Trans{&,]]¢

TC574X CMOS Imager

API Programmer’s Reference

V1.7
10* Nov. 2004

TransChip Confidential

This document contains proprietary information, and except with the written permission of
TransChip Inc., such information shall not be published or disclosed to others or used for any
purpose. The document shall not be duplicated in whole or in part.

Trans Chip TC574x Programmer’s Reference

Revision Log

Rev
1.0

1.1
1.2

1.3

1.4

1.5

1.6
1.7

Description Date
Initial revision 14" April 2004
Changed I°C address 3rd June 2004

Add TCgetCoreReadyStatus, TCoutputEnable, TCdjpegGetMask, 1 July 2004
TCsetClkEdgeForPVI and TCgetPlIStatus functions

Remove TCosdFlip and TCdjpegAnimationSettings functions
Change parameters for the functions TCsetJpegSize,
TCdjpegSettings, TCdjpegDecompress, TCmjpeg2mem and
TClcdDataType

Function TClcdSelect has new functionality (and moved from TCutil
to TChstCom)

Functions TCouputFormat and TCoutputSize moved to “Live Video
output function” section from “Image Controls” section

Changes in Custom Settings (section 3.1.2)

Change description of TCstartCore,

TCsetdpegSize, TCjpegCapture, TCmjpegQuality and

TCmijpeg2mem

Added Snapshot Capture Commands

Differentiate API support per Chip Type (5747 / 5740) instead of 4 July 2004
5747 only document

Add functions to API: 29 August 2004

e Reset function.

o JPEGS to AVI conversion functions.

e TCprintf function.

e TCjpegFixOrientation

e TCconvertYUV422ToRGB565

e JPEG post processing functions.

e TCsetOrientation

e TCdscPwrUpForRegAccess

e TCosdReset
Update TCjpegHeaderinfoStruct.
Update HostTCgpioControl function (add reset pin).

Add floating menu API functions 28 September
2004
Add flash control functions. 21 October 2004
Add functions to API: 10 November
e TCjpegMinimizeHeader 2004

Update TCjpegFixOrientation for 90° right rotation.
Update TCdjpgParseJpegHeader to detect non-default Huffman
tables.

Done By
Gal Adler

Jack Shasha

YaronPaz

Yaron & Amir

Lior W.

Lior W.

Lior W.
Lior W.

TransChip Confidential

Trans Chip TC574x Programmer’s Reference

Table of Contents

1. INTRODUCTION ...t sessn s sssssssssssssssss s s s sss s s s ssssnss s ssssssnssnssssssssssssnnnan 4
1.1 Terminology/CoNVENLIONSc.ccceiiiiminsmmissrnsssnrsssssssssssssssessssnesssnsssssnessssnssssnns 4

1.1.1 BT 12 0T PR 4

1.1.2 ADDreviations. 4

2. OVERVIEW..........eerr s s s s s s s e s s s sae s s n e s e sne s e s nne s e e n e s e s n e s nn e s 5
2.1 Platform Specific HW Driver FUNCtionsccccccmiiiincinncin e 7

2.2 Core Access Routines (TCaPi.*)....ccccerrrmrrrrmrrrserrssrrsses s sssse s s ssse s ssme s 7

2.3 Host-Commands Interface Functions (TChstCom.*).......cccccoccmrriciceericcceenninns 8

3. HOST COMMANDS INTERFACE.......... et s e sne s e sn s sne s e 13
3.1 General CoNVENLIONS.........cccccerriiisererssssse s sssssn s s sssns e s s sssne e s s s ssns e s sssssnessssssnnesssnen 13

3.1.1 Function Return COodes.........oouiiiiiii e 13

3.1.2 CUSIOM SEHINGS ...t 13

G 7 3T T 1 oo 1= 14

3.21 Essential FUNCHONS.........ooiuii e 14

3.2.2 Power save FUNCHONSoouiiii e 15

3.2.3 Host and LCD Interface Settings Functions.............ccocoviiiiiiiiiici e 15

3.2.4 Live Video Output FUNCHONS.......cuuiiiiiiieie e 17

3.2.5 IMAge CONtIOIS: ..eniiii et aas 17

3.2.6 JPEG Capture COmMMAaNASovuuiiiiiiiieiiie e e e e ean e e eanes 18

3.2.7 Snap Shot Capture CommMaNndS..........ccuieiiiiiiiiiiiie e 20

3.2.8 JPEG Decompression CommandScccuviuieiuiiiniiiieiineeiieeieeieeeeaeeaeeneannns 20

3.2.9 JPEG Postprocessing CommMandScc.oeiuiiiuiiiiiieiineeii e ieeeeaeeeaeeneannes 23

3.2.10 JPEG files conversion to AVl (MJPEG format)...........cccoevviiiiiiiiiiiiiieeeenn, 24

3.2.11 Motion JPEG (MJPEG) capture and decompression...........cccoveuveeiveieenneennnnnnn. 25

3.2.12 OSD COMMEANGS: ...ttt et e e et e e e et 27

3.2.13 Platform Dependent Custom Settings Functionscc..coooiiiiiiiiinn, 28

3.2.14 Miscellaneous COMMEANGAS.........uiiiiuiiiiiiii et eaa e 29

4, IMPLEMENTING PLATFORM-SPECIFIC HW DRIVER FUNCTIONS................. 34
APPENDIX A: I12C SERIAL INTERFAGCEocosereresnssssssssssssssssssssssssssassasesans 36

L T O 1T - 36

L2 ' ToTe [0 o7 0 o =1 - 11T o I 36

TransChip Confidential 3

Trans Chip TC574x Programmer’s Reference

1. Introduction

The TC574X Application-Programming Interface (API) is a set of functions provided for the host
application to control and operate the TC574X CMOS sensor. The API is designed to be platform- and
application-independent, and to provide support for the full feature set of the TC574X. The APl is designed
to expedite software development for the TC574X by providing the designer with high-level functions that
can be easily understood and integrated into an application. This manual provides a detailed description of
this API.

Written in ANSI C, the API is hardware independent and can be easily ported to different platforms. The
entire interface, with hardware, has been developed with simple software mechanisms.

1.1 Terminology/Conventions

111 Terms

Core TC574X internal integrated micro controller.

TC574X Firmware core Software stored in read-only memory (ROM) or programmable ROM (PROM) normally
software (FW) used for the initialization of a system.

Host Function A function required to be implemented by the Host to enable the operation of the API.
Host Command An APl command that controls the core FW or sets its registers.

Base band processor The target platform that controls the TC574X. It may be a Microcontroller,

Microprocessor or a Base Band processor on a cellular phone

1.1.2 Abbreviations

SW Software.

HW Hardware.

FW Firmware.

API Application Programming Interface.
OoSsD On Screen Display.

4 TransChip Confidential

Trans Chip TC574x Programmer’s Reference

2. Overview

The following diagram illustrates the high-level structure of the TC574X API:

User application

Platform specific h/w driver
(Hostfunctions.c)

12C / Parallel
driver

Color code User modules (should be implemented by the user)

B b

Figure 1: API High-Level Structure

see:

User Application This layer consists of user application software for the operation of
Software - the camera using the Host-Commands interface functions (a high

Top Layer level interface providing the required camera functions, bypassing
access to the lower level layers).

Firmware - The user application is required to store the TC574X firmware

Top Layer (available as a header file or binary file), and download it to the
sensor, following the power-up and reset sequence, using the
applicable Host Command.

Host Commands Provides communication with the TC574X via an intermediate layer Host Commands

Interface of Core Access routines. These are hardware-independent I/O Interface
routines that provide basic camera and memory control.
Core Access These routines should be called exclusively by the TChstCom layer, core Access Routines
Routines and not by the host user application. They use platform-specific (TCapi.*)
hardware driver functions to communicate with the camera
hardware.
Platform-specific ~ These functions include the 12C IO functions, camera discrete Platform Specific HW

TransChip Confidential 5

Trans[&]le)

HW Driver
Functions *

IZC / Parallel
Driver

Custom User
Definitions
(CustDef.h)

Optional Modules

OSD Routines

JPEG Rotation
Library

TC574x

signals handling (such as power-saving pins) and real-time delay
handling.

Implements the Host interface. Depending on the application, the
host interface may be serial 12C, or standard 8/16 bit parallel CPU
interface. When implementing the 12C Interface, If the host
processor does not have dedicated hardware for the
implementation of the 12C interface, the 12C may be implemented
using two general-purpose 10’s. When implementing the parallel
interface, no special driver is required as the interface is made of
regular CPU bus IO.

The file is used to adapt API functionality to a specific application. It
is used, for example, to set the application preview screen size,
sensor orientation, and various other parameters.

Provide additional functionality that is required by some
applications.

Operate the OSD (On Screen Display) features. They enable the
overlay of icons and frames over the image. A sample OSD
database which includes sample icons and frames is provided by
TransChip. The user may also modify the OSD database and create
custom icons and frames.

Enables the rotation of JPEG images 90° clockwise or
counterclockwise, usually required when the TC574X camera is
rotated when installed. This library is available for various platforms
including PC and ARM.

Programmer’s Reference

Driver Functions

Appendix A: 12C Serial
Interface

Custom Settings

(See the manual:
“Application Note - Updating
OSD Icons and Frames
Database”)

Miscellaneous
Commands

TransChip Confidential

Trans[&]le)

TC574x Programmer’s Reference

2.1 Platform Specific HW Driver Functions

This layer contains service functions used by TCapi.c. Since TCapi.c is designed to be hardware-independent,
it is the user’s responsibility to implement these low level functions:

HostTCTransferDataProc

HostTCgpioControl

HostTCdelayMSec

HostTCresetWatchDog

HostTCtraceOut

Sends and receives data from the camera using the I°C interface. The function should call
the application specific I°C routine. The idea is to separate TCapi from the hardware layer
and make it a general purpose hardware-independent source code.

Controls the discrete pins that set the TC574X power save mode. It is assumed that these
pins are under the control of the host processor (usually they would be implemented as
GPIO pins).

