PG-31 GPS Engine Board

User's Manual & Reference Guide

www.laipac.com

Laipac Technology,Inc. 55 West Beaver Creek Rd., Unit 1, Richmond Hill, Ontario, L4B 1K5 Canada Tel:1-905-762-1228 Fax:1-905-763-1737

© 2005 by Laipac Technology, Inc. All rights reserved – The Specifications and information regarding the products in this manual are subjected to change without notice. All statements, information, and recommendations in this manual are believed to be accurate but are represented without warranty of any kind, express or implied, users must take full responsibility for their applications of any Products - Reproduction of the contents of this manual, in whole or in part, without written permission of Laipac Technology, Inc. is prohibited.

1. Introduction to PG GPS series	4
PG-31 GPS Receiver	4
Quick View on Specifications	4
2. Specifications	5
PG-31	5
3. Interface Description and Options	6
Physical Diagram	6
Digital Interface Connector pin description	6
PG-31	6
Option Descriptions	8
TricklePower Option	8
RS-232 I/O Option	9
4. SiRF Binary Protocol Specification	9
Protocol Layers	9
Transport Message	9
Transport	9
Message Validation	9
Payload Length	9
Payload Data	9 10
Checksum	10
Input Messages for SiRF Binary Protocol	10
Initialize Data Source - Message I.D. 128	11
Switch To NMEA Protocol - Message I.D. 129	11
Set Almanac – Message I.D. 130	12
Software Version – Message I.D. 132	13
Set DGPS Source – Message I.D. 133.	13
Set Main Serial Port - Message I.D. 134	15
Mode Control - Message I.D. 136	15
DOP Mask Control - Message I.D. 137	16
DGPS Control - Message I.D. 138	16
Elevation Mask – Message I.D. 139	17
Power Mask - Message I.D. 140	17
Editing Residual- Message I.D. 141	17
Steady State Detection - Message I.D. 142	17
Static Navigation– Message I.D. 143	17
Poll Clock Status – Message I.D. 144	18
Set DGPS Serial Port - Message I.D. 145	18
Poll Almanac - Message I.D. 146	18
Poll Ephemeris - Message I.D. 147	19
Flash Update - Message I.D. 148	19
Set Ephemeris - Message I.D. 149	20
Switch Operating Modes - Message I.D. 150	20
Set TricklePower Parameters - Message I.D. 151	21
Computation of Duty Cycle and On Time	21
Push-to-Fix	22
Poll Navigation Parameters - Message I.D. 152	22 22
Set UART Configuration – Message I.D.165	22
Low Power Acquisition parameters - Message I.D. 167 Output Messages for SiRF Binary Protocol	24 24
Measure Navigation Data Out - Message I.D. 2	25
Measured Tracker Data Out - Message I.D. 4	26
Raw Tracker Data Out - Message I.D. 5	29
naw macker bata out message i.b. s	<u> </u>

Software Version String (Response to Poll) - Message I.D. 6	28
Response: Clock Status Data - Message I.D. 7	28
50 BPS Data – Message I.D. 8	28
CPU Throughput – Message I.D. 9	29
Command Acknowledgment – Message I.D. 11	29
Command Acknowledgment – Message I.D. 12	30
Visible List – Message I.D. 13	30
Almanac Data - Message I.D. 14	31
Ephemeris Data (Response to Poll) – Message I.D. 15	31
Ok To Send - Message I.D. 18.	31
Navigation Parameters (Response to Poll) – Message I.D. 19.	32
Nav. Lib. Measurement Data – Message I.D.28	33
Nav. Lib. DGPS Data – Message I.D.29	35
Nav. Lib. SV State Data – Message I.D.30	36
Nav. Lib. Initialization Data – Message I.D.31	37
Development Data – Message I.D. 255	37
Additional Information	38
TricklePower Operation in DGPS Mode	38
GPS Week Reporting	38
NMEA Protocol in TricklePower Mode	38
5. NMEA Input/Output Messages	39
NMEA Output Messages	39
GGA — Global Positioning System Fixed Data	39
GLL— Geographic Position - Latitude/Longitude	39
GSA— GNSS DOP and Active Satellites	40
	40 41
GSA— GNSS DOP and Active Satellites	
GSA— GNSS DOP and Active Satellites GSV— GNSS Satellites in View RMC— Recommended Minimum Specific GNSS Data	41
GSA— GNSS DOP and Active Satellites GSV— GNSS Satellites in View RMC— Recommended Minimum Specific GNSS Data VTG— Course Over Ground and Ground Speed	41 41
GSA— GNSS DOP and Active Satellites GSV— GNSS Satellites in View RMC— Recommended Minimum Specific GNSS Data VTG— Course Over Ground and Ground Speed SiRF Proprietary NMEA Input Messages	41 41 42
GSA— GNSS DOP and Active Satellites GSV— GNSS Satellites in View RMC— Recommended Minimum Specific GNSS Data VTG— Course Over Ground and Ground Speed SiRF Proprietary NMEA Input Messages Transport Message	41 41 42 42
GSA— GNSS DOP and Active Satellites GSV— GNSS Satellites in View RMC— Recommended Minimum Specific GNSS Data VTG— Course Over Ground and Ground Speed SiRF Proprietary NMEA Input Messages	41 41 42 42 42 42
GSA— GNSS DOP and Active Satellites GSV— GNSS Satellites in View RMC— Recommended Minimum Specific GNSS Data VTG— Course Over Ground and Ground Speed SiRF Proprietary NMEA Input Messages Transport Message SiRF NMEA Input Messages	41 41 42 42 42 42 43
GSA— GNSS DOP and Active Satellites GSV— GNSS Satellites in View RMC— Recommended Minimum Specific GNSS Data VTG— Course Over Ground and Ground Speed SiRF Proprietary NMEA Input Messages Transport Message SiRF NMEA Input Messages Set Serial Port	41 41 42 42 42 42 43 43
GSA— GNSS DOP and Active Satellites GSV— GNSS Satellites in View RMC— Recommended Minimum Specific GNSS Data VTG— Course Over Ground and Ground Speed SiRF Proprietary NMEA Input Messages Transport Message SiRF NMEA Input Messages Set Serial Port Navigation Initialization Set DGPS Port	41 41 42 42 42 42 43 43 43 43
GSA— GNSS DOP and Active Satellites GSV— GNSS Satellites in View RMC— Recommended Minimum Specific GNSS Data VTG— Course Over Ground and Ground Speed SiRF Proprietary NMEA Input Messages Transport Message SiRF NMEA Input Messages Set Serial Port Navigation Initialization	41 41 42 42 42 42 43 43 43 43 43 44
GSA— GNSS DOP and Active Satellites GSV— GNSS Satellites in View RMC— Recommended Minimum Specific GNSS Data VTG— Course Over Ground and Ground Speed SiRF Proprietary NMEA Input Messages Transport Message SiRF NMEA Input Messages Set Serial Port Navigation Initialization Set DGPS Port Query/Rate Control	41 41 42 42 42 43 43 43 43 43 44 44

Chapter 1 Introduction to PG-31 GPS Receiver

PG-31 GPS Receiver Module

Features

- SiRF Star II/LP (low power) chipset with embedded ARM7TDMI CPU available for customized applications through firmware
- 12 parallel satellite-tracking channels for fast acquisition and re-acquisition
- Compact size (only 30.6*26*9.8mm, includes RF shield and connector)
- High speed signal acquisition using 1920 time/frequency search channels
- Built-in WAAS/EGNOS demodulator
- Low power consumption with Advanced TricklePower and Push-To-Fix mode
- Optional Rechargeable battery for memory and RTC backup as well as fast Time to First Fix (TTFF)
- Support NMEA-0183 v2.2 data protocol and SiRF binary code
- Enhanced algorithms such as SnapLock and SnapStart provide superior navigation performance in urban, canyon, and foliage covered environments
- For Car Navigation, Marine Navigation, Fleet Management, AVL and Location-Based Services, Auto Pilot, Personal Navigation, Touring Devices, and general tracking devices/systems and Mapping applications

Specification overview

Snap Start < 3 sec (at < 25 minutes off period) Hot Start 8 sec (typical) Warm Start 38 sec (typical) Cold Start 45 sec (typical) Satellite Re-acquisition 100 ms Time Accuracy 1 us Channels 12 satellites Position Accuracy 25m CEP without SA Receiver L1, C/A code Protocol NMEA-0183 V2.2, 4800, 8, N, 1, GGA, GSA, GSV, MC (VTG , GLL, RMS option) or SiRF Binary Maximum Altitude < 18,000 m (60,000 feet) Maximum Velocity < 515 m/s (1000knots) Max. Update Rate 1 Hz **RF Connector MMCX** Interface Interface connector 20-pin (2X10) low profile socket, 1mm **Dimension** 30.6mm(L)x26mm(W)x9.8mm(H) Weiaht 8a Firmware Upgrade Flash memory for programming software available **Time Mark** Output 1 pulse/sec, aligned with GPS time +/ -0.1 usec Operating Temperature -40°C to +85°C Storage Temperature -45°C to +100°C **Operating Humidity** 5% to 95%, No Condensing Electrical specifications: Less than 70mA (without antenna) Output terminal and definition: Interface connector 20-pin (2X10) low profile socket, 1mm

Chapter 2 Specifications

PG-31

1. Electrical Characteristics

1.1 General	Frequency C/A code Channels	L1,1575.42MHz 1.023 MHz chip rate 12
1.2 Accuracy	Position Velocity Time	25 meters CEP without SA 0.1 meters/second, without SA 1 microsecond synchronized to GPS time
1.3 DGPS Accuracy	Position Velocity	1 to 5 meters, typical 0.05 meters/second, typical
1.4 Datum	WGS-84	
1.5 Acquisition Rate	Re-acquisition Cold start Warm start Hot start	0.1 sec., average 45 sec., average 38 sec., average 8 sec., average
1.6 Dynamic Condition	Altitude Velocity Acceleration Jerk	18,000 meters (60,000 Feet) max. 515 meters/sec. (1000 Knots) max. 4 g., max. 20 meters/sec. ³ max.
1.7 Power	Main Power	$3.3 \text{ Vdc} \pm 10\%$
1.8 External Reset	Supply Current, continuous Supply Current, TricklePower mc Backup Power Backup Current Active low input	~ 70 mA ~ 10 mA de +2.5V to 3.1V 10µA typical
1.9 Serial Port	Electrical interfa	ce Two full duplex serial communication (TTL
	Protocol	level or EIA RS-232 level - optional) Design-in binary and NMEA-0183,
	NMEA output	Version 2.20 with a baud rate selection GGA, GLL, GSA, GSV, RMC, and VTG (on customer request) Default six NMEA (Baud Rate : 4800)
	DGPS protocol	RTCM SC-104, version 2.00, type 1,2 and 9
1.10 Time-1PPS Pulse	Level Pulse duration Time reference Measurements	WAAS Supported TTL 100 ms positive edge Aligned to GPS second, ± 1µ sec.
2. Environmental Characteri		$\pi_{\text{inglice}} = 0 = 0 = 0 = 0 = 0 = 0 = 0$
2.1 Temperature	Operating range Storage range	-40°C to +85°C -45°C to +100°C
2.2 Physical characteristics	Dimension	30.6mm(L)x26mm(w)x9.8mm(H)

	Antenna connector	MMCX type
	Interface connector	20-pin (2X10) low profile socket, 1mm
3. Antenna	Passive or Active Ant	tenna
4. CPU Throughput	GPS Signal Processo Software	r & Integrated 16-bit,50 MHz ARM7TDMI CPU core & 1M DRAM memory 90% CPU throughput available for user tasks
5. RF Interference	Assembled with fully most interference	shielded case design to withstand the

Chapter 3 Inter face and Options

This chapter describes the pin definitions of the interface connector and flexible options of the PG-31.

