

µLCD MkII Command Set (additional to MkI)
(Draft Only)

The following commands are related to the µLCD MkII only. This document is a
supplement to the original “µLCD Users Manual” (referred to as MkI) and it must be
read in conjunction with it. The µLCD MkII incorporates all of the µLCD MkI
commands plus the additional commands outlined here. The features and
commands set out in this document help differentiate MkII from the MkI model.
You will find references being made to “Objects” throughout the document. An
object can be simply defined as those commands that reside inside the flash
memory (programmed/downloaded) and can be displayed on the screen by the
“Display Object from Flash Memory” command.
There are also some commands that can only reside inside the flash memory and
must be executed from there. These commands will return a NAK if executed live
from the serial link.
Tables below list all of the commands for both MkI and MkII.

Command Set Summary (MkI & MkII)

 Live Object Flash
Erase Screen x x
Background Colour x x
Put Pixel x
Read Pixel x
Draw Circle x x x
Draw Line x x x
Font Size x x
Opaque or Transparent Text x
Place Text Character (formatted) x x x
LCD Display Control Functions x x
Add User Bitmapped Character x
Display User Bitmapped Character x
Paint Area x x x

4D Systems

www.4dsystems.com.au 2

Command Set Summary (MkII only)

NOTES:
Live : Those commands that can be sent via the serial link and executed by the host.
Object : Those commands that can be recalled from the flash memory at any time by the host

and displayed on the screen using the “Display Object from Flash Memory”
command.

Flash : Those commands that can reside and be executed from inside the flash memory.

 Live Object Flash
Draw Circle with Fill x x x
Place Text Character (unformatted) x x x
Place String of ASCII Text (formatted) x x x
Display Image x x x
Set Transparent Colour (for Images only) x x
Enable/Disable Transparent colour x x
Place Button Icon x x x
Block Copy & Paste (Screen Bitmap Copy) x
Display Object from Flash Memory x
Delay x
Loop Start x
Loop End x
Run x
Exit x x
Restart x
Download Data to Flash Memory x
Read Data from Flash Memory x
Erase Flash Memory x

4D Systems

www.4dsystems.com.au 3

Draw Circle with Fill:
Syntax : cmd, x, y, rad, colour(msb), colour(lsb)

cmd : 69hex, iascii
x : circle horizontal centre position
y : circle vertical centre position
rad : length of circle radius (in pixel units)
colour(msb), colour(lsb) : 2 byte fill colour of the circle

Description : This command will draw a filled circle centred at (x, y) with a
radius determined by the value of rad.

4D Systems

www.4dsystems.com.au 4

Place Text Character (unformatted)
Syntax : cmd, char, x, y, colour(msb), colour(lsb), width, height

cmd : 74hex, tascii
char : Ascii character
x : the horizontal location (in pixels units)
y : the vertical location (in pixels units)
colour(msb), colour(lsb) : 2 byte colour of the character
width : horizontal size of the character, n x normal size
height : vertical size of the character, m x normal size

Description : This command will place a coloured built in ASCII character
anywhere on the screen at a location specified by (x, y). Unlike the ‘T’
command, this option allows text of any size (determined by width and height)
to be placed at any position. The font of the character is determined by the
‘Font Size’ command.

4D Systems

www.4dsystems.com.au 5

Place String of Ascii Text (formatted):
Syntax : cmd, column, row, font_size, colour(msb), colour(lsb), char1, .. charN,
terminator

cmd : 73hex, sascii
char : Ascii character
column : the horizontal start position of string
row : the vertical start position of string
font_size : 0 = 5x7 font, 1 = 8x8 font, 2 = 8x12 font. This has precedence over
the Font command.
colour(msb), colour(lsb) : 2 byte colour of the string
char1..charN : string of ASCII characters (max 256 characters)
terminator : string terminator, must be 00hex.

Description : This command allows the display of a string of ASCII characters.
The horizontal start position of the string is specified by column and the vertical
position is specified by row. The string must be terminated with 00hex. If the
length of the string is longer than the maximum number of characters per line,
then a wrap around will occur on to the next line. Maximum string length is 256
bytes.

