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ET301 GPS-UAV 
Development Platform 
 
This is the third part of a three part series of manuals for the ET301 GPS-UAV. The first part 
covers the hardware. The second part covers flight dynamics and control. This part covers 
development suggestions and programming examples 

Development Suggestions 

Safety 
Before you start you should give a great deal of thought to safety. The following are some 
suggestions you should consider. 

• Work your way up from simple to complex control incrementally. For example you 
could start with a truck, move up to rudder control of a sailplane, then elevator, then 
rudder plus elevator. Each stage should work flawlessly before proceeding to the 
next stage. 

• The first safety feature that you will need is manual control, so that you can take over 
when (not if) there is some problem with automatic control. You should get the 
manual control working flawlessly before proceeding to automatic control. You 
should be able to control the plane yourself before proceeding to UAV development. 

• Never let the plane fly out of your sight. 

• Use a slowly flying aircraft, such as a paraplane or a sailplane. Consider using a 
Gentle Lady with a power pod or a “high-start” so that even if it hits anything, there 
is no spinning propeller out in front. 

• If you use a power pod, engage the automatic control only after the engine runs out 
of fuel. 

• Never fly high enough to be of concern to general aviation. 

• Thoroughly test the controls on the ground before allowing them in 
the air.  

This sort of activity is recommended only for experienced RC fliers who are members of the 
Academy of Model Aeronautics (AMA). Fly either at a club field or in an isolated area. 
Thoroughly check out the firmware before you launch. Before you fly the GPS-UAV, do a 
"walk-around-simulation" test flight on the ground by setting the controls for automatic and 
walking the plane around the flying field, pointing, turning, and moving it according to the 
response of the rudder and elevator, to make sure that everything is working all right. 

The GPS-UAV can actually improve safety. For example, a "come-home" control mode can 
ensure that if the receiver loses the signal, the plane will return automatically to the launch 
point. 
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Getting started 
You are probably anxious to get started. Before you dive in and start writing code, there are a 
few things you should think about: 

• Goals – Think about what you hope to accomplish. Perhaps you just want to play 
around and write a little software, or perhaps you want some hands-on application of 
control theory. Consider how you will use the GPS-UAV. Do you want to 
accomplish fully autonomous control, or perhaps you only want something to make 
the plane more easily controlled on windy days? Do you want to implement the ideas 
outlined in the first two parts of this manual, or do you have your own ideas? Will 
you be satisfied achieving gentle, level turns, or do you want to be able to perform 
aerobatics? What is realistic for you to achieve will depend on your motivation and 
skill level. You might want to start with something simple, and work your way up to 
more ambitious goals. Unless you have an extremely large open field, it is not 
feasible to achieve automated take-offs and landings. 

• Skills – For ambitious goals you will need a number of skills. First and foremost, you 
(or someone on your team) will need to be able to fly the aircraft that you select, 
because sooner or later during the development of your firmware, your automatic 
control will fail and you will have to revert to manual control. You should be 
familiar with both feedback control theory and flight principles as outlined in the 
second part of this manual. You will need firmware design, testing, and debugging 
skills. 

• Selecting a vehicle or aircraft – The GPS-UAV was developed on a “Gentle Lady” 
sailplane with a power pod. You might want to consider something similar, or 
perhaps a “paraplane”. Slower is better because you will find that automatic control 
is easier to achieve at low speeds and that feedback control tends to become unstable 
as speed increases beyond a critical value. The GPS-UAV has two PWM output 
channels with corresponding input channels, intended for control of rudder and 
elevator of a high-dihedral aircraft. There is a third input channel that can be used to 
select control modes. If your aircraft has additional control servos that you want to 
use, you will have to connect them directly to the radio receive and control them 
manually. It is recommended that you mount the GPS-UAV inside your aircraft. You 
may very well want to start with a very simple, ground-based platform such as an RC 
truck, before moving up to an aircraft. It is a lot easier to debug a single axis control 
on the ground than it is to debug a two axis control in the air. 

• Estimating parameters – You will need rough estimates of a few key parameters 
which define the flight dynamics of your aircraft, in order to design a feedback 
control with gains that are approximately right. Basically, you will need to estimate 
the gains that describe how the aircraft responds to the elevator and rudder, including 
how much and how quickly it banks in response to a turn. Nearly all of the 
parameters that you need can be computed from rough estimates of time constants, 
radii of curvatures of motion, and velocity, which you can get by careful observation 
of the response of your aircraft to manual control. 

• Tools, compilers, programming and debugger – You will be spending a great deal of 
time and effort developing firmware, so give some thought to what firmware tools 
you will want to use. The GPS-UAV was developed entirely with assembly 
language. Perhaps you would prefer using a higher level language. Free assemblers 
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are available, while good high level language compilers will cost several hundred 
dollars. You will need a hardware interface for programming and debugging. Spark 
Fun’s ICD2 was used to develop the GPS-UAV. A laptop computer is useful, but not 
absolutely necessary. Most of the development of the GPS-UAV was done with a 
desktop computer. Near the end of the development, a laptop computer became 
available and was used to make rapid changes in the firmware, especially feedback 
gains, between flights right at the flying field. 

• Design – As described in the previous parts of the manual, there are several 
approaches to control design. Put some thought into designing a control that will 
achieve your goals. For example, the GPS-UAV was developed to control a “Gentle 
Lady” in level flight. If you want to go beyond that, you will need to go beyond the 
ideas described in the previous parts of the manual. In any case, before you start 
writing firmware, you should prepare a complete control design that will meet your 
goals. 

• Incremental development – It is recommended that you follow a long series of small 
incremental development stages to simplify the development process. The 
development of the GPS-UAV proceeded through about a dozen stages, starting with 
single axis control of a truck and culminating with a full-featured control of a 
sailplane. Stages included various combinations of control features. For example, 
there was a stage in which there was automatic control of the rudder, and manual 
control of the elevator. Later, there was a stage in which there was automatic control 
of the elevator while the rudder was controlled manually. 

• Debugging – It is recommended that you do most of the debugging of your firmware 
before launching your aircraft into flight. There are several ways that can be done. In 
the early stages of the development of some particular feature, you can simply use 
the ICD2 as a debugger to examine memory locations, with the GPS-UAV. The 
author spent a lot of time using this technique at a desktop computer, with the roof-
mount antenna in a window to pick up a strong signal in a home with aluminum 
siding. Once the implementation appears to be doing the correct calculations, the 
next step is to rotate the board around pitch and yaw axses to see if the servos appear 
to be responding appropriately. Next, you might want to mount the board in your 
plane and do a “walk-around”, watching the rudder and elevator to see if they 
respond correctly, at the same time moving the plane as if it were responding to the 
rudder and elevator. During the wintertime, the author did a fair amount of 
debugging from inside a moving car in an empty parking lot. 

• Simulations – It is not necessary to perform simulations, but they may be useful if 
your goals are ambitious. During the initial stages of the development of the GPS-
UAV, it was thought that it would not be necessary to do any simulations. But the 
initial design (compass instead of gyros) was doomed not to work very well, and 
eventually it was necessary to run some simulations to understand the control issues, 
which led to abandoning a compass in favor of gyros. In hindsight, using gyros 
instead of a compass at the outset would have obviated the need to perform 
simulations. 

Engineering units and measurements 
Early in your development process will you will come to grips with engineering units, gains, 
and conversion factors, especially if you perform simulations. The plane has several real 
world parameters and variables, including turning response to the rudder and elevator and 
equations of motion. The GPS reports position in terms of longitude and latitude. Velocity is 
reported by the GPS in units of kilometers per hour as well as knots. Accelerometers and 
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gyros have gains relating acceleration and turning rate to a voltage. The A/D converter 
samples voltages and converts them to binary numbers.  There are multiple ways of 
representing angles. The mathematical convention is to measure angles counter clockwise 
from due east. The GPS convention is to measure angles clockwise from due north. 

You will need to make some design decisions regarding internal binary representations of 
various variables that are used in your calculations. Firmware development and simulations 
will go more smoothly if you select a consistent set of units and express all gains in terms of 
them. The most important gains (and perhaps most confusing), are those involving inputs and 
outputs. You should figure out the values of the following conversion factors for your aircraft 
and your choice of units, and keep them available during design, simulation, and setting other 
gains: 

• Gyro gain – This is the conversion from physical rotation rate to an internal binary 
representation. During the development of the GPS-UAV, this gain was equal to 
approximately 0.17, when the rotation rate is expressed in units of radians per 
second, and when the binary representation is thought of as a fraction of full scale. In 
other words, when the rotation rate is 1 radian per second (57.3 degrees/second), the 
binary value is 0.17 of full scale. 