Generates controllable real-time delay to be used by TCapi.

This function should be implemented when the host operating system has an internal
watchdog that resets the system if it is not called within a certain time. TCApi calls the
internal watchdog function before operations begin that could require considerable time to
complete (such as firmware uploading). If there is no such watchdog in the system, this
function should remain blank.

When traces out are available (e.g. RS232 cable between phone to PC) then this function
may be used to trace debug data out of the SDK.

2.2 Core Access Routines (TCapi.*)

This layer uses the host functions module and implements low level functions for the API layer above it
(TChstCom). It supports the following functions:

tcRegisterAccess

tcWriteRegister
tcReadRegister

tcCoreMemoryAccess

tcWriteCoreMemory
tcReadCoreMemory
tcSendCommand
tcGetCoreStatus

tcWaitForStatusFlag

Note

Implements writing or reading from core registers. It has the ability to read or write blocks
of data from the same register, exploiting the core ability to auto-increment the address.

Writes a 16 bit word into a core register.
Reads a 16 bit word from a core register.

Implements writing or reading from core memory. It has the ability to read or write blocks of
data from the core memory.

Uses tcCoreMemoryAccess to write data to the core memory.
Uses tcCoreMemoryAccess to read data from the core memory.
Sends a host command to the core.

Reads the core status flags.

Waits for a specific flag to be valid within the status flag.

The host user application layer does not need to use these functions; they should be
called exclusively by the TChstCom layer.

TransChip Confidential

Trans Chip TC574x Programmer’s Reference

2.3 Host-Commands Interface Functions (TChstCom.*)

This layer implements all necessary host commands as simple ANSI-C function calls. It uses TCapi to
control the core and allows the host application to control the camera in a simple and intuitive way by
calling various C functions. For example, if the host application wants to send a “Set Brightness” command
it will simply call the C function TCbrightness and pass it a value of sBrightness.

A detailed description of the functions is presented in the following chapter. The functions that are
implemented in this layer are listed in the tables below.

Function prototype m
Essential Functions I

int TCuploadFirmware(void* pBuffer, unsigned long ulBufferSize, unsigned long TChstCom.h
ulAddress);
int TCstartCore(unsigned short usClockinKhz, unsigned short usFastinit); TChstCom.h
int TCgetCoreReadyStatus (unsigned short *pusCoreReady); TChstCom.h
int TCgetDeviceStatus (unsigned short *pusCoreRunning); TChstCom.h
 Powerserwnion |
int TCpowerSaveMode(TCpower eMode) TChstCom.h
int TCdscPwrUpForRegAccess(unsigned short bPowerUp); TCutil.h
Host and LCD Interface Settings Functions I
int TClcdSelect(unsigned short usLcdNum, unsigned short usLcdCmdMode) ; TChstCom.h
int TClcdDataType(unsigned short usDataAccess, unsigned short usRsState) ; TCutil.h
int TClcdControlAccess(unsigned short usCont_su, unsigned short usCont_wr) ; TCutil.h
int TClcdWrite(unsigned short* pusData, unsigned short usWordCount) ; TCutil.h
Live Video Output Functions I
int TCoutputFormat(TCformat eOutputFormat); TChstCom.h
int TCoutputEnable(unsigned short bEnable, unsigned short TChstCom.h
bWaitForEndPreview);
int TCoutputSize(unsigned short usWidth, unsigned short usHeight); TChstCom.h
Image Controls I
int TCbrightness(signed short sBrightness); TChstCom.h
int TCcontrast(signed short sContrast); TChstCom.h
int TCsaturation(signed short sSaturation); TChstCom.h

8 TransChip Confidential

Trans Chip TC574x Programmer’s Reference

int TChue(signed short sHue); TChstCom.h
int TCgamma(unsigned short usGamma); TChstCom.h
int TCframeRate(unsigned short usFrameRate); TChstCom.h
int TCautoFrameRateLimitations(unsigned short usMinFR, unsigned short TChstCom.h
usMaxFR);

int TCdigitalEffect(TCeffect eEffect); TChstCom.h
int TCsetZoom(TCzoom eZoom); TChstCom.h

PO Capuing ana Compression Functons |

int TCjpegQuality(TCquality eQuality); TChstCom.h
int TCsetJpegSize(unsigned short usWidth, unsigned short usHeight, TChstCom.h

unsigned short bCropToPreview);

int TCjpegCapture(TCsource eSource, unsigned short bThumbnail, TChstCom.h
unsigned short usThumbWidth,
unsigned short usThumbHeight);

int TCgetJpegStatus(unsigned short * pusStatus, unsigned short bBlocking); TChstCom.h
int TCgetJpegFileSize(unsigned short * pusFileSize); TChstCom.h
int TCgetJpegData(unsigned short * pusBuffer, unsigned short usWordCount , TChstCom.h

TCstate eState);

Snap Shot Functions I

int TCSnapCapture(unsigned short NPictures, unsigned short bThumbnail, TChstCom.h
unsigned short usThumbWidth,
unsigned short usThumbHeight);

int TCgetimageStatus(unsigned short * pusStatus, unsigned short bBlocking); TChstCom.h
JPEG Decompression Functions I
int TCdjpegSettings(unsigned short usDestination, unsigned short bFit2Screen, TChstCom.h

unsigned short usWidth, unsigned short usHeight,
TCorigin Origin);
int TCdjpegRequest(TCtransfer eTransferType, unsigned short *pusMaxFileSize, TChstCom.h
unsigned short bWithOSD);

int TCdjpeglLoading(unsigned short * pusBuffer, unsigned short usWordCount, TChstCom.h
TCstate eState);
int TCdjpegDecompress(TCmove eMove, unsigned short bWithOSD); TChstCom.h

TransChip Confidential 9

Trans Chip TC574x Programmer’s Reference

int TCdjpegGetMask (TCmove eMove, unsigned char *pMask);

int TCgetDjpegStatus(unsigned short * pusStatus, unsigned short bBlocking); TChstCom.h
int TCgetDjpegFileSize(unsigned short * pusFileSize); TChstCom.h
int TCgetDjpegData(unsigned short * pusBuffer, unsigned short usWordCount, TChstCom.h

TCstate eState);

int TCjpegMinimizeHeader(uint8 *pJpegFile,uint16 usFileSize, TCutil.h
uint8 *pJpegOutputFile,uint16 *usFileOutputSize)

® - also used for MUPEG loading

JPEG Post-processing Functions I

int TCjpegPpStartSession(void); TChstCom.h
int TCjpegPpModifyParam(TCJpegPPParamID eParam, signed short sValue); TChstCom.h
int TCjpegPpEndSession(void); TChstCom.h
JPEG files conversion to AVI (MJPEG format) I
int TCjpgsToAviGetMemSize(TCjpgsToAviFilesListStruct *ptcJpgsToAviFilesListStr, TCutil.h
unsigned short usNumOfJpegs,
unsigned long *pulAVlifileSize,
unsigned long *pulTotalJpegsCodeSize

int TCjpgsToAviCreateFile(TCjpgsToAviFileCreatelnfoStruct *ptcJpgsToAviFileCreatelnfo); TCutil.h

int TCjpgsToAviAddFile(TCjpgsToAviFileCreatelnfoStruct *ptcJpgsToAviFileCreatelnfo, TCutil.h

TCjpgsToAviFilesListStruct *ptcJpgsToAviFilesListStr,
unsigned short usFileldx);
int TCjpgsToAviCloseFile(TCjpgsToAviFileCreatelnfoStruct *ptcJpgsToAviFileCreatelnfo, TCutil.h
TCjpgsToAviFilesListStruct *ptcJpgsToAviFilesListStr,
unsigned short usNumOfJpegFiles);

Motion JPEG Capture and Playback Functions I

int TCmjpegQuality(unsigned short usQuality); TChstCom.h

int TCmjpeg2mem(TCmjpeg2memStr *pTCmjpeg2meminfo, TChstCom.h
unsigned long *pulStartAddress);

int TCmjpegGetWriteCnt(unsigned short *pusWriteCnt); TChstCom.h

int TCmjpegGetFlagFull(unsigned short *pusFlagFull); TChstCom.h

int TCmjpegSetReadCnt(unsigned short usReadCnt); TChstCom.h

int TCmjpegClearFlagFull(void); TChstCom.h

10 TransChip Confidential

Trans Chip TC574x Programmer’s Reference

int TCdmjpegRequest(TCdmjpeginfoStr *pdmjpeginfo,unsigned short TChstCom.h

usMaxFileSize);

int TCdmjpegDecompress(void); TChstCom.h

int TCdmjpegEndProcess(void); TChstCom.h
oo

int TCosdinit(void); TCosd.h

int TCosdLoadFrame(unsigned char frame); TCosd.h

int TCosdEnableFrame(unsigned char bEnable); TCosd.h

int TCosdEnablelcon(unsigned char icon, unsigned char bEnable); TCosd.h

int TCosdEnableBar(unsigned char barTag, unsigned char bEnable); TCosd.h

int TCosdLoadCursor(unsigned char cursorTag); TCosd.h

int TCosdEnableCursor(unsigned char bEnable); TCosd.h

int TCosdSetCursor(unsigned short xPos, unsigned short yPos); TCosd.h

int TCosdSetTimeStamp(TClineNum eLine, char* timeStamp); TCosd.h

int TCosdDisableTimeStamp(void); TCosd.h

int TCsetOrientation(uint16 usChipOrientation); TCosd.h

Int TCosdReset(void); TCosd.h

int TCosdEnableFMitem(TcFloatingMenultemStruct *pFMitem); TCosd.h

int TCosdClearFMitem(TcFloatingMenultemStruct *pFMitem); TCosd.h
| optona and Platom Cup Dependentsetings |

int TCvalidVpolr(unsigned short bLow); TChstCom.h

int TCuseChipSelect(void); TChstCom.h

int TCsetValidHasWriteSignal(unsigned short bActiveLow , TChstCom.h

unsigned short bSplitClocks);

int TCsetClkEdgeForPVI(unsigned short bNegativeEdge); TChstCom.h

int TCgetPIlIStatus(unsigned short *bPlIActive); - supported by TC5747 only TCutil.h

int TCpllAdjust(unsigned long ullnputClkFreq) ; - supported by TC5747 only TCutil.h

