
Distributed control of a car suspension system

Mohamed El Mongi Ben Gaid, Arben Çela, Rémy Kocik

COSI - ESIEE - Cité Descartes - BP 99 - 2 Bd Blaise Pascal - F93162 Noisy-Le-Grand Cedex
{bengaidm,celaa,r.kocik}@esiee.fr

ABSTRACT

Active suspension control system are used in today cars because of their ability to manage the
compromise between ride comfort and vehicle road-handling. They constitute a typical example
of distributed control systems. In this paper, the ride controller part of an active suspension sys-
tem is presented and evaluated, taking into account its distributed architecture. The simulations
are realized with the Matlab/Simulink toolbox TrueTime, which allows the simulation of the
controlled system, integrating simple models of its implementation (task execution, processor
scheduling, network transmission...). We show, through a simulation example, how implemen-
tation related parameters can have a considerable impact on the robustness of the controlled
system.

KEYWORDS

Active suspension control, simulation, network scheduling.

1 INTRODUCTION

Distributed embedded control architectures have become the first source of innovation and per-
formance improvements in today cars. Actually, these architectures represent more than a
quarter of the cost of manufacturing a car. As a consequence, a great effort has been made
by car manufactures to improve their cost effectiveness [1]. Employing such architectures in
control gives rise to new issues. In fact, using a distributed computer system in control is a
source of delays and jitter which can degrade the control performance. Employing oversized
computer architectures can solve these issues, but in the hard competition between the various
manufactures, reducing costs is a crucial challenge.

Active suspension control systems are a typical example of distributed embedded control
architectures. An active suspension consists of a spring, a shock absorber and a hydraulic
actuator at each corner of the vehicle. Its role is to improve both driving comfort and road-
holding by appropriately transmitting and filtering all forces between the body of the vehicle
and the road. Controlling an active suspension system requires an amount of information which
can be provided by a set of sensors situated in different locations in the vehicle. This information
needs to be processed by one or more controllers in order to calculate the control forces that
should be actuated by the four hydraulic actuators. Sensors, controllers and actuators usually
communicate through a shared bus (the CAN is the most used one).

This paper describes a more realistic simulation of an active suspension system using the
MATLAB/Simulink-based simulator TrueTime [2, 3], which allows the simulation of distributed
real-time control systems, taking into account the effects of the execution of the control tasks
and the data transmission on the controlled system dynamics. We show with a simple example,
how the choice of parameters related to the implementation can have a considerable effect on
the robustness of the whole control system.



2 THE SUSPENSION CONTROL SYSTEM

The simulated model (figure 1) was adopted from [4]. It consists of a seven degree-of-freedom
system. In this model, the car body, or sprung mass, is free to heave, roll and pitch. In
order to obtain a linear model, roll and pitch angles are assumed to be small. The suspension
system connects the sprung mass to the four unsprung masses (front-left, front-right, rear-left
and rear-right wheels), which are free to bounce vertically with respect to the sprung mass.
The suspension system consists of a spring, a shock absorber and a hydraulic actuator at each
corner. The shock absorbers are modelled as linear viscous dampers, and the tires are modelled
as linear springs.

Figure 1. Model of the full vehicle

In order to describe this system, fourteen state variables need to be considered:
x1 = z : heave position of the sprung mass
x2 = ż : heave velocity of the sprung mass
x3 = ϕ : pitch angle
x4 = ϕ̇ : pitch angular velocity
x5 = θ : roll angle
x6 = θ̇ : roll angular velocity
x7 = zufl : front-left unsprung mass height
x8 = żufl : front-left unsprung mass velocity
x9 = zufr : front-right unsprung mass height
x10 = żufr : front-right unsprung mass velocity
x11 = zurl : rear-left unsprung mass height
x12 = żurl : rear-left unsprung mass velocity
x13 = zurr : rear-right unsprung mass height
x14 = żurr : rear-right unsprung mass velocity

Applying a force-balance analysis to the model in figure 1, the state space equations can be
derived from the equations of motion and are given by:

ẋ(t) = Ax(t) + Bu(t) + Ld(t) (1)

y(t) = Cx(t) (2)

where :
x(t) is the state vector (14 variables)



u(t) is the control vector : u(t) = [Ffl, Ffr, Frl, Frr]T

d(t) is the vector of road disturbance heights : d(t) = [zrfl, zrfr, zrrl, zrrr]T

y(t) is the output vector (7 variables) :
y(t) = [z, ϕ, θ, zsfl − zufl, zsfr − zufr, zsrl − zurl, zsrr − zurr]T

