
Real-time scheduling for systems with
precedence, periodicity and latency constraints

Liliana Cucu
�
, Rémy Kocik

�
, Yves Sorel

�
(1) INRIA Rocquencourt,

BP 105 - 78153 Le Chesnay Cedex, France
liliana.cucu@inria.fr, yves.sorel@inria.fr

(2) ESIEE,
Cité Descartes - BP 99 - 2, Bd Blaise Pascal

93162 Noisy-le-Grand Cedex, France
kocikr@esiee.fr

Abstract

First we present the main results concerning, in the one hand systems with periodicity
constraints and deadlines, and in the other hand systems with precedence constraints and
deadlines, in both cases for one computing resource. Then, we give a model in order to
state clearly the problem for scheduling systems with precedence, periodicity and latency
constraints. In order to solve this problem we give a nonpreemptive, off-line schedul-
ing algorithm which uses in turn an algorithm of latency marking. We demonstrate the
optimality of the scheduling algorithm, and after proving the equivalence of the notions
of latency constraint and deadline, we extend this latter algorithm for scheduling real-
time systems with precedence, periodicity constraints and deadlines for one computing
resource.

Keywords: algorithm, scheduling, optimality, real-time, periodicity, latency, precedence,
deadline.

1 Introduction
In scheduling theory of real-time systems, we have two main interests: periodic systems
and systems with precedence constraints. Even if both fields are separately rich in results

in the literature, to our best knowledge there are few results where both aspects are treated
together. The purpose of this paper is to propose, in the one hand a model which deals
with both aspects, and in the other hand to solve the problems of finding a schedule (if
there is one) which satisfies the periodicity, latency and the precedence constraints of the
system, in the case of one processor. The paper starts with notations used to present the
main results for periodic systems and for systems with precedence constraints. The next
section presents the model used to describe the problem to be solved. The next section
presents the algorithm for this problem with the demonstration of its optimality. The paper
ends with a conclusion and further research.

2 Notations and results
In order to clearly distinguish the specification level and its associated model we are
mainly interested in, from the implementation level, we use the term operation instead
of the commonly used “task” too closely related to the implementation level. For the
same reason we use the term operator instead of “processor” or “machine”.

The results often found in the literature are given according to three parameters:
[� �������

] [1], where � gives the number of operators and specifies if they are of the
same type (homogeneous machine) or not,

�
the operation characteristics (period, dead-

line, computation time, precedence constraints) and
�

the optimality criterion (a rela-
tion that allows us to compare possible solutions of the problem). For an operation, we
may specify a computation time 	 , a period
 , a deadline � (defined from the start ei-
ther of the period, either of the schedule), a release time � , a start time
 and a jitter���������
 ������� � �����������
 ��� � � �!�#"%$'&)(

with *,+�	-+��.+/
 and �,+0
 (see figure 1).

r

C

T T
i

i

r
i+1

s i

C

i+1
sD i+1D

Figure 1: Basic real-time model

For the problem with periodic operations and without precedence constraint [1/ � �
 /], Liu and Layland give the RMS algorithm [2], improved by Lehoczky and Sha (intro-
duction of “blocking”) [3] and by Audsley (introduction of jitter by holistic analysis,[4])
and the EDF algorithm for [1/ �.+/
 /].

The precedence constraints are given by a partial order on the execution of the opera-
tions (13254 means that B cannot start before A is executed) that may be represented by
a directed acyclic graph. The partial order associated to this graph defines a potential par-
allelism [5] on the set of operations. For example in figure 2, 4 and 	 may be executed

in parallel on different operators if we are in the case �0687 , whereas 1 and 4 must be
executed sequentially.

A

B

C

D

Figure 2: Precedence constraints graph

In the case of systems with precedence constraints where all the operations have the
same release time [1/ precedence/ minimize the maximum lateness], Lawler gives the
“first-to-last-rule” which is optimal [6, 7]. If the operations do not have the same re-
lease time we obtain a NP-hard problem [8], but if preemption is allowed the problem is
polynomial [9]. Also, for the problem [1/ precedence, D/] Blazewicz gives an polynomial
solution [10].

In the general case of systems for which all the operations may have precedence, la-
tency and also periodicity constraints, to our best knowledge, there is no result for the
problem with one operator.

3 The model and the problem to solve
Each operation may belong to a precedence constraint, i.e. belongs to a pair defining the
partial order, or/and each operation may have a periodicity constraint. Moreover, an op-
eration may be repeated leading to several instances of the same operation either spatially
without precedence constraint between consecutive repetitions, defining a local potential
parallelism, or temporally with precedence constraints between consecutive repetitions.
Actually, the real-time system interacts with the physical environment [11], therefore the
graph of precedence constraints is a pattern temporally infinitely repeated [5]. If one con-
sider only the pattern itself, according to its partial order the first operations are called
inputs and the last operations are called outputs. These operations correspond to respec-
tively sensors and actuators. For example in the pattern of figure 3, 1 is repeated tempo-
rally three times whereas 	 is repeated spatially two times, 1 �

is the input operation, and	 �
, 	:9 are the output operations. Actually, the infinite repetition of the pattern induces an

infinite repetition of all the operations.

