

USERS MANUAL
(µOLED-96 & µOLED-96-xMb)

Revision 1.2

4D Systems

www.4dsystems.com.au 2

PROPRIETORY INFORMATION

The information contained in this document is the property of 4D Systems Pty. Ltd.,
and may be the subject of patents pending or granted, and must not be copied or
disclosed with out prior written permission. It should not be used for commercial
purposes without prior agreement in writing.

4D Systems Pty. Ltd. Endeavours to ensure that the information in this document is
correct and fairly stated but does not accept liability for any error or omission. The
development of 4D Systems products and services is continuous and published
information may not be up to date. It is important to check the current position with
4D Systems.

Contact details are available from the company web site at www.4dsystems.com.au

All trademarks recognised and acknowledged.

Copyright 4D Systems Pty. Ltd. 2000-2006

www.4dsystems.com.au 3

Table of contents

1. µOLED Description

1.1 Introduction
1.2 µOLED features

2. µOLED Command set

2.1 µOLED-96 and µOLED-96-xMb Command set
2.1.1 Erase Screen
2.1.2 Background Colour
2.1.3 Put Pixel
2.1.4 Read Pixel
2.1.5 Draw Circle
2.1.6 Draw Circle with Fill
2.1.7 Draw Line
2.1.8 Draw Rectangle
2.1.9 Paint Area
2.1.10 Place Button Icon
2.1.11 Block Copy & Paste (Screen Bitmap Copy)
2.1.12 Font Size
2.1.13 Opaque or Transparent Text
2.1.14 Place Text Character (formatted)
2.1.15 Place Text Character (unformatted)
2.1.16 Place String of ASCII Text (formatted)
2.1.17 OLED Display Control Functions
2.1.18 Add User Bitmapped Character
2.1.19 Display User Bitmapped Character
2.1.20 Display Image
2.1.21 Version/Device Info Request

2.2 µOLED-96-xMb Additional Command set
2.2.1 Display Object from Flash Memory
2.2.2 Display Image from Flash Memory as Icon
2.2.3 Delay
2.2.4 Loop Start
2.2.5 Loop End
2.2.6 Run
2.2.7 Exit
2.2.8 Restart
2.2.9 Download Data to Flash Memory
2.2.10 Read Data from Flash Memory
2.2.11 Erase Flash Memory

2.3 µOLED Serial Interface
2.4 µOLED USB Interface

www.4dsystems.com.au 4

3. Specifications

3.1 µOLED-96 pin-outs
3.2 µOLED-96 Power Consumption
3.3 65,536 Colour Bitmap Organisation
3.4 256 Colour Bitmap Organisation
3.5 Power-Up Reset

4. Appendix

4.1 Available models
4.2 Related Products
4.3 Auto Demo/Slide Show
4.4 Precautions
4.5 Help and Other Information

www.4dsystems.com.au 5

1 µOLED Description

1.1 Introduction

The µOLED is a compact & cost effective all in one ‘SMART” OLED Display with an
embedded graphics controller that will deliver ‘stand-alone’ functionality to your
project. The ‘simple to use’ embedded commands not only control background
colour but can produce text in a variety of sizes as well as draw shapes (which can
include user definable bitmapped characters such as logos) in 65,536 colours whilst
freeing up the host processor from the ‘processor hungry ‘ screen control functions.
This means a simple micro-controller with a standard serial or USB interface can
drive the µOLED module with total ease.
Figures below show some of the graphics capability of the µOLED-96.

www.4dsystems.com.au 6

1.2 µOLED Features
The µOLED is aimed at being integrated into a variety of different applications via a
wealth of features designed to facilitate any given functionality quickly and cost
effectively and thus reduce ‘time to market’. These features are as follows:

 96 x 64 pixel resolution, 65K true to life colours, Enhanced OLED screen
 0.95” diagonal (24mm), 28mm x 24mm x 5mm
 No backlighting, near 180° viewing angle
 Easy 4 pin interface to any host device: 5V, Tx, Rx, GND
 5 Volts supply, current @ 40mA nominal
 Serial RS-232 (0V to 3.3V) with auto-baud feature (300 to 128K baud). If

interfacing to a 5V system a series resistor (1K) is required on the Rx line.
 Optional USB interface via the 4D microUSB (uUSB or uUSB-MB modules)
 Optional onboard Flash Memory for storing of icons, images, animations, etc.
 Three selectable font sizes (5x7, 8x8 and 8x12) for ASCII characters as well as

user-defined bitmapped characters (64 @ 8x8)
 Built in graphics commands such as: LINE, CIRCLE, TEXT, PAINT, USER