• Acceleration gain – This is the conversion from acceleration to an internal binary 
representation. (For small values of pitch angle, what is actually being measured is 
the pitch angle.) During the development of the GPS-UAV, this gain was equal to 
approximately 0.2, when the pitch angle is expressed in units of radians, and when 
the binary representation is thought of as a fraction of full scale. 

• GPS angle gain – This is the conversion from GPS course direction in GPS units to 
an internal binary representation. During the development of the GPS-UAV, this 
gain was set to be equal to ½ divided by pi. 

• Servo gain – This is the conversion from an internal binary representation of a servo 
deflection to the reciprocal of the radius of curvature of the resulting motion. This 
gain depends on many things, including the mechanical transfer function from the 
servos to the rudder and elevator, as well as the dimensions of the aircraft. For the 
GPS-UAV prototype installation these gains were approximately ½ for both the 
rudder and the elevator, when the radius of curvature is measured in meters. In other 
words, when the internal binary servo signal reaches its maximum value, the radius 
of curvature of the motion is 2 meters. 

If you express all other conversions and gains in terms of the basic ones, it becomes a simple 
matter to keep track of units. 

State machine 
You will very likely want to include a state machine in your control to handle transitions 
between various control states. For example, in the GPS-UAV prototype, there were several 
control states, including startup, waiting for GPS startup, self-nulling, manual, partially 
automatic, and fully automatic. Transitions between pairs of states depend on various 
conditions, such as whether or not the radio is on, for example. Once a state is established, it 
implies the values of several internal control flags, such as whether or not the GPS is used for 
navigation, for example. 

It is recommended that you develop a state machine representation for your control. Decide 
what states you need, what conditions will trigger specific transitions between pairs of states, 
and what you want to happen within each state. 
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It is then a simple matter to convert your diagram into code and provide for implementation. 
This was done in the prototype as follows: 

• A timer was used to generate an interrupt about once every 2 seconds. The value of 2 
seconds was selected as being long enough to recognize whether or not the GPS was 
providing information needed for navigation, but not so long as for the control to feel 
unresponsive. 

• The state machine code determined conditions required to make decisions, such as 
whether or not the radio or the GPS were working. 

• For each state, there were sections of code for activities within that state, and for 
transitioning to other states. 

For example, a high priority interrupt from timer0 can be configured to call the state machine 
code once every 2 seconds. Within the state machine, tasks that need to be carried out every 
few seconds are executed. 

If there is an outstanding request to configure the GPS, the required commands are 
transmitted: 

 btfsc GPS_config 
 call set_gxx  
 

Next, the number of valid pulses arriving on the “selin” channel is examined to determine 
whether or not the transmitter is on. The pulse rate is 50 pulses per second, so there should be 
100 pulses over a 2 second period. For convenience, the threshold is set at 16 or more pulses. 
The count is then reset in preparation for the check on the next execution: 

 movf pulsesselin , W 
 andlw 0xF0 
 bz radio_is_off 
 clrf pulsesselin  
 

If the radio is on, set the radio_on status flag, turn on the corresponding LED, and enable the 
interrupt that performs pass-through manual control:  

radio_is_on 
 bsf radio_on  
 bcf radio_led 
 bsf INTCON, RBIE  
 

If the radio is off, reset the radio_on status flag, turn off the corresponding LED, take care of 
some variables that would normally be set through the radio, and turn off the interrupt that 
performs pass-through manual control, to avoid servo chattering in response to random noise: 

radio_is_off  
 bcf radio_on 
 bsf radio_led 
 movff strngTrim , pwrudin 
 movff elevTrim , pwelein 
 movlw 0xFF 
 movwf pwselin 
 clrf pulsesselin 
 bcf INTCON, RBIE  
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Next, look at the width of the “selin” pulse to determine which state is being requested. The 
pulse is very short for manual, is moderately long for a request for augmented mode, and is 
longest for a request for the circling mode: 

 movf pwselin , w  
 addlw -(auto_pulse) 
 bc above_auto 
 bsf man_req 
 bcf auto_req 
 bcf circle_req 
 bra det_state 
above_auto 
 movf pwselin , w 
 addlw -(circle_pulse) 
 bc above_circle 
 bsf auto_req 
 bcf man_req 
 bcf circle_req 

 bra det_state 
above_circle 
 bsf circle_req 
 bcf auto_req 
 bcf man_req 
 

With the preliminaries out of the way, the actual state machine is then executed. The first step 
is to determine the present state (or mode) and execute the corresponding code: 

det_state 
 btfsc startM 
 bra startS 
 btfsc calibrateM ; remove gyro, accelerometer offsets 
 bra calibrateS 
 btfsc acquiringM 
 bra acquiringS 
 btfsc manualM 
 bra manualS 
 btfsc autoM 
 bra autoS 
 btfsc returnM 
 bra returnS 
 btfsc circlingM 
 bra circlingS 
 

For each state, there is code to enter that state as well as code to carry out the activities for 
that state, and logic to execute state transitions.  For example, for a transition into the manual 
state, the following code is executed: 

ent_manualS 
 clrf cntrl_flags 
 clrf waggle ; turn off the rudder waggle 
 bsf manualM ; set manual mode flag 
 clrf CCP1CON ; turn off computed PWM control 
 clrf CCP2CON 
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 bcf pwmout1 ; turn off the outputs 
 bcf pwmout2 
 bsf mode_led ; turn off the mode LED 
 bcf GPS_steering; turn off GPS steering 
 

Within the manual state, the following activities are carried out: 

manualS 
 btfss radio_on ; fly back home on loss of radio 
 bra ent_returnS 
; circle_req & nav_capable -> snap circle origin and enter 
circling: 
 btfss circle_req 
 bra m_check_auto 
 btfss nav_capable 
 bra m_check_auto 
 bsf enable_focus 
 bra ent_circlingS 
m_check_auto  
;  auto_req -> autoS 
 btfss auto_req 
 return FAST 
 bra ent_autoS 
 

Interrupts 
Interrupts greatly simplify implementation of the control by providing for timely processing 
on an as-needed basis. In particular, the following interrupts provided by the 18F2520 are 
particularly useful: 

• Serial communications – Communications between the 18F2520 and the GPS is via 
a serial transmitter/receiver. You may or may not wish to use interrupts to send 
messages from the CPU to the GPS, but you will certainly want to use interrupts to 
receive messages sent from the GPS to the CPU. 

• Timers – There are several timers that can be used to generate interrupts. These are 
particularly useful for scheduling tasks that need to be performed on a regular basis, 
such as executing the state diagram, performing navigation, sampling the outputs of 
the gyros and the accelerometers, and computing control loops, for example. 

• Interrupt-on-change – This is the best way to measure pulse widths of input signals 
from the radio to the CPU. 

The 18F2520 supports two priority levels. The two levels were used during development of 
the GPS-UAV to provide a high priority for the pass-through manual control, ensuring that 
manual control would continue to work even if for some reason the rest of the firmware 
stopped working, a scenario which never materialized. 

You will need to write an interrupt service routine, whose job it is to decide what condition(s) 
caused the interrupt to occur, to then execute whatever time-critical tasks are needed, and then 
to turn interrupts back on. For each type of interrupt there is a priority flag, an interrupt enable 
flag, and an interrupt flag. The priority flag selects the priority. The interrupt enable selects 
whether or not that type of interrupt is being used. When an interrupt is generated, the 
corresponding interrupt flag is automatically set so that the interrupt handler can identify the 
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interrupt. The handler must reset the flag, otherwise the interrupt will be generated again as 
soon as interrupts are turned back on. 