Physical Diagram

Pin Definition of the Digital Interface Connector PG-31

Table 3-1 Pin List of the 20 pin Digital Interface Connector for the PG-31			
Pin #	Name	Description	
1	VCC	+3.3V +- 10% DC Power Input	
2	ТХА	Host Serial Data Output A	
3	RXA	Host Serial Data Input A	
4	ТХВ	Aux. Serial Data Output B	
5	RXB	Aux. Serial Data Input B (DGPS)	
6	TIMEMARK	1PPS Time Mark Output	
7	BAT	Battery Backup Power Input	
8	GPIOA	General Purpose Input/Output	
9	RESET	Reset, Active Low	
10	RESERVED	Reserved	

11	GROUND	Ground	
12	BOOTSEL	Internal/External Boot selective	
13	GPIOB	General Purpose Input/Output	
14	GPIOC	General Purpose Input/Output	
15	GPIOD	General Purpose Input/Output	
16	GPIOE	General Purpose Input/Output	
17	GPIOF	General Purpose Input/Output	
18	GPIOG	General Purpose Input/Output	
19	GPIOH	General Purpose Input/Output	
20	GROUND	Ground	

*The Host Serial Data I/O is normally a CMOS logical high +3.3VDC. *The Host Serial Data Input A (Pin# 3) should be set to high (ex.100K Ω serial to +Vcc) when not being used.

vcc

3.3 Vdc \pm 10% with a continuous Supply Current of ~ 70 mA. Supply Current TricklePower mode ~ 10 mA (undetermined)

ТХА

This is the main transmit channel and is used to output navigation and measurement data. The Output is a TTL Level: Voh 2.4V, Vol 0.4V; Ioh=Iol=2mA.

RXA

This is the main receiver channel and is used by the PG-31 to receive software commands. Receiver is TTL Level; Vih 0.7*VCC; Vil 0.3*VCC

тхв

For user's application (not currently used).

RXB

This is the auxiliary receive channel and is used to input differential corrections to the PG-31 board to enable DGPS navigation. Receiver is TTL Level; Vih 0.7*VCC; Vil 0.3*VCC.

TIMEMARK

This pin provides a one pulse-per-second output from the TMP board which is synchronized to GPS time. This is not available in TricklePower mode.

BAT

This is the battery backup input that powers the SRAM and RTC when the main power is removed. Typical current draw is 10uA. Without an external backup battery or supercap, PG-31 will execute a cold start after every power on. To achieve the faster start-up offered by a hot or warm start, either a battery backup must be connected or a supercap installed. To maximize battery life, the battery voltage should not exceed the supply voltage and should be between 2.5V and 3.1V.

GPIOA - GPIOH

These pins are connected to the digital interface connector for custom applications

RESET

This pin provides an active-low reset input to the PG-31 board. It causes the PG-31 board to reset and start searching for satellites. If not utilized, it may be left open.

GND

GND provides the ground for the PG-31 board.

BOOTSEL

Internal/External Boot select. For normal internal boot mode, this pin is "High". For normal operation, the user must leave this pin disconnected.

Option Descriptions

TricklePower Option

The design of the PG-31 includes all the functionality necessary to implement the TricklePower mode. In this mode, the lowest average power dissipation is achieved by powering down the board (after a position is determined) in such a manner that when it is turned back on it can re-compute a position fix in the shortest amount of time. The standard TricklePower operates in three states:

(1) Tracking State

In this state, the board is fully powered, tracking satellites and gathering data. The time in this state is selectable via the SiRF demo software from 200-900ms. After this time the measurements to calculate a position are ready.

(2) CPU State

In this state, the GRF1/LX (RF IC) has been turned off (by the control signal) removing the clock to the GSP1/LX (Baseband ASIC). Without a clock, the GSP1/LX is effectively powered down (although the RTC keeps running). The CPU is kept running to process the GPS data until a position fix is determined and the result has been transmitted by the serial communication interface.

(3) Trickle State

In this state, the CPU is in a low power standby state and the receiver clocks are off with only the RTC clock active. After a set amount of time, the RTC generates an NMI signal to wakeup the Hitachi microprocessor and set the receiver back to the tracking state. The default time for each TricklePower state (and the approximate current consumed) is shown below in Table 3-3. For example, with the TricklePower duty cycle at 20% the average receiver power dissipation is approximately 165mW (50mA @ 3.3v) while maintaining a one-second update rate.

Table 3-2 TricklePower Consumption			
State	Time	+3.3V Current	
Tracking	220mS	145mA	
CPU	360mS	40mA	
Trickle	420mS	0.5mA	
Note: Table 3	-2 does not	include the external antenna power consumption.	

RS-232 I/O Option

PG-31 allows for the populating of an RS-232 driver. Customers can request the I/O to be TTL (5V) or RS-232 (12V).

Chapter 4 SiRF Binary Protocol Specification

The serial communication protocol is designed to include:

- Reliable transport of messages
- Ease of implementation
- Efficient implementation
- Independent from payload

Protocol Layers

Transport Message

Start	Payload		Message	End
Sequence	Length Payload	Payload	Checksum	Sequence
0xA0 ¹ ,	Two-bytes	Up to 2 ¹⁰ –1	Two-bytes	0xB0,
0xA2	(15-bits)	(<1023)	(15-bits)	0xB3
1. 0xYY denotes a	a hexadecimal byte	value. 0xA0 equa	ls 160.	•

Transport

The transport layer of the protocol encapsulates a GPS message in two start characters and two stop characters. The values are chosen to be easily identifiable and unlikely to occur frequently in the data. In addition, the transport layer prefixes the message with a two-byte (15-bit) message length and a two-byte (15-bit) checksum. The values of the start and stop characters and the choice of a 15-bit value for length and checksum are designed such that both message length and checksum can not alias with either the stop or start codes.

Message Validation

The validation layer is a part of the transport layer, but operates independently. The byte count refers to the payload byte length. Likewise, the checksum is a sum on the payload.

Payload Length

The payload length is transmitted high byte first followed by the low byte.

High Byte	Low Byte
< 0x7F	Any value

Even though the protocol has a maximum length of (2¹⁵-1) bytes, practical considerations require the SiRF GPS module implementation to limit this value to a smaller number. Likewise, the SiRF receiving programs (e.g., SiRFdemo) may also limit the actual size to something less than this maximum.

Payload Data

The payload data follows the payload length. It contains the number of bytes specified by the payload length. The payload data may contain any 8-bit value. Where multibyte values are in the payload data neither the alignment nor the byte order are defined as part of the transport although SiRF payloads will use the big-endian convention.

Checksum

The checksum is transmitted high order byte first followed by the low byte. This is the so-called big-endian convention.

High Byte	Low Byte
< 0x7F	Any value

The checksum is a 15-bit checksum of the bytes in the payload data. The following pseudo code defines the algorithm used.

Let 'message' be the array of bytes to be sent.

Let 'msgLen' be the number of bytes in the message array to be transmitted.

index = first checkSum = 0 while index < msgLen checkSum = checkSum + message[index] checkSum = checkSum AND (2¹⁵-1)

Input Messages for SiRF Binary Protocol

Note – All input messages are sent in **BINARY** format. Table 4-1 lists the message list for the SiRF input messages.

Table 4-1 SiRF N	/lessages - In	put Message List
Hex	ASCII	Name
0 x 80	128	Initialize Data Source
0 x 81	129	Switch to NMEA Protocol
0 x 82	130	Set Almanac (upload)
0 x 84	132	Software Version (Poll)
0 x 85	133	Set DGPS Source Control
0 x 86	134	Set Main Serial Port
0 x 88	136	Mode Control
0 x 89	137	DOP Mask Control
0 x 8A	138	DGPS Mode
0 x 8B	139	Elevation Mask
0 x 8C	140	Power Mask
0 x 8D	141	Editing Residual (Not implemented)
0 x 8E	142	Steady-State Detection (Not implemented)
0 x 8F	143	Static Navigation
0 x 90	144	Poll Clock Status
0 x 91	145	Set DGPS Serial Port
0 x 92	146	Poll Almanac
0 x 93	147	Poll Ephemeris
0 x 94	148	Flash Update
0 x 95	149	Set Ephemeris (upload)
0 x 96	150	Switch Operating Mode
0 x 97	151	Set TricklePower Parameters

0 x 98	152	Poll Navigation Parameters	
0 x A5	165	Set UART Configuration	
0 x A6	166	Set Message Rate	
0 x A7	167	Low Power Acquisition Parameters	

Initialize Data Source - Message I.D. 128

Table 4-2 contains the input values for the following example:

Warm start the receiver with the following initialization data: ECEF XYZ (-2686727 m, -4304282 m, 3851642 m), Clock Offset (75,000 Hz), Time of Week (86,400 s), Week Number (924), and Channels (12). Raw track data enabled, Debug data enabled.

Example:

A0A20019— Start Sequence and Payload Length

80FFD700F9FFBE5266003AC57A000124F80083D600039C0C33-Payload 0A91B0B3— Message Checksum and End Sequence

		Binary	Binary (Hex)		
Name	Bytes	Scale	Example	Units	Description
Message ID	1		80		ASCII 128
ECEF X	4		FFD700F	meters	
ECEF Y	4		FFBE5266	meters	
ECEF Z	4		003AC57A	meters	
Clock Offset	4		000124F8	Hz	
Time of Week	4	*100	0083D600	seconds	
Week Number	2		039C		
Channels	1		OC		Range 1-12
Reset Config.	1		33		See table Table 4-3

Bit	Description
0	Data valid flag— set warm/hot start
1	Clear ephemeris— set warm start
2	Clear memory— set cold start
3	Factory Reset
4	Enable raw track data (YES=1, NO=0)
5	Enable debug data for SiRF binary protocol (YES=1, NO=0)
6	Enable debug data for NMEA protocol (YES=1, NO=0)
7	Reserved (must be 0)

Note

- If Nav Lib data is ENABLED then the resulting messages are enabled. Clock Status (MID 7), 50 BPS (MID 8), Raw DGPS (17), NL Measurement Data (MID 28), DGPS Data (MID 29), SV State Data (MID 30), and NL Initialize Data (MID 31). All messages are sent at 1 Hz and the baud rate will be automatically set to 57600.