In order to simplify this complex graph model, that we call not factorized graph, we
define a finite repetitive precedence constraint when finitely repeated (spatially or tem-
porally) operations are in relation of precedence constraint. This allows to represent in

repetition
i th (i+1)th
repetition

B B

A

A

A

C

C

A

A

A

C

C
1

2

3

 1

2

1

2

3

1

2

Figure 3: Not factorized graph

the model only one instance of each repeated operation with its number of repetitions,
and to describe synthetically with a function code the existing edges between two differ-
ent operations possibly belonging to different repetitions, or between the same operations
belonging to different consecutive repetitions. All these edges are intra-pattern. Due to
the infinite repetition of the pattern, two input operations or two output operations, be-
longing to two consecutive patterns, may be in relation of precedence that we call infinite
repetitive precedence constraint. It is usually the case when we have a unique sensor
for an input and/or an unique actuator for an output instead of an infinite number of sen-
sors and/or actuators. These edges are inter-pattern. The resulting graph is said factorized.

For two operations 1 and 4 repeated temporally or spatially, we have ;=<!>@?A1B4 : CD7 "FEG"AHIHJ"%K�LNMCD7 "OEG"AHIHJ"QP)L 2 C�* " 7 L
such as:

;=<!>@?A1B4 �R$%"TS@�U� VWYX 7 "
if an edge starts from the

$[Z�\
repetition of 1

and ends on the
S]Z�\

repetition of 4* "
otherwise

where
K

is the number of repetitions of 1 and
P

for 4 . It is obvious to demonstrate that
the number of the possible edges between all the repetitions of 1 and 4 is bounded byK_^`P

(we may have at most
P

edges from every 1).

For an operation temporally repeated
K

times, we have ;a<!>G?A1b1 : CD7 "OEG"AHIHJ"QKcLNM CD7 "FEG"AHIHJ"%K�L 2C�* " 7 L
such as: ;=<!>@?A1d1 �e$%"fSG�'�hg 7 "

for
S,�0$�i 7 and

$UjkK* "
otherwise

If there is no edge between successive repetitions of 1 , the function ;a<�>@?A1b1 is not
specified. When the function ;=<!>@?A1d1 is specified the number of the possible edges be-
tween successive repetitions of 1 is

K_� 7 , otherwise * .

For an input (resp. output) operation 1 which is temporally infinitely repeated, and
also finitely temporally repeated

K
times (inside the pattern), we have an edge l in the

factorized graph, corresponding to the infinite precedence constraint in the not factorized

graph. If the ;a<�>@?A1b1 has been defined for 1 then we have an edge between the last repe-
tition 1bm and the first repetition 1 �

belonging to the next pattern. If no ;a<�>@?A1b1 has been
defined, then we have an edge between 1 �

and the 1 �
belonging to the next pattern, for all

the repetitions 1 �
,
$U& CD7 "FEG"nHAHAHa"QK�L

.

A B

codeAA

codeAB
C

3 2

codeBC

o o
Figure 4: Factorized graph

It is obvious to demonstrate that a factorized graph contains cycles, if and only if, the
not factorized graph contains cycles.

From the not factorized graph presented in figure 3 we obtain the factorized graph
illustrated in figure 4 which has the following ;=<!>@? functions: ;=<!>@?A1B4 : CD7 "FEG"QpGLqMCD7 L 2 C�* " 7 L

with ;a<!>G?A1d4 (i,1)=1, r $s& CD7 "FEG"OpGL
, ;=<!>@?`4t	 : CD7 LuM CD7 "FEDL 2 C�* " 7 L

with ;a<�>@?`4t	 � 7 "%$T�
=1 r $v& CD7 "FE@L

and the function ;=<!>@?A1d1 given by the general defini-
tion of the function ;=<!>@? for an operation temporally repeated n times (in this case,

Ks�wp
).

The operations 1 and 	 have an edge l .

Remark 3.1 In the case where we have in the factorized graph two operations 1 and4 with the same number
K

of repetitions and the function ;=<!>@?A1B4 : CD7 "FEG"AHIHJ"%K�LxMCD7 "OEG"AHIHJ"QKcL 2 C�* " 7 L
such that;=<!>@?A1B4 �R$%"TS@�U� g 7 "

if
$��yS* "

otherwise

in order the simplify the model, the function ;=<!>@? will not be specified for this particu-
lar case of repetitive precedence constraint. Also, when the number of repetitions of an
operation is equal to 1, we do not mention it in the factorized graph.