Interrupts are configured before they are turned on. The following are examples taken from a 
portion of the initialization code from GPS-UAV prototype: 

 bsf RCON, IPEN  ; enable dual priorities 
 bcf IPR1, RCIP  ; USART low priority 
 bsf  PIE1, RCIE  ; USART enable 
 bcf PIR1, RCIF  ; clear any stale interrupt 
 bcf IPR1, TMR2IP ; PWM timer 2, low priority 
 bsf  PIE1, TMR2IE ; PWM timer 2, enable 
 bcf PIR1, TMR2IF ; clear any stale interrupt 
 bsf  INTCON2, TMR0IP ; timer0, high priority 
 bsf  INTCON, TMR0IE ; timer0 enable 
 bcf  INTCON, TMR0IF ; clear any stale interrupt 
 bsf INTCON, INT0IE ; interrupt 1, enable 
 bsf INTCON2, INTEDG0 ; interrupt 1 on rising edge 
 bsf INTCON3, INT1IP ; interrupt 2, high priority 
 bsf INTCON3, INT1IE ; interrupt 2, enable 
 bcf INTCON2, INTEDG1 ; interrupt 2 on falling edge 
 bsf INTCON2, RBIP ; port b, high priority 
 bcf INTCON, RBIF ; clear any stale interrupt 
 bcf PIE1, TMR1IE ; timer1, disable interrupt 
 movlw B'10000000'  ; 1 = tmr1, 16 bit operation 
    ; 0 = not used 
    ; 0 = 1:1 prescaler 
    ; 0 = not used 
    ; 0 = T1 osc off 
    ; 0 = not used 
    ; 0 = internal clock 
    ; 0 = timer off (for now) 

 movwf T1CON 
 bsf  INTCON, GIEL ; enable low interrupts 
 bsf INTCON, GIEH ; enable high interrupts 
 bsf T2CON , TMR2ON ; turn on the PWM timer2 
 bsf T1CON , TMR1ON ; turn on timer1 
 bsf RCSTA , CREN ; turn on the GPS receiver 
 bsf  T0CON , TMR0ON ; turn on timer0 
 

The main program, the high priority service routine, and the low priority service routine are 
vectored from pre-assigned memory locations: 

STARTUP CODE 
 NOP 
 goto start  ; reboot 
 ORG 0x08 
 goto serv_inter_H ; high priority interrupt 
 ORG 0x18 
 goto serv_inter_L ; low priority interrupt 
 NOP 
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The main job of the interrupt handlers is to determine what needs to be done and to execute 
the appropriate code. For example, the high priority interrupt handler used to develop the 
GPS-UAV is: 

serv_inter_H  
 
 movff TMR1L , tmr1Lsnap ; snapshot the time 
 movff TMR1H , tmr1Hsnap 
 
 btfsc INTCON, RBIF ; port B interrupt? 
 rcall serv_PORTB 
 btfsc INTRISE  ; hardwired interrupt rise? 
 rcall serv_rise 
 btfsc INTFALL  ; hardwired interrupt fall? 
 rcall serv_fall 

 btfsc INTCON, TMR0IF ; timer zero? 
 bra serv_TMR0 
 retfie FAST 
 

The “retfie FAST” instruction executes a fast return from interrupt, re-enables the interrupt at 
the same time, and restores the few registers that are saved when interrupt service routine is 
executed. It is also possible to explicitly re-enable interrupt, and to save and restore registers. 
For example, the following routines are employed to save and restore registers used by 
multiplication firmware, using a separate stack: 

saveMult 
 movff PRODL , PREINC2 
 movff PRODH , PREINC2 
 movff ARG1L , PREINC2 
 movff ARG1H , PREINC2 
 movff ARG2L , PREINC2 
 movff RES3  , PREINC2 
 movff RES2 , PREINC2 
 movff RES1 , PREINC2 
 movff RES0 , PREINC2 
 return 
 
restoreMult 
 movff POSTDEC2, RES0        
 movff POSTDEC2, RES1        
 movff POSTDEC2, RES2 
 movff POSTDEC2, RES3        
 movff POSTDEC2, ARG2L        
 movff POSTDEC2, ARG1H        
 movff POSTDEC2, ARG1L        
 movff POSTDEC2, PRODH        
 movff POSTDEC2, PRODL 
 return 
 

The actual service routines should execute time-critical code as quickly and efficiently as 
possible, and then turn interrupts back on. A useful technique is to call a separate routine to 
complete the non time-critical code after the interrupts are back on as shown in the following 
example for a low-priority service routine:  
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serv_inter_L 
 movff STATUS, PREINC2 ; save status 
 movwf PREINC2  ; save WREG 
         
 btfsc PIR1, TMR2IF ; timer 2 interrupt? 
 call serv_PWM  ; service the PWM interrupt     
 btfsc PIR1, RCIF  ; GPS interrupt? 
 call serv_GPS  ; service the GPS interrupt 
             
 bsf  INTCON, GIEL ; re-enable 
 
 btfsc GPS_req  ; pending GPS request? 
 rcall call_cmplt_GPS 
 btfsc ELE_req  ; compute elevator? 
 rcall call_elev_cntrl 
 btfsc RUD_req  ; compute rudder? 
 rcall call_rudd_cntrl 
 
 movf POSTDEC2, W  ; restore WREG 
 movff POSTDEC2, STATUS ; restore status bits 
 
 return 
 

It was found that with the 4X clocking boost of the crystal frequency multiplier producing an 
effective clock frequency of 16 megahertz, the 18F2520 had plenty of CPU power to 
complete all service routines in plenty of time. Still, it is a good idea to ensure that your 
firmware does not unintentionally cause multiple instances of the same routine to be running 
at the same time as a consequence of one of them not completing in time. For example, 
suppose that you decide to do extensive computations in your navigation software, which you 
would probably want to execute once per second as new GPS data becomes available. To 
make sure that you do not accidentally generate stack overflow if the routine takes more than 
1 second to complete, you might want to use a flag to block the execution of one pass of the 
firmware until the previous pass is complete. You could do that with the following segments 
of code. In the routine that calls the navigation routine, set a busy flag before the call, and 
clear it afterwards: 

 bsf nav_busy ; block re-entrant call 
 call navigate 
 bcf nav_busy ; re-enable call 

Only execute the routine that calls navigation when the flag is clear: 

call_one_sec 
 
 btfss nav_busy 
 call one_sec_tasks ; includes a call to navigate 
 return 
 

Manual control 
You will likely want to implement a manual control option because, sooner or later, one of the 
versions of your firmware will produce unstable control and you will want to recover 
manually. During the design of the GPS-UAV it was decided to implement manual control in 
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software rather than hardware. This can be done by simply echoing the rudder and elevator 
inputs to the outputs. Use the interrupt on change-of-value, and simply copy the inputs to the 
outputs. For example: 

serv_PORTB 
 bcf INTCON, RBIF ; clear the interrupt 
 btfss INTCON, RBIE 
 return 
 
 movff PORTB , PORTB_snap; snapshot the B port 
 
 btfss pwmin1  ; echo the rudder 
 bcf pwmout1 
 btfsc pwmin1 
 bsf pwmout1 
 
 btfss pwmin2  ; echo the elevator 
 bcf pwmout2 
 btfsc pwmin2 
 bsf pwmout2 
 
 movf PORTB_snap, W ; save port B 
 xorwf PORTB_old , W ; look for changes 
 movwf PORTB_xor 
 movff PORTB_snap, PORTB_old 
 
 btfsc pwmin1_xor  ; rudder channel changed 
 rcall pwmin1_time 
 btfsc pwmin2_xor  ; elevator channel changed 
 rcall pwmin2_time 
 return 
 

The inputs can be always copied to the outputs, even during automatic control, because the 
way the 18F2520 is architected, turning on the PWM control will override digital outputs on 
the PWM pins. 

Measuring pulse width 
The code in the previous section also implements measurement of the widths of the rudder 
and elevator pulses coming from the radio. The time is recorded on every interrupt, and is 
used on the falling edges of the pulses to compute pulse widths. The following is the code for 
the rudder control pulses. The code for the elevator is similar: 

pwmin1_time 
 btfss pwmin1 
 bra pwmin1_fall 
 movff tmr1Lsnap , tmrudinL 
 movff tmr1Hsnap , tmrudinH 
 return 
  
pwmin1_fall 
 movf tmrudinL , W  
 subwf tmr1Lsnap , W 
 movwf tmrudinL 
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 movf tmrudinH , W 
 subwfb tmr1Hsnap , W 
 movwf tmrudinH 
 movf tmrudinH , W ; get the high order nibble 
 andlw 0xF0 
 movwf tmrnible 
 swapf tmrnible 
 movlw 0x01 ; pulse from 1 msec to 2 msec ? 
 subwf tmrnible , W 
 bnz rudinsat 
 incf pulsesrudin ; count valid pulses 
 
 movlw 0x0F ; divide the 2 byte value by 16 
 andwf tmrudinH , F 
 swapf WREG , W 
 andwf tmrudinL , W 
 iorwf tmrudinH , W 
 swapf WREG , W 
 movwf pwrudin ; pulse width rudder input 
 return 
 
rudinsat 
 movlw 0x00 
 subwf tmrnible , W 
 bz rudinmin 
 movlw 0x02 
 subwf tmrnible , W 
 bz rudinmax 
 return 
 
rudinmin 
 clrf pwrudin 
 incf pulsesrudin 
 return 
 
rudinmax 
 movlw 0xFF 
 movwf pwrudin 
 incf pulsesrudin  
 return 
 

The saturation calculation is performed because the range of pulse widths is close to, but not 
exactly equal to, the exact range of an 8 bit value. Rather than use 16 bits to sometimes pick 
up a 9th bit, a saturation calculation is used to map the measured pulse width to 8 bits. 