Miscellaneous Functions

TransChip Confidential 11

Trans Chip TC574x Programmer’s Reference

int TCjpegGetThumbnail(unsigned char* pucJpeg,
unsigned char**ppucThumbnail,
unsigned short* pusWidth,unsigned short* pusHeight);

int TCdjpgParsedJpegHeader(unsigned char *pJpegFile,unsigned short buffSize,
TCjpegHeaderinfoStruct *pJpegHeaderinfo);

int TCjpegRotation(unsigned char *pJpegFile,unsigned short usFileSize,
unsigned char *pRotatedJpegFile,
unsigned short *usRotatedFileSize, TCrotate eDirection);

int TCjpegFixOrientation(unsigned char *pJpegFile,unsigned short usFileSize,
unsigned char *pFixedJpegFile,
unsigned short *usFixedFileSize);

void TCconvertYUV422ToRGB888(unsigned char *pYUV422buffer,
unsigned char *pRGB888buffer,
unsigned short usWidth,
unsigned short usHeight);

void TCconvertYUV422ToRGB565(unsigned char *pYUV422buffer,
unsigned short *pRGB565buffer,
unsigned short usWidth,
unsigned short usHeight);

int TCbackUpCalibrationTables(TCcalBackupStateEnum eState);
int TCflashLight(uint16 usFlashType, TCFlashStatus eFlashMode);
int TCgetContFlashState(unsigned short *pbContFlashActive);

int TCconfigureFlashPulse(unsigned long ulMaxDuration,

unsigned long ulMinDelay,
unsigned short usMaxBursts
unsigned short bEnableRedEyeReduction);
int TCconfigureFlashAutoLevels(unsigned short usContLampOnThresh,
unsigned short usllluminationAt50cm,
unsigned short usPulseLampOnThresh,
unsigned short usPulseLamplsDominantThresh);
int TCconfigureFlashSpecialSettings(void);

int TCsetFlashPolarity(unsigned short bActiveHigh);

int TCfwVersion(unsigned short *usFWver, unsigned short *usFWdate,
unsigned short *usAPlver);

TCutil.c

TCutil.c

TCutil.c

TCutil.c

TCutil.c

TCutil.c

TCutil.c

TChstCom.h

TChstCom.h

TChstCom.h

TChstCom.h

TChstCom.h

TChstCom.h

TChstCom.h

12 TransChip Confidential

Trans Chip TC574x Programmer’s Reference

3. Host Commands Interface

This section describes the functions in TChstCom.c. These functions provide the complete set of controls for
the operation of the TC574X.

3.1 General Conventions

3.1.1 Function Return Codes

All API functions have a return int value. It is recommended to assert this return value on all calls to API
functions.

The applicable return codes are listed below:

Return Code I Explanation I
0

Success.

776 Function failed due to register access busy error (probably another process is accessing
the camera simultaneously)

777 Function failed due to memory access busy error (probably some other process is
accessing the camera simultaneously).

778 Function failed due to timeout error (usually this means the camera is not responding and
should be reset)

800 AVI file cannot be created from a series of JPEG files with different widths or heights.

Any value other than 0 Unspecified error (check in the function code for the error documentation).

3.1.2 Custom Settings
The API includes a custom settings header file (custDef.h) . This file stores definitions regarding the target

application screen, and TC574X mechanical orientation. This information is used by the firmware and by
the OSD API. The following parameters should be defined:

CUST_MAIN/SUB_FAVORITE_FORMAT - Defines the default live video and JPEG decompression output
format for the main and the sub LCD. See TCoutputFormat for possible values.

CUST_MAIN/SUB_MIRROR_Y/X - These four values define the required Mirror setting for the main and sub
LCDs. When MirrorY is set, the camera sends to the LCD the lines starting from the bottom instead of from
the top, when MirrorX is set the camera sends to the LCD the columns starting from the right, instead of
from the left.

CUST_MAIN/SUB_CLK_DIV_NO_DS - Due to limitations of some LCD screens, it may be required to set the
TC574X internal clock divider in order to slow down the video data rate to the rate acceptable by the LCD.
Once the clock divider in the custom settings is defined for 1:1 down sampling, all the clock dividers for
other down sampling modes are automatically defined. The clock divider value should be set to 0 when the
LCD is fast enough. If not, a value of 1 sets the clock divider to 2 (half the output rate), a value of 2 sets the
clock divider value to 4, etc.

CUST_(SUB_)LCD_WIDTH/HEIGHT - These four values describe the dimensions of the main and sub LCDs. If
there is no sub LCD, the sub values should be set to 0.

CUST_MAIN/SUB_ORIENTATION — Describes the sensor orientation relative to the position of LCD. For a
horizontal system TCIF_LENS_HOLDER_RIGHT should be defined for a not-rotated camera and

TransChip Confidential 13

Trans Chip TC574x Programmer’s Reference

TCIF_LENS_HOLDER_LEFT should be defined for a camera rotated by 180 degrees. For vertical systems
TCIF_LENS_HOLDER_UP should be defined for a camera rotated 90 degrees counterclockwise.
TCIF_LENS_HOLDER_DOWN should be defined for a camera rotated by 90 degrees clockwise.

Lens data tables — the custdef.h includes data tables for implementation of anti-shading and color-correction.
The table corresponding to the lens being used must be selected by defining only one of the following
(according to the TC574X module type being used):

For 5747 either #define TC5747XX24X or #define TC5747MF39A should be used.
For 5740 either #define TC5740MB24B or #define TC5740MF24G should be used.

3.2 Functions

3.21

14

Essential Functions

int TCuploadFirmware(void* pBuffer, unsigned long ulBufferSize, unsigned long ulAddress);

This function uploads the firmware from the host to the TC574X. It may be used to upload the entire
firmware file at once, or, alternatively, to upload in several iterations. (It is sometimes required to
divide the upload into several iterations because the whole buffer cannot be available at once, or
because uploading the entire firmware at once may consume too much time.)

To upload the full firmware at once, call this function with the FW buffer pointer, the firmware file
size in bytes and ulAddress=0.

To upload the firmware in several iterations, ulBufferSize may be set to 256, 512, 1024, 2048,
4096, 8192, or 16384. When uploading the firmware in iterations, the first call to
TCuploadFirmware should be with ulAddress =0, while all the consecutive calls should be with
ulAddress =0xFFFFFFFF. This signals to the function that the next buffer goes immediately after
its predecessor.

int TCstartCore(unsigned short usClockinKhz, unsigned short usFastinit);

In order to initialize the camera after FW uploading, call this function and pass it the clock
frequency to which the camera is connected. This value is in KHz and hence if the clock input is 30
Mhz call this function with the value of 30000.

usFastlnit is used to skip the TC574X calibration stage and thus provide faster init.

As a default it should be always set to FALSE, unless very fast initialization is required. For more
information on the calibration stage and fast initialization TCbackUpCalibrationTables.

Notice that since the initialization process takes few seconds, the function returns before
initialization is complete. Ensure that initialization is complete before calling any other function. To
check that initialization is complete call TCgetCoreReadyStatus until you receive a positive response.

int TCgetCoreReadyStatus (unsigned short *pusCoreReady);

This function checks the TC574X core status; It checks whether the core is ready to receive
commands. If it is ready, it writes TRUE to the *pusCoreReady — otherwise it writes FALSE to the
*pusCoreReady.

int TCgetDeviceStatus (unsigned short *pusCoreRunning);

This function checks the TC574X core status; it samples an internal core watchdog and indicates if
the core is running, or, for some reason, had a critical error and stopped functioning. If the function

TransChip Confidential

Trans Chip TC574x Programmer’s Reference

return code is 0 (success) and pusCoreRunning is returned TRUE — then the core is OK. If
pusCoreRunning is returned FALSE — the core is not functioning and the camera should be reset
and initialized. If the function return code is not 0, it means there is some I°C interface problem with
the camera.

3.2.2 Power save Functions

® int TCpowerSaveMode(TCpower eMode):
To reduce power consumption, the camera can shut down digital and analog components during
idle/standby mode. The function may be called with one of the following options:

® TCIF_FULL_OPERATION

® TCIF_STANDBY_MODE

When entering standby mode, all camera operations stop (such as video preview). The camera will
stop responding to host commands. After returning to full operation mode, all operations resume
without further commands.

® int TCdscPwrUpForRegAccess(unsigned short bPowerUp);
This function is used to read or write registers when camera is in sleep mode.

3.2.3 Hostand LCD Interface Settings Functions

The following function are used to control the various features and settings of the TC5747 LCD interface
that is used to control the LCD display, and the parallel host interface, which is used to communicate with
the host processor. These commands are also used to configure the pass-through mode, in which the host
processor sends data to the LCD through TC5747.

Notice that although only TC5747 HW supports LCD interfacing, the TClcdSelect function should be used
also for TC5740. The above function sets general system parameters related to LCD used.

® int TClcdSelect(unsigned short usLcdNum, unsigned short usLcdCmdMode) ;
Important: Whenever this function is called and the firmware is active, also call TCoutputSize with
the sizes of the appropriate LCD!! Then, if the two LCDs have different orientations from each
other, but the same OSD is used, the OSD should be reloaded for flipping.

TC5747 supports dual LCD modules. This function is used to select which LCD chip select line will
be driven by TC5747:

usLcdNum value LCD CS driven

1 LCD_CS_1
2 LCD_CS 2

The above setting will affect both the video streaming from the sensor, and the pass-through
interface from the host.