4D Systems

www.4dsystems.com.au 6

Display Image
Syntax : cmd, x, y, width, height, colour_mode, pixel1, .. pixelN

cmd : 49hex, Iascii
x : Image horizontal start position (top left corner)
y : Image vertical start position (top left corner)
width : horizontal size of the image
height : vertical size of the image
colour_mode : 0 = 256 colour mode, 8bits/1byte per pixel

 1 = 65K colour mode, 16bits/2bytes per pixel (msb, lsb)
pixel1..pixelN : image pixel data and N is the total number of pixels.

N = height x width when colour_mode = 0
N = height x width x 2 when colour_mode = 1

Description : This command displays a bitmap image on to the screen with the
top left corner specified by (x, y) and size of the image specified by width and
height parameters. This command is more effective than using the “Put Pixel”
command, where there are no overheads in specifying the x, y location of each
pixel.

x,y

height

width
screen

4D Systems

www.4dsystems.com.au 7

Set Transparent Colour (for Images only)
Syntax : cmd, colour(msb), colour(lsb)

cmd : 4Ehex, Nascii
colour(msb), colour(lsb) : 2 byte transparency colour
Description: When a 2 byte transparent colour is specified, it inhibits those
matching colour values of the bitmap image from being displayed or painted on
to the screen. For example, a small icon image maybe surrounded by an area
of a certain background colour. If we know the colour value of the background,
we can stop it from being displayed on the screen and only display the image of
interest.
For example, the smiley on the left has a red background colour and if we set
our transparent colour value to match the same red colour value, the resultant
display on the screen will be the smiley on the right.
The power up default value = 0xFFFF (White)

4D Systems

www.4dsystems.com.au 8

Enable/Disable Transparent colour
Syntax : cmd, mode

cmd : 65hex, eascii
mode : 0 = Disable Transparent colour (default)

1 = Enable Transparent colour
Description : The Transparent Colour function can be enabled or disabled by
executing this command. See “Set Transparent Colour” command for a detailed
explanation.

4D Systems

www.4dsystems.com.au 9

Place Button Icon
Syntax : cmd, state, x1, y1, x2, y2, colour(msb), colour(lsb)

cmd : 62hex, bascii
state : Specifies whether the displayed button is drawn as UP (not pressed) or

DOWN (pressed).
0 = Button Down (pressed)
1 = Button Up (not pressed)

x1 : top left horizontal start position of the button
y1 : top left vertical start position of the button
x1 : bottom right horizontal end position of the button
y1 : bottom right vertical end position of the button
colour(msb), colour(lsb) : 2 byte button colour value

Description : This command will place a Button similar to the ones used in a
PC Windows environment on the screen. (x1, y1) refers to the top left corner of
the button and (x2, y2) refers to the bottom right hand corner of the button on
the screen. The button can be displayed in an UP (button not pressed) or
DOWN (button pressed) position by specifying the appropriate value in the
state byte. Text can be placed inside the button, using the ‘t’ “Place Text
Character” (unformatted) command, describing the button function.

4D Systems

www.4dsystems.com.au 10

Block Copy & Paste (Screen Bitmap Copy)
Syntax : cmd, x_source, y_source, x_dest, y_dest, width, height

cmd : 63hex, cascii
x_source: top left horizontal start position of block to be copied
y_source: top left vertical start position of block to be copied
x_dest: top left horizontal start position of where the copied block is to be pasted
y_dest: top left vertical start position of where the copied block is to be pasted
width : horizontal size of the block to be copied
height : vertical size of the block to be copied

