Basic Concepts

A hierarchy of partitions is a chain of increasing partitions of some finite set E. $H = \{\pi_i, 0 \leq i \leq n | i \leq k \leq n \Rightarrow \pi_i \leq \pi_k\}$.

And each node or partial partition in the hierarchy is given an energy $\omega : \pi(S) \rightarrow \mathbb{R}^+$.

Partition versus cuts:

Number of possible cuts in the hierarchy increases more than exponentially with number of levels.

Theorem: When the energy is non-increasing and singular, then the temporary optimum at node S is either S itself or the union of the optimal cuts of the sons of S [3].

This can be calculated by a bottom up dynamic program, that calculates the optimum at each partial partition S.

Problems

- Given a hierarchy H and ground truth partition G find the partition in H closest to $H \rightarrow G$
- Closest from $G \rightarrow H$
- Compare any hierarchy H with multiple ground truth partitions G_i of image.
- Compare any two hierarchies H_1, H_2, with respect to a common partition G.

Partitions in the hierarchy:

![Input image and Ground truths](image)

Local half Hausdorff measures: Ground truth energies

Hausdorff distance: Smallest disc dilation of X that contains Y and of X to contain Y

$$d_H(X, Y) = \max \{\sup_{x \in X} \inf_{y \in Y} d(x, y), \sup_{y \in Y} \inf_{x \in X} d(x, y)\}$$

Problems: Global measure, large variations when object are asymmetric w.r.t. each other.

Different proximities:

- $H \rightarrow G, G \rightarrow H, H \rightarrow G_i, H_i \rightarrow G$

Optimal Cuts and composition laws

Composition law: Supremum for ω_G and θ_G, Infimum for $\omega_G + \theta_G$

Different proximities:

- $H \rightarrow G, G \rightarrow H, H \rightarrow G_i, H_i \rightarrow G$

Optimal cuts:

![Optimal cuts](image)

Global Similarity measures to integrate the proximity between a sequence of partitions and a ground truth.

$$P = \sum_{i=0}^{n} \frac{1}{N} \int_{\omega_i \in \omega(G)} (1 - g(x)) S_i(x) dx$$

$$R = \sum_{i=0}^{n} \frac{1}{N} \int_{\omega_i \in \omega(G) + \theta(G)} (1 - g(x)) S_i(x) dx$$

References:

[5] Theorem: When the energy is non-increasing and singular, then the temporary optimum at node S is either S itself or the union of the optimal cuts of the sons of S [3].

This can be calculated by a bottom up dynamic program, that calculates the optimum at each partial partition S.

Ground truth energies for hierarchies of segmentations

B. Ravi Kiran, Jean Serra

kiran@esiee.fr, j.serra@esiee.fr

http://www.esiee.fr/ kiranr/HierarchyEvalGT.html