BITMAP, BACKGROUND COLOUR, PUT PIXEL, IMAGE, etc. just to name a few

www.4dsystems.com.au 7

2 µOLED Command Set

The heart of the µOLED is the easy to understand command set. This comprises of
a handful of easy to learn instructions that can draw lines, circles, squares, etc, to
provide a full text and graphical user interface. The commands are sent to the
µOLED via its serial connection (4 pin header). Please note that the Rx and the Tx
signals are at 3.3V levels. If interfacing to a host system running at 5V levels,
then 1K series resistor must be inserted between the Host Tx and the µOLED
Rx/ signals.

2.1 µOLED-96 and µOLED-96-xMb Command Set

 Command Length Section Page
(E) Erase Screen 1 byte 2.1.1 9
(B) Background Colour 3 bytes 2.1.2 10
(P) Put Pixel 5 bytes 2.1.3 11
(R) Read Pixel 3 bytes 2.1.4 12
(C) Draw Circle 6 bytes 2.1.5 13
(i) Draw Circle with Fill 6 bytes 2.1.6 14
(L) Draw Line 7 bytes 2.1.7 15
(r) Draw rectangle 8 bytes 2.1.8 16
(p) paint Area 7 bytes 2.1.9 17
(b) Place button Icon 8 bytes 2.1.10 18
(c) Block copy and Paste (bitmap copy) 7 bytes 2.1.11 19
(F) Font Size 2 bytes 2.1.12 20
(O) Opaque or Transparent Text 2 bytes 2.1.13 21
(T) Place Text Character (formatted) 6 bytes 2.1.14 22
(t) Place text Character (unformatted) 8 bytes 2.1.15 23
(s) Place string of ASCII Text (formatted) n bytes 2.1.16 24
(Y) OLED DisplaY Control functions 3 bytes 2.1.17 25
(A) Add User Bitmapped Character 10 bytes 2.1.18 26
(D) Display User Bitmapped Character 6 bytes 2.1.19 27
(I) Display Image n bytes 2.1.20 28
(V) Version/Device Info Request 2 bytes 2.1.21 29

www.4dsystems.com.au 8

COMMAND PROTOCOL
The following are each of the commands with the correct syntax. Please note
that all command examples listed below are in hex (00hex). Due to the high
colour depth of the µOLED, a pixel colour value will not fit into a single byte, a
byte can only hold a maximum value of 255. Therefore the colour is
represented as a 2 byte value, colour(msb), colour(lsb). The most significant
byte (msb) is transmitted first followed by the least significant byte (lsb). This
format is called the big endian. So for a 2 byte colour value of 013Fhex the byte
order can be shown as (01hex),(3Fhex).

NOTE: When transmitting the command and data bytes to the µOLED, do not
include any separators such as commas ‘,’ or spaces ‘ ‘ or brackets ‘(‘ ‘)’
between the bytes. The examples show these separators purely for legibility;
these must not be included when transmitting data to the µOLED.

When a µOLED command is sent, the µOLED will reply back with a single
acknowledge byte called the ACK (06hex). This tells the host that the command was
understood and the operation is completed. It will take the µOLED anywhere
between 1 to several milliseconds to reply back with an ACK, depending on the
command and the operation the µOLED has to perform. If the µOLED receives a
command that it does not understand it will reply back with a negative acknowledge
called the NAK (15hex).
If a command that has 5 bytes but only 4 bytes are sent, the command will not be
executed and the µOLED will wait until another byte is sent before trying to execute
the command. There is no timeout on the µOLED when incomplete commands are
sent. The µOLED will reply back with a NAK for each invalid command it receives.
For correct operation make sure the command bytes are sent in the correct
sequence.

www.4dsystems.com.au 9

2.1.1 Erase Screen (E)

Syntax : cmd

cmd : 45hex, Eascii

Description : This command clears the entire screen using the current
background colour.