Description : This command copies an area of a bitmap block of specified size
defined by the width and the height parameters. The start location of the block
to be copied is represented by x_source, y_source (top left corner) and the
start location of where the block is to be pasted to, is represented by x_dest,
y_dest (top left corner).
This is a very powerful feature for animating objects, smooth scrolling,
implementing a windowing system or copying patterns across the screen to
make borders or tiles.
The Graphics RAM or the Screen Memory is made up of 128 x 176 pixels. Only
the 128 x 128 portion is used for the display. Therefore there is a 128 x 48 area
of memory that can be used as a temporary scratch pad to copy and paste
blocks of bitmap data. This is ideal for animations, where the area under the
object can be copied over to the scratch pad before it’s displayed and then re-
pasted back once the object has been moved to a different screen location. The
following indicates how the graphics RAM is utilised:

Graphics RAM Comment

x = 0, y = 0 to x = 127, y = 127 Used for the Screen Display
x = 0, y = 128 to x = 127, y = 175 Scratch Pad area

This area can be
used as scratch pad 48

128

128

4D Systems

www.4dsystems.com.au 11

Display Object from Flash Memory
Syntax : cmd, address(hi), address(mid), address(lo)

cmd : 66hex, fascii
address : 24bit (3 bytes) address of the object in flash ROM
 (hi) = Address high byte
 (mid) = Address middle byte
 (lo) = Address low byte
Description: Some of the commands can be stored as objects in the internal
flash which can be later recalled by the host on demand and displayed or
executed. The user must make sure the 24 bit address of each stored
command/object is known before using this feature.
For example, a series of images can be stored as icons and later displayed as
the application requires them. The following is a list of all the commands that
can be stored as objects within the internal flash ROM:
 Circle (empty), Circle (fill), Line, Text Character (formatted), Text
Character (unformatted), Radio Button, Paint Area, Display String,
Display Image.

4D Systems

www.4dsystems.com.au 12

Delay (must reside inside the flash)
Syntax : cmd, value(msb), value(lsb)

cmd : 04hex
value(msb, lsb) : A 2 byte delay value in milliseconds. Maximum value of 65,535
milliseconds or 65.5 seconds.

Description : When objects from the flash memory such as images are
displayed sequentially, a delay can be inserted between subsequent objects. A
delay basically has the same effect as a NOP (No Operation) which can be
used to determine how long the object stays on the screen before the next
object is displayed.

4D Systems

www.4dsystems.com.au 13

Loop Start (must reside inside the flash)
Syntax : cmd, counter

cmd : 0Dhex
counter : A 1 byte counter that determines how many times the loop occurs
between the “Loop Start” and “Loop End” commands. Practical values should
be between 2 and 255.

Description : A series of images that might be part of an animation may need
to be redisplayed over and over to achieve a lengthy viewing. This command
allows the user to determine exactly how many times the series of images are
looped. This command must always be terminated with the “Loop End”
command.
For example, we may want to animate the Globe rotating. Let’s say we have 10
image slides of the Globe at different rotated positions residing in the flash
memory. When the images are displayed sequentially, the effective duration will
only be the length of time it takes to display the 10 image frames. With this
command, we can increase that length by looping thru the animation a number
of times depending on the value set in the counter byte. When the display
reaches the end of the last frame and encounters the “Loop End” command,
the counter will be decremented and then the internal pointer will jump back to
the object just after the “Loop Begin” command. This sequence will then repeat
until the value in the counter reaches zero. The following demonstrates how
this maybe used:

Loop_Start, (counter = 25),
Image1,
Delay(10ms),
Image2,
Delay(10ms),
…,
…,
Image10,
Delay(10ms),
Loop_End (decrements counter then jumps to Image1)

4D Systems

www.4dsystems.com.au 14

Loop End (must reside inside the flash)
Syntax : cmd

cmd : 0Chex

Description : Decrements the “Loop Start” counter and forces the internal
flash pointer to jump to that command/object, which resides in the flash
memory, just after the “Loop Start” command. When the “Loop Start” counter
becomes zero, the “Loop End” command is bypassed and the command/object
following it is executed. See “Loop Start” command for a detailed explanation.