Switch to NMEA Protocol - Message I.D. 129

Table 4-4 contains the input values for the following example:

Request the following NMEA data at 4800 baud: GGA - ON at 1 sec, GLL - OFF, GSA - ON at 5 sec, GSV - ON at 5 sec, RMC-OFF, VTG-OFF

Example:

Table 4-4 Switch	Table 4-4 Switch To NMEA Protocol						
Name	Bytes	Binary	(Hex)	Units	Description		
				_			
		Scale	Example				
Message ID	1		81		ASCII 129		
Mode	1		02				
GGA Message 1	1		01	1/s	See Chapter 5 for format.		
Checksum 2	1		01				
GLL Message	1		00	1/s	Se Chapter 5 for format.		
Checksum	1		01				
GSA Message	1		05	1/s	See Chapter 5 for format.		
Checksum	1		01				
GSV Message	1		05	1/s	See Chapter 5 for format.		
Checksum	1		01				
RMC Message	1		00	1/s	See Chapter 5 for format.		
Checksum:	1		01				
VTG Message	1		00	1/s	See Chapter 5 for format.		
Checksum	1		01				
Unused Field	1		00		Recommended value.		
Unused Field	1		01		Recommended value.		
Unused Field	1		00		Recommended value.		
Unused Field	1		01		Recommended value.		
Unused Field	1		00		Recommended value.		
Unused Field	1		01		Recommended value.		
Unused Field	1		00		Recommended value.		
Unused Field	1		01		Recommended value.		
Baud Rate	2		12C0		38400, 19200,9600,4800,2400		

Payload Length: 24 bytes

1. A value of 0x00 implies NOT to send message, otherwise data is sent at 1 message every X seconds requested (i.e., to request a message to be sent every 5 seconds, request the message using a value of 0x05.) Maximum rate is 1/255s.

2. A value of 0x00 implies the checksum NOT transmitted with the message (not recommended). A value of 0x01 will have a checksum calculated and transmitted as part of the message (recommended).

Note – In TricklePower mode, the update rate is specified by the user. When you switch to NMEA protocol, the message update rate will be required again. The resulting update rate is the product of the TricklePower Update rate AND the NMEA update rate (i.e. TricklePower update rate = 2 seconds, NMEA update rate = 5 seconds, resulting update rate is every 10 seconds ($2 \times 5 = 10$)).

Set Almanac – Message I.D. 130

This command enables the user to upload an almanac PG-31 example:

A0A20380 – Start Sequence and Payload Length 82xx... – Payload xxxxB0B3 – Message Checksum and End Sequence

Table 4-5 Set Almanac message							
Name	Bytes	Binary	(Hex)	Units	Description		
		Scale	Example				
Message ID	1		82		ACSII 130		
Almanac 896 00 Reserved							
Payload Length:	Payload Length: 897 bytes						

The almanac data is stored in the code as a 448 element array of INT16 values. These 448 elements are partitioned as 32 x 14 elements where the 32 represents the satellite number minus 1 and the 14 represents the number of INT16 values associated with this satellite. The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD-GPS-2000 document. The ICD-GPS-2000 document describes the data format of each GPS navigation sub-frame and is available on the web at http://www.arinc.com/gps.

Software Version – Message I.D. 132

Table 4-6 contains the input values for the following example:

Poll the software version example:

A0A20002— Start Sequence and Payload Length 8400— Payload 0084B0B3— Message Checksum and End Sequence

Table 4- 6 Set Almanac message							
Name	Bytes	Bytes Binary (Hex) Units Description					
		Scale	Example				
Message ID	1		84		ACSII 132		
TBD	1		00		Not used		
Payload Lengt	h: 2 bytes	6	00	I	inot used		

Set DGPS Source – Message I.D. 133

This command allows the user to select the source for DGPS corrections. Options available are: External RTCM Data (any serial port) WAAS (subject to WAAS satellite availability) Internal DGPS beacon receiver.

Example 1: Set the DGPS source to external RTCM Data

A0A200007— Start Sequence and Payload Length 8502000000000 — 0 Payload 0087B0 B3— Checksum and End Sequence

Table 4-7 Set DGPS Source					
Name	Bytes	Binary (Hex)		Units	Description
	-	Scale	Example		
Message ID	1		85		decimal 133
DGPS Source	1		02		See Table 4-9– DGPS
					Source Selections
Internal Beacon	4		00000000	Hz	Internal Beacon Search
Frequency					Settings
Internal Beacon	1		00	BPS	InternalBeacon Search
Bit Rate					Settings
Payload Length: 7	bytes				

Example2: Set the DGPS source to Internal DGPS Beacon Receiver (Currently PG-31 is not supported) Search Frequency 310000, Bit Rate 200

A0A200007— Start Sequence and Payload Length 85030004BAF0C802— Payload 02FEB0B3— Checksum and End Sequence

Table 4 - 8 DGPS Source Selection (Example 2)					
Name	Bytes	Scale Hex	Units	Decimal	Description
Message I.D.	1	85		133	Message Identification.
DGPS Source	1	03		3	See Table 4-9 DGPS
					Source Selections.
Internal Beacon	4	0004BAF0	ΗZ	310000	See Table 4-9 Internal
Frequency					Beacon Search Settings .
Internal Beacon	1	C8	BPS	200	See Table 4-10 Internal
Bit Rate					Beacon Search Settings.

<i>Table 4- 9 5</i>	Table 4- 9 Set DGPS Source Selections					
DGPS	Hex	Decimal	Description			
None	0	0	DGPS corrections will not be Used (even if available).			
WAAS	1	1	Uses WAAS Satellite (subject to availability).			
External RTCM Data	2	2	External RTCM input source (i.e., Coast Guard Beacon).			
Internal DGPS	3	3	Internal DGPS beacon receiver.			
Beacon Receiver						
User software	4	4	Corrections provided using an interface module routine in a user application			

Table 4- 10	Internal Beacon Sear	ch Settings	
Search Type	Frequency ¹	Bit Rate ²	Description
Auto Scan	0	0	Auto scanning of all frequencies and bit rates are performed
Full Frequency Scan	0	None Zero	Auto scanning of all frequencies and specified bit rate are performed
Full Bit Rate Scan	None Zero	0	Auto scanning of all bit rates and specified frequency are performed
Specific Search Scan	None Zero	None Zero	Only the specified frequency and bit rate search are performed

Set Main Serial Port - Message I.D. 134

Table 4-11 contains the input values for the following example: Set Main Serial port to 9600,n,8,1. Example:

A0A20009— Start Sequence and Payload Length 860000258008010000— Payload 0134B0B3— Message Checksum and End Sequence

Table 4-11 Set Main Serial Port Name Bytes Binary (Hex) Units Description Scale Example Baud 4 88 Data Bits 1 01 8,7 Stop Bit 1 01 0,1 Parity 1 01 None=0, Odd=1, Even=2 Pad 1 01 Reserved

Mode Control - Message I.D. 136

Payload Length: 9 bytes

Table 4-12 contains the input values for the following example:

3D Mode = Always, Alt Constraining = Yes, Degraded Mode = clock then direction, TBD=1, DR Mode = Yes, Altitude = 0, Alt Hold Mode = Auto, Alt Source =Last Computed, Coast Time Out = 20, Degraded Time Out=5, DR Time Out = 2, Track Smoothing = Yes Example:

A0A2000E— Start Sequence and Payload Length 880101010100000002140501— Payload 00A9B0B3— Message Checksum and End Sequence

Table 4-12 Mode	Control			
Name	Bytes	Binary (Hex) Scale Example	Units	Description
Message ID	1	88		ASCII 136
3D Mode	1	01		1 (always true=1)
Alt Constraint	1	01		YES=1, NO=0
Degraded Mode	1	01		See Table 4-13
TBD	1	01		Reserved
DR Mode	1	01		YES=1, NO=0
Altitude	2	0000	meters	range -1,000 to 10,000
Alt Hold Mode	1	00		Auto=0, Always=1,Disable=2
Alt Source	1	02		Last Computed=0,Fixed to=1
Coast Time Out	1	14	Seconds	0 to 120
Degraded Time	1	05	Seconds	0 to 120
Out				
DR Time Out	1	01	Seconds	0 to 120
Track	1	01		YES=1, NO=0
Smoothing				
Payload Length: 1	4 bytes			
Table 4-13 Degra	aded Mod	e Byte Value		

Byte Value Description

0	Use Direction then Clock Hold
1	Use Clock then Direction Hold
2	Direction (Curb) Hold Only
3	Clock (Time) Hold Only
4	Disable Degraded Modes

DOP Mask Control - Message I.D. 137

Table 4-14 contains the input values for the following example: Auto Pdop/Hdop, Gdop =8 (default), Pdop=8, Hdop=8 Example:

A0A20005— Start Sequence and Payload Length 8900080808— Payload 00A1B0B3— Message Checksum and End Sequence

Table 4-14 DOP Mask Control						
Name	Bytes	Binary (Hex)	Units	Description		
	-	Scale Example	•			
Message ID	1	89		ASCII 137		
DOP Selection	1	00		See Table 4-15		
GDOP Value	1	08		Range 1 to 50		
PDOP Value	1	08		Range 1 to 50		
HDOP Value	1	08		Range 1 to 50		
Payload Length: 5	bytes					

Payload Length: 5 bytes

Table 4- 15 DOP Selection						
Byte Value	Description					
0	Auto PDOP/HDOP					
1	PDOP					
2	HDOP					
3	GDOP					
4	Do Not Use					

DGPS Control - Message I.D. 138

Table 4-16 contains the input values for the following example:

Set DGPS to exclusive with a time out of 30 seconds. Example:

A0A20003—Start Sequence and Payload Length 8A011E— Payload 00A9B0B3— Message Checksum and End Sequence

Table 4-16 DGPS Control								
		Binary	(Hex)					
Name	Bytes	Scale	Example	Units	Description			
Message ID	1		8A		ASCII 138			
DGPS Selection	1		01		See Table 4-17			
DGPS Time Out	1		1E	seconds	Range 0 to 255			
Payload Length: 3 by	/tes							
Table 4- 17DGPS Sel	ection							
Byte Value	C)escript	ion					
0	А	Auto						
1	E	Exclusive						
2	N	Never Use						

Note –Configuration of the DGPS mode using MID 138 only applies to RTCM corrections received from an external RTCM source or internal or external beacon. It does not apply to WAAS operation.