Example : 45hex
Clear the screen.

www.4dsystems.com.au 10

2.1.2 Background Colour (B)

Syntax : cmd, colour(msb), colour(lsb)

cmd : 42hex, Bascii

colour : pixel colour value: 2 bytes (16 bits) msb, lsb

 65,536 colours to choose from
Black = 0000hex, 0dec
White = FFFFhex, 65,535dec, 1111111111111111bin

Description : This command sets the current background colour. Once this
command is sent, only the background colour will change. Any other object on
the screen with a different colour value will not be affected.

Example : 42hex, FFFFhex
Set the background colour to value 65,535 (white).

www.4dsystems.com.au 11

2.1.3 Put Pixel (P)

Syntax : cmd, x, y, colour(msb), colour(lsb)

cmd : 50hex, Pascii

x : horizontal pixel position. 0dec to 95dec (00hex to 5Fhex).

y : vertical pixel position. 0dec to 63dec (00hex to 3Fhex).

colour : pixel colour value: 2 bytes (16 bits) msb, lsb

 65,536 colours to choose from
Black = 0000hex, 0dec
White = FFFFhex, 65,535dec, 1111111111111111bin

Description : This command will put a coloured pixel at location (x, y) on the
screen.

Example : 50hex, 01hex, 0Ahex, 00hex, 00hex

Puts a black (0000hex) pixel at location x = 01dec (01hex) and y = 10dec
(0Ahex).

www.4dsystems.com.au 12

2.1.4 Read Pixel (R)

Syntax : cmd, x, y

cmd : 52hex, Rascii

x : horizontal pixel position. 0dec to 95dec (00hex to 5Fhex).

y : vertical pixel position. 0dec to 63dec (00hex to 3Fhex).

Description : This command will read the colour value of pixel at location (x, y)
on the screen and return it to the host. This is a useful command when for
example a white pointer is moved across the screen and the host can read the
colour on the screen and switch the colour of the pointer when it’s on top of a
light coloured area.

Example : 52hex, 01hex, 01hex
µOLED reply : 00hex, 1Fhex

Reads a blue (001Fhex) pixel at location x = 1dec (01hex) and y = 1dec (01hex).

www.4dsystems.com.au 13

2.1.5 Draw Circle (C)

Syntax : cmd, x, y, rad, colour(msb), colour(lsb)

cmd : 43hex, Cascii

x : horizontal circle centre position. 0dec to 95dec (00hex to 5Fhex).

y : vertical circle centre position. 0dec to 63dec (00hex to 3Fhex).

rad : radius size of the circle. 0dec to 95dec (00hex to 5Fhex).

colour : circle colour value: 2 bytes (16 bits) msb, lsb

 65,536 colours to choose from
Black = 0000hex, 0dec
White = FFFFhex, 65,535dec, 1111111111111111bin

Description : This command will draw a coloured circle centred at (x, y) with a
radius determined by the value of rad.

Example : 43hex, 20hex, 20hex, 18hex, FFhex, FFhex

Draws a white circle (FFFFhex) centred at x = 32dec (20hex) and y = 32dec
(20hex) with a radius of 24dec (18hex).

www.4dsystems.com.au 14

2.1.6 Draw Circle with Fill (i)

Syntax : cmd, x, y, rad, colour(msb), colour(lsb)

cmd : 69hex, iascii

x : circle horizontal centre position. 0dec to 95dec (00hex to 5Fhex).

y : circle vertical centre position. 0dec to 63dec (00hex to 3Fhex).

rad : length of circle radius (in pixel units). 0dec to 95dec (00hex to 5Fhex).

colour(msb), colour(lsb) : 2 byte circle colour

Description : This command will draw a coloured fill circle centred at (x, y) with
a radius determined by the value of rad.

www.4dsystems.com.au 15

2.1.7 Draw Line (L)

Syntax : cmd, x1, y1, x2, y2, colour(msb), colour(lsb)

cmd : 4Chex, Lascii

x1 : horizontal position of line start. 0dec to 95dec (00hex to 5Fhex).

y1 : vertical position of line start. 0dec to 63dec (00hex to 3Fhex).

x2 : horizontal position of line end. 0dec to 95dec (00hex to 5Fhex).

y2 : vertical position of line end. 0dec to 63dec (00hex to 3Fhex).

colour : line colour value: 2 bytes (16 bits) msb, lsb

 65,536 colours to choose from
Black = 0000hex, 0dec
White = FFFFhex, 65,535dec, 1111111111111111bin

Description : This command will draw a coloured line from point (x1, y1) to
point (x2, y2) on the screen.

