Master 2 "SIS" Digital Geometry

TOPIC 6: DISCRETE GEOMETRIC TRANSFORMATIONS

Yukiko Kenmochi

October 31, 2012

Given a **source image** A, we generate a **target image** B depending on the chosen transformation, for example:

translation.

- translation,
- rotation,

- translation,
- rotation.
- rigid transformation,

- translation,
- rotation.
- rigid transformation,
- scaling,

- translation,
- rotation.
- rigid transformation,
- scaling,
- affine transformation,
-

- translation,
- rotation.
- rigid transformation,
- scaling,
- affine transformation,
-

Application in 2D

Example: make a panoramic image.

Application in 3D

Example: reconstruct a 3D shape from a point cloud acquired by a laser rangefinder.

Geometric transformation

Definition

For a point $\mathbf{x} \in \mathbb{R}^d$, we obtain the point $\mathbf{y} \in \mathbb{R}^d$ such that

$$y = g(x)$$

with a geometric transformation g.

Discrete geometric transformation

Definition

For a point $\mathbf{x} \in \mathbb{Z}^d$, we obtain the point $\mathbf{y} \in \mathbb{Z}^d$ such that

$$g(\mathbf{x}) \in P(\mathbf{y})$$

where P(y) is the pixel whose center is y.

Remark: $\mathbf{y} \neq g(\mathbf{x})$ in general.

Lagrangian model of discrete transformations

Definition

For a discrete point \mathbf{x} of the source image A, we observe the pixel $P(\mathbf{y})$ of the target image B that includes the arrival point $g(\mathbf{x})$, i.e.,

$$g(\mathbf{x}) \in P(\mathbf{y}).$$

Eulerian model of discrete transformations

Definition

For a discrete point \mathbf{y} of the target image B, we observe the pixel $P(\mathbf{x})$ of the source image A that includes the starting point $g^{-1}(\mathbf{y})$, i.e.,

$$g^{-1}(\mathbf{y}) \in P(\mathbf{x}).$$

Discrete rotation - Lagrangian model

Discrete rotation - Eulerian model

Criteria expected to be preserved

 quality (the results equal to the discretized geometric transformation),

- quality (the results equal to the discretized geometric transformation),
- exact computation (using only integers),

- quality (the results equal to the discretized geometric transformation),
- exact computation (using only integers),
- bijection,

- quality (the results equal to the discretized geometric transformation),
- exact computation (using only integers),
- bijection,
- transitivity,

- quality (the results equal to the discretized geometric transformation),
- exact computation (using only integers),
- bijection,
- transitivity,
- incrementalism,

- quality (the results equal to the discretized geometric transformation),
- exact computation (using only integers),
- bijection,
- transitivity,
- incrementalism,
- geometry,

- quality (the results equal to the discretized geometric transformation),
- exact computation (using only integers),
- bijection,
- transitivity,
- incrementalism,
- geometry,
- topology,

- quality (the results equal to the discretized geometric transformation),
- exact computation (using only integers),
- bijection,
- transitivity,
- incrementalism,
- geometry,
- topology,
- . .

- quality (the results equal to the discretized geometric transformation),
- exact computation (using only integers),
- bijection,
- transitivity,
- incrementalism,
- geometry,
- topology,
- . . .

- quality (the results equal to the discretized geometric transformation),
- exact computation (using only integers),
- bijection,
- transitivity,
- incrementalism.
- geometry,
- topology,
- . . .

Definition (2D discretized translation)

A translation taking a point $(x,y) \in \mathbb{Z}^2$ to a point $(x',y') \in \mathbb{Z}^2$ is defined by

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} \lfloor a + \frac{1}{2} \rfloor \\ \lfloor b + \frac{1}{2} \rfloor \end{array}\right)$$

where $a, b \in \mathbb{R}$.

Definition (2D discretized translation)

A translation taking a point $(x,y) \in \mathbb{Z}^2$ to a point $(x',y') \in \mathbb{Z}^2$ is defined by

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} \lfloor a + \frac{1}{2} \rfloor \\ \lfloor b + \frac{1}{2} \rfloor \end{array}\right)$$

where $a,b \in \mathbb{R}$.