4D Systems

www.4dsystems.com.au 15

Run
Syntax : cmd

cmd : 06hex

Description : The Run command forces the 24bit internal flash pointer to reset
to zero (000000hex) and automatically start executing commands, from the
flash memory, without any further interaction by the host processor. It will
sequentially execute any valid flash related commands and display objects until
it gets to the end of the 1Mb flash memory. It is advisable to have the “Exit” or
the “Restart” command at the end of the user composed slide show so that the
pointer does not run off so to speak.

4D Systems

www.4dsystems.com.au 16

Exit
Syntax : cmd

cmd : 07hex

Description : This command forces the program to stop executing from the
internal flash memory and ready to accept and execute commands from the
host via the serial interface. It can reside in the flash which will force the slide
show to stop or it can be sent via the serial port while the program is running
from the internal flash.

4D Systems

www.4dsystems.com.au 17

Restart (must reside inside the flash)
Syntax : cmd

cmd : 05hex

Description : The Restart command forces the 24bit internal flash pointer to
reset to zero (000000hex). If a certain slide show is composed inside the flash
memory and the “Restart” command is encountered at the end of it, the
program will then jump back to the start of the flash and begin executing again.

4D Systems

www.4dsystems.com.au 18

Download Data to Flash Memory
Syntax : cmd, pageNum(msb), pageNum(lsb), data(1), .. , data(256), chkSum(msb),
chkSum(lsb)

cmd : 08hex
pageNumb(msb, lsb) : A 2 byte page number from 0 to 4095. The internal 1Mb
flash memory has 4096 pages and each page is 256 bytes long.
data(1 to 256) : 256 bytes of data. The data length must be 256 bytes long. If
not all used then the rest must be padded.
chkSum(msb, lsb) : A 2 byte checksum value. The checksum is calculated by
taking a binary sum of all bytes in the command frame and forming a 2 byte
value, from (and including) the pageNum(msb) byte to the last data byte
data(256). Then, the two's complement is taken (i.e., invert all bits of the result
and then add 1) to yield the checksum. Note: If the command message is
correct, adding the checksum word to the 2 byte sum of all the other bytes
(excluding cmd) in the message will give a result of zero.
Description : This command allows downloading of objects such as images
and other commands for storage that can be retrieved and used later on. The
µLCD-MkII has a 1Mbyte of flash memory which is divided into 4096 pages and
each page is 256 bytes long. Downloads must always be limited to 256 bytes in
length. For large objects such as images, the data must be broken up into
multiple pages (chunks of 256 bytes) and this command then maybe used
many times until all of the data is downloaded. There is no provision to
download a single byte or few bytes and the data length must always be 256
bytes long. If only few bytes of data are to be downloaded, then make sure the
rest of the remaining data are padded with 00hex or FFhex (it can be anything).
Once the command message is sent and the checksum is correct, the µLCD
will take a few milliseconds to write the data into its flash memory and at the
end of which it will reply back with an ACK(06hex). If the checksum is incorrect
a NAK(15hex) will be sent back without any write attempts.
Only data(1) to data(256) are stored in the flash. Other bytes in the command
message such as page number and checksum are not stored.

4D Systems

www.4dsystems.com.au 19

Read Data from Flash Memory
Syntax : cmd, pageNum(msb), pageNum(lsb)

cmd : 09hex
pageNumb(msb, lsb) : A 2 byte page number from 0 to 4095. The internal 1Mb
flash memory has 4096 pages and each page is 256 bytes long.

Description : This command provides a means of reading data back from the
flash memory in lengths of 256 bytes. It maybe useful in validating the data that
was stored previously using the download command. Once this command is
sent, the µLCD will return 256 bytes of data relating to that particular page.

4D Systems

www.4dsystems.com.au 20

Erase Flash Memory
Syntax : cmd,

cmd : 0Ahex

Description : Before any data can be downloaded and stored in the flash
memory, it must first be erased. There is no provision to erase individual bytes
or pages of memory. Once this command is executed, all of the 1Mbytes (4096
pages) of memory will be erased. It will take around 10 seconds to completely
erase the flash at the end of which an ACK(06hex) is returned.