Select input 
The GPS-UAV has three input channels. One of them is for the rudder, one for the elevator, 
and one for control mode selection. The rudder and elevator inputs connect to the B port, and 
generate an interrupt on both rising and falling edges of the pulses. Because all other interrupt 
inputs on the B port are dedicated to other functions, the third input channel is connected to 
two interrupt pins. Because the interrupt pins generate an interrupt on either rising or falling 
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edge, but not both, two pins are connected in parallel. This leads to a slightly different method 
for processing the third input. The code that was used in the prototype firmware to process the 
select input follows. The high priority interrupt routine calls serv_rise for a rising edge, and 
serv_fall for a falling edge. The variables INTRISE and INTFALL are defined to be the two 
interrupt input pins. The processing is very similar to that of the rudder and elevator input 
processing: 

serv_rise 
 
 bcf  INTRISE 
 movff tmr1Lsnap , tmselinL 
 movff tmr1Hsnap , tmselinH 
 return 
 
serv_fall 
 bcf  INTFALL 
 
 movf tmselinL , W 
 subwf tmr1Lsnap , W 
 movwf tmselinL 
 
 movf tmselinH , W 
 subwfb tmr1Hsnap , W 
 movwf tmselinH 
 
 movf tmselinH , W ; get the high order nibble 
 andlw 0xF0 
 movwf tmrnible 
 swapf tmrnible 
 
 movlw 0x01 ; valid pulse from 1 msec to 2 msec 
 subwf tmrnible , W 
 bnz selinsat 
 
 incf pulsesselin ; count valid pulses 
 
 movlw 0x0F ; divide the 2 byte value by 16 
 andwf tmselinH , F 
 swapf WREG , W 
 andwf tmselinL , W 
 iorwf tmselinH , W 
 swapf WREG , W 
 movwf pwselin ; select input third pulse width 
 
 return 
 
selinsat 
 movlw 0x00 
 subwf tmrnible , W 
 bz selinmin 
 movlw 0x02 
 subwf tmrnible , W 
 bz selinmax 
 return 
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selinmin 
 clrf pwselin 
 incf pulsesselin 
 return 
 
selinmax 
 movlw 0xFF 
 movwf pwselin 
 incf pulsesselin  
 return 

Tasking 
There are several tasks that need to be executed on a regular basis, such as sampling the gyros 
and accelerometers, filtering, and updating servo pulse widths. This can be done by using a 
timer to generate an interrupt on a regular basis and to select a task from a list of tasks on each 
interrupt. A convenient place to start is the timer that is used to control pulse width 
modulation. It generates an interrupt approximately once every millisecond. The tasks need to 
be executed once approximately every 23 milliseconds, so it is convenient to create that many 
time slots for tasks. 

When timer 2 generates an interrupt, the following code decrements PWM_count from 
PWM_skip to zero, continually repeating. 

serv_PWM 
 
 bcf PIR1, TMR2IF ; turn off the interrupt flag 
 dcfsnz PWM_count , F ; decrement the pulse count 
 movff PWM_skip , PWM_count ; reload the counter 

 

PWM_count is then used to implement a computed go-to. First, the low byte of a computed 
address is initialized with the low byte of the start of the task table: 

 movlw low PWM_goto_table ; base of the table 
 movwf PWM_goto_L 
 

An offset into the table is computed as two times PWM_count, because each entry in the task 
table takes two bytes. The offset is then added to the low byte of the computed address: 

 movf PWM_count, W ; offset into the table 
 decf WREG , W 
 addwf WREG , W 
 addwf PWM_goto_L , F 
 

The high byte of the start of the task table is then loaded into the high byte of the program 
counter latch. This does not actually change the program counter yet: 

 movlw high PWM_goto_table 
 movwf PCLATH  

The possibility that a carry was generated when the offset was added to the base address must 
be accounted for by adding the carry to the high byte of the computed address: 
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 clrf WREG 
 addwfc PCLATH , F 
 

Finally, the computed go-to is executed by loading the low byte of the computed address into 
the program counter, which causes the high byte stored in the program counter latch to be 
loaded at the same time: 

 movf PWM_goto_L , W  
 movwf PCL 
 

As a result, entries from the following table of instructions are executed one at a time in 
reverse order, starting from task_22 backward to task_00.  

PWM_goto_table  
 bra  task_00  
 bra  task_01  
 bra  task_02  
 bra  task_03  
 bra  task_04  
 bra  task_05  
 bra  task_06  
 bra  task_07  
 bra  task_08 
 bra  task_09  
 bra  task_10   
 bra  task_11 
 bra  task_12   
 bra  task_13   
 bra  task_14   
 bra  task_15   
 bra  task_16   
 bra  task_17   
 bra  task_18   
 bra  task_19   
 bra  task_20   
 bra  task_21  
 bra  task_22  
 

The above structure makes it very convenient to assign tasks to the various slots simply by 
placing calls and go-to’s at the task addresses. The following task list was used in the 
prototype to take samples, perform control calculations, and generate servo pulses: 

task_22 ; spare 
 return 
 
task_21 ; select voltage reference  
 bra sel_vref 
  
task_20 ; read voltage reference, select yaccel  
 call read_vref 
 bra sel_yaccel 
 
task_19 ; read yaccel, select xaccel 
 call read_yaccel 



Development suggestions  3/18/2007 
 
 

ET301 GPS-UAV  17 
 

 

 bra sel_xaccel 
 
task_18 ; read xaccel , select pitch gyro 
 call read_xaccel 
 bra sel_pitch  
 
task_17 ; read pitch gyro, select yaw gyro  
 call read_pitch 
 bra sel_yaw 
 
task_16 ; read yaw gyro, select yaw gyro again  
 call read_yaw1 
 bra sel_yaw 
 
task_15 ; read yaw gyro again  
 bra read_yaw2 
 
task_14 ; filter the mixing  
 bra filter_mix 
 
task_13 ; spare  
 return 
 
task_12 ; spare  
 return 
 
task_11 ; compute elevator servo 
 bra compute_elevator 
 
task_10 ; filter the rudder pulse width 
 bra filter_pwrud 
 
task_09 ; compute rudder servo 
 bra compute_rudder 
 
task_08 ; scale the gains according to the third input 
 bra scale_gains 
 
task_07 ; rudder 1 msec pulse 
 bra PWM1_full_pulse  
 
task_06 ; rudder partial (0-1 msec) pulse 
 bra PWM1_pulse 
 
task_05 ; turn off the pulses   
 bra PWM_clear 
 
task_04 ; spare 
 return 
 
task_03 ; elevator 1 msec pulse 
 bra PWM2_full_pulse  
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task_02 ; elevator partial (0-1 msec) pulse 
 bra PWM2_pulse 
 
task_01 ; turn off the pulses 
 bra PWM_clear 
 
task_00 ; spare 
 return 

GPS interface 
You will probably want to refer to the data sheet and the NMEA reference manual for the ET-
301 that are available on the Spark Fun website. 

Although the GPS interface is conceptually rather simple, in the prototype firmware, the GPS 
interface module was the largest module. That was in part the result of a decision to use the 
NMEA standard interface to the ET-301 rather than its binary interface. Much of the code was 
required to parse the ASCII text into binary values. Even so, in retrospect, the decision to use 
the NMEA interface was a good one because: 

• Using the NMEA interface simplified the debugging of the GPS interface. It was 
possible to understand what was coming out of the ET-301 by simply connecting a 
hyperterminal to an ET-301 evaluation kit available from SFE. 

• Using the NMEA interface made most of the firmware portable. In fact, the earliest 
prototype of the GPS-UAV used a different GPS receiver. Porting the firmware to 
the ET-301 was simplified because the NMEA interface was being used. 

The choice is up to you whether to use the NMEA interface to the ET-301 or to use the binary 
interface. The NMEA interface will be easier to debug, but the binary interface will not 
require as much firmware. Most of what you might want is available through the NMEA 
interface.  The only information that you might want to use that is available exclusively 
through the binary interface is vertical velocity, but that was not used in the GPS-UAV 
prototype firmware. The information that was used was extracted from the GGA and VTG 
messages in the NMEA interface: 

• GGA – Latitude, longitude, position fix indicator and satellites used information was 
used by the GPS-UAV prototype. Also available in GGA, but not used in the 
prototype, is altitude. 