The second parameter — usLcdCmdMode - is used to determine the mapping between the 16 bit
host data bus and the 18 bit LCD bus. This mapping is used when connecting a 16 bit host to an 18
bit (RGB666) display, and should be selected according to the particular display requirement.

There are two available mapping options — verl and ver2 - which are described in the following
table, are used to send commands/data to the LCD.

TransChip Confidential 15

Trans Chip TC574x Programmer’s Reference

Host command Host command Host RGB565 TC
ver 1 ver2 data RGB666 TC output pin
hdat{15] _ hdat[15] R[5] —>» Dout[17]
hdat{14] hdat[15] hdat[14] R[4] —>» Dout[16]
hdat[13] hdat[14] hdat[13] R[3] —> Dout[15]
hdat[12] hdat[13] hdat[12] R12] —{ Douf[14]
hdat[11] hdat[12] hdat[11] R[1] —> Dout[13]
hdat{10] hdat[11] hdat[15] R[0] —> Dout[12]
hdat[9] hdat[10] hdat[10] G/[5] —> Douf[11]
hdat[8] hdat]9] hdat[9)] Gl4] —> Dout[10]
hdat/8] hdat[8] Gl3] —> Dout[9]
hdat[7] hdat[7] Gl2] —> Dout[8]
hdat[6] hdat|7] hdat[6] Gl1] —> Dout[7]
hdat[5] hdat/6] hdat[5] G[0] ——> Dout[6]
hdat[4] hdat[5] hdat/4] B[5| —> Dout[5]
hdat[3] hdat]4] hdat[3] Bl4] —> Dout[4]
hdat|2] hdat[3] hdat|2] BJ3] —» Dout[3]
hdat[1] hdat[2] hdat[1] B[2] —>» Dout[2]
hdatf0] hdatfl | hdatf0] Bl1] —» Dout[1]
hdat[0] hdat/4] BJ0] —— Dout[0]

Hdat[15:0] is the host interface bus, and Dout[17:0] is the 18 LCD bus. The two options for mapping
the hdat bus to the DOUT bus are Ver.1 and Ver.2.

When connecting to an 8 or 16 bit LCD display, mapping V1 should be selected. When connecting
to 9 bit LCD display, mapping V2 is recommended.

usLcdCmdMode Mapping mode
value

0 V1

1 V2

A third mapping option — RGB 565 - is also available and should only be used to convert RGB565
data from the host to RGB666 compatible output in the baseband. This third option is activated
using the TClcdDataType command (see below).

® int TClcdDataType(unsigned short usRGBAccess, unsigned short usRsState) ;
This function selects the default Data access mode to the LCD:

usRsState sclects the default state of the register select pin (LCD_RS). The settings in this
parameter only apply to accesses made by the TC5747 core to LCD. When the host controller
accesses the LCD, the LCD_RS state will be controlled by the host, and this setting will be ignored.

usRGBAccess decides between standard command/data mode and RGB565 to RGB666 translation
mode: The standard command/data mode is used by the host controlled to send data and commands
to the controller. On applications that utilize an 18 bit (RGB666) display, it is required to translate
the 16 bit RGB565 data to RGB666 data. This translation is done by TC5747 when usRsState=1 and
should only be used for sending RGB data.

® int TClcdControlAccess(unsigned short usCont_su, unsigned short usCont_wr) ;
This function is used to control the access rate of TC5747 core to the LCD. It does not affect the
direct pass-through interface from the host, or the video preview data rate.

usCont_su — controls the number of cycles the data is valid on the bus before the write signal is
asserted. Valid values are 1-15.

usCont_wr - controls the duration of the write signal (in cycles). Valid values are 1-15.

16 TransChip Confidential

Trans Chip TC574x Programmer’s Reference

® int TClcdWrite(unsigned short* pusData, unsigned short usWordCount) ;
This function is used to control send data to the LCD using the TC5747 core to LCD access
mechanism. It’s main use is in applications where the pass-through interface is not used, and thus
the host cannot control the LCD directly. pusData points to the data buffer to be sent to the LCD,
and usWordCount indicates the number of words to be sent.

3.2.4 Live Video Output Functions

® int TCoutputSize(unsigned short usWidth, unsigned short usHeight);
In order to set the video preview image size, call this function with the desired image dimensions.
The firmware will automatically adjust the image downscaling and cropping to fit the required size.
Please consult the TC574X Data Sheet for details regarding the downscaling and cropping
mechanisms, and for recommended preview image sizes. In any case, Width and Height must be
even numbers.

Note
Always call this function after system initialization, power up or changing LCD.

® int TCoutputFormat(TCformat eOutputFormat);
This function should be used only when the output format of the LCD (as defined in cust_def.h) is to
be changed.

Used for changing the output format of the current LCD to one of the supported formats. The
supported formats (as they are defined in TC574XApi.h) are:

TCIF_FORMAT_DISABLE TCIF_FORMAT_YUYV
TCIF_FORMAT_BAYER TCIF_FORMAT_RGB565
TCIF_FORMAT_RGB666_1 TCIF_FORMAT_RGB444
TCIF_FORMAT_RGB666_2 TCIF_FORMAT_RGB888
TCIF_FORMAT_MJPEG

® int TCoutputEnable(unsigned short bEnable, unsigned short bWaitForEndPreview);
Used to enable (set bEnable to 1) or disable (set bEnable to 0) the camera video output.
When disabling video out, and you need to wait (up to 200 msec) for video output to stop, set
bWaitForEndPreview to 1. If you need the function to return immediately set bWaitForEndPreview to 0.

3.2.5 Image Controls:

® int TCbrightness(signed short sBrightness):
Sets the image Target Brightness. Call this function with values between -128 and +128.

® int TCcontrast(signed short sContrast):
Sets the image Contrast. Call this function with values between -128 and +128.

® int TCsaturation(signed short sSaturation):
Sets the image Saturation. Call this function with values between -128 and +128.

TransChip Confidential 17

Trans Chip TC574x Programmer’s Reference

® int TChue(signed short sHue):
Sets the image Hue. Call this function with values between -128 and +128.

® int TCgamma(unsigned short usGamma):
Sets the image gamma correction. Call this function with values between 0 and 255. The gamma is
scaled to fit the range of 0 — 1.99. The default gamma setting is 102 (representing gamma 0.8).

® int TCframeRate(unsigned short usFrameRate);
Sets the video output frame rate. Valid frame rates are between 4-30 fps. Actual maximum frame
rate may be limited by the system clock.

® int TCautoFrameRateLimitations(unsigned short usMinFR, unsigned short usMaxFR);
Sets the video output auto frame rate range. The Auto frame rate algorithm automatically selects the
best frame rate within the specified range, according to the available light.

® int TCdigitalEffect(TCeffect eEffect);
Activates digital effects such as sepia, twilight, monochrome, and more. In order to activate such
digital effects, call this function with one of the following options:

TCIF_NO_EFFECT TCIF_MONOCHROME
TCIF_NEGATIVE_MONO TCIF_NEGATIVE_COLOR
TCIF_SEPIA_GREEN TCIF_SEPIA_BROWN

TCIF_SEPIA_YELLOW TCIF_BINARY
TCIF_SOLARIZE_COLOR TCIF_SOLARIZE_MONO
TCIF_TWILIGHT TCIF_NIGHT

® int TCsetZoom(TCzoom eZoom);
In order to activate the zoom effect, call this function with one of the following optional values:

e TCIF_NO_ZOOM

e TCIF_X2_ZOOM

3.2.6 JPEG Capture Commands
The JPEG capture commands capture still JPEG images and download these images to the host.

® int TCjpegQuality(TCqality eQuality);
To set the JPEG capture quality (low medium or high), call this function with one of the following:

TCIF_JPEG_LOW_QUALITY TCIF_JPEG_MEDIUM_QUALITY
TCIF_JPEG_HIGH_QUALITY

Note
The Quality parameter determines the JPEG compression factor and subsequently the
resulting file size.

18 TransChip Confidential

Trans Chip TC574x Programmer’s Reference

® int TCsetJpegSize(unsigned short usWidth, unsigned short usHeight, unsigned short
bCropToPreview);
To set the JPEG image size, call this function with the desired image width and height of the
output JPEG file. If you need to output only a section of the preview (a window in the center of
the preview), bCropToPreview should be set to 1.

® int TCjpegCapture(TCsource eSource, unsigned short bThumbnail,

unsigned short usThumbWidth,

unsigned short usThumbHeight);
This function performs the JPEG capture process. In order to initiate a JPEG capture, call
this function with eSource = TCIF_JPEG_SOURCE_LIVE. bThumbnail decides whether
thumbnail data will be added to the JPEG file. If thumbnail data is added, it can later be
used to show thumbnail previews of the captured JPEG. The usThumbWidth and
usThumbHeight functions define the thumbnail size. The recommended values for thumbnail
sizes are 40x30 and 80x60.

® int TCgetJpegStatus(unsigned short * pusStatus, unsigned short bBlocking):

The JPEG capture sequence is a time consuming process, Therefore, after sending a JPEG capture
command, you must wait until the JPEG image is ready to be read out. There are two ways to do
this:

a. Blocking — this function does not return until the JPEG is ready.

b. Non-blocking — the function returns immediately and the host can read the pusStatus in
order to determine if the JPEG is ready or not. In this case the host might poll the JPEG
ready flag on a regular basis (say every 20mSec) and stop when it is ready.

® int TCgetJpegFileSize(unsigned short * pusFileSize);
This function returns the resulting JPEG image file size. It should be called only after the JPEG
process is completed.

® int TCgetJpegData(unsigned short * pusBuffer, unsigned short usWordCount, TCstate eState):
In order to read the JPEG file from the camera into the host controller, call this function with a
buffer pointer and the buffer size. You may use this function to read the JPEG file in iterations. With
each iteration you may read a block of data starting from 1 word (2 bytes) to the maximum JPEG
file size.

Note
usWordCount represents the number of words in the buffer and not the number of bytes!

The first call to the function must be with eState assigned with TCIF_START_TRANSFER. Next
calls should be with TCIF_CONT_TRANSFER and final call with TCIF_END_TRANSFER.