Elevation Mask – Message I.D. 139

Table 4-18 contains the input values for the following example:

Set Navigation Mask to 15.5 degrees (Tracking Mask is defaulted to 5 degrees). Example:

A0A20005— Start Sequence and Payload Length 8B0032009B— Payload 0158B0B3— Message Checksum and End Sequence

Table 4- 18 Elevation Mask								
		Binary	/ (Hex)					
Name	Bytes	Scale	Example	Units	Description			
Message ID	1		8B		ASCII 139			
Tracking Mask	2	*10	0032	degrees	Not currently used			
Navigation Mask	2	*10	009B	degrees	Range -20.0 to 90.0			

Payload Length: 5 bytes

Power Mask - Message I.D. 140

Table 4-19 contains the input values for the following example: Navigation mask to 33 dB Hz (tracking default value of 28) Example:

A0A2000 3— Start Sequence and Payload Length 8C1C21— Payload 00C9B0B3— Message Checksum and End Sequence

Table 4-19 Power Mask								
		Binary	/ (Hex)					
Name	Bytes	Scale	Example	Units	Description			
Message ID	1		8C		ASCII 140			
Tracking Mask	1		1C	DBHz	Not implemented	currently		
Navigation Mask	1		21	DBHz	Range 20 to 50)		

Payload Length: 3 bytes

Editing Residual– Message I.D. 141 Note – Not currently implemented. Steady State Detection -Message I.D. 142 Note – Not currently implemented. Static Navigation– Message I.D. 143

This command allows the user to enable or disable navigation on the PG-31. Example:

A0A20002 – Start Sequence and Payload Length 8F01 – Payload xxxxB0B3 – Message Checksum and End Sequence

		Binary	y (Hex)		
Name	Bytes	Scale	Example	Units	Description
Message ID	1		8F		ASCII 143
Static Navigation Flag	1		01		ASCII 1

Table 4- 21 Message ID 143 Description						
Name Description						
Message ID		Message ID number				
Static Navigation Flag		Valid values:				
		1: enable static navigation				
		0: disable static navigation				

Poll Clock Status – Message I.D. 144

Table 4-22 contains the input values for the following example: Poll the clock status. Example:

A0A20002— Start Sequence and Payload Length 9000— Payload 0090B0B3— Message Checksum and End Sequence

Table 4- 22 Clock Status								
		Binary	(Hex)					
Name	Bytes	Scale	Example	Units	Description			
Message ID	1		90		ACSII 144			
TBD	1		00		Not used			
Payload Length: 2 bytes								

Set DGPS Serial Port - Message I.D. 145

Table 4-23 contains the input values for the following example: Set DGPS Serial port to 9600,n, 8,1. Example:

A0A20009— Start Sequence and Payload Length 910000258008010000— Payload 013FB0B3— Message Checksum and End Sequence

Tab e 4-23 Set DGPS Serial Port								
Name		Binary (Hex)		Units	Description			
	Bytes	Scale	Exampl					
	-		e					
Message	1		91		ASCII 145			
ID								
Baud	4		0000258		38400,19200,9600,4800,2400,120			
			0					
Data Bits	1		08		8,7			
Stop Bit	1		01		0,1			
Parity	1		00		Non e= 0, Odd= 1, Even= 2			
Pad	1		00		Reserved			
Payload Length	: 9 byte	S						

Note – Setting the DGPS serial port using MID 145 will effect Com B only regardless of the port being used to communicate with the PG-31.

Table 4- 24 Almanac								
		Binary	(Hex)					
Name	Bytes	Scale	Example	Units	Description			
Message ID	1		92		ASCII 146			
TBD	1		00		Reserved			
Payload Lengt	h: 2 bytes							

Poll Ephemeris - Message I.D. 147

Table 4-25 contains the input values for the following example: Poll for Ephemeris Data from all satellites.

Example:

A0A20003— Start Sequence and Payload Length

930000-Payload

0092B0B3— Message Checksum and End Sequence

Table 4-25 Ephemeris Message I.D.									
		Binary	y (Hex)						
Name	Bytes	Scale	Example	Units	Descri	ption			
Message ID	1		93		ASCII 1	47			
Sv I.D. ¹	1		00		Range	0 to 32			
TBD	1		00		Not use	ed			
Payload Length: 3 bytes									
1. A value	of 0 re	quests	all availal	ole epł	nemeris	records;	otherwise	the	

 A value of 0 requests all available ephemeris records; otherwise the ephemeris of the Sv I.D. is requested.

Flash Update - Message I.D. 148

This command allows the user to tell the Evaluation Receiver to go into internal boot mode without setting the boot switch. Internal boot mode allows the user to re-flash the embedded code in the receiver.

Note – It is highly recommended that all hardware designs should still provide access to the boot pin in the event of a failed flash upload. Example:

A0A20001 – Start Sequence and Payload Length

94 – Payload

0094B0B3 – Message Checksum and End Sequence

Table 4- 26 Flash update								
		Binary (Hex)						
Name	Bytes	Scale	Example	Units	Description			
Message ID	1		94		ASCII 148			
Payload Length: 1 bytes								

Set Ephemeris – Message I.D. 149

This command enables the user to upload an ephemeris file to the Evaluation Receiver. Example:

AOA2005B – Start Sequence and Payload Length 95... – Payload xxxxBOB3 – Message Checksum and End Sequence

Table 4-27 Ephemeris					
		Binary	(Hex)		
Name	Bytes	Scale	Example	Units	Description
Message ID	1		95		ASCII 149
Ephemeris Data	90		00		Reserved

Payload Length: 91 bytes

The ephemeris data for each satellite is stored as a two dimensional array of [3] [15] UNIT16 elements. The 3 represents three separate sub-frames. The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD-GPS-2000 document. The ICD-GPS-2000 document describes the data format of each GPS navigation sub-frame and is available on the web at http://www.arinc.com/gps.

Switch Operating Modes - Message I.D. 150

Table 4-28 contains the input values for the following example:Sets the receiver to tracka single satellite on all channels.

Example:

A0A20007— Start Sequence and Payload Length 961E510006001E— Payload 0129B0B3— Message Checksum and End Sequence

Table 4- 28 S	Table 4-28 Switch Operating Mode I.D.150									
		Binary	(Hex)							
Name	Bytes	Scale	Example	Units	Description					
Message ID	1		96		ASCII 150					
Mode	2		1E51		0=normal,					
					1E51=Testmode1,					
					1E52=Testmode2,					
					1E53= not supported					
SvID	2		0006		Satellite to Track					
Period	2		001E	seconds	Duration of Track					
Payload Leng	gth: 7 by	rtes								

Set TricklePower Parameters - Message I.D. 151

Table 4-29 contains the input values for the following example: Sets the receiver into low power Mode.

Example: Set receiver into TricklePower at 1 hz update and 200 ms On Time.

A0A20009— Start Sequence and Payload Length 9700000C800000C8— Payload 0227B0B3— Message Checksum and End Sequence

Name	Bytes	Binary (Binary (Hex)		Description			
		Scale	Example		_			
Message ID	1		97		ASCII 151			
Push To Fix Mode	2		0000		ON = 1, OF	F = 0		
Duty Cycle	2	*10	8000	%	% Time	ON.	А	duty
					cycle of	1000	(10)0%)
					means	contir	านด	us
					operation			
Milli Seconds On	4		8000000	msec	range 200 -	500 r	ns	
Time								
Payload Length: 9 by	ytes	•	•		-	•		•

Computation of Duty Cycle and On Time

The Duty Cycle is the desired time to be spent tracking. The On Time is the duration of each tracking period (range is 200 - 900 ms). To calculate the TricklePower update rate as a function of Duty cycle and On Time, use the following formula:

Off Time = <u>On Time - (Duty Cycle * On Time)</u> Duty Cycle Update rate = Off Time + On Time

Note - It is impossible to enter an On Time of 900 ms.

The following are some examples.								
Table 4- 30 Example of Selections for TricklePower Mode								
Mode	On Time (ms)	Duty Cycle (%)	Update Rate(1/Hz)					
Continuous	1000	100	1					
TricklePower	200	20	1					
TricklePower	200	10	2					
TricklePower	300	10	3					
TricklePower	500	5	10					

The following are some examples:

Table 4	31 TrickleP									
On Time		Upc	late R	ate (sec)					
(ms)	1	2	3	4	5	6	7	8	9	10
200	Y ¹	Y	Y	Y	Y	Y	Y	Υ	Y	Y
300	Y	Y	Y	Y	Y	Y	Y	Υ	Y	Y
400	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
500	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
600	Y	Y	Y	Y	Y	Y	Y	Υ	Y	Y
700	N	Y	Y	Y	Y	Y	Y	Y	Y	Y
800	N	Y	Y	Y	Y	Y	Y	Υ	Y	Y
900	N	Y	Y	Y	Y	Y	Y	Y	Y	Y

1. Y = Yes (Mode supported)

2. N = No (Mode NOT supported)

Push-to-Fix

In this mode the receiver will turn on every 30 minutes to perform a system update consisting of an RTC calibration and satellite ephemeris data collection if required (i.e., a new satellite has become visible) as well as all software tasks to support SnapStart in the event of an NMI. Ephemeris collection time in general takes 18 to 30 seconds. If ephemeris data is not required then the system will re-calibrate and shut down. In either case, the amount of time the receiver remains off will be in proportion to how long it stays on:

Off period = <u>On Period*(1-Duty Cycle)</u> Duty Cycle

The off period has a possible range between 10 and 7200 seconds. The default is 1800 seconds.

Poll Navigation Parameters - Message I.D. 152

Table 4-32 contains the input values for the following example: Example: Poll receiver for current navigation parameters.

A0A20002— Start Sequence and Payload Length 9800— Payload 0098B0B3— Message Checksum and End Sequence

Table 4-32 Poll Receiver for Navigation Parameters								
		Binary	(Hex)					
Name	Bytes	Scale	Example	Units	Description			
Message ID	1		98		ASCII 152			
Reserved	1		00		Reserved			
Payload Leng	Payload Length: 2 bytes							

Set UART Configuration - Message I.D. 165

Table 4-33 contains the input values for the following example:

Example: Set port 0 to NMEA with 9600 baud, 8 data bits, 1 stop bit, no parity. Set port 1 to SiRF binary with 57600 baud, 8 data bits, 1 stop bit, no parity. Do not configure ports 2 and 3.

Example:

A0A20031— Start Sequence and Payload Length

0452B0B3— Message Checksum and End Sequence

Table 4- 33 Set UART Configuration								
Name	Bytes	Binary	Binary (Hex)		Description			
		Scale	Example		-			
Message ID	1		A5		ASCII 165			
Port	1		00		For UART 0			
In Protocol ¹	1		01		For UART 0			
Out Protocol	1		01		For UART 0 (Set to in protocol)			
Baud Rate ²	4		00002580		For UART 0			
Data Bits ³	1		08		For UART 0			
Stop Bits ⁴	1		01		For UART 0			
Parity ⁵	1		00		For UART 0			
Reserved	1		00		For UART 0			

Reserved	1	00	For UART 0
Port	1	01	For UART 1
In Protocol	1	00	For UART 1
Out Protocol	1	00	For UART 1
Baud Rate	4	0000E100	For UART 1
Data Bits	1	08	For UART 1
Stop Bits	1	01	For UART 1
Parity	1	00	For UART 1
Reserved	1	00	For UART 1
Reserved	1	00	For UART 1
Port	1	FF	For UART 2
In Protocol	1	05	For UART 2
Out Protocol	1	05	For UART 2
Baud Rate	4	0000000	For UART 2
Data Bits	1	00	For UART 2
Stop Bits	1	00	For UART 2
Parity	1	00	For UART 2
Reserved	1	00	For UART 2
Reserved	1		For UART 2
Port	1	FF	For UART 3
In Protocol	1	05	For UART 3
Out Protocol	1	05	For UART 3
Baud Rate	4	0000000	For UART 3
Data Bits	1	00	For UART 3
Stop Bits	1	00	For UART 3
Parity	1	00	For UART 3
Reserved	1	00	For UART 3
Reserved	1	00	For UART 3

Payload Length: 49 bytes

1. 0 = SiRF Binary, 1 = NMEA, 2 = ASCII, 3 = RTCM, 4 = User1, 5 = No Protocol.

2. Valid values are 1200, 2400, 4800, 9600, 19200, 38400, and 57600.

3. Valid values are 7 and 8. 4.

Valid values are 1 and 2. 5. 0

= None, 1 = Odd, 2 = Even.