• VTG – Measured heading was used by the GPS-UAV prototype. Also available, but 
not used in the prototype, is speed over ground. 

The ET-301 boots up with its communications baud rate set to 4800, which is what was used 
in the GPS-UAV prototype. 4800 was a convenient baud rate, high enough to transfer all 
needed information in a timely fashion, and slow enough to allow for quite a bit of processing 
between characters. 

The default messages at boot-up are probably not the ones you want. It is recommended you 
explicitly turn each message type on or off, depending on whether or not you intend to use the 
information. There is no point in having the ET-301 interrupt the firmware with messages that 
are not going to be used. 

The CPU will boot much sooner than the ET-301, so you will need to wait to send 
configuration commands to the ET-301, otherwise the ET-301 will ignore the commands. 
This was handled in the prototype by waiting until midway through the startup process to send 
configuration messages to the ET-301. 
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It is possible for the USART interface to the ET-301 to generate errors. Although you would 
think that careful design would preclude such errors, they were encountered from time to time 
during the development of the prototype firmware. Therefore, you should address errors. For 
example, framing and receiver errors must be cleared to avoid “hanging” the CPU. In 
particular, an uncleared overrun error will regenerate an interrupt as soon as interrupts are re-
enabled, effectively locking up the CPU. You will probably want to include something like 
the following: 

serv_GPS 
 
 bcf PIR1, RCIF ; reset the interrupt flag 
 btfsc RCSTA , FERR; check for a framing error 
 rcall GPS_ferr 
 btfsc RCSTA , OERR; check for an overrun error 
 bra GPS_oerr  
   ; otherwise, normal reception 
 . 
 . 
 . 
GPS_ferr ; Framing error 
  ; clear by reading the receiver register. 
 
 movff RCREG, GPS_char 
 btfss RCSTA , OERR 
 return 
 
GPS_oerr ; Overrun error 
  ; clear by toggling the receiver enable. 
 bcf RCSTA , CREN 
 nop 
 bsf RCSTA , CREN 
 return 
 

The bulk of the rest of the GPS interface is parsing the ET-301 messages and converting them 
into binary values. Refer to the source code for the test firmware for examples. In those 
examples, conversion from absolute longitude and latitude to Cartesian coordinates relative to 
a starting point was based on the assumption of operation in the western hemisphere at a 
latitude of around 42 degrees north. If you are operating in the eastern hemisphere or at a 
latitude much different than 42 degrees north, you will want to rewrite the conversion code. 

Also, the test firmware assumed that operation would not be any further from the starting 
point than 5 kilometers. That should be more than enough, because you should not be flying 
your aircraft out of sight. 

Sampling the gyros and accelerometers 
The gyros and accelerometers are read through the A/D converter. As part of your design you 
will need to think about sampling rates, noise, bandwidth, filtering, and reference voltages. 
You will also need to think about controlling the A/D converter. 

The GPS-UAV uses Spark Fun breakout boards for the gyros and accelerometers that include 
capacitors on the output pins for simple lowpass filters for bandwidth/noise control. The 
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accelerometers have filters with a corner frequency of around 500 Hz (higher than what is 
actually needed) and the gyros have filters with a corner frequency of around 40 Hz. 

A sampling rate of around 50 samples per second for each analog input channel is more than 
adequate for good transient response and noise filtering, and fits well with both the CPU 
processing power and the servo pulse rate. There is no need to sample any slower than that, 
but depending on what digital filters you incorporate into your control, you may want to 
sample at a higher rate and use a decimation filter to reduce noise. It is best not to pass much 
noise through to the servos to avoid a high battery drain. The prototype firmware worked 
quite smoothly with 50 samples per second. 

You will undoubtedly want to do some digital filtering on the gyro and accelerometer signals 
as part of your control. The prototype used simple digital lowpass filters with time constants 
on the order of a few seconds as part of a “washout” filtering scheme. As a side effect, the 
filters greatly reduced noise from the gyros and accelerometers. 

You will also need to think about reference voltages. The outputs of the accelerometers are 
“ratiometric” (meaning they are proportional to the power supply), while the outputs of the 
gyros are “non-ratiometric” (meaning as long as the power supply is within limits, the outputs 
are independent of the supply. The gyros provide a constant 2.5 volt reference. Here is the 
approach used in the prototype to achieve control that is independent of supply voltage: 

• The A/D converter used an internal reference that is proportional to the supply 
voltage. Therefore, A/D converted values a proportional to the ratio of the sample 
voltage divided by the supply voltage. 

• The 2.5 volt reference was sampled by the A/D converter. This can be used to figure 
out what the supply voltage is. 

• Samples of the accelerometer signals do not have to be corrected for variations in 
supply voltage, because both the accelerometer signals and the A/D converter are 
“ratiometric”. 

• Samples of the gyro signals were corrected for variations in the supply voltage. 

Taking the actual samples is rather simple using the tasking technique described in one of the 
previous sections. To take a sample the sample and hold circuit internal to the A/D has to be 
first connected to the appropriate input channel long enough to charge an internal capacitor. 
The actual time required is not very long, on the order of several 10s of microseconds. The 
approach used in the prototype was to select the channel in one task slot and then to read it in 
the next, which allowed approximately 1 millisecond (1000 microseconds), which is more 
than long enough for the sample and hold capacitor to settle out. 

The most efficient way to service the A/D conversion itself is to use A/D interrupts, but that is 
more complicated than is worth the trouble. The following approach is suggested: 

• Select an A/D channel input at the end of the processing for one of the 1 millisecond 
task time slots. 

• At the beginning of the next task time slot, command the A/D to convert. 

• The conversion will take a few microseconds, so it is efficient to perform some part 
of the control that will take a few microseconds before checking to see if the 
conversion is complete. 

• Wait for the conversion to complete, and then fetch the values. 

For example, the pitch gyro is selected in task 18 and read in task 17. (Remember, the tasks 
are executed in reverse order.) 
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task_18 ; read xaccel , select pitch gyro 
 call read_xaccel 
 bra sel_pitch  
 
task_17 ; read pitch gyro, select yaw gyro  
 call read_pitch 
 bra sel_yaw 
 

The pitch gyro is selected by the following few lines of code: 

sel_pitch 
 movlw pitchAD ; pitch 
 movwf ADCON0 
 return 
 

Reading the pitch gyro proceeds as follows. First, the conversion control bit is set to start the 
conversion: 

read_pitch 
 bsf ADCON0,GO 
 

The conversion itself may take a few microseconds, so it would be efficient to perform a few 
computations. In this case, a portion of a low pass filter for the pitch signal is executed. 

 movf pitchH , w 
 subwf pitchL , f 
 
 movf pitchU , w 
 subwfb pitchH , f 
 
 clrf WREG 
 subwfb pitchU , f 
 

Now, we just wait for the conversion to complete by polling the status bit: 

cnvrt_pitch 
 btfsc ADCON0,GO 
 bra cnvrt_pitch 
 

When the conversion is complete, continue on with the computation. Read the A/D registers 
and continue the filtering computation: 

 movf ADRESL , w 
 addwf pitchL , f 
 
 movf ADRESH , w 
 addwfc pitchH , f 
 
 clrf WREG 
 addwfc pitchU , f 
 



Development suggestions  3/18/2007 

ET301 GPS-UAV  22 
 

This is a convenient place to service the request to snapshot the pitch gyro offset during the 
self-calibration process, to be used later on to remove the gyro offset. 

 btfss calibpitch 
 return 
 bcf calibpitch 
 movff pitchU , pitch0U 
 movff pitchH , pitch0H 
 return 
 

Although the accelerometers are immune to drift due to temperature variation, the gyros 
experience some drift with temperature. A temperature signal is available if you want to 
perform temperature compensation in software, but it was not used in the prototype. The 
operational technique that was used with the prototype was to simply let the GPS-UAV adjust 
to the ambient temperature. Prior to each flight the GPS-UAV was reset so that the self-
zeroing features would balance out the gyro offsets, which then did not change very much 
during a single flight. 

Rudder control 
The rudder control described in the previous manual in this series can be implemented in 
firmware as described in this section. 

