)

Input: an image A
Output: all the possible rotations of A
■ for each point (p, q) of A, calculate its hinge angles $\alpha(p, q, k)$ for all k, and store them in a sorted list $T_{(p, q)}$;

- fusion all the lists $T_{(p, q)}$ into a sorted list T;
- for each angle $\alpha(p, q, k)$ in T, move the point whose original coordinate is (p, q) from the current pixel $\left(k,\left\lfloor\lambda+\frac{1}{2}\right\rfloor\right)$ to the adjacent pixel $\left(k+1,\left\lfloor\lambda+\frac{1}{2}\right\rfloor\right)$.

The complexity is $O\left(n^{3}\right)$ for an image of size $n \times n$.

Incremental discrete rotation

Algorithm (Thibault, 2009)

Input: an image A
Output: all the possible rotations of A

- for each point (p, q) of A, calculate its hinge angles $\alpha(p, q, k)$ for all k, and store them in a sorted list $T_{(p, q)}$;
- fusion all the lists $T_{(p, q)}$ into a sorted list T;
- for each angle $\alpha(p, q, k)$ in T, move the point whose original coordinate is (p, q) from the current pixel $\left(k,\left\lfloor\lambda+\frac{1}{2}\right\rfloor\right)$ to the adjacent pixel $\left(k+1,\left\lfloor\lambda+\frac{1}{2}\right\rfloor\right)$.

The complexity is $O\left(n^{3}\right)$ for an image of size $n \times n$. Practically, this complexity is not too large to generate all the rotated images.

Discretized affine transformation

Definition (2D Euclidean affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{R}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}+\binom{e}{f}
$$

where $a, b, c, d, e, f \in \mathbb{R}$.

Discretized affine transformation

Definition (2D discretized affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{\lfloor a x+b y+e\rfloor}{\lfloor c x+d y+f\rfloor}
$$

where $a, b, c, d, e, f \in \mathbb{R}$.

Discretized affine transformation

Definition (2D discretized affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{\lfloor a x+b y+e\rfloor}{\lfloor c x+d y+f\rfloor}
$$

where $a, b, c, d, e, f \in \mathbb{R}$.
In general, it is not
■ bijective,

Discretized affine transformation

Definition (2D discretized affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{\lfloor a x+b y+e\rfloor}{\lfloor c x+d y+f\rfloor}
$$

where $a, b, c, d, e, f \in \mathbb{R}$.
In general, it is not
■ bijective,

- transitive,

Discretized affine transformation

Definition (2D discretized affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{\lfloor a x+b y+e\rfloor}{\lfloor c x+d y+f\rfloor}
$$

where $a, b, c, d, e, f \in \mathbb{R}$.
In general, it is not
■ bijective,

- transitive,
- calculated exactly,

Discretized affine transformation

Definition (2D discretized affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{\lfloor a x+b y+e\rfloor}{\lfloor c x+d y+f\rfloor}
$$

where $a, b, c, d, e, f \in \mathbb{R}$.
In general, it is not
■ bijective,

- transitive,
- calculated exactly,
- geometry,

Discretized affine transformation

Definition (2D discretized affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{\lfloor a x+b y+e\rfloor}{\lfloor c x+d y+f\rfloor}
$$

where $a, b, c, d, e, f \in \mathbb{R}$.
In general, it is not
■ bijective,

- transitive,
- calculated exactly,
- geometry,
- topology.

Discrete affine transformations

1 Quasi-affine transformation is:

2 Combinatorial affine transformation is:

Discrete affine transformations

1 Quasi-affine transformation is:

- a generalization of the quasi-shear rotation,

2 Combinatorial affine transformation is:

Discrete affine transformations

1 Quasi-affine transformation is:

- a generalization of the quasi-shear rotation,
- calculated exactly,

2 Combinatorial affine transformation is:

Discrete affine transformations

1 Quasi-affine transformation is:

- a generalization of the quasi-shear rotation,
- calculated exactly,
- equal to the discretized affine transformation,

2 Combinatorial affine transformation is:

Discrete affine transformations

1 Quasi-affine transformation is:

- a generalization of the quasi-shear rotation,
- calculated exactly,
- equal to the discretized affine transformation,
- efficiently computed.