Example : 4Chex, 00hex, 00hex, 5Fhex, 3Fhex, FFhex, FFhex

Draws a white line from (x1=0, y1=0) to (x2=95, y2=63).

www.4dsystems.com.au 16

2.1.8 Draw rectangle (r)

Syntax : cmd, x1, y1, x2, y2, colour(msb), colour(lsb) , mode

cmd : 72hex, rascii

x1 : top left corner horizontal position of rectangle.

y1 : top left corner vertical position of rectangle.

x2 : bottom right corner horizontal position of rectangle.

y2 : bottom right corner vertical position of rectangle.

colour(msb), colour(lsb) : 2 byte rectangle colour

mode : = 00hex : Draws the Rectangle Outline only

 = 01hex : Draws a Solid Rectangle

Description : This command will draw a coloured rectangle from point (x1, y1)
to point (x2, y2) on the screen. The rectangle can either be outline only (empty)
or it can be a solid (full) depending on the mode byte selection.

www.4dsystems.com.au 17

2.1.9 paint Area (p)

Syntax : cmd, x1, y1, x2, y2, colour(msb), colour(lsb)

cmd : 70hex, pascii

x1 : top left horizontal start position of the Area. (0 to 95dec (00hex to 5Fhex).

y1 : top left vertical start position of the Area. (0 to 63 (00hex to 3Fhex).

x2 : bottom right horizontal end position of the Area. (0 to 95dec (00 to 5Fhex).

y2 : bottom right vertical end position of the Area. (0 to 63 (00hex to 3Fhex).

colour : Area colour value: 2 bytes (16 bits) msb, lsb

 65,536 colours to choose from
Black = 0000hex, 0dec
White = FFFFhex, 65,535dec, 1111111111111111bin

Description : This command will paint a specified area on the screen. x1, y1
refers to the top left corner of the area and x2, y2 refers to the bottom right
hand corner of the area on the screen. If colour is chosen to be that of the
background then the effect will be erasure.

Example : 70hex, 00hex, 00hex, 10hex, 10hex, 00hex, 00hex

Paint the area BLACK that has its top left corner at x1=0, y1=0 and its bottom
RIGHT corner at x2=16, y2=16.

www.4dsystems.com.au 18

2.1.10 Place button Icon (b)

Syntax : cmd, state, x1, y1, x2, y2, colour(msb), colour(lsb)

cmd : 62hex, bascii

state : Specifies whether the displayed button is drawn as UP (not pressed) or

DOWN (pressed).
0 = Button Down (pressed)
1 = Button Up (not pressed)

x1 : top left horizontal start position of the button

y1 : top left vertical start position of the button

x2 : bottom right horizontal end position of the button

y2 : bottom right vertical end position of the button

colour(msb), colour(lsb) : 2 byte button colour value

Description : This command will place a Button similar to the ones used in a
PC Windows environment on the screen. (x1, y1) refers to the top left corner of
the button and (x2, y2) refers to the bottom right hand corner of the button on
the screen. The button can be displayed in an UP (button not pressed) or
DOWN (button pressed) position by specifying the appropriate value in the
state byte. Text can be placed inside the button, using the ‘t’ “Place Text
Character” (unformatted) command, describing the button function.

www.4dsystems.com.au 19

2.1.11 Block copy & Paste (Screen Bitmap Copy) (c)

Syntax : cmd, x1, y1, x2, y2, x3, y3

cmd : 63hex, cascii

x1: top left horizontal start position of block to be copied (source)

y1: top left vertical start position of block to be copied (source)

x2: bottom right horizontal end position of block to be copied (source)

y2: bottom right vertical end position of block to be copied (source)

x3: top left horizontal start position of where copied block is to be pasted
(destination)

y3: top left vertical start position of where the copied block is to be pasted
(destination)

Description : This command copies an area of a bitmap block of specified
size. The start location of the block to be copied is represented by x1, y1 (top
left corner) and the end location is represented by x2, y2 (bottom right corner).
The start location of where the block is to be pasted is represented by x3, y3
(top left corner).
This is a very powerful feature for animating objects, smooth scrolling,
implementing a windowing system or copying patterns across the screen to
make borders or tiles.

www.4dsystems.com.au 20

2.1.12 Font Size (F)

Syntax : cmd, size

cmd : 46hex, Fascii

size : = 00hex : 5x7 small size font
= 01hex : 8x8 medium size font
= 02hex : 8x12 large size font

Description : This command will change the size of the font according to the
value set by size. Changes take place after the command is sent. Any
character on the screen with the old font size will remain as it was.