First, clear the control flag that was used to generate the request to compute the rudder 
deflection: 

rudd_cntrl 
 bcf RUD_req 
 

Retrieve the filtered, unsigned yaw rate gyro value: 

 movff yawU , ARG1H 
 movff yawH , ARG1L 
 

Subtract the baseline yaw offset that was recorded during the power up self-calibration 
process: 

 movf yaw0H , w 
 subwf ARG1L , f 
 movf yaw0U , w 
 subwfb ARG1H , f 
 

Subtract the measured reference voltage deviation from the gyro in order to compensate for 
the fact that the A/D conversion is based on the power supply and the gyro output is based on 
a 2.5 constant reference voltage. This approximately compensates for variations in battery 
voltage. The deviation itself is the measured reference voltage minus the value recorded 
during power up, so the actual calculation is to add the baseline and subtract the present value. 
Adding the baseline is accomplished by: 

 movf ref0H , w 
 addwf ARG1L , f 
 movf ref0U , w 
 addwfc ARG1H , f 
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Subtract the reference voltage: 

 movf refH , w 
 subwf ARG1L , f 
 movf refU , w 
 subwfb ARG1H , f 
 

At this point, ARG1 contains the signed yaw rate. Next, multiply it by the appropriate 
feedback gain: 

 movff yawgain , ARG2L 
 call MULS2X1 
 

The result is the first of several terms in the total for the signed rudder deflection. Move it into 
the three-byte rudder deflection accumulator: 

 movff RES0 , ruddL 
 movff RES1 , ruddH 
 movff RES2 , ruddU 
 

If the state machine requests GPS steering, compute the GPS feedback term: 

 btfss GPS_steering 
 bra gps_is_off 
 
 movf actualDir, W  ; actual direction in W 
 subwf desiredDir, W ; subtracts actual F-W->W  
 movwf errorDir   ; save the signed difference 
 smult strngGain , errorDir ; GPS feedback gain 
 
; add into the rudder accumulator 
 movf PRODL , w 
 addwf ruddL , f 
 movf PRODH , w 
 addwfc ruddH , f 
 
; extend the sign of the 2 byte result into 3 bytes 
 movlw 0x0 
 btfsc PRODH , 7 
 movlw 0xFF 
 addwfc ruddU , f 
 
 bra gps_is_on  
 
gps_is_off 
 

Next, add the augmentation deflection to account for the tendency of the yaw gyro to cancel 
the manual turn commands. The theory is explained in the previous manual in this series. The 
term is equal to a gain multiplied by the rudder signal from the radio minus the rudder trim. 
This can be computed in terms of pulse widths: 

 clrf WREG 
 movwf ARG1H 
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 movff pwrudfilH , ARG1L 
  
 movf strngTrim , w 
 subwf ARG1L , f 
 clrf WREG 
 subwfb ARG1H , f 
 
 movff auggain , ARG2L 
 call MULS2X1 
 
 movf RES0 , w 
 addwf ruddL , f 
 movf RES1 , w 
 addwfc ruddH , f 
 movf RES2 , w 
 addwfc ruddU , f  
 
gps_is_on 
 

Convert from signed deflection into a PWM time period offset: 

 movlw 0x08 
 addwf ruddH , F 
 movlw 0x00 
 addwfc ruddU , F 
 

Note that the total PWM time period in this implementation is the sum of two portions, a 
fixed portion of approximately 1 millisecond, and a variable portion of from 0 to 
approximately 1 millisecond. At this point, we have the variable portion of the time period. 

Check upper byte for overflow: 

 movf ruddU , w 
 andlw 0xFF 
 bz  ruddU_normal 
 bn  rudd_min 
 movlw 0xFF 
 bra  rudd_trm_adjst 
 
ruddU_normal 
 

Check high byte for overflow: 

 movf ruddH, W  ; retrieve MSbyte of result 
 andlw 0xF0 ; check for overflow 
 bz rudd_normal ; no "clamping" needed 
 bn rudd_min ; clamp to minimum for 
 movlw 0xFF 
 bra rudd_trm_adjst 
 
rudd_min 
 clrf WREG 
 bra rudd_trm_adjst 
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rudd_normal 

Normal case: 

 movlw 0xF0 ; mask for upper 4 bits 
 andwf ruddL, W; move the upper 4 bits of ruddL into W 
 iorwf ruddH, W; "or" the lower 4 bits of ruddH into W 
 

At this point the result is in W, except the nibbles are swapped. 

 swapf WREG ; Swap the nibbles for the 4 bit shift. 
 

Here is where the manual trim from the radio comes in. Add the trim, test for overflow: 

rudd_trm_adjst 

First, convert rudder control from a time period back to a deflection. The astute reader may 
notice that some of the previous code and some of the following could be combined and 
simplified. What is here came out this way for historical reasons: 

 btg  WREG , 7 
 

Fetch the manually commanded rudder pulse width and convert it to a deflection: 

 movff pwrudin , strngTrimTemp 
 btg strngTrimTemp , 7 
 

Add the trim deflection to the commanded deflection to get the total deflection: 

 addwf strngTrimTemp , W 
 bov ruddtrim_ov ; overflow 
 

Convert from a deflection to a time period: 

 btg WREG , 7 
 

Waggle the rudder during startup: 

 addwf waggle , w 
 

Move the final result to the register used to set the duty cycle for the rudder PWM timer:  

 movwf PWM1_dc 
 return 
 

Overflow handling: 

ruddtrim_ov 
 btfss WREG , 7 
 bra  rudd_clamp_min 
 bra  rudd_clamp_max 
rudd_clamp_max 
 movlw 0xFF 
 movwf PWM1_dc 
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 return 
rudd_clamp_min 
 movlw 0x00 
 movwf PWM1_dc 
 return 

Elevator control 
Elevator control is very similar to the rudder control with a few exceptions: 

• The accelerometer is used instead of the GPS. 

• The elevator does not “waggle” during power up. 

• The elevator incorporates both mixing and gyro decoupling to account for effects 
due to banking. 

The mixing and gyro decoupling described in the second part of the series of manuals can be 
implemented as follows: 

Start with the unfiltered yaw rate gyro signal: 

 movff yawunfH , ARG1H 
 movff yawunfL , ARG1L  
 

Subtract the baseline yaw rate: 

 movf yaw0H , w 
 subwf ARG1L , f 
 movf yaw0U , w 
 subwfb ARG1H , f 
 

Add the baseline reference voltage: 

 movf ref0H , w 
 addwf ARG1L , f 
 movf ref0U , w 
 addwfc ARG1H , f 
 

Subtract the most recent measurement of the reference voltage: 

 movf refH , w 
 subwf ARG1L , f 
 movf refU , w 
 subwfb ARG1H , f 
 

At this point the offset has been removed from the unfiltered yaw rate, and it has been 
adjusted for drift in the supply voltage. Save the adjusted value: 

 movff ARG1L , yawadjL 
 movff ARG1H , yawadjH 
 

Retrieve the filtered yaw rate: 

 movff yawfilU , ARG2H 
 movff yawfilH , ARG2L 
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The blending of yaw rate into pitch rate is approximately proportional to the filtered yaw 
signal times the unfiltered yaw signal, because the bank angle is proportional to the filtered 
yaw signal: 

 call MULS2X2 
 

Filter the result once, because the actual mixing error also gets filtered: 

 movff yawsqU , outfilU 
 movff yawsqH , outfilH 
 movff yawsqL , outfilL 
 movff RES1 , infilL 
 movff RES2 , infilH 
 movlw .1 
 movwf taufil 
 call filter 
 movff outfilL , yawsqL 
 movff outfilH , yawsqH 
 movff outfilU , yawsqU 
 

At this point we have a term that is proportional to the error. Next we must account for the 
gain of the error by multiplying by the gyro mix gain: 

 movff yawsqU , ARG1H 
 movff yawsqH , ARG1L 
 movff mixgyr , ARG2L 
 call MULS2X1 
 movf RES0 , W 
 addwf elevL , F 
 movf RES1 , W 
 addwfc elevH , F  
 movf RES2 , W 
 addwfc elevU , F 
 

A similar process is used to compute mixing of rudder command into elevator command. The 
only difference is that the servo signals are used instead of the gyro signals: 

 movf PWM1_dc , W 
 movff strngTrim , strngTrimTemp 
 subwf strngTrimTemp , F 
 bov mixinover 
 
squareRudd 
 movff strngTrimTemp , ruddunfL 
 clrf ruddunfH 
 btfsc strngTrimTemp , 7 
 comf ruddunfH , f 
 
 smult ruddfilH , strngTrimTemp 
 movff PRODL , ARG1L 
 movff PRODH , ARG1H 
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Multiply by mixing gain and add into the total: 

 movff mixgain , ARG2L 
 call MULS2X1 
 movf RES1 , W 
 addwf elevL , F 
 movf RES2 , W 
 addwfc elevH , F 
 movlw 0x00 
 btfsc RES2 , 7 
 movlw 0xFF 
 addwfc elevU , F 

Pulse width modulation servo control 
The most popular analog servos respond to pulse width modulation. Because several channels 
are time-division multiplexed over a single radio channel, the pulse width is narrow compared 
with the repeat period. Pulse width is on the order of 1 to 2 milliseconds, repeated 
approximately every 20 milliseconds. The servos include “pulse-stretchers” internally to 
convert the 1 to 2 milliseconds to something that can be used to assert control between pulses. 
For that reason, it will not do you any good to send pulses to the servos any faster that about 
once every 20 milliseconds. Any faster than that and you will cause the “H-bridge” in the 
servo to actually short the power supply. 