Set Message Rate - Message I.D. 166

Table 4-34 contains the input values for the following example: Set message ID 2 to output every 5 seconds starting immediately. Example:

A0A20008— Start Sequence and Payload Length A60102050000000— Payload 00AEB0B3— Message Checksum and End Sequence

Table 4-34 Set Message Rate								
Name	Bytes	Binary	Binary (Hex)		Description			
		Scale	Example					
Message ID	1		A6		ASCII 166			
Send Now ¹	1		01		Poll message			
MID to be set	1		02					
Update Rate	1		05	sec	Range = 1 - 30			
Reserved	1		00		Not used			
Reserved	1		00		Not used			

Reserved	1	00	Not used				
Reserved	1	00	Not used				
Payload Length: 8 bytes							
1.0 = No, 1 = Yes	1. $0 = No$, $1 = Yes$, if no update rate the message will be polled.						

Low Power Acquisition Parameter s - Message I.D. 167

Table 4-35 contains the input values for the following example:

Set maximum off and search times for re-acquisition while receiver is in low power. Example:

A0A20019— Start Sequence and Payload Length

Table 4- 35 Set Lo	Table 4-35 Set Low Power Acquisition Parameters								
Name	Bytes	Binary	Binary (Hex)		Description				
		Scale	Example						
Message ID	1		A7		ASCII 167				
Max Off Time	4		00007530	ms	Maximum time for sleep mode				
Max Search	4		0001D4C	ms	Max. satellite search time				
Time			0						
Push-To-Fix	4		000003C	sec	Push-To-Fix cycle period				
period									

Output Messages for SiRF Binary Protocol

Note – All output messages are received in **BINARY** format. SiRFdemo interprets the binary data and saves it to the log file in **ASCII** format.

Table 4-36 lists the message list for the SiRF output messages.

<i>Table 4- 36</i>					
SiRF Messag	jes - C	Dutput Message List			
Hex ASCI1		Name	Description		
0 x 02	2	Measured Navigation Data	Position, velocity, and time		
0 x 03	3	True Tracker Data	Not Implemented		
0 x 04	4	Measured Tracking Data	Satellite and C/No information		
0 x 05	5	Raw Track Data	PG-31 not supported		
0 x 06	6	SW Version	Receiver software		
0 x 07	7	Clock Status	Current clock status		
0 x 08	8	50 BPS Subframe Data	Standard ICD format		
0 x 09	9	Throughput	Navigation complete data		
0 x 0A	10	Error ID	Error coding for message failure		
0 x 0B	11	Command Acknowledgment	Successful request		
0 x 0C	12	Command acknowledgment	Unsuccessful request		
0 x 0D	13	Visible List	Auto Output		
0 x 0E	14	Almanac Data	Response to Poll		
0 x 0F	15	Ephemeris Data	Response to Poll		
0 x 10	16	Test Mode 1	For use with SiRFtest ¹ (Test mode 1)		
0 x 11	17	Differential Corrections	Received from DGPS broadcast		
0 x 12	18	OkToSend	CPU ON / OFF (TricklePower)		
0 x 13	19	Navigation Parameters	Response to Poll		
0 x 14	20	Test Mode 2	Additional test data (Test mode 2)		
0 x 1C	28	Nav. Lib. Measurement Data	Measurement Data		
0 x 1D	29	Nav. Lib. DGPS Data	Differential GPS Data		

0 x 1E	30	Nav. Lib. SV State Data	Satellite State Data
0 x 1F	31	Nav. Lib. Initialization Data	Initialization Data
0 x FF	255	Development Data	Various status messages

Measure Navigation Data Out - Message I.D. 2

Output Rate: 1 Hz

Table 4-37 lists the binary and ASCII message data format for the measured navigation data

Example:

AOA20029— Start Sequence and Payload Length 02FFD6F78CFFBE536E003AC00400030104A00036B0397 80E3 0612190E160F0400000000000— Payload 09BBB0B3— Message Checksum and End Sequence.

Table 4-37 Measured Navigation Data Out - Binary & ASCII Message Data Format								
		Binary	(Hex)		ASCII	(Decimal)		
Name	Bytes	Scale	Example	Units	Scale	Example		
Message ID	1		02			2		
X-position	4		FFD6F78C	m		-2689140		
Y-position	4		FFBE536E	m		-4304018		
Z-position	4		003AC004	m		3850244		
X-velocity	2	*8	00	m/s	Vx÷8	0		
Y-velocity	2	*8	03	m/s	Vy÷8	0.375		
Z-velocity	2	*8	01	m/s	Vz÷8	0.125		
Mode 1	1		04	Bitmap ¹		4		
DOP ²	1	*5	А		÷5	2.0		
Mode 2	1		00	Bitmap ³		0		
GPS Week	2		036B			875		
GPS TOW	4	*100	039780E3	seconds	÷100	602605.79		
SVs in Fix	1		06			6		
CH 1	1		12			18		
CH 2	1		19			25		
СН 3	1		OE			14		
CH 4	1		16			22		
CH 5	1		OF			15		
CH 6	1		04			4		
CH 7	1		00			0		
CH 8	1		00			0		
CH 9	1		00			0		
CH 10	1		00			0		
CH 11	1		00			0		
CH 12	1		00			0		

Payload Length: 41 bytes

1. For further information, go to Table 4-38.

2. Dilution of precision (DOP) field contains value of PDOP when position is obtained using 3D solution and HDOP in all other cases.

3. For further information, go to Table 4-39.

Note – The measurement of GPS Week item is expressed with ICD GPS week format (between 0 and 1023)

<i>Table 4- 38</i> M	ode 1							
Bit	7	6	5	4	3	2	1	0
Bit(s) Name	DGPS	DOP-	ALTN	TMODE TPMODE PMODE				
		Mask						
PMODE	Position m	node	0	No na	avigation sol	ution		
			1	1 sat	ellite solutio	n		
			2	2 sat	ellite solutio	n		
			3	3 sat	ellite solutio	n		
			4	>3 sa	atellite soluti	on		
			5	2D po	pint solution	(Least so	quare)
			6	3D po	pint solution	(Least so	quare)
			7	Dead	reckoning			
TPMODE	TricklePov	ver	0	Full power position				
	mode		1	Trick	ePower posi	tion		
ALTMODE	Altitude m	node	0	No al	titude hold			
			1	Altitu	de used fror	n filter		
			2	Altitu	de used fror	n user		
			3	Force	ed altitude (f	rom user)	
DOPMASK	DOP mask	< status	0	DOP	mask not ex	ceeded		
			1	DOP	mask exceed	ded		
DGPS	DGPS stat	tus	0		GPS position			
			1	DGPS	position			

Note – Binary units scaled to integer values need to be divided by the scale value to receive true decimal value (i.e., decimal X vel = binary X $^{vel}/_{8).}$

Table 4-39	Mode 2	
Mode 2		
Hex	ASCII	Description
0 x 00	0	Solution not validated
0 x 01	1	DR sensor data
0 x 02	2	Validated (1), Unvalidated (0)
0 x 04	4	If set, Dead Reckoning (Time Out)
0 x 08	8	If set, Output Edited by UI (i.e., DOP Mask exceeded)
0 x 10	16	Reserved
0 x 20	32	Reserved
0 x 40	64	Reserved
0 x 80	128	Reserved

Measured Tracker Data Out - Message I.D. 4

Output Rate: 1 Hz

Table 4-38 lists the binary and ASCII message data format for the measured tracker data.

Example:

A0A200BC— Start Sequence and Payload Length 04036C0000937F0C0EAB46003F1A1E1D1D191D1A1A1D1F1D59423F1A1A...— Payload ****B0B3— Message Checksum and End Sequence

Table 4- 40	Measured						
Tracker Data Out							
		Binary	y (Hex)		ASCII (Decimal)		
Name	Bytes	Scale	Example	Units	Scale	Example	
Message ID	1		04	None		4	
GPS Week	2		036C			876	
GPS TOW	4	s*100	0000937F	S	s÷100	37759	
Chans	1		OC			12	
1st Svid	1		OE			14	
Azimuth	1	Az*[2 /3]	AB	deg	÷(2/3) 25	56.5	
Elev	1	El*2	46	deg	÷2	35	
State	2		003F	Bitmap 1		0 x BF	
C/No 1	1		1A			26	
C/No 2	1		1E			30	
C/No 3	1		1D			29	
C/No 4	1		1D			29	
C/No 5	1		19			25	
C/No 6	1		1D			29	
C/No 7	1		1A			26	
C/No 8	1		1A			26	
C/No 9	1		1D			29	
C/No 10	1		1F			31	
2nd SVid	1		1D			29	
Azimuth	1	Az*[2 /3]	59	deg	÷(2/3) 89	9	
Elev	1	El*2	42	deg	÷2	66	
State	2		3F	Bitmap 1		63	
C/No 1	1		1A			26	
C/No 2	1		1A			63	
Payload Length:	188 bytes						
1.For further info	rmation, c	o to Ta	able 4-41				

Note – The measurement of GPS Week item is expressed with ICD GPS week format (between 0 and 1023)

Note – Message length is fixed to 188 bytes with non-tracking channels reporting zero values.

Table 4-41 TrktoNAVStruct.trk_status Field Definition								
Field Definition	Hex	Description						
	Value							
ACQ_SUCCESS	0x0001	Set, if acq/reacq is done successfully						
DELTA_CARPHASE_VALI	0x0002	Set, Integrated carrier phase is valid						
D								
BIT_SYNC_DONE	0x0004	Set, Bit sync completed flag						
SUBFRAME_SYNC_DONE	0x0008	Set, Subframe sync has been done						
CARRIER_PULLIN_DONE	0x0010	Set, Carrier pullin done						
CODE_LOCKED	0x0020	Set, Code locked						
ACQ_FAILED	0x0040	Set, Failed to acquire S/V						
GOT_EPHEMERIS	0x0080	Set, Ephemeris data available						

Note – When a channel is fully locked and all data is valid, the status shown is 0 x BF.

Raw Tracker Data Out - Message I.D. 5

Not implemented for PG-31.

Software Version String (Response to Poll) - Message I.D. 6 Output Rate: Response to polling message Example:

A0A20015— Start Sequence and Payload Length 0606312E322E30444B495431313920534D0000000000—Payload 0382B0B3— Message Checksum and End Sequence

Table 4-42 Software Version String

Binary (Hex)ASCII (Decimal)Name BytesScale ExampleUnitsMessage ID 1066Character 201Payload Length: 21 bytes11. 06312E322E30444B495431313920534D0000000005

Note – Convert to symbol to assemble message (i.e., 0 x 4E is 'N'). These are low priority tasks and are not necessarily output at constant intervals.