Finally, in order to complete the model, we give the two types of the real-time con-
straints which we want to be satisfied by the system, namely the latency and the periodic-
ity.

Definition 3.1 for two different operations 1 and 4 belonging to the pattern infinitely
repeated, we say that the pair

� 1 " 4 �
has a latency constraint z when the operations have

to be scheduled such that
�{ i 	:{ �
`|}+wz .

Remark 3.2 we must have a directed path starting with 1 and ending with 4 if
� 1 " 4 �

has a latency constraint, because it only concerns operations which are in relation of
precedence constraint. We call 1 “first” in the latency constraint and 4 “last” in the
latency constraint. We denote by ~ the set of all the pairs of operations having a latency
constraint. An operation 1 may belong to several pairs of operations having different
latency constraints.

Definition 3.2 for two consecutive repetitions 1 �
and 1 �����

of the same operation 1 , we
say that 1 has a constraint of periodicity
�| if
`|G����� �
A|�� �
N| " r $�&�(

. We denote by1 �
the first repetition of 1 .

Remark 3.3 We assume that the periodic operations are scheduled strictly with their
exact periodicity constraints. Thus, it amounts to not allow any jitter. Also, we assume
that all the periodicity constraints are multiples of each other.

Without any loss of generality [12], we assume that all the operation characteristics,
i.e. the fixed computation time (exactly known), the periodicity and the latency con-
straints, are defined as multiples of a clock tick � (time is discrete). Afterwards the values
of the given characteristics are implicitly multiplied by � .

In the example presented in figure 3 we have 	�| ��E
, 	:{ � 7 and 	�� ��E

, and
the following real-time constraints to be satisfied: the periodicity constraints
�| ���

and
�{ � 7 � , the latency constraints: z � 1�9 " 	:9 ��� 7A* and z � 4 " 	 �%�����
. The periodicity

constraint of 1 can be defined because 1 has a finite repetitive precedence constraint be-
tween its three successive repetitions, and this precedence constraint is completed by the
infinitive repetitive precedence constraint. The periodicity constraint of 4 can be defined
only thanks to the infinite repetition of the pattern. The operation 	 can not have a period-
icity constraint because of the potential parallelism of 	 �

and 	�9 which does not impose
an order of execution between 	 �

and 	:9 each time the pattern is repeated. Then we can
not have the notion of consecutive repetitions necessary to define the periodicity of 	 .

The problem to be solved is the following: for the considered system modeled by
a graph with repetitive precedence constraints (repetitive graph), and with latency and
periodicity constraints, we must find a feasible schedule. That is to say, a schedule which
gives the start time for all the operations and which satisfies the real-time constraints for
the problem: [1/ repetitive graph/ periodicity and latency constraints].

4 Algorithm
This section is organized as follows: we present the algorithm for the problem [1/ repeti-
tive graph/ periodicity and latency constraints] and we show that it is optimal (if there is
a feasible schedule for the problem, the algorithm will find it). In order to solve the prob-
lem, we first give an algorithm of latency marking for the vertices of the pattern, and then
using these latency marks we give the scheduling algorithm which is a non-preemptive,
off-line algorithm. This latter algorithm is applied to the infinitely repeated pattern.

4.1 Algorithm of latency marking
We denote by � �8�f�'"O���

the directed acyclic graph of operations with repetitive prece-
dence constraints, where

�
is the set of vertices and

������M��
the set of edges, and

by � � 1 ��� C�4 &��
such that � a directed path starting with 1 and ending with 4 L

.

Given that some pairs of operations have a latency constraint, the goal of the algorithm
is to assign to each operation 1 a number. This number indicates if an operation 	 , be-
longing to a pair

� 4 " 	 �
with a latency constraint, will be executed after the execution of1 due to the existence of a directed path between 1 and 	 , and no directed path between1 and 4 . If for an operation, there are several operations satisfying this property, then

the number will be the smallest value of these latency constraints. We call this numberP_� � � � 1 �¡&q(£¢'¤ C�l L
(l is a natural number bigger than all the natural numbers). The

latency marks evolve during the algorithm of latency marking, which is applied to the
pattern.

Lemma 4.1 If a pair of operations
� 1 " 4 �

has a latency constraint z � 1 " 4 �
and if there

is an operation 	 with 1 & � � 	 �
, then
�{ i 	:{ �
A|¥+�z � 1 " 4 �

is satisfied r�
!� .