® int TCjpegGetThumbnail(unsigned char* pucJpeg,
unsigned char*ppucThumbnail,
unsigned short* pusWidth,unsigned short* pusHeight);
When a JPEG file is captured with the Thumbnail option, the thumbnail data will contain a reduced-
sized version of the captured picture. It displays a small size preview without decompressing the
JPEG file.

TransChip Confidential 19

Trans Chip TC574x Programmer’s Reference

The TCjpegGetThumbnail function receives a pointer to the JPEG file, and returns a pointer to the
start of the thumbnail data within this file (the first pixel on the upper-left corner of the thumbnail
image).

The thumbnail data is stored in YUV 4:2:2 format which is 2 bytes per pixel.

The thumbnail data size is therefore the following:

2 x Thumbnail Width x Thumbnail Height

After receiving the pointer to the thumbnail data, the data may be converted to RGB format by using
either TCconvertYUV422ToRGB888 or TCconvertYUV422ToRGB565 function.

3.2.7 Snap Shot Capture Commands

The Snap Shot process uses snapshot capture commands and JPEG capture commands to generate a
sequence of JPEG images and download these images to the host.

In order to perform the Snap Shot process, the application should call TCSnapCapture (see below). After
calling this function, it should follow this procedure for each snapshot picture:

1.

Poll TCgetimageStatus in iterations until it informs you that an image is ready

2. When an image is ready, you may wish to beep the user to indicate a “picture is taken”.
3.
4. Read the JPEG file using the functions TCgetJpegFileSize, TCgetJpegData as described in the

Poll TCgetJpegStatus in iterations until it informs you that a JPEG is ready.

previous section.

Repeat this procedure for the next picture.

® int TCSnapCapture(unsigned short NPictures, unsigned short bThumbnail,

unsigned short usThumbWidth,

unsigned short usThumbHeight);
This function initializes the Snap Shot process. NPictures defines the number of JPEG
pictures that will be taken during the Snap Shot. bThumbnail decides whether thumbnail
data will be added to each JPEG file (to show thumbnail previews of the captured JPEGSs).
The usThumbWidth and usThumbHeight functions define the thumbnail size. The
recommended values for thumbnail sizes are 40x30 and 80x60.

® int TCgetimageStatus (unsigned short * pusStatus, unsigned short bBlocking):

During the Snap Shot process a time interval of at least 500 milliseconds is defined between each
two pictures. There are two ways to wait for the next image:

a. Blocking — this function does not return until the image is ready.

b. Non-blocking — the function returns immediately and the host calls TCgetimageStatus in

intervals until *pusStatus indicates the image is ready (when *pusStatus. is non-zero)

3.2.8 JPEG Decompression Commands

® int TCdjpegSettings(unsigned short usDestination, unsigned short bFit2Screen,

20

unsigned short usWidth, unsigned short usHeight, TCorigin Origin);
Set decompression parameters as follows:

TransChip Confidential

Trans Chip TC574x Programmer’s Reference

e usDestination — The location to which the decompressed file will output:
(It is possible to combine several output destinations by ORing the following predefined
values)

o TCIF_DJPEG_PVI — decompress and sends out through PVI

o TCIF_DJPEG_CORE_MEMORY — decompresses into core memory (for later re-
compression with frame overlay.)

® DFit2Screen — When True- performs maximal downsampling of the input file to display on
the LCD. If the downsampled image exactly fits the LCD display, no scrolling is
required. If the downsampled image needs to be cropped to fit the LCD display, then the
scrolling mechanism is applied (see the Origin parameter and the TCdjpegDecompress
command).

When False — does not downsample at all. In this case, only a partial display window
appears over the original file. This partial window is initialized in the location defined by
the Origin parameter (see below) and the scrolling mechanism is applied. (see the
TCdjpegDecompress command).

® usWidth and usHeight — are usually the same as preview size (LCD size) unless the image
is to be decompressed into memory or the host processor initiated a smaller window on
the LCD and wishes to display the image on a smaller window.

® Origin is used to set the start-point of the image window. Set
TCIF_DJPEG_ORIGIN_START to define the start point at the top left of the image, or
TCIF_DJPEG_ORIGIN_CENTER to define the start point in the center (center of the
display window is located in the center of the original image) .

Note
If you call TCdjpegSettings after scrolling the preview window, the preview window is
re-initialized to the Origin.

® int TCdjpegRequest(TCtransfer eTransferType, unsigned short *pusMaxFileSize):
Before loading a JPEG file into the camera (for decompression), you must request a decompression
session and let the camera know about the data transfer method. The function will return the
maximum allowed JPEG file size to be loaded on pusMaxFileSize.
eTransferType should be set to TCIF_DJPEG_I2C_UPLOAD.

® int TCdjpeglLoading(unsigned short * pusBuffer, unsigned short usWordCount, TCstate eState);
This function downloads JPEG file data to TC574X.
pusBuffer is the pointer to the JPEG file buffer location in the host.
usWordCount is the buffer size to be transferred.
The function may be used to load the file in one shot, or in several iterations

To load the file in one shot use the following sequence:
TCdjpegLoading(jpg_buff_pointer, jpg_buff_size, TCIF_START_TRANSFER) ;
TCdjpegLoading(NULL, 0, TCIF_END_TRANSFER) ;

To load the JPEG in several iterations, a sequence such as the following should be used:
TCdjpeglLoading(jpg_buffer[start], buffer_size, TCIF_START_TRANSFER) ;

TransChip Confidential 21

Trans Chip TC574x Programmer’s Reference

TCdjpegLoading(jpg_buffer[next1], buffer_size, TCIF_CONT_TRANSFER) ;
TCdjpeglLoading(jpg_buffer[next2], buffer_size, TCIF_CONT_TRANSFER) ;
/l...as many iterations as necessary

TCdjpeglLoading(NULL, 0, TCIF_END_TRANSFER) ;

Please note that the first call to the function needs to be with eState assigned with
TCIF_START_TRANSFER. Next calls with TCIF_CONT_TRANSFER and final call with
TCIF_END_TRANSFER.

Note

usWordCount is the number of words (16 bit) in the buffer!

® int TCdjpegDecompress(TCmove eMove, unsigned short bWithOSD):
This function is called to decompress the JPEG file loaded in the camera. The first time this function is
called after TCdjpegSettings (with eMove passed as TCIF_DJPEG_DONT_MOVE), it defines the window
to be displayed at the position defined in Origin sent in the TCdjpegSettings function. Subsequent
calls to this function may be used to scroll the image according to the eMove passed, as one of the
following:

TCIF_DJPEG_MOVE_UP — to scroll up

TCIF_DJPEG_MOVE_DOWN — to scroll down

e TCIF_DJPEG_MOVE_LEFT — to scroll left

TCIF_DJPEG_MOVE_RIGHT — to scroll right

Use the parameter bWithOSD to decompress the image with frame overlay. For a clean image, this
parameter should be FALSE.

® int TCdjpegGetMask (TCmove eMove, unsigned char *pMask);
This function provides the possible directions permissible after the next eMove step. It is used in
order to allow the application to load an appropriate OSD with the decompressed image.
The directions allowed after the next eMove step, are as follows:

Move Up - *pMask contains the bit 1 << TCIF_DJPEG_MOVE_UP

Move Down - *pMask contains the bit 1 << TCIF_DJPEG_MOVE_DOWN
Move Left - *pMask contains the bit 1 << TCIF_DJPEG_MOVE_LEFT
Move Right - *pMask contains the bit 1 << TCIF_DJPEG_MOVE_RIGHT

® int TCgetDjpegStatus(unsigned short * pusStatus, unsigned short bBlocking);
This function waits for the JPEG decompression process to end after TCdjpegDecompress has been
called. If bBlocking is set, the function will only return after the JPEG process has been completed.
If bBlocking is false, the function will return immediately and report the status through the
pusStatus variable. If completed, the function will return the TCIF_DJPEG_IMAGE_READY
value.

® int TCgetDjpegFileSize(unsigned short * pusFileSize):

Returns the decompressed JPEG file size. Used to get the resulting image size after decompression
to core memory.

22 TransChip Confidential

Trans Chip TC574x Programmer’s Reference

® int TCgetDjpegData(unsigned short * pusBuffer, unsigned short usWordCount,

TCstate eState);

Reads the decompressed JPEG file from the TC574X RAM; used after JPEG decompression to core
memory. [t can be used to read the data in one shot, or iteratively in several calls. If used in one
shot, it should be called twice:

e The first time to do the actual transfer with pusBuffer set to the host buffer pointer,
usWordCount set to the file size which was obtained through TCgetDjpegFileSize and
eState = TCIF_START_TRANSFER.

e The second call is used only to terminate the transfer and should be called with
usWordCount=0 and eState= TCIF_END_TRANSFER.

If used to read the file in several iterations:

e The firstiteration should be called with TCIF_START_TRANSFER;
e (Consecutive iterations with TCIF_CONT_TRANSFER
e The terminating iteration with TCIF_END_TRANSFER.

The resulting file is always in YUV format. It may be converted later to RGB format using
the TCconvertYUV422ToRGB888 Or TCconvertYUV422ToRGB565 function.

® int TCjpegMinimizeHeader(uint8 *pJpegFile,uint16 usFileSize,

uint8 *pJpegOutputFile,uint16 *usFileOutputSize);

Prepare a JPEG to be loaded into the camera by minimizing its header. It inserts a minimize version
of a header that only holds the minimum information needed for decompression. If header file
includes thumbnail or Exif header data they will be discarded as they do not have relevant
information for the decompression process itself.

The function will fail if the input JPEG file is not compatible with TC574x. The reason for a non
compatible file may be either sub-sampling not supported or non-default Huffman tables.

3.2.9 JPEG Postprocessing Commands
® int TCjpegPpStartSession(void);
This command informs the TC5747 about a new JPEG Postprocessing session.