Response: Clock Status Data - Message I.D. 7 Output Rate: 1 Hz or response to polling message Example:

A0A20014— Start Sequence and Payload length 0703BD021549240822317923DAEF— Payload 0598B0B3— Message Checksum and End Sequence

		Binary	' (Hex)	ASCII (Decimal)			
Name	Bytes	Scale	Example	Units	Scale	Example	
Message ID	1		07			7	
GPS Week	2		03BD			957	
GPS TOW	4	*100	002154924	s	100	349494.12	
Svs	1		08			8	
Clock Drift	4		2231	Hz		74289	
Clock Bias	4		7923	nanosec		128743715	
Estimated GPS	4		DAEF	millisec		349493999	
Time							
Payload Length: 20) bytes						
Note – The measu	rement of G	PS week	item is with E	xtended G	PS week	(=ICD	
GPS week + 1024)							

50 BPS Data – Message I.D. 8

Output Rate: As available (12.5 minute download time) Example:

A0A2002B— Start Sequence and Payload Length 08xxxxx— Payload xxxxB0B3— Message Checksum and End Sequence

Table 4- 44 50 BPS Data									
Name	Bytes	Binary (Hex)		Units	ASCII (Decimal)				
		Scale	Example		Scale	Example			
Message ID	1		08			8			
Channel	1								
Sv I.D	1								
Word[10]	40								
Payload Length: 43 b	ytes per	subframe	(5 subframes	s per page)					

Note – Data is logged in ICD format (available from www.navcen.uscg.gov). The ICD specification is 30-bit words. The output above has been stripped of parity to give a 240 bit frame instead of 300 bits.

CPU Throughput – Message I.D. 9

Output Rate: 1Hz Example:

A0A20009— Start Sequence and Payload Length 09003B0011001601E5— Payload 0151B0B3— Message Checksum and End Sequence

<i>Table 4- 45</i> CP	U Throughp	ut					
		Binary	(Hex)		ASCII (Decimal)		
Name	Bytes	Scale	Example	Units	Scale	Example	
Message ID	1		09			9	
SegStatMax	2	*186	003B	millisec	186	.3172	
SegStatLat	2	*186	60011	millisec	186	.0914	
AveTrkTime	2	*186	60016	millisec	186	.1183	
Last MS	2		01E5	millisec		485	
Payload Length: 9 bytes							

Command Acknowledgment – Message I.D. 11

Output Rate: Response to successful input message

This is a successful almanac (message ID 0x92) request example.

A0A20002— Start Sequence and Payload Length 0B92— Payload 009DB0B3— Message Checksum and End Sequence

Table 4- 46 Command Acknowledgment								
		Binary (Hex)		ASCII (Decimal)			
Name	Bytes	Scale	Example	Units	Scale	Example		
Message ID	1		OB			11		
Ack. I.D.	1		92			146		
Payload Leng	Payload Length: 2 bytes							

Command Acknowledgment – Message I.D. 12

Output Rate: Response to rejected input message This is an unsuccessful almanac (message ID 0x92) request example:

AOA20002— Start Sequence and Payload Length 0C92— Payload 009EB0B3— Message Checksum and End Sequence

Table 4- 47 Command Acknowledgment									
		Binary (Hex) ASCII (Decimal)							
Name	Bytes	Scale	Example	Units	Scale	Example			
Message ID	1		OC			12			
Nack. I.D. 1 92 146									
Payload Length: 2 bytes									

Visible List – Message I.D. 13

Output Rate: Updated approximately every 2 minutes.

Note – This is a variable length message. Only the number of visible satellites is reported (as defined by Visible Svs in Table 4-48). Maximum is 12 satellites. Example:

A0A2002A— Start Sequence and Payload Length 0D080700290038090133002C...xxxxxxxxxxxxxxxxmPayload xxxxB0B3— Message Checksum and End Sequence

		Binary	(Hex)	ASCII (Decimal)			
Name	Bytes	Scale	Example	Units	Scale	Example	
Message ID	1		0D			13	
Visible Svs	1		08			8	
CH 1 – Sv	1		10			16	
I.D.							
CH 1 – Sv	2		002A	degrees		42	
Azimuth							
CH 1 – Sv	2		0038	degrees		56	
Elevation							
CH 2 – Sv	1		09			9	
I.D.							
CH 2 – Sv	2		0133	degrees		307	
Azimuth							
CH 2 – Sv	2		002C	degrees		44	
Elevation							
Payload Length	n: Variable						

Almanac Data - Message I.D. 14

Output Rate: Response to poll Example:

A0A203A1— Start Sequence and Payload Length 0E01******** Payload ****B0B3— Message Checksum and End Sequence

Table 4- 49 Almanac E	Data			
Name	Bytes	Binary	(Hex)	
		Scale	Example	
Message I.D.	1		OE	
Sv I.D.	1		01	Satellite PRN Number ¹
Almanac week and	2		1101	First 10 bits is the
Status				Almanac week. Next 5 bits have
				a zero value. Last bit is 1.
Almanac data	24			This information is taken from
				the 50BPS navigation message
				broadcast by the satellite. This
				information is the last 8 words in
				the 5th subframe but with the
				parity removed. ²
Package checksum	2		4CA1	This is the checksum of
				The preceding data in the
				payload. It is calculated by
				Arranging the previous 26 bytes
				as 13 half-words and then
				summing them. ³
Payload Length: 30 by	vtes			

1. Each satellite almanac entry is output as a single message.

2. There are 25 possible pages in subframe 5. Pages 1 through 24 contain satellite

specific almanac information which is output as part of the almanac data. Page 25

contains health status flags and the almanac week number.

3. This checksum is not used for serial I/O data integrity. It is used internally for ensuring that the almanac information is valid.

Note – The data is actually packed and the exact format of this representation and packing method can be extracted from the ICD-GPS-2000 document. The ICD-GPS-2000 document describes the data format of each GPS navigation subframe and is available on the web at http://www.arinc.com/gps.

Ephemeris Data (Response to Poll) – Message I.D. 15

The ephemeris data that is polled from the receiver is in a special SiRF format based on the ICD-GPS-2000 format for ephemeris data.

OkToSend - Message I.D. 18

Output Rate: TricklePower CPU on/off indicator Example:

A0A20002— Start Sequence and Payload Length 1200— Payload 0012B0B3— Message Checksum and End Sequence

		Binary	Binary (Hex)		ASCII (Decimal)		
Name	Bytes	Scale	Example	Units	Scale	Example	
Message I.D.	1		12			12	
Send Indicator ¹	1		00			00	
Payload Length: 2 bytes							
1.0 implies that CPU is about to go OFF, OkToSend==NO, 1 implies CPU has just come							
ON, OkToSend==YES							

Navigation Parameters (Response to Poll) – Message I.D. 19

Output Rate: 1 Response to Poll Example:

A0A20018— Start Sequence and Payload Length 13010000000011E3C0104001E004B1E00000500016400C8— Payload 022DB0B3— Message Checksum and End Sequence

		Binary	(Hex)	Units	ASCII	
Name	Bytes	i			(Decimal)	
		Scale	Example		Scale	Example
Message ID	1		13			19
Reserved	4					
Altitude Hold Mode	1		00			0
Altitude Hold Source	1		00			0
Altitude Source Input	2		0000	meters		0
Degraded Mode ¹	1		01			1
Degraded Timeout	1		1E	seconds		30
DR Timeout	1		3C	seconds		60
Track Smooth Mode	1		01			1
Static Navigation	1					
3SV Least Squares	1					
Reserved	4					
DOP Mask Mode ²	1		04			4
Navigation Elevation	2					
Mask						
Navigation Power Mask	1					
Reserved	4					
DGPS Source	1					
DGPS Mode ³	1		00			0
DGPS Timeout	1		1E	seconds		30
Reserved	4					
LP Push-to-Fix	1					
LP On-time	4					
LP Interval	4					
LP User Tasks Enabled	1					
LP User Task Interval	4					
LP Power Cycling	1					
Enabled						
LP Max. Acq. Search	4					
Time						
LP Max. Off Time	4					
Reserved	4					
Reserved	4					

Table 4- 51 Navigation Parameters

Payload Length: 65 bytes 1. See Table 4-13. 2. See Table 4-14. 3. See Table 4-15

Navigation Library Measurement Data - Message I.D. 28

Output Rate: Every measurement cycle (full power / continuous: 1Hz) Example:

A0A20038— Start Sequence and Payload Length 1C00000660D015F143F62C4113F42FF3FBE95E417B235C468C6964B8FBC5 82415CF1C375301734.....03E801F40000000— Payload 1533B0B3— Message Checksum and End Sequence

Table 4- 52 Measurement	Data					
		Binary	/ (Hex)		ASCII	
Name	Bytes				(Decimal)	
		Scale	Example		Scale	Example
Message I.D.			1C			
Channel			00			
Time Tag			000660D0	ms		
Satellite ID			15			
GPS Software Time			F143F62C	ms		2.4921113
			4113F42F			696e+005
Pseudo-range			F3FBE95E	m		2.1016756
			417B235C			638e+007
Carrier Frequency			468C6964			1.6756767
						578e+004
Carrier Phase			B8FBC582			4.4345542
			415CF1C3			262e+004
Time in Track			7530	ms		10600
Sync Flags			17			23
C/No 1			34	dB-Hz		43
C/No 2				dB-Hz		43
C/No 3				dB-Hz		43
C/No 4				dB-Hz		43
C/No 5				dB-Hz		43
C/No 6				dB-Hz		43
C/No 7				dB-Hz		43
C/No 8				dB-Hz		43
C/No 9				dB-Hz		43
C/No 10				dB-Hz		43
Delta Range Interval			03E801F4	m		1000
Mean Delta Range Time			01F4	ms		500
Extrapolation Time			0000	ms		
Phase Error Count			00			0
Low Power Count			00			0
Payload Length: 56 bytes						

<i>Table 4- 53</i> Sy	nc Flag Fields
Bit Fields	Description
[0]	Coherent Integration Time
	0 = 2ms
	1 = 10ms
[2:1]	Synch State
	00 = Not aligned
	01 = Consistent code epoch alignment
	10 = Consistent data bit alignment
	11 = No millisecond errors
[0]	Coherent Integration Time
	0 = 2ms
	1 = 10ms
[2:1]	Synch State
	00 = Not aligned
	01 = Consistent code epoch alignment
	10 = Consistent data bit alignment
	11 = No millisecond errors

Table 4- 54 Deta	ailed Description of the Measurement Data
Name	Description
Message I.D.	Message I.D. number.
Channel	Receiver channel number for a given satellite being searched or tracked.
Time Tag	This is the Time Tag in milliseconds of the measurement block in the receiver software time.
Satellite ID	Satellite or Space Vehicle (SV) I.D. number or Pseudo-random Noise (PRN) number.
GPS Software Time	This is GPS Time or Time of Week (TOW) estimated by the software in milliseconds.
Pseudo-range	This is the generated pseudo range measurement for a particular SV.
Carrier	This is can be interpreted in two ways:
Frequency	 The delta-pseudo range normalized by the reciprocal of the delta pseudo range measurement interval.
	2) The frequency from the AFC loop. If, for example, the delta pseudo range interval computation for a particular channel is zero, then it can be the AFC measurement, otherwise it is a delta-pseudo range computation.
Carrier Phase	This is the integrated carrier phase given in meters.
Time in Track	The Time in Track counts how long a particular SV has been in track. For any count greater than zero (0), a generated pseudo range is present for a particular channel. The length of time in track is a measure of how large the pull-in error may be.