It is

bijective,

Definition (2D discretized translation)

A translation taking a point $(x,y) \in \mathbb{Z}^2$ to a point $(x',y') \in \mathbb{Z}^2$ is defined by

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} \lfloor a + \frac{1}{2} \rfloor \\ \lfloor b + \frac{1}{2} \rfloor \end{array}\right)$$

where $a, b \in \mathbb{R}$.

- bijective,
- transitive (if $a, b \in \mathbb{Z}$),

Definition (2D discretized translation)

A translation taking a point $(x,y) \in \mathbb{Z}^2$ to a point $(x',y') \in \mathbb{Z}^2$ is defined by

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} \lfloor a + \frac{1}{2} \rfloor \\ \lfloor b + \frac{1}{2} \rfloor \end{array}\right)$$

where $a, b \in \mathbb{R}$.

- bijective,
- transitive (if $a, b \in \mathbb{Z}$),
- calculated exactly (if $a, b \in \mathbb{Z}$),

Definition (2D discretized translation)

A translation taking a point $(x,y) \in \mathbb{Z}^2$ to a point $(x',y') \in \mathbb{Z}^2$ is defined by

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} a \\ b \end{array}\right)$$

where $a, b \in \mathbb{Z}$.

- bijective,
- transitive (if $a, b \in \mathbb{Z}$),
- calculated exactly (if $a, b \in \mathbb{Z}$),
- geometry,

Definition (2D discretized translation)

A translation taking a point $(x,y) \in \mathbb{Z}^2$ to a point $(x',y') \in \mathbb{Z}^2$ is defined by

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} a \\ b \end{array}\right)$$

where $a, b \in \mathbb{Z}$.

- bijective,
- transitive (if $a, b \in \mathbb{Z}$),
- calculated exactly (if $a, b \in \mathbb{Z}$),
- geometry,
- topology.

Discretized rotation

Definition (2D Euclidean rotation)

A rotation taking a point $(x,y) \in \mathbb{R}^2$ to a point $(x',y') \in \mathbb{R}^2$ is defined by

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\end{array}\right) \left(\begin{array}{c} x\\ y\end{array}\right).$$

Discretized rotation

Definition (2D discretized rotation)

A rotation taking a point $(x,y) \in \mathbb{Z}^2$ to a point $(x',y') \in \mathbb{Z}^2$ is defined by

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{c} \lfloor x\cos\theta - y\sin\theta + \frac{1}{2}\rfloor\\ \lfloor x\sin\theta + y\cos\theta + \frac{1}{2}\rfloor\end{array}\right).$$

Definition (2D discretized rotation)

A rotation taking a point $(x,y) \in \mathbb{Z}^2$ to a point $(x',y') \in \mathbb{Z}^2$ is defined by

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{c} \lfloor x\cos\theta - y\sin\theta + \frac{1}{2}\rfloor\\ \lfloor x\sin\theta + y\cos\theta + \frac{1}{2}\rfloor\end{array}\right).$$

It is not

■ bijective,

Definition (2D discretized rotation)

A rotation taking a point $(x,y) \in \mathbb{Z}^2$ to a point $(x',y') \in \mathbb{Z}^2$ is defined by

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{c} \lfloor x\cos\theta - y\sin\theta + \frac{1}{2}\rfloor\\ \lfloor x\sin\theta + y\cos\theta + \frac{1}{2}\rfloor\end{array}\right).$$

- bijective,
- transitive,

Definition (2D discretized rotation)

A rotation taking a point $(x,y) \in \mathbb{Z}^2$ to a point $(x',y') \in \mathbb{Z}^2$ is defined by

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{c} \lfloor x\cos\theta - y\sin\theta + \frac{1}{2}\rfloor\\ \lfloor x\sin\theta + y\cos\theta + \frac{1}{2}\rfloor\end{array}\right).$$

- bijective,
- transitive,
- calculated exactly,

Definition (2D discretized rotation)

A rotation taking a point $(x,y) \in \mathbb{Z}^2$ to a point $(x',y') \in \mathbb{Z}^2$ is defined by

$$\left(\begin{array}{c}x'\\y'\end{array}\right)=\left(\begin{array}{c}\lfloor x\cos\theta-y\sin\theta+\frac{1}{2}\rfloor\\\lfloor x\sin\theta+y\cos\theta+\frac{1}{2}\rfloor\end{array}\right).$$

- bijective,
- transitive,
- calculated exactly,
- geometry (distances),

Definition (2D discretized rotation)

A rotation taking a point $(x,y) \in \mathbb{Z}^2$ to a point $(x',y') \in \mathbb{Z}^2$ is defined by

$$\left(\begin{array}{c}x'\\y'\end{array}\right)=\left(\begin{array}{c}\lfloor x\cos\theta-y\sin\theta+\frac{1}{2}\rfloor\\\lfloor x\sin\theta+y\cos\theta+\frac{1}{2}\rfloor\end{array}\right).$$

- bijective,
- transitive,
- calculated exactly,
- geometry (distances),
- topology.