® int TCjpegPpModifyParam(TCJpegPPParamID eParam, signed short sValue);

This command modifies each of the controllable parameters in the JPEG Postprocessing session.
Each sending of this command can modify one parameter only.

e eParam — The parameter which is requested to be modified.

e sValue — The requested value for the selected parameter.

Parameter Parameter description Value range
TCIF_JPEGPP_BRIGHTNESS Image brightness -128 to +127
TCIF_JPEGPP _CONTRAST Image contrast -128 to +127
TCIF_JPEGPP_SATURATION Image saturation -128 to +127

TransChip Confidential 23

Trans Chip TC574x Programmer’s Reference

TCIF_JPEGPP_BINARY Binary effect Oorl
TCIF_JPEGPP. MONOCHROME Monochrome effect Oorl
TCIF_JPEGPP_NEGATIVE Negative effect Oorl
TCIF_JPEGPP_COLOR BALANCE Image color balance -128 to +127
TCIF_JPEGPP_SHARPNESS Image sharpness Oorl
TCIF_JPEGPP_BLUR Image blur Oorl

® int TCjpegPpEndSession(void);
This command informs the TC5747 that a JPEG Postprocessing session has been completed.

3.2.10 JPEG files conversion to AVI (MJPEG format)

® intTCjpgsToAviGetMemSize(TCjpgsToAviFilesListStruct *pteJpgsToAviFilesListStr ,

unsigned short usNumOfJpegs,
unsigned long *pulAVlIfileSize,
unsigned long *pulTotalJpegsCodeSize);

Calculates the required memory needed to create the AVI file (movie) in MJPEG format from a list of still
JPEG files.

typedef struct
{
TCjpegHeaderInfoStruct tcJpegHeaderInfoStr;
unsigned char *plpegFile;
unsigned long ulJpegFileSize;
unsigned long ulFileOffset; / Those 2 parameters are filled by
unsigned long ulJpegFrameSize; /1 jpgsToAvi API functions...

} TCjpgsToAviFilesListStruct;

ptcJpgsToAviFilesListStr is an array of TCjpgsToAviFilesListStruct that holds all the JPEG files
information (e.g. file size, code size, width height, quantization tables offsets etc...). All this information is
achieved by the call to the function TCdjpgParseJpegHeader. usNumOfJpegs: Number of files (Array
length). pulAVlIfileSize: Pointer to uint32 that the function returns the required AVI buffer size.
pulTotalJpegsCodeSize: Pointer to uint32 that the function returns the total JPEGS net code size (not
including the headers...)

int TCjpgsToAviCreateFile(TCjpgsToAviFileCreateInfoStruct *ptcJpgsToAviFileCreatelnfo);
Creates the AVI file header.

24 TransChip Confidential

Trans Chip TC574x Programmer’s Reference

typedef struct

{
unsigned short usNumOfJpegs;
unsigned short usFrameRate;
unsigned long ulTotalJpegCodeSize;
TCjpgsToAviFilesListStruct ~ *ptcJpgsToAviFilesListStr;
void *pAviBuffer;
unsigned long ulAviBufferSize;

} TCjpgsToAviFileCreateInfoStruct;

pteJpgsToAviFileCreatelnfo is a pointer to a TCjpgsToAviFileCreateInfoStruct that describes all
information needed to create the AVI file header. (e.g. frame rate, width, height, num of frames, etc.) It also
includes the buffer on which the AVI file will be built. The size of the buffer was given by the previous
function (TCjpgsToAviGetMemSize).

® intTCjpgsToAviAddFile(TCjpgsToAviFileCreateInfoStruct *pteJpgsToAviFileCreatelnfo,

TCjpgsToAviFilesListStruct *ptcJpgsToAviFilesListStr,
unsigned short usFileldx);

pteJpgsToAviFileCreatelnfo points to a TCjpgsToAviFileCreateInfoStruct that describes all

information needed to add file to the AVI. pteJpgsToAviFilesListStr points to the files list that holds

specific info on each JPEG file (e.g. quantization tables used, code size, etc.). usFileldx is the file

index added to the AVI. (0-N).

This function is called N times where N is the number of JPEG files to be converted into an AVI

movie.

® intTCjpgsToAviCloseFile(TCjpgsToAviFileCreateInfoStruct *ptcJpgsToAviFileCreatelnfo,

TCjpgsToAviFilesListStruct *pteJpgsToAviFilesListStr,
unsigned short usNumOfJpegFiles);

This function closes the AVI file (i.e. writes the footer).

pteJpgsToAviFileCreatelnfo points to a TCjpgsToAviFileCreateInfoStruct that describes all

information needed to add the file to the AVI. pteJpgsToAviFilesListStr points to the files list that

holds specific info on each JPEG file (e.g. quantization tables used, code size, etc.). It is used to

extract the offsets of each file.

3.2.11 Motion JPEG (MJPEG) capture and decompression

The following commands are used to capture, save and decompress Motion Jpeg video files. A detailed
description of MJPEG implementation and application example can be provided per demand.

The following function description is provided for reference:

int TCmjpegQuality(unsigned short usQuality);
Sets the MJPEG quality factor. Accepts values from 1-99. Affects only the MJPEG that is sent to
the PVI.

® int TCmjpeg2mem(TCmjpeg2memsStr *pTCmjpeg2meminfo, unsigned long *pulStartAddress);

Used to initiate or stop a MJPEG capture to memory (streaming). It also returns the start address of
the queue.

TransChip Confidential 25

Trans Chip TC574x Programmer’s Reference

When initiating an M-JPEG capture (bEnable = TRUE) you need to pass a description of the queue:
Number of buffers in queue and the buffer size (of 1 element). For example, if you know there are
50KB free to use in JPEG memory (see Note below) and each frame in the MJPEG is targeted to be
~6K you can initiate the queue to 10K buffer size and 5 buffers in queue. For bit rate control initiate
the target frame size and the max frame size according to the requested compression ratio.

Note
The free JPEG memory to use is the same as the maximum JPEG capture limitations or
the JPEG decompress limitations. It depends on the OSD usage since the OSD data
base is allocated on the JPEG memory block.

® int TCmjpegGetWriteCnt(unsigned short *pusWriteCnt);
Used to test the queue condition and decide if there is a new frame ready. (If write ent is bigger than
read cnt.)

® int TCmjpegGetFlagFull(unsigned short *pusFlagFull);
Used to test the queue condition and decide if there is a queue full condition. If so it means we lost
at least 1 frame and the system setting is not tuned correctly (we have real-time issues). If this
condition happens frequently we need to decide either to capture with lower

Quality factor (use TCmjpegQuality) to lower the frame rate or capture smaller images (for example,
instead of QQVGA capture 128x120). All those parameters need to be tuned during system
integration.

® int TCmjpegSetReadCnt(unsigned short usReadCnt);
Used to set the queue read count.

® int TCmjpegClearFlagFull(void);
Clears the flag full state in the DSC

® int TCdmjpegRequest(TCdmjpeginfoStr *pdmjpeginfo,unsigned short usMaxFileSize);
To initiate a MJPEG decompression process.

® int TCdjpegLoading(unsigned short* pusBuffer, unsigned short usWordCount, TCstate eState);
Allows JPEG file to be loaded into CORE memory for decompression. It may be used iteratively
several times to load small parts of the file. In order to load a JPEG file the function has to be called
at least twice. Once with eState=START_TRANSFER and the second time with
eState=END_TRANSFER (so the CORE will know that the host has finished memory accesses). If the
file is to be loaded in chunks then the first call would be with START_TRANSFER, the next few calls
with CONT_TRANSFER and the last call with END_TRANSFER (with or without data).

® int TCdmjpegDecompress(void);
Decompress the frame that was previously loaded by TCdjpegLoading.

® int TCdmjpegEndProcess(void);
Ends a M-JPEG decompression process.

26 TransChip Confidential

Trans Chip TC574x Programmer’s Reference

3.2.12 OSD commands:

The TC574X OSD features allow the overlay of various icons and images over the live video preview, and
over the captured JPEG and M-JPEG images. The OSD feature is mainly used to display auxiliary data such
as icons, time/date, etc.

The OSD functionality in a particular project is dependent upon the existance of an OSD database that is
compatible with the project settings and requirements (such as preview screen size, required icons design,
fonts, etc). A sample OSD database is available together with the TC574X API release. This sample
database can be used as a base for customization.

A detailed description of the OSD features and application can be supplied per demand. The following
function description is provided for reference:

® int TCosdInit(void):
Should be called once to initiate the regions of the OSD (frame, header bar and footer bar).

® int TCosdReset(void);

Sets all OSD regions in FW to zero. May be used to allow more memory for JPEG post processing
commands. I[f OSD is needed again, must call TCosdInit again.

® int TCosdLoadFrame(unsigned char frame):
Loads a frame overlay. The ‘frame’ parameter is an index within the frames and icons database.

® int TCosdEnableFrame(unsigned char bEnable):
Once a frame is loaded, it may be enabled or disabled using this function.

int TCosdEnablelcon(unsigned char icon,unsigned char bEnable):
To enable or disable an icon, use this function and pass it the icon index and a TRUE or FALSE
parameter to indicate if the icon is to be enabled or disabled. Missing a function to load an icon is
not an oversight. The icons are built by the SDK on a specific bar (the icons database stores the
relevant information, such as the bar on which the icon is placed, its coordinates, etc.) and the bar as
a whole is loaded into the camera (TCosdEnableBar loads the bar into the camera if the bar content

has been changed).
® int TCosdEnableBar(unsigned char barTag, unsigned char bEnable):

To enable or disable a bar, use this function with the bar index and a TRUE\FALSE parameter.
® int TCosdLoadCursor(unsigned char cursorTag):

Loads a cursor into the camera. Receives a cursor index (from database).
|

int TCosdEnableCursor(unsigned char bEnable):
Enables a cursor that was previously loaded. The cursor would be displayed as an overlay above all
regions (live preview, frame overlay and bars (icons)).

int TCosdSetCursor(unsigned short xPos, unsigned short yPos):
Sets (or moves) a cursor position on the LCD.

int TCosdSetTimeStamp(TClineNum eLine, char* timeStamp);

TransChip Confidential 27

Trans Chip TC574x Programmer’s Reference

Builds and enables the timestamp bar. The timestamp bar contains two lines. On each line the
combination of the characters 0,1,2,3,4,5,6,7,8,9,A,P,M,-,: and space may be displayed. Each line is
limited to 10 characters. The eLine parameter is called with the required line to be updated, and the
timeStamp contains a null terminated string which is composed of the characters listed above.