Sync Flags	This byte contains two 2-bit fields that report the integration interval
	and sync value achieved for a particular channel.
	1)Bit 0: Coherent Integration Interval (0 = 2 milliseconds, 1 =
	10 milli- seconds)
	2) Bits: (1 2) = Synchronization
	3) Bit : (2 1)
	Value: {0 0} Not Aligned
	Value: {0 1} Consistent Code Epoch Alignment
	Value: {1 0} Consistent Data Bit Alignment
	Value: {1 1} No Millisecond Errors

Table 4- 55 Detailed	Description of the Measurement Data (Continued)
Name	Description
C/No 1	This array of Carrier To Noise Ratios is the average signal
	power in dB-Hz for each of the 100-millisecond intervals in the
	previous second or last epoch for each particular SV being tracked
	in a channel. First 100 millisecond measurement
C/No 2	Second 100 millisecond measurement
C/No 3	Third 100 millisecond measurement
C/No 4	Fourth 100 millisecond measurement
C/No 5	Fifth 100 millisecond measurement
C/No 6	Sixth 100 millisecond measurement
C/No 7	Seventh 100 millisecond measurement
C/No 8	Eighth 100 millisecond measurement
C/No 9	Ninth 100 millisecond measurement
C/No 10	Tenth 100 millisecond measurement
Delta Range	This is the delta-pseudo range measurement interval for the
Interval	preceding second. A value of zero indicates that the receiver has
	an AFC measurement or no measurement in the Carrier
	Frequency field for a particular channel.
Mean Delta Range	This is the mean calculated time of the delta-pseudo range
Time	interval in milliseconds measured from the end of the interval
	backwards. Extrapolation Time This is the pseudo range
	extrapolation time in milliseconds, to reach the common Time tag value.
Phase Error Count	This is the count of the phase errors greater than 60 Degrees
	measured in the preceding second as defined for a particular
	channel.
Low Power Count	This is the low power measurements for signals less than 28 dB-
	Hz in the preceding second as defined for a particular channel.

Navigation Library DGPS Data - Message I.D. 29

Output Rate: Every measurement cycle (full power / continuous: 1Hz) Example:

A0A2001A— Start Sequence and Payload Length

1D000F00B501BFC97C673CAAAAAB3FBFFE1240A0000040A00000- Payload 0956B0B3— Message Checksum and End Sequence

		Binary	(Hex)		ASCII	
Name	Bytes	Binary (Hex)		Units	(Decimal)	
		Scale	Example		Scale	Example
Message I.D.	1		000F			
Satellite ID	2		00B5			
IOD	2		01			
Source ¹	1		BFC97C67	ms		
Pseudo-range Correction	4		ЗСАААААВ	m/s		
Pseudo-range rate	4					
Correction						
Correction Age	4		3FBFFE12	s		
Reserved	4					
Reserved	4					

Payload Length: 26 bytes

1. 0 = Use no corrections, 1 = Use WAAS channel, 2 = Use external source, 3 = Use Internal Beacon, 4 = Set DGPS Corrections

Navigation Library SV State Data - Message I.D. 30

Output Rate: Every measurement cycle (full power / continuous: 1Hz) Example:

A0A20053— Start Sequence and Payload Length 1E15....2C64E99D01....408906C8— Payload 2360B0B3— Message Checksum and End Sequence

		Binary	(Hex)	_	ASCII	
Name	Bytes			Units	(Deci	mal)
		Scale	Example		Scale	Example
Message I.D.	1		1E			
Satellite ID	1		15			
GPS Time	8			S		
Position X	8			m		
Position Y	8			m		
Position Z	8			m		
Velocity X	8			m/s		
Velocity Y	8			m/s		
Velocity Z	8			m/s		
Clock Bias	8			S		
Clock Drift	4		2C64E99D	/s		744810909
Ephemeris Flag ¹	1		01			1
Reserved	8					
Ionospheric Delay	4		408906C8	m		1082721992
Payload Length: 83 byte	es					
1. 0 = no valid SV sta calculated from almanad		state ca	lculated from	n ephem	eris, 2	= Satellite st

Navigation Library Initialization Data - Message I.D. 31

Output Rate: Every measurement cycle (full power / continuous : 1Hz) Example:

A0A20054— Start Sequence and Payload Length

1F....0000000000001001E000F....00....00000000F....00....02....043402....

....02— Payload

0E27B0B3— Message Checksum and End Sequence

Table 4- 58 Measurement Data							
Name	Bytes	Binary	(Hex)	Units	ASCII (Decimal)		
		Scale	Example		Scale Example		
Message I.D.	1		1E				
Reserved	1						
Altitude Mode ¹	1		00		0		
Altitude Source	1		00		0		
Altitude	4		00000000		0		
Degraded Mode ²	1		01		1		
Degraded Timeout	2		001E		30		
Dead-reckoning Timeout	2		000F		15		
Reserved	2						
Track Smoothing Mode ³	1		00		0		
Reserved	1						
Reserved	2						
Reserved	2						
Reserved	2						
DGPS Selection ⁴	1		00		0		
DGPS Timeout	2						
Elevation Nav. Mask	2						
Reserved	2						
Reserved	1						
Reserved	2						
Reserved	1						
Reserved	2						
Static Nav.Mode ⁵	1						
Reserved	2						
Position X	8						
Position Y	8						
Position Z	8						
Position Init. Source ⁶	1		02		2		
GPS Time	8						

Development Data – Message I.D. 255

Output Rate: Receiver generated Example:

AOA2****— Start Sequence and Payload Length FF**********— Payload

****B0B3— Message Checksum and End Sequence

Table 4- 59 Development Data							
		Binary (Hex)		ASCII (De	ecimal)	
Name	Bytes	Scale	Example	Units	Scale	Example	
Message ID	1		FF			255	
Payload Leng	gth: Variable						
Payload Length: Variable Image: Constraint of the second seco							

Additional Information

TricklePower Operation in DGPS Mode

When in TricklePower mode the serial port DGPS corrections are supported. The CPU goes into sleep mode but will wake up in response to any interrupt including UARTs. Any messages received during the TricklePower 'off' period are buffered and processed when the receiver awakens for the next TricklePower cycle.

GPS Week Reporting

Since Aug, 22, 1999, the GPS week roll from 1023 weeks to 0 weeks is in accordance with the ICD-GPS-2000 specification. To maintain roll over compliance, SiRF reports the ICD GPS week between 0 and 1023. If the user needs to have access to the Extended GPS week (ICD GPS week + 1024) this information is available through the Clock Status Message (007) under the Poll menu.

NMEA Protocol in TricklePower Mode

The NMEA standard is generally used in continuous update mode at some predefined rate. This mode is perfectly compatible with all SiRF TricklePower and Push-to-Fix modes of operation. There is *no* mechanism in NMEA that indicates to a host application when the receiver is on or in standby mode. If the receiver is in standby mode (chip set OFF, CPU in standby) then no serial communication is possible for output of NMEA data or receiving SiRF proprietary NMEA input commands. To establish reliable communication, the user must re-power the receiver and send commands while the unit is in full-power mode (during start-up) and prior to reverting to TricklePower operation. Alternatively, the host application could send commands (i.e., poll for position) repeatedly until the request has been completed. In TricklePower mode, the user is required to select an update rate (seconds between data output) and On Time (milliseconds the chipset is on). When the user changes to NMEA mode, the option to set the output rate for each of the selected NMEA messages is also required. These values are multiplied by the TricklePower update rate value as shown in Table 4-58.

Table 4- 60 NMEA Data Rates Under TricklePower Operation								
Power Mode	Continuous	TricklePower	TricklePower	TricklePower				
Update Rate	1 every second	1 every second	1 every 5	1 every 8 seconds				
seconds								
On Time	1000	2000	4000	6000				
NMEA Update	1 every second	1 every 5	1 every 2	1 every 5 seconds				
Rate		seconds	seconds					
Message Output Rate	1 every second	1 every 5 seconds	1 every 10 seconds	1 every 40 seconds				
Note – The On Tir	me of the chip set	has no effect on	the output data	a rates.				

© 2005 by Laipac Technology Inc. All Rights Reserved.

Chapter 5 NMEA Input/Output Messages

The PG-31 may also output data in NMEA-0183 format as defined by the National Marine Electronics Association (NMEA) standard for interfacing marine electronic devices, version 2.20, January 1, 1997. Refer to Chapter 4 for detailed instructions.

NMEA Output Messages

PG-31 outputs the following messages as shown in Table 5-1:

Table 5-1 NMEA-0183 Output Messages				
NMEA Record	Description			
GGA	Global positioning system fixed data			
GLL	Geographic position - latitude/longitude			
GSA	GNSS DOP and active satellites			
GSV	GNSS satellites in view			
RMC	Recommended minimum specific GNSS data			
VTG	Course over ground and ground speed			

GGA — Global Positioning System Fixed Data

Table 5-2 contains the values for the following example:

\$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M, , , ,0000*18

Table 5- 2 GGA Data Format				
Name	Example	Units	Description	
Message ID	\$GPGGA		GGA protocol header	
UTC Time	161229.487		hhmmss.sss	
Latitude	3723.2475		ddmm.mmmm	
N/S Indicator	Ν		N=north or S=south	
Longitude	12158.3416		dddmm.mmmm	
E/W Indicator	W		E=east or W=west	
Position Fix Indicator	1		See Table 5-3	
Satellites Used	07		Range 0 to 12	
HDOP	1.0		Horizontal Dilution of Precision	
MSL Altitude ¹	9.0	meters		
Units	Μ	meters		
Geoid Separation ¹		meters		
Units	Μ	meters		
Age of Diff. Corr.		second	Null fields when DGPS is not used	
Diff. Ref. Station ID	0000			
Checksum	*18			
<cr> <lf></lf></cr>			End of message termination	
1. Values are WGS84 el	llipsoid heights.			

Table 5- 3	Position Fix Indicator
Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid
2	Differential GPS, SPS Mode, fix valid
3	GPS PPS Mode, fix valid

GLL— Geographic Position - Latitude/Longitude

Table 5-4 contains the values for the following example:

\$GPGLL,3723.2475,N,12158.3416,W,161229.487,A*2C

Table 5- 4 GLL Data Format			
Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	3723.2475		Ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
UTC Position	161229.487		hhmmss.sss
Status	А		A=data valid or V=data not valid
Checksum	*2C		
<cr> <lf></lf></cr>			End of message termination

GSA— GNSS DOP and Active Satellites

Table 5-5 contains the values for the following example:

\$GPGSA,A,3,07,02,26,27,09,04,15, , , , , , 1.8,1.0,1.5*33

Table 5- 5 GSA Data Format				
Name	Example	Units	Description	
Message ID	\$GPGSA		GSA protocol header	
Mode 1	А		See Table 5-6	
Mode 2	3		See Table 5-7	
Satellite Used ¹	07		Sv on Channel 1	
Satellite Used ¹	02		Sv on Channel 2	
Satellite Used ¹			Sv on Channel 12	
PDOP	1.8		Position Dilution of Precision	
HDOP	1.0		Horizontal Dilution of Precision	
VDOP	1.5		Vertical Dilution of Precision	
Checksum	*33			
<cr> <lf></lf></cr>			End of message termination	
1. Satellite used in solution.				