1 Quasi-shear rotation is:

- **1** Quasi-shear rotation is:
 - calculated exactly,

- **1** Quasi-shear rotation is:
 - calculated exactly,
 - bijective,

- 1 Quasi-shear rotation is:
 - calculated exactly,
 - bijective,
 - an approximation to the discretized rotation.

- 1 Quasi-shear rotation is:
 - calculated exactly,
 - bijective,
 - an approximation to the discretized rotation.

- 1 Quasi-shear rotation is:
 - calculated exactly,
 - bijective,
 - an approximation to the discretized rotation.

- **2** Discrete rotation by hinge angles is:
 - calculated exactly,

- Quasi-shear rotation is:
 - calculated exactly,
 - bijective,
 - an approximation to the discretized rotation.

- **2** Discrete rotation by hinge angles is:
 - calculated exactly,
 - equal to the discretized rotation,

- Quasi-shear rotation is:
 - calculated exactly,
 - bijective,
 - an approximation to the discretized rotation.

- 2 Discrete rotation by hinge angles is:
 - calculated exactly,
 - equal to the discretized rotation,
 - incremental.

Shear rotation

Decomposition of a rotation into three shears

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & -\tan\frac{\theta}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \sin\theta & 1 \end{pmatrix} \begin{pmatrix} 1 & -\tan\frac{\theta}{2} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -\frac{\alpha'}{\beta'} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{\alpha}{\omega} & 1 \end{pmatrix} \begin{pmatrix} 1 & -\frac{\alpha'}{\beta'} \\ 0 & 1 \end{pmatrix}$$

where $\omega > 0$ is a real value, $\alpha = \omega \sin \theta$, $\alpha' = \omega \sin \frac{\theta}{2}$ and $\beta' = \omega \cos \frac{\theta}{2}$.

Shear rotation

Decomposition of a rotation into three shears

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \, = \, \begin{pmatrix} 1 & -\tan\frac{\theta}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \sin\theta & 1 \end{pmatrix} \begin{pmatrix} 1 & -\tan\frac{\theta}{2} \\ 0 & 1 \end{pmatrix}$$

$$= \, \begin{pmatrix} 1 & -\frac{\alpha'}{\beta'} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{\alpha}{\omega} & 1 \end{pmatrix} \begin{pmatrix} 1 & -\frac{\alpha'}{\beta'} \\ 0 & 1 \end{pmatrix}$$

where $\omega > 0$ is a real value, $\alpha = \omega \sin \theta$, $\alpha' = \omega \sin \frac{\theta}{2}$ and $\beta' = \omega \cos \frac{\theta}{2}$.

Horizontal shear:

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{cc} 1 & m \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right)$$

Shear rotation

Decomposition of a rotation into three shears

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} 1 & -\tan\frac{\theta}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \sin\theta & 1 \end{pmatrix} \begin{pmatrix} 1 & -\tan\frac{\theta}{2} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -\frac{\alpha'}{\beta'} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{\alpha}{\omega} & 1 \end{pmatrix} \begin{pmatrix} 1 & -\frac{\alpha'}{\beta'} \\ 0 & 1 \end{pmatrix}$$

where $\omega > 0$ is a real value, $\alpha = \omega \sin \theta$, $\alpha' = \omega \sin \frac{\theta}{2}$ and $\beta' = \omega \cos \frac{\theta}{2}$.