3 CONTROL DESIGN AND ARCHITECTURE

3.1 Active suspension control law

The control design for a vehicle’s active suspension aims to maximize driving comfort (as mea-
sured by sprung mass accelerations) and safety (as measured by tire load variations) under
packaging constraints (as measured by suspension deflections). However, comfort and safety are
two conflicting criteras [6]. We adopt the control design methodology of [5], who divides the
control design problem for a vehicle’s active suspension into two sub-problems:

• The design of the ride controller, whose role is to improve ride comfort by isolating the
sprung mass from road disturbances.

• The design of the attitude controller, responsible of maintaining load-levelling, perform-
ing convenient load distribution and controlling roll and pitch responses during vehicle
maneuvers.

In this paper, we focus on the ride controller part of the suspension controller. The used
ride controller is a linear quadratic regulator u = −Gx, the optimal gain matrix G is obtained
such that the following cost function :

J =
∫ ∞
0


12∑
i=0

wiy
2
i +

4∑
j=0

cju
2
j

 dt (3)

is minimized, where wi and cj are weighting factors and :

y1 : vertical acceleration of the sprung mass
y2 : pitch angular acceleration of the sprung mass
y3 : roll angular acceleration of the sprung mass
y4 : sum of the suspension deflections at the four corners
y5 : difference between the suspension deflections at the right- and left- hand sides
y6 : difference between the suspension deflections at the front and rear of the vehicle
y7 : difference between the suspension deflections at the diagonally opposite corners
y8 : sum of the velocities of the unsprung masses
y9 : difference between the velocities of the unsprung masses on the left- and right-hand sides
y10 : difference between the velocities of the unsprung masses at the front and rear of the vehicle
y11 : difference between the velocities of the unsprung masses at the diagonally opposite corners
y12 : wrap torque acting on the sprung mass

The state-space vector is obtained from the state observer :

˙̂x = Ax̂ + Bu + Ko(y − Cx̂) (4)

3.2 Simulated control architecture

Sensors and actuators are connected to computer nodes, according to their positioning in the
vehicle. If some sensors and/or actuators are close, they are connected to the same computer
node. The implementation architecture is described in figure 2 (left). It consists of 7 computer
nodes, that communicate through a CAN network. They are distributed in the following way:



Figure 2. Simulated architecture. Left : schematic view - Right : implementation in TrueTime

• 1 computer node is responsible of the calculations of the control law (Node 1). Mes-
sages sent from sensors to the controller node are stored in a shared data structure : the
measurements vector. Each time the controller node receives a message from a sensor, it
throws an interruption which updates the current measurements vector. The control task
executed by the controller node is periodic.

• 2 computer nodes are connected to the sensors located in the center of the vehicle (Nodes
2 and 3). They periodically read the values of heave, roll and pitch position and send
them to the controller node.

• 4 computer nodes are placed at each corner (Nodes 4 to 7). They are connected to local
sensors and actuators. Each node periodically reads the sensed values (local suspension
deflection position), sends them to the controller using its network interface. Each node
listens to the network, each time it receives a message from the controller, an interruption
is generated and the associated actuator is updated.

The figure 2 (right) displays the implementation of this control architecture in the simulator
TrueTime. This implementation uses the Simulink-based blocks : TrueTime Kernel and
TrueTime network. The TrueTime Kernel is a Simulink block that simulates a computer
integrating a real-time operating system and executing user defined tasks. TrueTime Network
is a Simulink block than can be used in combination with a TrueTime Kernel block. The
TrueTime Network block includes simple models of the most used networks. These models
take into account both the medium access protocol (CSMA/CD, CSMA/AMP, TDMA...) and
the packet transmission (only packet level simulation is supported).

4 SIMULATION RESULTS

In this section we first evaluate the performance of the designed active suspension and compare it
to the passive suspension. Second we compare the traditional simulations with Matlab/Simulink
(which assume a constant sampling period, no delays or jitter) to the simulations with True-
Time. The suspension system is evaluated by subjecting the right side of the vehicle to a
“chunck hole” discrete road disturbance [5]. The “chunck hole” road disturbance, the heave, roll
and pitch acceleration responses of the sprung mass and the network schedule are illustrated in
figure 3, for a vehicle speed of 40 km/h.