2 Combinatorial affine transformation is:

Discrete affine transformations

1 Quasi-affine transformation is:

- a generalization of the quasi-shear rotation,
- calculated exactly,
- equal to the discretized affine transformation,
- efficiently computed.

2 Combinatorial affine transformation is:

- a generalization of the discrete rotation by hinge angles,

Discrete affine transformations

1 Quasi-affine transformation is:

- a generalization of the quasi-shear rotation,
- calculated exactly,
- equal to the discretized affine transformation,
- efficiently computed.

2 Combinatorial affine transformation is:

- a generalization of the discrete rotation by hinge angles,
- calculated exactly,

Discrete affine transformations

1 Quasi-affine transformation is:

- a generalization of the quasi-shear rotation,
- calculated exactly,
- equal to the discretized affine transformation,
- efficiently computed.

2 Combinatorial affine transformation is:

- a generalization of the discrete rotation by hinge angles,
- calculated exactly,
- equal to the discretized affine transformation,

Discrete affine transformations

1 Quasi-affine transformation is:

- a generalization of the quasi-shear rotation,
- calculated exactly,
- equal to the discretized affine transformation,
- efficiently computed.

2 Combinatorial affine transformation is:

- a generalization of the discrete rotation by hinge angles,
- calculated exactly,
- equal to the discretized affine transformation,
- incremental.

Quasi-affine transformation

Definition (Jacob, 1993)
A quasi-affine transformation taking a point $(x, y) \in \mathbb{Z}^{2}$ to a point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$ is defined by

$$
\binom{x^{\prime}}{y^{\prime}}=\binom{\left\lfloor\frac{a x+b y+e}{\omega}\right\rfloor}{\left\lfloor\frac{c x+d y+f}{\omega}\right\rfloor}
$$

where $a, b, c, d, e, f \in \mathbb{Z}, \omega \in \mathbb{N}^{+}$.
This is equivalent to the intersection of two arithmetic lines for a given point $\left(x^{\prime}, y^{\prime}\right) \in \mathbb{Z}^{2}$:

$$
\begin{aligned}
& \omega x^{\prime} \leq a x+b y+e<\omega\left(x^{\prime}+1\right) \\
& \omega y^{\prime} \leq c x+d y+y<\omega\left(y^{\prime}+1\right)
\end{aligned}
$$

Tiles and their periodicity

Definition (Tile)

Let f be a quasi-affine transformation. For a point $\mathbf{y} \in \mathbb{Z}^{2}$, the tile of order 1 of \mathbf{y} is defined by

$$
P_{\mathbf{y}}=\left\{\mathbf{x} \in \mathbb{Z}^{2}: f(\mathbf{x})=\mathbf{y}\right\} .
$$

Theory

The set of quasi-affine transformation tiles is periodic.

(Coeurjolly et al., 2009)

Tile construction and quasi-affine transformation

By using Hermite normal form. efficient tile construction can be designed.

Fig. 3. Illustration in dimension 2 of the QAT algorithm when f is contracting (a) and dilating (b). In both cases, we use the canonical tiles contained in the super-tile to speed-up the transformation.
(Coeurjolly et al., 2009)

Quasi-affine transformation

- If f is contracting, we give to each pixel \mathbf{y} of image B the average color of the tile $P_{\mathbf{y}}$ in image A .
- If f is dilating, we give the color of each pixel \mathbf{y} of image A to each pixel of $P_{\mathbf{y}}$ in image B (replace f by f^{-1}).

Combinatorial affine transformation

Given a discrete point $(x, y) \in \mathbb{Z}^{2}$, for an affine transformation:

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}+\binom{e}{f}
$$

the critical cases are:

$$
\begin{array}{lll}
x^{\prime}=k_{x}+\frac{1}{2}=a x+b y+e & \text { where } & k_{x} \in \mathbb{Z} \\
y^{\prime}=k_{y}+\frac{1}{2}=c x+d y+f & \text { where } & k_{y} \in \mathbb{Z}
\end{array}
$$

Dual space of affine transformation

$$
\begin{array}{ll}
k_{x}+\frac{1}{2}=a x+b y+e & \text { for } \quad \\
k_{x}, x, y \in \mathbb{Z} \\
k_{y}+\frac{1}{2}=c x+d y+f & \text { for }
\end{array} \quad k_{y}, x, y \in \mathbb{Z} .
$$

Dual space of affine transformation

$$
\begin{array}{ll}
k_{x}+\frac{1}{2}=a x+b y+e & \text { for } \\
k_{y}+\frac{1}{2}=c x+d y+f & k_{x}, x, y \in \mathbb{Z} \\
\text { for } & k_{y}, x, y \in \mathbb{Z}
\end{array}
$$

Remark

For an image of size $n \times n$, each dual space contains n^{3} planes.