Proof If
� 1 " 4 �

has a latency constraint, then 4 & � � 1 �
and
�|�+
!{ . Because1 & � � 	 �

we have
!�h+¦
`| . Then we have
!��+5
A|§+¦
`{ which means that be-
cause 	 is already scheduled when 1 becomes schedulable, the start time of the operation4 is not affected by the start time of 	 . ¨
Algorithm

Initialization: If
� 1 " 4 �

has a latency constraint z � 1 " 4 �
then

P_� ��� � 4 ��� z � 1 " 4 �
and

P_� � � � 1 �©� l , otherwise
P_� ��� � 1 �y� P_� ��� � 4 �ª� l . Moreover, if 4 be-

longs to several pairs of operations having different latency constraints, then
P_� � � � 4 �U�P_$eK�« �­¬ {�®°¯A± C�z � 	 " 4 �FL

, and
P_� ��� � 1 ��� l . We denote by ² the working-set and let² � ~ .

Step 1: for
� 1 " 4 �b& ² and for each operation 	 &³�,´ C!1 " 4 L

, we have three possibili-
ties:
(a) if 1 & � � 	 �

, then according to Lemma 4.1,
P_� ��� � 	 �U�wP_� � � � 	 �

;
(b) if 1 �& � � 	 �

and 4 & � � 	 �
, then

P_� � � � 	 �U�0P_$eKµ�RP_� � � � 	 �F"QP_� ��� � 4 �%�
;

(c) if 1 �& � � 	 �
and 4 �& � � 	 �

, then
P_� � � � 	 �'�wP_� � � � 	 �

.
The pair

� 1 " 4 �
is removed from ² .

Step 2: if ² ¶�¸·
then goto step 1, otherwise the algorithm stops.

We apply the algorithm of latency marking to the pattern of the example depicted fig-
ure 4. At the beginning of the algorithm, we have the working-set ² � C � 4 " 	 �¹�F"`� 1d9 " 	:9 �OL .
The table 1 gives the values of the functions

P_� � � for each operation of the pattern. The
final values of the functions

P_� � � are given by the last line of this table. These are the
values that will be used by the scheduling algorithm.

4.2 Scheduling algorithm
The scheduling algorithm transforms the partial order associated to the graph in a (one
of the possible) total order satisfying the constraints. This algorithm is applied to the in-

P_� � � � 1 �%� P_� � � � 1d9 � P_� � � � 1bº � P_� � � � 4 � P_� ��� � 	 �%� P_� � � � 	:9 �
Initialization l l l l 9 10z � 4 " 	 �%� l l l l 9 10z � 1B9 " 	:9 � l l 10 10 9 10

Table 1: Results given by the algorithm of latency marking

finitely repeated pattern.

We denote by ² the working-set, by
!» the start time of the last operation that was
scheduled, by 	:» its computation time, and by ¼ the set of all the operations which have
a periodicity constraint. During the algorithm ² contains all the schedulable operations,
i.e. operations the predecessors of which are already scheduled. We note that between
two operations which schedulable in the same time there is no path. Implicitly, every time
an operation is scheduled
!» (resp. 	:») changes its value into the start time (resp. compu-
tation time) of this operation.

Algorithm

Initialization: ² � ¤ |N¯A½ and ¾�¿TÀeÁ « |�®JÂ­Ã C!1 L
and
A» � * " 	Ä» � * .

Step 1 (operation with latency constraints):
if �@1 & ² such that

P_� ��� � 1 � ¶� l then
`| �
A» i 	Ä» such that
P_� ��� � 1 �/�P_$eK {Å¯nÆÇC P_� � � � 4 �OL

, we remove it from ² , all the operations which became schedu-
lable are added to ² , and go to Step 5.

Step 2 (operation without periodicity and which are not first in a latency constraint):
if �@1 & ² such that there is no 4 &x�

with
� 1 " 4 ��& ~ and 1 �& ¼ , then
!| �
A» i 	Ä» ,

we remove it from ² , all the operations which became schedulable are added to ² , and
go to Step 1.

Step 3 (operation which are first in a latency constraint):
if �@1 & ² such that there is 4 &5�

with
� 1 " 4 �0& ~ , then
!| �
A» i 	Ä» withz � 1 " 4 �Ç�¦P_�]È « �­¬ É�®°¯n± and ��¯nÆ C�z � 	 " � �OL

, we remove it from ² , all the operations
which became schedulable are added to ² , and go to Step 5.

Step 4 (operation with periodicity for which each first repetition is not already scheduled):
we have
`| �
A» i 	Ä» such that
�| �0P_$[K ��¯=ÆqÊÌË and ��Í not already scheduled C!
�� L

. Go
to Step 6.

Step 5: if ¶Î�@1 & ² ÏÐ¼ with 1 �
already scheduled, then go to Step 1.

Step 6: we search an operation 1 & ² Ï ¼ for which its first repetition 1 �
is scheduled

and for which we have:
A|�� i
N| �
A» � 	Ä» �wP_$[K {G�Ñ¯nÆ}ÊÄË and {GÍ already scheduled C�
`{G� i
�{ �
A» � 	Ä» L
where 1 �

is the last repetition scheduled of 1 . If we find several operations 1 then the
system is not schedulable and the algorithm stops.