The dash-dot blue line correspond to the passive suspension, the solid green line to the active
suspension assuming an ideal implementation (like the classical simulations in Matlab/Simulink)



Figure 3. “Chunck hole” road disturbance, heave, roll and pitch accelerations of the sprung mass and
network schedule. In the network schedule plot, a low signal means idle, a medium signal means waiting
and a high signal means sending

and the dotted red line to the TrueTime simulation of the active suspension system. In the
TrueTime simulations we assume that the control task takes 2 ms to calculate the control
output, that the network uses the CSMA/CA arbitration, and have a bandwidth of 150000
bits/s and finally that the priorities of the messages are the same as the sending node (the node
1 has the greatest priority and the node 9 the smallest one).

The simulation results show that the active suspension induces an important improvement
of the ride performance compared to the passive suspension (smaller and better damped accel-
erations). The simulation using an ideal implementation and those using the TrueTime model
give approximately the same results. The delays due to the implementation (task execution,
processor scheduling, network transmission and network scheduling) have a negligible impact on
the control performance.

In the second simulation, we compare two TrueTime implementations of the active suspen-
sion control system under network overload conditions (a network bandwidth of 110000 bits/s).
The two implementations (Configuration 1 et Configuration 2) are identical, except that in
Configuration 2, the messages sent by the controller node have the smallest priority whereas
in Configuration 1, theses messages have the greatest priority. The simulation results are
illustrated in figure 4. It can be seen that the suspension system of Configuration 1 remains
stable, with a degradation of the control performance whereas the suspension system of Con-
figuration 2 becomes instable. In configuration 1, the network overload causes the loss of the
informations provided by the rear-right sensor and induces important delays in the informations
provided by the rear-left sensor. In configuration 2, all sensor data are transmitted to the
controller node within 5 ms (which is the sampling period of the system), but the control values
sent to the actuatos suffer from important and increasing delays which cause the instability of
the controlled system. The delays are increasing in this case because each time the controller
tries to send a message, the previous message is not completely sent (as shown in figure 4). These
results demonstrate the importance of the choice of the implementation parameters (scheduling
policy, priorities...) when network resources are scarce. In fact, when the network is overloaded,
it is preferable to loose a sensor data than the control values that should be actuated.



Figure 4. Heave acceleration response and network schedule for the configurations 1 and 2. In the left
plot, the dash-dot blue line corresponds to the ideal implementation, the solid green line to the heave
response of Configuration 1 and the dotted red line to the heave response of Configuration 2

5 CONCLUSION

A distributed simulation of an active suspension system, incorporating models of the imple-
menting architecture was presented. The simulations showed that the choice implementation
parameters, especially those related to scheduling have an important impact on the robustness
of the application in overload conditions. Those observations are the starting point of our future
work, which aims at developing adaptive network scheduling algorithms, which take into account
the states of both the network and the controlled system, to achieve optimal use of the available
resources, especially in overloaded conditions.

REFERENCES

[1] ARTIST (2003). Hard Real-Time Development Environments. Report IST-2001-34820, In-
formation Society Technologies.

[2] D. Henriksson, A. Cervin and K. E. Årzén (2003). TrueTime: Real-time Control System
Simulation with MATLAB/Simulink. In Proceedings of the Nordic MATLAB Conference.
Copenhagen, Denmark.

[3] D. Henriksson and A. Cervin (2003). TrueTime 1.13—Reference Manual. Technical report,
Department of Automatic Control, Lund Institute of Technology.

[4] S. Ikenaga, F. L. Lewis, J. Campos and L. Davis (2000). Active Suspension Control of
Ground Vehicle based on a Full-Vehicle Model. In Proceedings of the American Control
Conference (ACC). Chicago, USA.

[5] R. M Chalasani (1986). Ride performance potential of active suspension systems part
II: Comprehensive analysis based on a full-car model. In Proceedings of the Symposium
on Simulation and Control of Ground Vehicles and Transportation Systems, ASME AMD.
Anaheim, CA.

[6] U. Rettig and O. von Stryk (2001). Numerical Optimal Control Strategies for Semi-Active
Suspension with Electrorheological Fluid Dampers. In Proceedings of the workshop: Fast so-
lution of discretized optimization problems. International Series on Numerical Mathematics
(Birkhuser). 221–241.