Table 5- 6 Mode 1				
Value	Value Description			
Μ	Manual—forced to operate in 2D or 3D mode			
A 2Dautomatic—allowed to automatically switch 2D/3D				

Table 5- 7 Mode 2		
Value	Description	
1	Fix Not Available	
2	2D	
3	3D	

GSV— GNSS Satellites in View

Table 5-8 contains the values for the following example:

\$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71 \$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41

Table 5- 8 GSV Da	ta Format		
Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Number of	2		Range 1 t o 3
Messages ¹			
Message	1		Range 1 t o 3
Number ¹			
Satellites in View	07		
Satellite ID	07		Channel 1 (Range 1 to 32)
Elevation	79	degrees	Channel 1 (Maximum 90)
Azimuth	048	degrees	Channel 1 (True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not
			tracking
Satellite ID	27		Channel 4 (Range 1 to 32)
Elevation	27	degrees	Channel 4 (Maximum 90)
Azimuth	138	degrees	Channel 4 (True, Range 0 to 359)
SNR (C/No)	42	dBHz	Range 0 to 99, null when not
			tracking
Checksum	*71		
<cr> <lf></lf></cr>			End of message termination
1. Depending on t	he number	r of satellit	tes tracked multiple messages of GSV
data may be required.			

RMC- Recommended Minimum Specific GNSS Data

Table 5-9 contains the values for the following example:

\$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598, ,*10

Table 5- 9 RMC Data Format				
Name	Example	Units	Description	
Message ID	\$GPRMC		RMC protocol header	
UTC Time	161229.487		hhmmss.sss	
Status	А		A=data valid or V=data not valid	
Latitude	3723.2475		ddmm.mmm	
N/S Indicator	Ν		N=north or S=south	
Longitude	12158.3416		dddmm.mmmm	
E/W Indicator	W		E=east or W=west	
Speed Over	0.13	knots		
Ground				
Course Over	309.62	degrees	True	
Ground				
Date	120598		Ddmmyy	
Magnetic		degrees	E=east or W=west	
Variation ¹				
Checksum *10				
<cr> <lf></lf></cr>			End of message termination	
1.All "course over ground" data are geodetic WGS84 directions.				

VTG— Course Over Ground and Ground Speed

Table 5-10 contains the values for the following example:

Table 5- 10 VTG Data Format			
Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course	309.62	degrees	Measured heading
Reference	Т		True
Course		degrees	Measured heading
Reference	Μ		Magnetic ¹
Speed	0.13	knots	Measured horizontal speed
Units	N	knots	
Speed	0.2	km/hr	Measured horizontal speed
Units	К		Kilometers per hour
Checksum	*6E		
<cr> <lf></lf></cr>			End of message termination
1. All "course over ground" data are geodetic WGS84 directions.			

\$GPVTG,309.62,T, ,M,0.13,N,0.2,K*6E

SiRF Proprietary NMEA Input Messages

NMEA input messages are provided to allow you to control the Evaluation Unit while in NMEA protocol mode. The Evaluation Unit may be put into NMEA mode by sending the SiRF Binary protocol message "Switch To NMEA Protocol - Message I.D. 129" using a user program or using Sirfdemo.exe and selecting 'Switch to NMEA Protocol' from the Action menu. If the receiver is in SiRF Binary mode, all NMEA input messages are ignored. Once the receiver is put into NMEA mode the following messages may be used to command the module.

Transport Message

Start Sequence	Payload	Checksum	End Sequence
\$PSRF <mid>1</mid>	Data ²	*CKSUM ³	<CR $>$ $<$ LF $>$ ⁴

- 1. Message Identifier consisting of three numeric characters. Input messages begin at MID 100.
- 2. Message specific data. Refer to a specific message section for <data>...<data> definition.
- 3. CKSUM is a two-hex character checksum as defined in the NMEA specification. Use of checksums is required on all input messages.
- 4. Each message is terminated using Carriage Return (CR) Line Feed (LF) which is \r\n which is hex OD OA. Because \r\n are not printable ASCII characters, they are omitted from the example strings, but must be sent to terminate the message and cause the receiver to process that input message.

Note – All fields in all proprietary NMEA messages are required, none are optional. All NMEA messages are comma delimited.

SiRF NMEA Input Messages				
Message	MID ¹	Description		
Set Serial Port	100	Set PORT A parameters and protocol		
Navigation Initialization	101	Parameters required for start using X/Y/Z		
Set DGPS Port	102	Set PORT B parameters for DGPS input		
Query/Rate Control		Query standard NMEA message and/or set output rate		
LLA Navigation Initialization	104	Parameters required for start using Lat/Lon/Alt ²		
Development Data On/Off	105	Development Data messages On/Off		
1. Message Identification (MID).				
2. Input coordinates must be WGS84.				

SetSerialPort

This command message is used to set the protocol (SiRF Binary or NMEA) and/or the communication parameters (baud, data bits, stop bits, parity). Generally, this command is used to switch the module back to SiRF Binary protocol mode where a more extensive command message set is available. When a valid message is received, the parameters are stored in battery-backed SRAM and then the Evaluation Unit restarts using the saved parameters.

Table 5-11 contains the input values for the following example: Switch to SiRF Binary protocol at 9600,8,N,1

Table 5-11 Set Serial Port Data Format			
Name	Example	Units	Description
Message ID	\$PSRF100		PSRF100 protocol header
Protocol	0		0=SiRF Binary, 1=NMEA
Baud	9600		4800, 9600, 19200, 38400
DataBits	8		8,7 ¹
StopBits	1		0,1
Parity	0		0=None, 1=Odd, 2=Even
Checksum	*0C		End of message termination
<cr> <lf></lf></cr>			
1. Only valid for 8 data bits, 1 stop bit, and no parity.			

\$PSRF100,0,9600,8,1,0*0C

NavigationInitialization

This command is used to initialize the module for a warm start by providing current position (in X, Y, Z coordinates), clock offset, and time. This enables the PG-31 to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable PG-31 to acquire signals quickly.

Table 5-12 contains the input values for the following example: Start using known position and time.

\$PSRF101,-2686700,-4304200,3851624,96000,497260,921,12,3*7F

Table 5- 12 Navigation Initialization Data Format			
Name	Example	Units	Description
Message ID	\$PSRF101		PSRF101 protocol header
ECEF X	-2686700	meters	X coordinate position
ECEF Y	-4304200	meters	Y coordinate position
ECEF Z	3851624	meters	Z coordinate position
ClkOffset	96000	Hz	Clock Offset of PG-31 ¹
TimeOfWeek	497260	seconds	GPS Time Of Week
WeekNo	921		GPS Week Number
ChannelCount	12		Range 1 to 12
ResetCfg	3		See Table 5-13
Checksum	*7F		
<cr> <lf></lf></cr>			End of message termination
1. Use 0 for last saved value if available. If this is upavailable, a default value of 96.00			

 Use 0 for last saved value if available. If this is unavailable, a default value of 96,000 will be used.

Table 5- 13	Reset Configuration		
Нех	Description		
0x01	Data Valid— Warm/Hot Starts=1		
0x02	Clear Ephemeris— Warm Start=1		
0x04	Clear Memory— Cold Start=1		

SetDGPSPor t

This command is used to control Serial Port B which is an input-only serial port used to receive RTCM differential corrections. Differential receivers may output corrections using different communication parameters. The default communication parameters for PORT B are 9600 baud, 8 data bits, 1 stop bit, and no parity. If a DGPS receiver is used which has different communication parameters use this command to allow the receiver to correctly decode the data. When a valid message is received the parameters are stored in battery-backed SRAM and then the receiver restarts using the saved parameters.

Table 5-14 contains the input values for the following example: Set DGPS Port to be 9600,8,N,1.

\$PSRF102,9600,8,1,0*12

Table 5- 14 Set DGPS Port Data Format			
Name	Example	Units	Description
Message ID	\$PSRF102		PSRF102 protocol header
Baud	9600		4800, 9600, 19200, 38400
DataBits	8		8,7
StopBits	1		0,1
Parity	0		0=None, 1=Odd, 2=Even
Checksum	*12		
<cr> <lf></lf></cr>			End of message termination

Query/Rate Control

This command is used to control the output of the standard NMEA messages GGA, GLL, GSA, GSV, RMC, and VTG. Using this command message, standard NMEA messages may be polled once or setup for periodic output. Checksums may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in battery-backed memory for each entry when the message is accepted.

Table 5-15 contains the input values for the following examples:

- 1. Query the GGA message with checksum enabled \$PSRF103,00,01,00,01*25
- 2. Enable VTG message for a 1 Hz constant output with checksum enabled \$PSRF103,05,00,01,01*20
- 3. Disable VTG message \$PSRF103,05,00,00,01*21

Table 5-15 Query/Rate Control Data Format (See example 1.)			
Name	Example	Units	Description
Message ID	\$PSRF103		PSRF103 protocol header
Msg	00		See Table 5-16
Mode	01		0=SetRate, 1=Query
Rate	00	seconds	Output—off=0, max=255
CksumEnabe	01		0=Disable Checksum, 1=Enable Checksum
Checksum	*25		
<cr> <lf></lf></cr>			End of message termination

Table 5- 16 Messages		
Value	Description	
0	GGA	
1	GLL	
2	GSA	
3	GSV	
4	RMC	
5	VTG	

Note – In TricklePower mode, update rate is specified by the user. When you switch to NMEA protocol the message update rate is also required. The resulting update rate is the product of the TricklePower Update rate AND the NMEA update rate (i.e. TricklePower update rate = 2 seconds, NMEA update rate = 5 seconds, resulting update rate is every 10 seconds ($2 \times 5 = 10$)).

LLANaviagtion Initialization

This command is used to initialize the module for a warm start by providing current position (in latitude, longitude, and altitude coordinates), clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the receiver to acquire signals quickly.

Table 5-17 contains the input values for the following example: Start using known position and time.

\$PSRF104,37.3875111,-121.97232,0,96000,237759,922,12,3*37

Table 5- 17 LLA Navigation Initialization Data Format			
Name	Example	Units	Description
Message ID	\$PSRF104		PSRF104 protocol header
Lat	37.3875111	degrees	Latitude position (Range 90 to -90)
Lon	-121.97232	degrees	Longitude position (Range 180 to -180)
Alt	0	meters	Altitude position
ClkOffset	95000	Hz	Clock Offset of the Evaluation Unit ¹
TimeOfWeek	237759	seconds	GPS Time Of Week
WeekNo	922		GPS Week Number
ChannelCount	12		Range 1 to 12
ResetCfg	3		See Table 5-18
Checksum	*37		
<cr> <lf></lf></cr>			End of message termination
 Use 0 for last saved value if available. If this is unavailable, a default value of 96,000 will be used. 			

<i>Table 5- 18</i>	Reset Configuration		
Hex	Description		
0x01	Data Valid— Warm/Hot Starts=1		
0x02	Clear Ephemeris— Warm Start=1		
0x04	Clear Memory— Cold Start=1		

Development Data On/Off

Use this command to enable development data information if you are having trouble getting commands accepted. Invalid commands generate debug information that enables the user to determine the source of the command rejection. Common reasons for input command rejection are invalid checksums or parameters out of specified range.

Table 5-19 contains the input values for the following examples:

- 1. Debug On \$PSRF105,1*3E
- 2. Debug Off \$PSRF105,0*3F

Table 5-19 Development Data On/Off Data Format			
Name	Example	Units	Description
Message ID	\$PSRF105		PSRF105 protocol header
Debug	1		0=Off, 1=On
Checksum	*3E		
<cr> <lf></lf></cr>			End of message termination