Step 7 (operation with latency constraints):
if �G	 & ² ´ C]C!1 L ÏªÒ L

such that
A» i 	Ä» i 	:�q+0
A|G� i
N| for the operation 1 found pre-
viously, then we have
�� �
A» i 	Ä» with:

P_� � � � 	 �Ì�¸P_$[K É�¯nÆ and �DÓ�ÔDÕaÖ C P_� � � � � �OLD"
the scheduled operation is removed from ² , all the operations which became schedulable
are added to ² , and go to Step 6.

Step 8 (operation with periodicity for which each first repetition is not already scheduled):
if �G	 & ² ÏÐ¼ with 	Ä× not scheduled and
`» i 	Ä» i 	:�ª+-
A|G� i
N| for the operation1 found previously, then we have
�� �
A» i 	Ä» with
Å� �wP_$[K É�¯nÆ)ÊÌË and � Ó ÔDÕ Ö C!
�É LD"
the scheduled operation is removed from ² , all the operations which became schedulable
are added to ² , and go to Step 6.

Step 9 (operation with periodicity):
we have
`| �
A» i 	Ä» such that
`|G����� �
A|�� i
�| , the scheduled operation is removed
from ² , all the operations which became schedulable are added to ² , and go to Step 6.

Remark 4.1 the scheduling algorithm never stops unless the periodicity constraints can
not be satisfied in the Step 6, i.e. in this case, the system is not schedulable.

We apply the scheduling algorithm to the example of the figure 4 for which we have¼ � C!1 " 4 L
. The beginning of the results are given in the table 2.

Lemma 4.2 The periodicity constraint is a particular case of a latency constraint. Con-
sequently, the periodicity constraint is a stronger constraint than the latency constraint.

Proof If 1 has a periodicity constraint we have
�|G����� �
A|�� �
N| " r $�&0(
. If the pair� 1 �f" 1 �������F" r $}&�(

has a latency constraint z , then
!|��Ø� � �
A|�� i 	Ä|G�����¥+Ùz . After
replacing z � 	Ä|��Ø� � by zµÚ , we have
A|��Ø� � �
A|��:+ÛzµÚ . Then we notice that the equality
expressing the periodicity constraint is included in the inequality expressing the latency
constraint. ¨
Remark 4.2 The latency constraint of the pair

� 1 �f" 1 �������
implies that 1 �����

may be exe-
cuted after the execution of 1 �

, anytime during the interval
�
`|�� i 	Ä|�� "
A|G� i 	Ä|G� i z �

. But,
if 1 has a periodicity constraint the start time of 1 �����

must be equal to
`|G� i
�| " r $U&)(
.

Remark 4.3 We denote four types of operations to be scheduled, during the algorithm,
as follows:
(� �

) operations 1 with
P_� � � � 1 � ¶� l ;

(�D9) operations 1 with
P_� � � � 1 ��� l and there is not 4 &��

with
� 1 " 4 �_& ~ and

²
`» 	Ä» Step used ActionC!1 �FL
0 0 Step 4
A| � � *C!1d9 L 0 2 Step 6 1 chosenC!1d9 L 0 2 Step 9
A1B9 �¸�C!1bº L 5 2 Step 6 1 chosenC!1bº L 5 2 Step 9
A|�Ü � 7`*C!1 �a" 4 L
10 2 Step 6 1 chosenC!1 �a" 4 L
10 2 Step 8
`{ � 7 EC!1 �a" 	 �F" 	:9 L 12 1 Step 6 1 chosenC!1 �a" 	 �F" 	:9 L 12 1 Step 7
`� � � 7 pC!1 �a" 	:9 L 13 2 Step 6 1 chosenC!1 �a" 	:9 L 13 2 Step 9
A| � � 7 �C!1d9 " 	:9 L 15 2 Step 6 1 chosenC!1d9 " 	:9 L 15 2 Step 7
`�]Ý � 7!ÞC!1d9 L 17 2 Step 6 1 chosenC!1d9 L 17 2 Step 9
A| Ý �¸E *C!1bº L 20 2 Step 6 1 chosenC!1bº L 20 2 Step 9
A|�Ü �¸E��C!1 �a" 4 L
25 2 Step 6 4 chosenC!1 �a" 4 L
25 2 Step 9
`{ �¸E ÞC!1 �a" 	 �F" 	:9 L 27 1 Step 6 1 chosen^`^`^

Table 2: Results given by the scheduling algorithm1 �& ¼ ;
(�]º) operations 1 with

P_� � � � 1 �£� l and �G4 &q�
with

� 1 " 4 �Ì& ~ ;
(��ß) operations 1 with

P_� � � � 1 �£� l and 1 & ¼ .
Note that the operations of type �@9 do not have any constraint, and they are scheduled
only if there is no more operation with constraints among the schedulable operations.