The servos move to the approximate center in response to a 1.5 millisecond pulse and move to 
the approximate extremes of motion in either direction in response to 1 or 2 millisecond 
pulses. To control the servos you need to map your internal representation of servo deflection 
to pulses with a range of 1 to 2 milliseconds repeated approximately every 20 milliseconds. 

This was accomplished in the prototype firmware described here with the aid of the task 
structure described in one of the previous sections. In particular, there are two tasks that were 
used to construct the pulses. Each task repeats approximately every 20 milliseconds to match 
the desired repetition rate. The first task simply raises the control line to the servo for 
approximately 1 millisecond. The second task generates a partial pulse from 0 to 1 
milliseconds by loading the PWM control registers with appropriate values. The 18F2520 has 
a 10 bit PWM control register. For simplicity, only 8 bits were used in the prototype 
firmware, it was found that control was smooth enough at that resolution. 

The following task generates a 1 millisecond portion of a pulse on channel 1: 

PWM1_full_pulse 
 
 movlw 0xFF 
 movwf CCPR1L 
 bsf CCP1CON,CCP1X  
 bsf CCP1CON,CCP1Y 
 

The following task, when executed 1 millisecond after the previous task, generates a partial 
pulse, taking advantage of the fact that CCP1X and Y are already set: 

PWM1_pulse 
 movff PWM1_dc , CCPR1L  
 

After the complete pulse is generated, the PWM control must be cleared to prevent more 
pulses from going out: 
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PWM1_clear 
 clrf CCPR1L 
 bcf CCP1CON,CCP1X 
 bcf CCP1CON,CCP1Y 
 

Complete PWM control of the first PWM channel consists of the execution of 
PWM1_full_pulse, pulse, and clear, on three sequential tasks. The PWM control of the second 
channel is similar. 

The 8 bit variable PWM1_dc (“dc” means “duty cycle”) controls the total pulse width. The 
actual pulse width in milliseconds is approximately equal to 1 plus PWM1_dc/256. Therefore, 
to convert a computed signed 8 bit desired servo deflection value into a “dc” value, simply 
toggle the most significant bit. 

Navigation 
Navigation in the prototype firmware is very simple, based on aiming toward a target point. 
The desired direction is the direction of the vector from present location to the target point. 
An interesting elegant side effect of this algorithm is that once the target point is reached, the 
ensuing trajectory is a circle around the target point, with an error between the actual and 
desired direction of 90 degrees. The trajectory is quite stable. The radius of the circle depends 
on the speed and the feedback gains. 

Here is what the code looks like: 

nav_circle 

Check to see if the control is in the circling mode:  

 btfss circlingM 
 return 
 

Retrieve the present location, xyWorldLH, and store in the temporary variable XY_rectLH: 

 movff  xWorldH,X_rectH 
 movff  xWorldL,X_rectL 
 movff  yWorldH,Y_rectH 
 movff  yWorldL,Y_rectL 
 

Subtract the target coordinate, xyFocusLH, from the present location. It would have been 
more convenient to do it the other way around, but this code evolved from another piece of 
code, so it just happened to come out this way: 

 movf xFocusL,w 
 subwf  X_rectL,f 
 movf  xFocusH,w 
 subwfb  X_rectH,f 
 movf  yFocusL,w 
 subwf  Y_rectL,f 
 movf  yFocusH,w 
 subwfb  Y_rectH,f 
 

Convert from rectangular to polar coordinates. The angle of the vector is returned in THETA. 
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 call  rect_to_polar 
 movf  THETA, w 
 

Flip the sign of the angle, because we actually used the negative of the vector we should have: 

 addlw  0x80 ; come home angle, inward 
 

The result is the direction that we should be going. Setting desiredDir to this value will cause 
the rudder feedback loop to use gyro yaw information and GPS heading information to seek to 
head towards that direction: 

 movwf desiredDir  
 return 

Math 
The entire prototype firmware was written without requiring any division. All computations 
were performed with fixed point arithmetic. 

A math library was written to perform the needed math computations. In addition to multi-
byte signed and unsigned multiplication operations, the following three routines were 
particularly useful: 

• sine_lookup, cosine_lookup – A very efficient method to compute the sine or cosine 
using a lookup table.  

• rect_to_polar – An efficient method for converting from rectangular to polar 
coordinates based on a technique called Cordic arithmetic, the same technique that is 
used in hand calculators to perform the same conversion. 

The sine and the cosine lookup are similar. The following is an implementation of the sine 
lookup. The angle is a signed 8 bit value in THETA. The sine is fetched from a 256 entry 
table of 2 bytes per entry and returned in the variables SINEL and SINEH: 

sine_lookup 

Load the table pointer with the address of the sine table using a previously defined macro to 
do that: 

 ld_tblptr sine_table 
 

Add THETA two times to the table pointer: 

 movf THETA , W 
 addwf TBLPTRL , F 
 movlw 0x0 
 addwfc TBLPTRH , F 
 
 movf THETA , W 
 addwf TBLPTRL , F 
 movlw 0x0 
 addwfc TBLPTRH , F 
 

The table pointer now points to the desired table entry, which can now be fetched using the 
table read and increment instruction: 
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 tblrd*+ 
 movff TABLAT , SINEL 
 tblrd*+ 
 movff TABLAT , SINEH 
 return 
 

The routine rect_to_polar converts from rectangular to polar coordinates by performing a 
binary search one bit at a time on the 8 bit resultant angle. At each step of the search, one bit 
of the angle is determined based on the sign of the y coordinate and the vector in rectangular 
coordinates is rotated toward the x axis. When the computation is complete the y coordinate is 
zero, the x coordinate is the magnitude of the vector, and the polar angle is determined. Here 
is an implementation: 

rect_to_polar 

The variable theta_temp will be used accumulate the polar angle. Initialize it to zero:  

 clrf theta_temp 
 

The variable delta_theta is the amount of rotation. It starts at the equivalent of a quarter of a 
full circle: 

 movlw B'01000000' 
 movwf delta_theta 
 

The following cordic step is repeated until the computation is complete: 

cordic_step 

Rotate clockwise if the sign of  Y is positive, else rotate counterclockwise. Add or subtract 
delta_theta from the accumulated value of the polar angle accordingly: 

 movff delta_theta , THETA 
 btfss Y_rectH , 7 
 negf THETA 
 
 rcall ROTATE ; perform the rotation 
 movf THETA , W 
 addwf theta_temp , F 
 

Divide the angle increment by 2 to proceed to the next bit in the binary search: 

 rrncf delta_theta 
 

Keep going until we are done: 

 btfss delta_theta , 7 
 bra cordic_step 
 

Compute the least significant bit of the result: 

 btfss Y_rectH , 7 
 decf theta_temp , F 
 movff theta_temp, THETA 
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We actually computed the negative of what we want, so we must negate the result: 

 negf THETA 
 return 
 

The routine ROTATE uses sine and cosine lookup to rotate the vector XY_rectLH by 
THETA: 

ROTATE 

Compute both the sine and the cosine of THETA: 

 rcall TRIG_LOOKUP 
 

Multiply cosine times X, load into X_temp: 

 movff COSINEH , ARG1H 
 movff COSINEL , ARG1L 
 movff X_rectH , ARG2H 
 movff X_rectL , ARG2L 
 rcall MULS2X2ROT 
 movff RES2 , X_tempH 
 movff RES1 , X_tempL 
 

Multiply sine times X, load into Y_temp: 

 movff SINEH , ARG1H 
 movff SINEL , ARG1L 
 rcall MULS2X2ROT 
 movff RES2 , Y_tempH 
 movff RES1 , Y_tempL 
 