Horizontal shear:

$$\left(\begin{array}{c} x'\\ y' \end{array}\right) = \left(\begin{array}{cc} 1 & m\\ 0 & 1 \end{array}\right) \left(\begin{array}{c} x\\ y \end{array}\right)$$

Vertical shear:

$$\left(\begin{array}{c} x'\\ y' \end{array}\right) = \left(\begin{array}{cc} 1 & 0\\ m & 1 \end{array}\right) \left(\begin{array}{c} x\\ y \end{array}\right)$$

Quasi-shear

Definition (Andres, 1996)

For $(x, y), (x', y') \in \mathbb{Z}^2$, the horizontal quasi-shear HQS(a, b) is defined by

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + \lfloor \frac{a}{b}y + \frac{1}{2} \rfloor \\ y \end{pmatrix}$$

and the vertical quasi-shear VQS(a, b) is defined by

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y + \lfloor \frac{a}{b}x + \frac{1}{2} \rfloor \end{pmatrix}$$

where $a, b \in \mathbb{Z}$, b > 0.

Quasi-shear rotation

Definition (Andres, 1996)

The quasi-shear rotation of angle θ is defined by

$$HQS(-a',b') \circ VQS(a,w) \circ HQS(-a',b')$$

where w is a chosen integer value and

$$a = \lfloor w \sin \theta \rfloor,$$

$$a' = \lfloor w \sin \frac{\theta}{2} \rfloor,$$

$$b' = \lfloor w \cos \frac{\theta}{2} \rfloor.$$

Remark: for example $w = 2^{15}$ is used for an image of size 2048×2048 .

Advantages and disadvantages of quasi-shear rotation

Advantages

- memory saving (not necessary to store the original image),
- parallel computing (only shift).

Disadvantages

■ large approximation errors around $\theta = \pi$.

(Andres, 1996)

Hinge angles

Definition (Nouvel, 2006)

An angle α is a hinge angle for a discrete point $(p,q) \in \mathbb{Z}^2$ if the result of its rotation by α is a point on the half-grid.

Property (Nouvel, 2006; Thibault, 2009)

Property (Nouvel, 2006; Thibault, 2009)

■ The hinge angles are dense in \mathbb{R} .

Property (Nouvel, 2006; Thibault, 2009)

- The hinge angles are dense in \mathbb{R} .
- Each hinge angle α is represented by a triplet of integer numbers (p, q, k) with the uniqueness such that

$$\cos \alpha = \frac{p\lambda + q(k + \frac{1}{2})}{p^2 + q^2},$$

$$\sin \alpha = \frac{p(k + \frac{1}{2}) - q\lambda}{p^2 + q^2},$$

where
$$\lambda = \sqrt{p^2 + q^2 - (k + \frac{1}{2})^2}$$
 and $k < \sqrt{p^2 + q^2}$.

Property (Nouvel, 2006; Thibault, 2009)

- The hinge angles are dense in \mathbb{R} .
- Each hinge angle α is represented by a triplet of integer numbers (p, q, k) with the uniqueness such that

$$\cos \alpha = \frac{p\lambda + q(k + \frac{1}{2})}{p^2 + q^2},$$

$$\sin \alpha = \frac{p(k + \frac{1}{2}) - q\lambda}{p^2 + q^2},$$

where
$$\lambda = \sqrt{p^2 + q^2 - (k + \frac{1}{2})^2}$$
 and $k < \sqrt{p^2 + q^2}$.

■ The comparison between two hinge angles can be made in constant time by using only integers.

Property (Nouvel, 2006; Thibault, 2009)

- The hinge angles are dense in \mathbb{R} .
- Each hinge angle α is represented by a triplet of integer numbers (p, q, k) with the uniqueness such that

$$\cos \alpha = \frac{p\lambda + q(k + \frac{1}{2})}{p^2 + q^2},$$

$$\sin \alpha = \frac{p(k + \frac{1}{2}) - q\lambda}{p^2 + q^2},$$

where
$$\lambda = \sqrt{p^2 + q^2 - (k + \frac{1}{2})^2}$$
 and $k < \sqrt{p^2 + q^2}$.

- The comparison between two hinge angles can be made in constant time by using only integers.
- For an image of size $n \times n$, we have $8n^3$ hinge angles.