Theorem 4.1 For a system of operations with precedence and periodicity constraints and
without latency constraint, a schedule obtained according to the increasing order of the
periodicity constraints of the first instances of the schedulable operations, is feasible if
and only if it is feasible according to the decreasing order of the periodicity constraints
of the first instances of the schedulable operations.

Proof We demonstrate the equivalence by double implication. First, we demonstrate that
if the system is schedulable according to the increasing order of the periodicity constraints
of the first instances of the schedulable operations, then the system is, also, schedulable
according to the decreasing order of the periodicity constraints of the first instances of the
schedulable operations. We can demonstrate the implication for the two first instances of
the operations with the smallest values of the periodicity constraints and then by mathe-
matical induction the result can be generalized to all the first instances of the schedulable

operations. We denote by 1 and 4 the two operations with the smallest values of the
periodicity constraints and we suppose
Å|3+à
�{ . We have
`|�� �
A| � iw$
N| " r $ 6á7 ,
and similarly,
!{ â �
!{ � iyS
�{ " r S 6ã7 . Because the system is schedulable, we have
A|��d¶�
`{ â%r S}j3$

and 	Ä| i 	:{y+ä
N| . Moreover, because it is schedulable according to
the increasing order of the periodicity constraints of the first instances of the schedulable
operations, we have:
!{ � �
A| � i 	Ä|så g
`|G� �
`| � iª$
N|
!{�â �
A| � i 	Ä| iæS
�{
From the previous relations, we have 	�| iÐS
�{ä¶��S
N| and 	Ä| iÐS
�{/6 S
N| " r S¥&Ð(

.
We demonstrate by contradiction that we obtain also a feasible schedule if we schedule
the operations according to the decreasing order of the periodicity constraints of the first
instances of the schedulable operations. Indeed, in this case, we have:
A| � �
`{ � i 	:{qå g
A|G� �
`{ � i 	:{ iÐ$
N|
`{�â �
`{ � iæS
�{
Therefore, we assume that we do not obtain a feasible schedule, i.e.
�|�� �
`{ â " r S 6 $

.
We have also: 	:{ iÐ$
N| �©S
Å{S
�{æ6 S
N| � 	Ä|Ûç åè	Ä| i 	:{x6 �éSê��$T�
�| " r S 6 $
which is in contradiction with 	�| i 	:{/+Û
N| . The second part of the demonstration is
similar to the first one. ¨
Theorem 4.2 The scheduling algorithm 4.2 is optimal (if there is a feasible schedule, the
algorithm will find it).

Proof We consider three cases:

1. the system has only precedence and latency constraints. Then we schedule a system
that may have operations of types � �

, �D9 and ��º (Remark 4.3). At the beginning of
the algorithm we have two possibilities:

(a) there are operations of type � �
among the schedulable operations. It means

that along the algorithm only the Step 1 schedules the operations, and this, ac-
cording to the increasing order of their marks. We prove the optimality of this
Step 1 by contradiction. For this, we assume that the operations are scheduled
according to the decreasing order of their marks, i.e. for two operations 1 and4 if

P_� � � � 1 �Äj©P_� � � � 4 �
, then
!{ j
A| . We consider the latency constraintz �e��" 	 �

with 	 & � � 1 �
and z �e��" 	 �Ì�ëP_� � � � 1 �

(c.f. algorithm of latency
marking, Step 1, b)). Also we consider the latency constraint z �[ì:" � �

with� & � � 4 �
and z �eì�" � �'�wP_� ��� � 4 �

. Finally, we obtain
�É j
`� which is in
contradiction with the fact that z �[��" 	 �Äj z �eì�" � �

.

(b) there is no operation of type � �
among the schedulable operations. It means

that the schedule is obtained by using the Step 2 or the Step 3, until an opera-
tion of type � �

becomes schedulable. The Steps 2 and 3 schedule an operation1 of type �D9 before an operation 4 of type �Dº . When the operation 4 is of type�]º , then �G	 &��
such that the pair

� 4 " 	 �b& ~ and because
P_� ��� � 1 �:� l ,

we have 	 �& � � 1 �
. It means that there are two possibilities for the schedule,

either
`| j
`{ j
`� , either
!{ j
A| j
`� . We observe that in both cases,
the start time of operation 1 does not modify the value of
�� �
`{ , and con-
sequently the latency constraint. So, it does not matter what is the scheduling
of the operations of type �D9 and ��º . Once an operation of type �]º is scheduled,
operations of type � �

become schedulable and, until the algorithm stops only
the Step 1 schedules the operations. Hence we are in the case (a), and we saw
previously that the choice made by Step 1 is optimal.