Subtract sine times Y from X_temp: 

 movff Y_rectH , ARG2H 
 movff Y_rectL , ARG2L 
 rcall MULS2X2ROT 
 movf RES1 , W 
 subwf X_tempL , F 
 movf RES2 , W 
 subwfb X_tempH , F 
 

Add cosine times X to Y_temp: 

 movff COSINEH , ARG1H 
 movff COSINEL , ARG1L 
 rcall MULS2X2ROT 
 movf RES1 , W 
 addwf Y_tempL , F 
 movf RES2 , W 
 addwfc Y_tempH , F 
 

Copy the temporary back out to the vector: 

 movff X_tempH , X_rectH 



Development suggestions  3/18/2007 
 
 

ET301 GPS-UAV  33 
 

 

 movff X_tempL , X_rectL 
 movff Y_tempH , Y_rectH 
 movff Y_tempL , Y_rectL 

 return 

Trim, offsets 
You will want to give some thought to control surface trim and sensor offsets. In the 
prototype firmware, trim and offsets were handled as follows: 

• The offsets of the gyros and accelerometers were measured during a self-calibration 
process during power up, to give the best chance of removing them later. The way 
this was done was by simply snap-shotting the filtered values after the filters had 
sufficient time to reach steady state. It was found that there was practically zero 
residual gyro drift, at least not enough to affect the controls. Without this self-
calibration process the resting voltage output of the gyros and accelerometers are 
uncertain enough to result in considerable bias. 

• During the power up self-calibration process, the angle of the accelerometer was 
recorded as a baseline for the pitch angle calculations, compensating for any slight 
angle in the mounting of the board. 

• The rudder and elevator positions were recorded during the power up sequence, and 
served as baselines for any computation that required the difference between joystick 
positions and neutral settings, such as the computations involved in computer-
augmented manual control. The joystick positions were always included as terms in 
the control of the rudder and elevator so that the trim could be continuously adjusted 
throughout the course of the flight. 

Installation 
During debugging of your firmware it is simplest to separate your electronics from your 
plane. Simply connect everything up, including some spare servos, out in the open so that you 
can see the LEDs and have easy access to connections and switches. You should have some 
idea on how you intend to mount the GPS-UAV in your plane, though, so that you can do 
testing and debugging with the GPS-UAV pointing in the same direction as it will be in your 
plane. 

At some point you will want to do some debugging with your actual plane. You still may 
want to be able to see the LEDs, so you might want to do this with the wing off, with a partial 
installation. This is particularly easy to do with a sailplane such as the gentle lady. 

During debugging, you may or may not decide to install the GPS backup battery. It does 
result in faster satellite acquisition, but if you forget and leave the battery installed for several 
weeks, it will become depleted. It is best to take it out when you are not using it. 

There will come a time, of course, when you will want to do some flying, so you will want to 
final installation of the GPS-UAV into your plane. Here are some thoughts and tips: 

• Be careful during installation not to twist or bend the GPS-UAV board. The author 
did this once, and cracked some traces. It is best to remove other components, if they 
are in the way. 

• The author used both internal and external installations. In particular, the external 
installation was used in the early stages, when the author’s hand-assembled 
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breadboard would not fit inside his Gentle Lady, and was simply attached to the nose 
with rubber bands. This approach is NOT recommended. Eventually, the author’s 
board was destroyed by the spinning propeller during an aborted takeoff. The GPS-
UAV should fit inside most sailplanes, and that is the recommended place to put it. 

• It is recommended to mount the GPS-UAV with the components facing up. It does 
not matter whether the antenna connector points toward the nose or toward the tail of 
the plane. Either will work just fine, though you will have to take account of which 
orientation you use, because it will reverse the sense of the pitch gyro and the pitch 
accelerometers. You will probably want to select an orientation that simplifies 
connections. The author mounted his GPS-UAV in his Gentle Lady in the 
compartment under the wing, with the connector for the antenna facing the tail, with 
the antenna in the same compartment. 

• Foam rubber around the GPS-UAV and around the antenna is recommended. 

• Be careful not to flex the antenna wire too much, particularly where it connects to 
the antenna. The author broke a couple of wires this way. It is recommended that you 
mechanically reinforce the connection such as with a small dab of epoxy. 

• If you are concerned about reducing total weight, you might want to use lightweight 
servos and battery. In the end, the author used a regular sized battery and lightweight 
servos. 

• Connect the battery to the radio receiver, through a power switch if you want, in the 
usual fashion. 

• Connect the servos to the outputs of the GPS-UAV. Connect three channels from the 
radio to the inputs. 

• You might want to use servo extension connectors between the GPS-UAV and your 
radio. You will probably be able to connect your servos directly to the GPS-UAV. 

• The GPS-UAV servo connectors may or may not connect directly to your servos and 
radio if there is a tab on your servo connectors. You may wish to trim away the tabs, 
or you may want to unsolder the connector wires and make your own from your 
favorite servo connector extension cables. 

Flying 
Finally, some flying suggestions, assuming that you are using a sailplane and the test 
firmware that is available on the Spark Fun website: 

• Make sure you have the rudder and elevator trims set on the transmitter for where 
you want them. The test firmware records the trim positions during power up. Trim 
can be adjusted during initialization of the GPS if you do it quickly before 
initialization is complete, but you might want to do it before initialization, or you 
might want to force a re-initialization after setting the trims to make sure they are 
recorded. 

• You may or may not wish to use the GPS battery backup. Using it will reduce the 
amount of time it takes for the GPS receiver to become active. 

• Before you turn on the GPS-UAV, make sure the plane is level and at the location 
you want to record as the “return-home” point. The test firmware records the pitch 
attitude during power up and uses it as an offset in the pitch measurement. Make sure 
the third, command channel, typically the throttle, is set for full off, with full off 
trim. 
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• During the final stages of initialization, the test firmware will wag the rudder every 
two seconds to signal that the GPS is active and that the initialization is completing. 
If the wagging does not occur, try cycling the power. If that does not work, take the 
wing off and make sure that the GPS led is flashing to indicate the GPS is active. 

• Make sure that manual control of rudder and elevator are working normally, 
particularly that they move in the correct direction. 

• Perform your usual radio range check. 

• Place the controls in the partially augmented mode, typically by advancing throttle to 
mid position, and check the operation of accelerometers and gyros by pitching and 
yawing the plane and then see if the rudder and elevator respond appropriately, 
particularly if they move in the correct direction. 

• Shut the transmitter off. The rudder should respond seemly at random, because the 
plane is at the “return-home” point. Pick up the plane and walk it some distance 
away. Turn around and walk back toward the “return-home” point. Manually yaw 
the plane and the direction that you are walking in response to the rudder position to 
see if the “return-home” function of the test firmware appears to working properly. 

• Turn the transmitter back on and set the controls for manual. Make sure that manual 
control is still working. You can make small trim adjustments if you want. 

• Launch your plane under manual control, and maintain manual control until you 
reach maximum altitude. 

• If you are using the test firmware, experiment with augmented control, circling 
control, and return-home control. If you are using the throttle to select the control 
mode, manual control is throttle full off. Augmented control is selected with a mid 
range throttle setting with the amount of augmentation proportional to the setting. 
Circling control is selected by full throttle and full throttle trim. 

• Under augmented control, the test firmware will use the gyros and accelerometers to 
stabilize the plane, yet at the same time will respond to manual elevator and rudder 
controls. The “feel” of the plane will be about the same as it is in manual control, 
except the tendency of the plane to respond to wind gusts will be greatly reduced, as 
well as any tendency for the plane to “porpoise” will be eliminated. In augmented 
mode, it should be possible to easily fly the plane close to its stall speed. 

• Under circling control, the test firmware will record the longitude and latitude of the 
position at the time the circling control is engaged, and will result in circling control 
around that location. If there is any sort of lift or thermals, this will “lock” the plane 
into the lift. You can still adjust the elevator trim to control altitude. 

• If you shut the transmitter off, the plane should respond in a few seconds by turning 
back toward its initialization location, and fly in a straight line towards it. After 
passing over it, the plane will circle that location. If you shut the transmitter off, do 
not forget to turn it back on, especially if the “return-home” function becomes 
unstable. Do not panic, but do remember to turn the transmitter back on so that you 
can resume manual control. 

• Make careful observations of your plane in flight so that you can make refinements 
in the controls afterwards. If something does not seem to be working right, put the 
controls in manual mode and land the plane. Then, manually walk it around, 
observing rudder and elevator, to understand what is going on. 