Algorithm (Thibault, 2009)

Input: an image A

Output: all the possible rotations of A

Algorithm (Thibault, 2009)

Input: an image A

Output: all the possible rotations of *A*

• for each point (p, q) of A, calculate its hinge angles $\alpha(p, q, k)$ for all k, and store them in a sorted list $T_{(p,q)}$;

Algorithm (Thibault, 2009)

Input: an image A

Output: all the possible rotations of A

- for each point (p, q) of A, calculate its hinge angles $\alpha(p, q, k)$ for all k, and store them in a sorted list $T_{(p,q)}$;
- fusion all the lists $T_{(p,q)}$ into a sorted list T;

Algorithm (Thibault, 2009)

Input: an image A

Output: all the possible rotations of A

- for each point (p, q) of A, calculate its hinge angles $\alpha(p, q, k)$ for all k, and store them in a sorted list $T_{(p,q)}$;
- fusion all the lists $T_{(p,q)}$ into a sorted list T;
- for each angle $\alpha(p,q,k)$ in T, move the point whose original coordinate is (p,q) from the current pixel $(k,\lfloor\lambda+\frac{1}{2}\rfloor)$ to the adjacent pixel $(k+1,\lfloor\lambda+\frac{1}{2}\rfloor)$.

Algorithm (Thibault, 2009)

Input: an image A

Output: all the possible rotations of A

- **for** each point (p, q) of A, calculate its hinge angles $\alpha(p, q, k)$ for all k, and store them in a sorted list $T_{(p,q)}$;
- fusion all the lists $T_{(p,q)}$ into a sorted list T;
- for each angle $\alpha(p,q,k)$ in T, move the point whose original coordinate is (p,q) from the current pixel $(k,\lfloor\lambda+\frac{1}{2}\rfloor)$ to the adjacent pixel $(k+1,\lfloor\lambda+\frac{1}{2}\rfloor)$.

The complexity is $O(n^3)$ for an image of size $n \times n$.

Algorithm (Thibault, 2009)

Input: an image A

Output: all the possible rotations of A

- for each point (p, q) of A, calculate its hinge angles $\alpha(p, q, k)$ for all k, and store them in a sorted list $T_{(p,q)}$;
- fusion all the lists $T_{(p,q)}$ into a sorted list T;
- for each angle $\alpha(p,q,k)$ in T, move the point whose original coordinate is (p,q) from the current pixel $(k,\lfloor\lambda+\frac{1}{2}\rfloor)$ to the adjacent pixel $(k+1,\lfloor\lambda+\frac{1}{2}\rfloor)$.

The complexity is $O(n^3)$ for an image of size $n \times n$.

Practically, this complexity is not too large to generate all the rotated images.

Definition (2D Euclidean affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{R}^2$ to a point $(x', y') \in \mathbb{R}^2$ is defined by

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} e \\ f \end{array}\right)$$

where $a, b, c, d, e, f \in \mathbb{R}$.

Definition (2D discretized affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{Z}^2$ to a point $(x', y') \in \mathbb{Z}^2$ is defined by

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \lfloor ax + by + e \rfloor \\ \lfloor cx + dy + f \rfloor \end{pmatrix}$$

where $a, b, c, d, e, f \in \mathbb{R}$.

Definition (2D discretized affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{Z}^2$ to a point $(x', y') \in \mathbb{Z}^2$ is defined by

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \lfloor ax + by + e \rfloor \\ \lfloor cx + dy + f \rfloor \end{pmatrix}$$

where $a, b, c, d, e, f \in \mathbb{R}$.

In general, it is **not**

bijective,

Definition (2D discretized affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{Z}^2$ to a point $(x', y') \in \mathbb{Z}^2$ is defined by

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \lfloor ax + by + e \rfloor \\ \lfloor cx + dy + f \rfloor \end{pmatrix}$$

where $a, b, c, d, e, f \in \mathbb{R}$.

In general, it is **not**

- bijective,
- transitive,

Definition (2D discretized affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{Z}^2$ to a point $(x', y') \in \mathbb{Z}^2$ is defined by

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \lfloor ax + by + e \rfloor \\ \lfloor cx + dy + f \rfloor \end{pmatrix}$$

where $a, b, c, d, e, f \in \mathbb{R}$.

In general, it is not

- bijective,
- transitive,
- calculated exactly,

Definition (2D discretized affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{Z}^2$ to a point $(x', y') \in \mathbb{Z}^2$ is defined by

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \lfloor ax + by + e \rfloor \\ \lfloor cx + dy + f \rfloor \end{pmatrix}$$

where $a, b, c, d, e, f \in \mathbb{R}$.