2. the system has precedence and periodicity constraints and no latency constraints.
Then we schedule a system that may have only operations of type �@ß (Remark 4.3).
In this case because

P_� � � � 1 �v� l " r�1 & ² , the schedule is found only by us-
ing the steps 4, 8 and 9. These steps schedule the schedulable operations in the
increasing order of their periodicity constraints. Indeed, due to the theorem 4.1 it
is equivalent to schedule the first instances of the operations, with periodicity con-
straints, according to the increasing or to the decreasing order of their periodicity
constraints. Once the first instances of all the operations with periodicity constraints
were scheduled, the scheduling algorithm only have to schedule the operations ac-
cording to their periodicity constraints.

3. the system has the three constraints: precedence, periodicity and latency. At the
beginning of the algorithm we have two possibilities:

(a) there are operations of type � �
among the schedulable operations. An opera-

tion with
P_� ����¶� l may have or not a periodicity constraint. The periodic-

ity constraint must be satisfied, only after the first repetition of the operation
is scheduled. As soon as Step 1 scheduled the first repetition of an operation
with periodicity constraint, the remaining operations are scheduled only by
using the Steps 8, 9 and 10. So, until the first repetition of an operation with
a periodicity constraint is scheduled, only the Step 1 is used. We have two
possibilities:

i. no first repetition of an operation with a periodicity constraint was yet
scheduled. It means that we have to satisfy only latency constraint and
we are in same situation as 1.(a), and we saw that the choice made by
Step 1 is optimal.

ii. the first repetition of an operation with a periodicity constraint was sched-
uled, so we have a periodicity constraint to satisfy. After calculating the
start time of the operation 1 such that
A|�� i
N| �
A» � 	Ä» �wP_$eK {@� ¯=Æ¥ÊÌË and {GÍ already scheduled C�
!{@� i
Å{ �
`» � 	Ä» L

(Step 7), the remaining operations are scheduled by using the Step 8, 9
and 10. The Steps 8 and 9 search for operations, among the schedulable
operations, that may be scheduled before the calculated start time. Be-
cause we already chose the first periodicity constraint to be satisfied, we
have only latency constraints to meet like in the case 1.(a), and we saw
that this choice of the operations with the smallest

P_� � � is optimal. If
there is no operation with

P_� ���ä¶� l which may be scheduled before
the calculated start time, then it does not matter how the remaining oper-
ations are scheduled before the calculated start time. Finally, the Step 10
schedules the operation 1 at the calculated start time.

(b) there is no operation of type � �
among the schedulable operations. It means

that the schedule is obtained by using the Steps 2, 3 and 4 until an operation
with periodicity and/or type � �

becomes schedulable. The Step 3 is used only
if there is no more operation of type �@9 . As soon as the Step 3 scheduled an
operation, operations of type � �

become schedulable and the Step 4 will never
be used. If the Step 4 schedules an operation, then only the Steps 8, 9 and
10 will schedule the remaining operations. So, the Steps 2, 3 and 4 schedule
either the operations of type �@9 before scheduling operations of type �Dº , either
the operations of type �@9 before scheduling operations of type �]ß . We saw in 1.
(b) that it does not matter how the operations of type �G9 and �]º are scheduled.
An operation of type �@9 has no constraint to satisfy, and an operation of type��ß once its first repetition is scheduled, has its periodicity constraint to satisfy.
Hence, for operations of type �@9 and � ß , we reduce the number of operations
which must be scheduled when there are periodicity constraints to be satisfied.
Once the Step 3 or the Step 4 is used, we are in the case i or ii. ¨

4.3 Consequence of solving our problem
We remind that we denote by �í| the deadline of an operation 1 defined from the begin-
ning of the schedule implying that
!|)+0�,| .

Theorem 4.3 The latency constraint z � 1 " 4 �
of a pair

� 1 " 4 ��& ~ is equivalent to the
deadline of operation 4 .

Proof We demonstrate the equivalence by double implication.
First, we demonstrate that a latency constraint z � 1 " 4 �

of a pair
� 1 " 4 �d& ~ may be ex-

pressed as the deadline of operation 4 , once 1 is scheduled. Because
� 1 " 4 ��& ~ , then

we have
`{æ+0z � 1 " 4 �`i
A| � 	:{ . If we denote by �í{ the expression z � 1 " 4 �`i
!| � 	:{ ,
we obtain
!{æ+��î{ . Therefore, as soon as 1 is scheduled, the value of �ï{ is known.