® int TCosdDisableTimeStamp(void);
Disables the timestamp (both lines).

® int TCsetOrientation(uint16 usChipOrientation);

Usually the chip orientation is a property of the active preview LCD. For example, on the main LCD
we have the horizontal chip orientation (TCIF_LENS HOLDER RIGHT) and on the sub LCD it is
180° rotated (TCIF_LENS HOLDER_ LEFT). When preview is made with OSD it is important for
the FW to know the chip orientation because in our example header and footer should change their
places. As long as simple actions are made, e.g. open preview on main LCD, close preview, set size to
sub LCD and open preview on sub LCD, the FW can handle the OSD regions location changes. On a
more complex situation, e.g. JPEG file captured from sub LCD preview and decompressed on the
main LCD we need to change the chip orientation for the decompression session. If we take the above
example again, we will do the following sequence:

Change chip orientation to TCIF_ LENS HOLDER RIGHT,

Update the OSD icons (e.g. “save” and “back™),

Call decompress function.

Change chip orientation back to TCIF_ LENS HOLDER LEFT. (to the previous preview).

AW N —

® int TCosdEnableFMitem(TcFloatingMenultemStruct *pFMitem);

Places a floating menu item on the frame region.

® int TCosdClearFMitem(TcFloatingMenultemStruct *pFMitem);

Clears a floating menu item on the frame region.

Both floating menu functions uses the following structure:
typedef struct

{

CoordStruct pos;
CoordStruct size;
const uint8 *pFloatingMenultem;
uintl6 usltemSize;
} TcFloatingMenultemStruct;

For more details see “Floating menu Reference Design.pdf™.

3.2.13 Platform Dependent Custom Settings Functions

The following functions are used to customize the TC574X hardware interface to a specific platform
hardware configuration. Typically, these functions will be called following the camera firmware uploading
and core initialization, to set the specific platform configuration options.

® int TCvalidVpolr(unsigned short bLow):

28 TransChip Confidential

Trans Chip TC574x Programmer’s Reference

Sets the Vsync output polarity with a Boolean value. 1 sets Vsync to active low and 0 sets it to active
high.

® int TCuseChipSelect(void):
Enables the camera CS input pin as the data bus enabling signal. After this function is called, the CS
input will control whether the camera data bus will be active or in high-impedance mode. If this
function is not called, the status of the bus will controlled by software, using the TCoutputFormat

function.

® int TCsetValidHasWriteSignal(unsigned short bActiveLow , unsigned short bSplitClocks):
When using the camera for direct LCD streaming (camera connected to, and streaming the data
directly into the LCD) the camera must be configured to have a write signal for each data it outputs
(~WR). Calling this function enables the ValivH pin of the camera to be a write signal (AKA qualified
clock). bActiveLow enables the host to determine the pin logic behavior. Since the camera data bus is
usually 8 bytes, the WR signal is for each byte, so two WR signals will be output for each pixel
(assuming RGB565). If a 16-bit interface is needed, the WR signal may be split into WRhigh and
WRIow. In this case, call this function with bSplitClock equals TRUE. MSB clock goes out first
through VCLKOUT, LSB clock through VALIDH (used as WR signal to the 16-bit LCM), assuming the
MSB was latched with an 8-bit latch.

® int TCsetClkEdgeForPVI(unsigned short bNegativeEdge);
Determines the clock edge on which the data is changed for output to the LCD via the PVI. Input 1
stands for negative edge and input 0 stands for positive edge.

3.2.14 Miscellaneous Commands

® int TCjpegRotation(unsigned char *pJpegFile,unsigned short usFileSize,
unsigned char *pRotatedJpegFile,unsigned short
*usRotatedFileSize, TCrotate eDirection);
Rotates a downloaded JPEG file 90° left (ccw, counter clockwise) or right (cw, clockwise). Its main
use is on platforms where the TC574X sensor is rotated 90° when installed, and therefore the
captured image must be rotated before sending it for display on a PC or other platform.

Note
This function runs on the host controller, after the file has been downloaded from

TC574X to the host. Also, in order to optimize performance, this function is included
as a platform dependent library function. To use this function you have to include the
Jtlib.lib library file in the host project.
Function usage is as follows:
o *pJdpegFile points to the (unrotated) input file.
o usFileSize is the input file size.

o *pRotatedJpegFile points to an allocated buffer for the output file

o *usRotatedFileSize is the allocated buffer size. The allocated buffer size should be at
least the input file size + 4KB. The function modifies this value to the exact rotated file

size after rotation completed.

TransChip Confidential 29

Trans Chip TC574x Programmer’s Reference

o eDirection is the required rotation direction. It may be set as TCIF_ROTATION_RIGHT
(clockwise) or TCIF_ROTATION_LEFT (counter-clockwise). After the function is
executed, the rotated file will reside in the output buffer.

o Depending on the host performance and the input file size, this function may require a
few seconds to complete.

int TCjpegFixOrientation(unsigned char *pJpegFile,

unsigned short usFileSize,

unsigned char *pFixedJpegFile,

unsigned short *usFixedFileSize);
This function detects the file orientation and sets it as a straight JPEG. It is intended to replace the
former TCjpegRotation function by providing a full solution to all camera orientations. The current
implementation is partial and only supports 180° rotation of an image that was captured from sub-
LCD that used mirror X for preview and 90° rotation right. Also note that this function depends on
HW rotation that is only available on TC5747.

Function usage is as follows:
o *pJpegFile points to the input file.
o usFileSize is the input file size.
o *pFixedJpegFile points to an allocated buffer for the output file

o *usFixedFileSize is the allocated buffer size. The allocated buffer size should be at
least the input file size + 4KB. The function modifies this value to the exact rotated file
size after rotation is completed.

® void TCconvertYUV422ToRGB888(unsigned char *pYUV422buffer,

unsigned char *pRGB888buffer,

unsigned short usWidth,

unsigned short usHeight);
When a JPEG capture is made with bThumbnail=TRUE, the thumbnail is saved in YUV422 format.
If it is required to display the thumbnail on a RGB device, this function may be used to convert the
thumbnail to RGB888 format. RGB888 may subsequently be converted to other RGB formats (such
as RGB 666 or RGB 565). pYUV422buffer points to the input image, and pThumbRGB888 points
to the output thumbnail image. This function is also used when decompressing a JPEG file into
memory (e.g. for a wallpaper function). The decompression to memory format is YUV422.

® void TCconvertYUV422ToRGB565(unsigned char *pYUV422buffer,
unsigned short *pRGB565buffer,
unsigned short usWidth,
unsigned short usHeight);
When a JPEG capture is made with bThumbnail=TRUE, the thumbnail is saved in YUV422 format.
Ifit is required to display the thumbnail on an RGB device, this function may be used to convert the
thumbnail to RGB565 format. The function gives an optimal implementation for converting

30 TransChip Confidential

Trans Chip TC574x Programmer’s Reference

YUV422 into RGB565 and replaces the need to call YUV422->RGB888->RGB565.
pYUV422buffer points to the input image, and pRGB565buffer points to the output thumbnail
image. This function is also used when decompressing a JPEG file into memory (e.g. for a
wallpaper function). The decompression to memory formatis YUV422.

® int TCdjpgParseJpegHeader(unsigned char *pJpegFile, unsigned short buffSize,

TCjpegHeaderinfoStruct *pJpegHeaderinfo);
Provides information on the JPEG file. The function is passed a pointer to the JPEG file. The entire
JPEG header should reside in memory for the function to work.

The function returns a TCjpegHeaderInfoStruct which holds the following information about the

file:

jpegWidth JPEG width

jpegHeight JPEG height

lumQToffset offset of the QT table

chromQToffset offset of the chromQ table

samplingFactor sub-sampling factor

headerSize JPEG header size in bytes

bTransChipFile TRUE if the file source is TransChip camera

bTCCompatible TRUE if the JPEG can be decompressed by Camera HW.

usRSTmarkers Restart markers interval (0 ifno RST used)

*pChipOrientation Pointer to chip orientation inside header. The reason it is a pointer is to
allow the fix orientation function to clear this value after fixing the image
orientation (0 means a straight image).

bMjpegFile TRUE ifitis a MJPEG frame.

® int TCbackUpCalibrationTables(TCcalBackupStateEnum eState);
Calibration tables are a set of parameters created by the TC574X firmware during the initialization
phase (when the TCstartCore command is called). These tables store sensor specific calibration data
to reduce image noise. Since the process of creating these tables may be time consuming (up to 4
seconds) it is sometimes necessary to skip the calibration process. The TCbackUpCalibrationTables
function allows the user to skip the calibration state by saving the sensor calibration data in the host.
Therefore, after the first power-up and initialization with calibration (calibration cannot be skipped
on the first initialization), it is possible to back up the calibration tables by calling the following:

TCstartCore(usClockinKhz, FALSE);//Start core with calibration
® Do

Wait();

TCgetCoreReadyStatus(&CoreReady);

While (CoreReady == 0);

TCbackUpcCalibrationTables (TC_BKUP_INIT);

TCbackUpCalibrationTables (TC_BKUP_READ);//save calibration table

Later, if the sensor was reset, it is possible to start the core and reload the calibration tables quickly
by the following sequence:

e TCstartCore(usClockinKhz, TRUE); //Start core without calibration

TransChip Confidential 31

Trans Chip TC574x Programmer’s Reference

e Do
Wait();
TCgetCoreReadyStatus(&CoreReady);
While (CoreReady == 0);

TCbackUpCalibrationTables (TC_BKUP_WRITE); is called within the function
TCstartCore (if called with fast init) and should not be called from outside.