In general, it is not

- bijective,
- transitive,
- calculated exactly,
- geometry,

Definition (2D discretized affine transformation)

An affine transformation taking a point $(x, y) \in \mathbb{Z}^2$ to a point $(x', y') \in \mathbb{Z}^2$ is defined by

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \lfloor ax + by + e \rfloor \\ \lfloor cx + dy + f \rfloor \end{pmatrix}$$

where $a, b, c, d, e, f \in \mathbb{R}$.

In general, it is not

- bijective,
- transitive,
- calculated exactly,
- geometry,
- topology.

1 Quasi-affine transformation is:

- **1** Quasi-affine transformation is:
 - a generalization of the quasi-shear rotation,

- **1** Quasi-affine transformation is:
 - a generalization of the quasi-shear rotation,
 - calculated exactly,

- 1 Quasi-affine transformation is:
 - a generalization of the quasi-shear rotation,
 - calculated exactly,
 - equal to the discretized affine transformation,

- 1 Quasi-affine transformation is:
 - a generalization of the quasi-shear rotation,
 - calculated exactly,
 - equal to the discretized affine transformation,
 - efficiently computed.

- Quasi-affine transformation is:
 - a generalization of the quasi-shear rotation,
 - calculated exactly,
 - equal to the discretized affine transformation,
 - efficiently computed.

- Combinatorial affine transformation is:
 - a generalization of the discrete rotation by hinge angles,

- 1 Quasi-affine transformation is:
 - a generalization of the quasi-shear rotation,
 - calculated exactly,
 - equal to the discretized affine transformation,
 - efficiently computed.

- Combinatorial affine transformation is:
 - a generalization of the discrete rotation by hinge angles,
 - calculated exactly,

Quasi-affine transformation is:

- a generalization of the quasi-shear rotation,
- calculated exactly,
- equal to the discretized affine transformation,
- efficiently computed.

- a generalization of the discrete rotation by hinge angles,
- calculated exactly,
- equal to the discretized affine transformation,

1 Quasi-affine transformation is:

- a generalization of the quasi-shear rotation,
- calculated exactly,
- equal to the discretized affine transformation,
- efficiently computed.

- a generalization of the discrete rotation by hinge angles,
- calculated exactly,
- equal to the discretized affine transformation,
- incremental.

Quasi-affine transformation

Definition (Jacob, 1993)

A quasi-affine transformation taking a point $(x, y) \in \mathbb{Z}^2$ to a point $(x', y') \in \mathbb{Z}^2$ is defined by

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{c} \left\lfloor \frac{ax + by + e}{\omega} \right\rfloor \\ \left\lfloor \frac{cx + dy + f}{\omega} \right\rfloor \end{array}\right)$$

where $a, b, c, d, e, f \in \mathbb{Z}$, $\omega \in \mathbb{N}^+$.

This is equivalent to the intersection of two arithmetic lines for a given point $(x', y') \in \mathbb{Z}^2$:

$$\omega x' \le ax + by + e < \omega(x' + 1),$$

 $\omega y' \le cx + dy + y < \omega(y' + 1).$

Tiles and their periodicity

Definition (Tile)

Let f be a quasi-affine transformation. For a point $\mathbf{y} \in \mathbb{Z}^2$, the **tile** of order 1 of \mathbf{y} is defined by

$$P_{\mathbf{y}} = \{\mathbf{x} \in \mathbb{Z}^2 : f(\mathbf{x}) = \mathbf{y}\}.$$

Theory

The set of quasi-affine transformation tiles is periodic.

(Coeurjolly et al., 2009)

Tile construction and quasi-affine transformation

By using Hermite normal form. efficient tile construction can be designed.

Fig. 3. Illustration in dimension 2 of the QAT algorithm when f is contracting (a) and dilating (b). In both cases, we use the canonical tiles contained in the super-tile to speed-up the transformation.

(Coeurjolly et al., 2009)

Quasi-affine transformation

- If f is contracting, we give to each pixel \mathbf{y} of image B the average color of the tile $P_{\mathbf{v}}$ in image A.
- If f is dilating, we give the color of each pixel \mathbf{y} of image A to each pixel of $P_{\mathbf{V}}$ in image B (replace f by f^{-1}).