Combinatorial affine transformation

Each dual space is discretized by n^{3} planes:

$$
\begin{array}{ll}
k_{x}+\frac{1}{2}=a x+b y+e & \text { for } \quad k_{x}, x, y \in \mathbb{Z} \\
k_{y}+\frac{1}{2}=c x+d y+f & \text { for } \quad k_{y}, x, y \in \mathbb{Z}
\end{array}
$$

Combinatorial affine transformation

Each dual space is discretized by n^{3} planes:

$$
k_{x}+\frac{1}{2}=a x+b y+e \quad \text { for } \quad k_{x}, x, y \in \mathbb{Z}
$$

Property (Hundt et al., 2007)

- For an image of size $n \times n$, each dual space is divided in $O\left(n^{9}\right)$, i.e., the number of discrete transformations is $O\left(n^{18}\right)$.

Combinatorial affine transformation

Each dual space is discretized by n^{3} planes:

$$
\begin{array}{ll}
k_{x}+\frac{1}{2}=a x+b y+e & \text { for } \quad k_{x}, x, y \in \mathbb{Z} \\
k_{y}+\frac{1}{2}=c x+d y+f & \text { for } \quad k_{y}, x, y \in \mathbb{Z}
\end{array}
$$

Property (Hundt et al., 2007)

- For an image of size $n \times n$, each dual space is divided in $O\left(n^{9}\right)$, i.e., the number of discrete transformations is $O\left(n^{18}\right)$.
- All the calculations are made by using integers.

Combinatorial affine transformation

Each dual space is discretized by n^{3} planes:

$$
\begin{array}{ll}
k_{x}+\frac{1}{2}=a x+b y+e & \text { for } \quad k_{x}, x, y \in \mathbb{Z} \\
k_{y}+\frac{1}{2}=c x+d y+f & \text { for } \quad k_{y}, x, y \in \mathbb{Z}
\end{array}
$$

Property (Hundt et al., 2007)

■ For an image of size $n \times n$, each dual space is divided in $O\left(n^{9}\right)$, i.e., the number of discrete transformations is $O\left(n^{18}\right)$.

- All the calculations are made by using integers.
- The discrete transformation corresponds to the discretized transformation.

Combinatorial image matching

For a 2D digital image of size $n \times n$, the numbers of the generated images under different transformations are as follow.

Transformation	complexity
Rotation (Amir, et al., 2003)	$O\left(n^{3}\right)$
Scaling (Amir, et al., 2003)	$O\left(n^{3}\right)$
Rotation and scaling (Hundt, Liskiewicz, 2009)	$O\left(n^{6}\right)$
Rigid transformation (Ngo, et al., 2011)	$O\left(n^{9}\right)$
Linear transformation (Hundt, Liskiewicz, 2008)	$O\left(n^{12}\right)$
Affine transformation (Hundt, 2007)	$O\left(n^{18}\right)$
Projective transformation (Hundt, Liskiewicz, 2008)	$O\left(n^{24}\right)$

References

- R. Klette and A. Rosenfeld.
"Transformations," Chapter 14 in "Digital geometry: geometric methods for digital picture analysis," Morgan Kaufmann, 2004.

■ E. Andres et M.-A. Jacob-Da Col.
"Transformations affines discrètes," Chapitre 7 dans "Géométrie discrète et images numériques," Hermès, 2007.

- B. Nouvel.
"Rotations discrètes et automates cellulaires," Thèse, ENS de Lyon, 2006.
- Y. Thibault.
"Rotations in 2D and 3D discrete spaces," Thèse, Université Paris-Est, 2010.