® int TCflashLight(unsigned short usFlashType, TCFlashStatus eFlashMode);
Controls the TC574X flash light output pin. usFlashType parameter accept values of:

e TCIF_ FLASH CONTINUOUS — Used for continuous flash mode. This mode is usually used
for preview (AKA movie mode on a flash driver device such as MAX1583")

e TCIF_FLASH PULSE - Used for pulse or burst flash mode. This mode is usually used in
capture mode (AKA Strobe mode on a flash driver device such as MAX1583). This mode has a
very strict current time limitations. According to the flash driver specification and the LED
used, the application needs to pass to the DSC FW the maximum pulse duration allowed in this
mode as well as the duty-cycle. For example the LED LT5K63-AB-3W-T01-1 has a limitation
of 1/10 duty cycle and 0.1mSec pulse width (peak current of 300mA). (Currently not supported
by FW)

e TCIF_FLASH MULTI USE — Used to enable both modes at the same time. For example if
both modes are set to automatic mode then in low light conditions the continuous LED mode
would be used (while preview) and during capture there will be a burst pulse on the LED
(strobe) that will be timed by the DSC and the duration can be controlled by an API function
TCconfigureFlashPulse. (Currently not supported by FW)

eFlashMode gets the following values:

. TCIF_FLASH_DISABLE — Turns the LED off.

. TCIF_FLASH ENABLE — Turns the LED on.

o TCIF_FLASH AUTO - Enable the auto flash mode; Lets the DSC decide when to turn the
LED on or off.

® int TCgetContFlashState(unsigned short *pbContFlashActive);
When TCIF_ FLASH MULTI USE is needed, the base-band (application) needs to poll the DSC
say every 0.5-1 second. If it sees that the continuous flash is active it should turn it on, otherwise
turn it off. The DSC will control the burst mode (strobe) only while capture if it recognizes a low
light condition. The burst would be accurately timed within the DSC FW. (Currently not supported)

' See: http://pdfserv.maxim-ic.com/en/ds/MAX1583.pdf

32 TransChip Confidential

http://pdfserv.maxim-ic.com/en/ds/MAX1583.pdf
http://pdfserv.maxim-ic.com/en/ds/MAX1583.pdf
http://pdfserv.maxim-ic.com/en/ds/MAX1583.pdf
http://pdfserv.maxim-ic.com/en/ds/MAX1583.pdf
http://pdfserv.maxim-ic.com/en/ds/MAX1583.pdf

Trans Chip TC574x Programmer’s Reference

® int TCconfigureFlashPulse(unsigned long ulMaxDuration,

unsigned long ulMinDelay,

unsigned short usMaxBursts

unsigned short bEnableRedEyeReduction);
ulMaxDuration — maximum pulse duration in pSec units (10°).

ulMinDelay — minimum delay between the last time the LED was on until the next time it is allowed
to turn it on again.

usMaxBursts — maximum number of bursts. This value needs to be greater than 2 for a red-eye
reduction mode.

bEnableRedEyeReduction — Enable or disables the red eye reduction feature. If enabled make sure
usMaxBursts value is greater than 2.

For example the LED LT5K63-AB-3W-T01-1 has ulMaxDuration=100 and ulMinDelay=900 (This
will have a 1/10 duty cycle).

(Currently not supported by FW)

® int TCconfigureFlashAutoLevels(unsigned short usContLampOnThresh,

unsigned short usllluminationAt50cm,
unsigned short usPulseLampOnThresh,

unsigned short usPulseLamplsDominantThresh);
(Currently not supported by FW)

® int TCconfigureFlashSpecialSettings(void);
(Currently not supported by FW)

® int TCsetFlashPolarity(uint16 bActiveHigh);
Sets the polarity of the signal that turns the LED flash on.

® int TCfwVersion(unsigned short *usFWver, unsigned short *usFWdate, s
unsigned short *usAPlver);

Gets the firmware version number, date and API version number.

TransChip Confidential 33

Trans Chip TC574x Programmer’s Reference

4. Implementing Platform-specific HW Driver Functions

In order to enable the operation of the TransChip API, the host should implement a set of platform-specific
service functions. These functions include the following:

" 1°C/Parallel host interface implementation.

® Power saving GPIO pins control

® Delay function

® Watchdog control function

The function prototypes are defined in TCApi.h. The following is a detailed explanation of the required
implementation of each function:

® int HostTCTransferDataProc(void* pBuffer,
unsigned short usBufferSize,
TC_ACCESS_TYPE tcAccessType) ;
This function should implement the parallel or I°C Interface protocol:

o pBuffer points to a memory buffer containing data to write/read.

o usBufferSize holds the number of bytes in the buffer.

o tcAccessType is the type of access, which may be Read or Write.
Sample I°C functions for various platforms are available from TransChip.

When implementing this function with the parallel interface, it is important to distinguish between
host to TC574X access (this function) - which is qualified by the HCS_N pin, and host to LCD
access (not related to this function), which is qualified by the HLCD_CS_N input pin. Refer to the
TC574X datasheet for more details.

® int HostTCgpioControl(TC_GPIO_PIN tcPin, unsigned char bSet);

This function implements control over the discrete pins that control the camera Power Save mode.
There are 4 pins that need to be controlled:

a. PS1 pin
b. PS2 pin
c. CLK_EN pin
d. RESET pin

tcPin indicates the pin over which control is requested, and bSet is a Boolean that indicates the
required state of the pin, when TRUE indicated logic ‘1’ and FALSE indicated logic ‘LOW’. The
function should set the required pin to the required state.

® void HostTCdelayMSec(unsigned short imSec);

This function is called to implement real-time delay. imSec indicates the delay in milliseconds. The
delay should be implemented with accuracy better than 10%.

34 TransChip Confidential

Trans Chip TC574x Programmer’s Reference

® void HostTCresetWatchDog (void);
This function should be implemented in case the host operating system has an internal watchdog
that will reset the system if it is not called in a timely manner. TCApi function will call this function
before operations that may require considerable time to complete (such as firmware uploading). If
there is no such watchdog in the system, the function should remain blank.

TransChip Confidential 35

Trans Chip TC574x Programmer’s Reference

5. Appendix A: I°C Serial Interface

5.1 Overview

The I’C interface is a two-wire bi-directional serial bus (16 bit data, 16 bit address). The TC574X can
operate as a slave device only.

Both wires (SCLK and SDIN) are connected to a positive supply via a pull-up resistor, and when the bus is
free, both lines are high. The output stage of the device must have an open-drain or open collector type 10
cell so that a wired-AND function can be performed between all devices connected to the bus.

Each device is recognized by a unique 7-bit address.

The address allocated to TC5747 is 0x47. When performing write operations, add 0 to the LSB to get 0x8E.
For a Read operation add 1 to the LSB to get 0x8F.

The table below summarizes:

Address 12C Write 12C Read
0x47 0x8E 0x8F

The address allocated to TC5740 is either 0x56 or 0x57 (configurable Pin at Reset). When performing write
operations, add 0 to the LSB to get 0xAC or OxAE respectively. For a Read operation add 1 to the LSB to get
0xAD or 0xAF respectively.

The table below summarizes:

Address 12C Write 12C Read
0x56 0xAC 0xAD
0x57 0xAE OxAF
Notes

Some operating systems automatically add the 1 or 0 bit to the 7 bit address.

5.2 Mode of Operation

The bus master, typically the host DSP, initiates an access to the TC574X device. The bus master activates a
START condition, and passes the address of the requested device along with the type of access (read or
write bit — the MSB or the start byte). The requested device acknowledges (ACK). The host is free to
perform transactions until the host issues a STOP condition. The bus is considered free after the STOP
condition.

The data on the SDIN pin must be stable during the high period of the clock (SCL) as shown in the figure
below. Only the host may change data while SCL is high. A high-to-low transition marks a START
condition, and a low-to-high a STOP condition.

36 TransChip Confidential

Trans Chip TC574x Programmer’s Reference

SCL TN N N
SDA N S !

START sTOP

condition condition

Figure 2: I12C interface START and STOP Conditions

The master device activates a START condition, and sends the first byte of data that contains the 7-bit
address together with a direction bit (R/W#, 1 for read, 0 for write). The addressed device acknowledges by
pulling down the SDA line.

START Databyte STOP

(read or wiite)

Figure 3: 12C Protocol

The TC574X expects the first two bytes after the address byte to be the register address of the first register
that is to be read or written. The most significant byte of the address is sent first.

When writing registers to the TC574X, the words that follow are data (the MSB of the word is sent first).
The TC574X performs auto increment until a STOP condition is detected. Auto increment is not performed
when the initial address is in the address space allocated to the On-Chip-Memories (0x0F00-0x0FFF). This
address space is reserved for tables, where multiple bytes are written to a single address.

TransChip Confidential 37

	Introduction
	Terminology/Conventions
	Terms
	Abbreviations

	Overview
	Platform Specific HW Driver Functions
	Core Access Routines (TCapi.*)
	Host-Commands Interface Functions (TChstCom.*)

	Host Commands Interface
	General Conventions
	Function Return Codes
	Custom Settings

	Functions
	Essential Functions
	Power save Functions
	Host and LCD Interface Settings Functions
	Live Video Output Functions
	Image Controls:
	JPEG Capture Commands
	Snap Shot Capture Commands
	JPEG Decompression Commands
	JPEG Postprocessing Commands
	JPEG files conversion to AVI (MJPEG format)
	Motion JPEG (MJPEG) capture and decompression
	OSD commands:
	Platform Dependent Custom Settings Functions
	Miscellaneous Commands

	Implementing Platform-specific HW Driver Functions
	Appendix A: I2C Serial Interface
	Overview
	Mode of Operation