Given a discrete point $(x, y) \in \mathbb{Z}^2$, for an affine transformation:

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{cc} a & b\\ c & d\end{array}\right) \left(\begin{array}{c} x\\ y\end{array}\right) + \left(\begin{array}{c} e\\ f\end{array}\right),$$

the critical cases are:

$$x'=k_x+rac{1}{2}=ax+by+e \quad ext{where} \quad k_x\in\mathbb{Z}, \ y'=k_y+rac{1}{2}=cx+dy+f \quad ext{where} \quad k_y\in\mathbb{Z}.$$

Dual space of affine transformation

$$k_x + \frac{1}{2} = ax + by + e$$
 for $k_x, x, y \in \mathbb{Z}$, $k_y + \frac{1}{2} = cx + dy + f$ for $k_y, x, y \in \mathbb{Z}$.

Dual space of affine transformation

$$k_x + \frac{1}{2} = ax + by + e$$
 for $k_x, x, y \in \mathbb{Z}$, $k_y + \frac{1}{2} = cx + dy + f$ for $k_y, x, y \in \mathbb{Z}$.

Remark

For an image of size $n \times n$, each dual space contains n^3 planes.

Each dual space is discretized by n^3 planes:

$$k_x + \frac{1}{2} = ax + by + e$$
 for $k_x, x, y \in \mathbb{Z}$, $k_y + \frac{1}{2} = cx + dy + f$ for $k_y, x, y \in \mathbb{Z}$.

Each dual space is discretized by n^3 planes:

$$k_x + \frac{1}{2} = ax + by + e$$
 for $k_x, x, y \in \mathbb{Z}$, $k_y + \frac{1}{2} = cx + dy + f$ for $k_y, x, y \in \mathbb{Z}$.

Property (Hundt et al., 2007)

■ For an image of size $n \times n$, each dual space is divided in $O(n^9)$, i.e., the number of discrete transformations is $O(n^{18})$.

Each dual space is discretized by n^3 planes:

$$k_x + \frac{1}{2} = ax + by + e$$
 for $k_x, x, y \in \mathbb{Z}$, $k_y + \frac{1}{2} = cx + dy + f$ for $k_y, x, y \in \mathbb{Z}$.

Property (Hundt et al., 2007)

- For an image of size $n \times n$, each dual space is divided in $O(n^9)$, i.e., the number of discrete transformations is $O(n^{18})$.
- All the calculations are made by using integers.

Each dual space is discretized by n^3 planes:

$$k_x + \frac{1}{2} = ax + by + e$$
 for $k_x, x, y \in \mathbb{Z}$, $k_y + \frac{1}{2} = cx + dy + f$ for $k_y, x, y \in \mathbb{Z}$.

Property (Hundt et al., 2007)

- For an image of size $n \times n$, each dual space is divided in $O(n^9)$, i.e., the number of discrete transformations is $O(n^{18})$.
- All the calculations are made by using integers.
- The discrete transformation corresponds to the discretized transformation.

Combinatorial image matching

For a 2D digital image of size $n \times n$, the numbers of the generated images under different transformations are as follow.

Transformation	complexity
Rotation (Amir, et al., 2003)	$O(n^3)$
Scaling (Amir, et al., 2003)	$O(n^3)$
Rotation and scaling (Hundt, Liskiewicz, 2009)	$O(n^6)$
Rigid transformation (Ngo, et al., 2011)	$O(n^9)$
Linear transformation (Hundt, Liskiewicz, 2008)	$O(n^{12})$
Affine transformation (Hundt, 2007)	$O(n^{18})$
Projective transformation (Hundt, Liskiewicz, 2008)	$O(n^{24})$

References

- R. Klette and A. Rosenfeld.
 "Transformations," Chapter 14 in "Digital geometry: geometric methods for digital picture analysis," Morgan Kaufmann, 2004.
- E. Andres et M.-A. Jacob-Da Col.
 "Transformations affines discrètes," Chapitre 7 dans "Géométrie discrète et images numériques," Hermès, 2007.
- B. Nouvel.
 "Rotations discrètes et automates cellulaires," Thèse, ENS de Lyon, 2006.
- Y. Thibault.
 "Rotations in 2D and 3D discrete spaces," Thèse, Université Paris-Est, 2010.