Second, we express the deadline of an operation 4 as a latency constraint z ��^J" 4 �
. Be-

cause 4 has a deadline ��{ , then
`{æ+��î{ . We denote by 1 the first operation which was
scheduled, then
`| � * . Because the deadline is defined from the start of the schedule,
we obtain that
!{ �
A|¥+��î{ . Moreover, because all the operations without predecessors
may be the first scheduled operation, we have
�{ �
`�x+��î{ " rÅ	 &q�

with Ò ��?`; � 	 �'�w·

and 4 & � � 	 �
. So, in order to satisfy the deadline of 4 , we define several latency con-

straints z � 	 " 4 �U� �í{ for each 	 such that Ò ��?`; � 	 �'�w·
and 4 & � � 	 �

. ¨
Due to this theorem, we may use the same scheduling algorithm in order to solve the

problem [1/ repetitive graph/ periodicity constraints and deadlines], but in this case the
function

P_� ��� of the operation 1 must be equal to the
P_$eK {Å¯n± « |­® C��î{ L

. The following
algorithm of deadline marking allows to obtain these marks:

Algorithm

Initialization: ² � ¤ |N¯A½ and ð!ñaÁ « |�®JÂ­Ã Ò ��?`; � 1 �
is the working-set. If 1 has a deadline�,| , then

P_� ��� � 1 �U� �,| , otherwise
P_� � � � 1 �'� l .

Step 1: For 1 & ² "%P_� � � � 1 �î�òP_$[K��eP_� � � � 1 �a"QP_$eK {�¯ ð`ñ=Á « |­®óC P_� � � � 4 �FL��
and ² �² ´ C!1 L

. We add to ² the operations for which all the predecessors has been removed
from ² .

Step 2: Repeat Step 1 until ² �ë·
.

Remark 4.4 recursively, each operation inherits the deadline of its successors. At the
end of this latter algorithm, the mark of an operation may be equal to either its inherited
deadline or its initial deadline. Therefore, the algorithm does not modify the marks of the
operations without successors. This algorithm is, also, applied to the pattern.

5 Conclusion and further research
The paper gives a model based on graphs in order to state clearly the problem of schedul-
ing real-time systems with precedence, periodicity and latency constraints for one com-
puting resource. Because usually the problem of scheduling systems with periodicity
constraints and deadlines, and the problem of scheduling systems with precedence con-
straints and deadline, are treated separately, we define the notion of latency constraint. By
proving its equivalence with the notion of deadline which is commonly used, we merge
these two domains of research. We give an optimal algorithm for solving our problem, and
in order to prove the optimality of this algorithm we need to demonstrate that in the case
of systems without latency constraint, it is equivalent to schedule the first instances of the
operations with periodicity constraints, according to the increasing or to the decreasing
order of their periodicity constraints. These results have as consequence the extension of
the algorithm for scheduling real-time systems with precedence, periodicity constraints
and deadlines for one computing resource.

Presently we are searching for a condition establishing if a real-time system with
precedence, periodicity and latency constraints, is schedulable. Moreover, when this con-
dition is not satisfied, we plan to study if introducing preemption allows to find a feasible

schedule. Finally, we plan to extend the problem for several computing resources and to
calculate its complexity.

References
[1] E.L. Lawler. Recent results in the theory of machine scheduling. Mathematical

Programming: the State of the Art, Springer-Verlag, 1983.

[2] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, 1973.

[3] J.P. Lehoczky, L. Sha, and Y Ding. The rate monotonic sheduling algorithm: exact
characterization and average case bahavior. Proceedings of the IEEE Real-Time
Systems Symposium, 1989.

[4] N.C. Audsley, A. Burns, M.F. Richardson, Tindell K., and A.J. Wellings. Applying
new scheduling theory to static priority pre-emptive scheduling. Software Engi-
neerung Journal, 1993.

[5] T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid prototyping for real
time embedded heterogeneous multiprocessors. Codes’99 7th International Work-
shop on Hardware/Software Co-Design, 1999.

[6] E.L. Lawler. Optimal sequencing of a single machine subject to precedence con-
straints. Technical report, University of California, 1971.

[7] E.L. Lawler. Optimal sequencing of a single machine subject to precedence con-
straints. Management Science, 1973.

[8] J.K. Lenstra and A.H.G. Rinnooy Kan. Optimization and approximation in deter-
ministic sequencing and scheduling: A survey. Ann. Discrete Math., 1977.

[9] T.P. Baker. Stack-based scheduling of realtime processes. The Journal of Real-time
Systems, 1991.

[10] J. Blazewicz. Scheduling dependent tasks with different arrival times to meet dead-
lines. Modelling and Performance Evaluation of Computer Systems, 1976.

[11] David Harel and Amir Pnueli. On the development of reactive systems. In K. R.
Apt, editor, Logics and Models of Concurrent Systems. Springer Verlag, New York,
1985.

[12] S.K. Baruah, R.R. Howell, and L.E. Rosier. Algorithms and complexity concerning
the preemptive scheduling of periodic real-time tasks on one processor. Journal of
Real-Time Systems, 1990.