Example1: 46hex, 00hex Select small 5x7 fonts
Example1: 46hex, 01hex Select medium 8x8 fonts
Example1: 46hex, 02hex Select large 8x12 fonts

www.4dsystems.com.au 21

2.1.13 Opaque / Transparent Text (O)

Syntax : cmd, mode

cmd : 4Fhex, Oascii

mode : = 00hex : Transparent Text, objects behind the text can be seen.
= 01hex: Opaque Text, objects behind text is blocked by background

Description : This command will change the attribute of the text so that an
object behind the text can either be blocked or transparent. Changes take place
after the command is sent.

This command will change the attribute so that when a character is written, it
will either write just the character alone (Transparent Mode) so any original
character will be seen as well as the new, or overwrite any existing data with
the new character.

Example1: 4Fhex, 00hex Transparent Mode
Example2: 4Fhex, 01hex Opaque Text

www.4dsystems.com.au 22

2.1.14 Place Text Character (formatted) (T)

Syntax : cmd, char, column, row, colour(msb), colour(lsb)

cmd : 54hex, Tascii

char : inbuilt standard ASCII character, 32dec to 127dec (20hex to 7Fhex)

column : horizontal position of character, see range below:
 0 - 15 for 5x7 font, 0 - 9 for 8x8 and 8x12 font.

row : vertical position of character:
 0 - 7 for 5x7 and 8x8 font, 0 – 4 for 8x12 font.

colour : character colour value: 2 bytes (16 bits) msb, lsb

 65,536 colours to choose from
Black = 0000hex, 0dec
White = FFFFhex, 65,535dec, 1111111111111111bin

Description : This command will place a coloured ASCII character (from the
ASCII chart) on the screen at a location specified by (column, row). The
position of the character on the screen is determined by the predefined
horizontal and vertical positions available, namely 0 to 20 columns by 0 to 15
rows.

Example : 54hex, 41hex, 00hex, 00hex, FFhex, FFhex
Place character ‘A’ (41hex) at column = 0, row = 0, colour = white (65,535).

www.4dsystems.com.au 23

2.1.15 Place text Character (unformatted) (t)

Syntax : cmd, char, x, y, colour(msb), colour(lsb), width, height

cmd : 74hex, tascii

char : inbuilt standard ASCII character, 32dec to 127dec (20hex to 7Fhex)

x : the horizontal position of character (in pixel units).

y : the vertical position of character (in pixel units).

colour(msb), colour(lsb) : 2 byte colour of the character

width : horizontal size of the character, n x normal size

height : vertical size of the character, m x normal size

Description : This command will place a coloured built in ASCII character
anywhere on the screen at a location specified by (x, y). Unlike the ‘T’
command, this option allows text of any size (determined by width and height)
to be placed at any position. The font of the character is determined by the
‘Font Size’ command.

www.4dsystems.com.au 24

2.1.16 Place string of Ascii Text (formatted) (s)

Syntax : cmd, column, row, font_size, colour(msb), colour(lsb), char1, charN,
terminator

cmd : 73hex, sascii

column : the horizontal start position of string

row : the vertical start position of string

font_size : 0 = 5x7 font, 1 = 8x8 font, 2 = 8x12 font. This has precedence over
the Font command.

colour(msb), colour(lsb) : 2 byte colour of the string

char1..charN : string of ASCII characters (max 256 characters)

terminator : string terminator, must be 00hex

Description : This command allows the display of a string of ASCII characters.
The horizontal start position of the string is specified by column and the vertical
position is specified by row. The string must be terminated with 00hex. If the
length of the string is longer than the maximum number of characters per line,
then a wrap around will occur on to the next line. Maximum string length is 256
bytes.

www.4dsystems.com.au 25

2.1.17 OLED DisplaY Control Functions (Y)

Syntax : cmd, mode, value

cmd : 59hex, Yascii

mode : = 00hex : BACKLIGHT CONTROL.

 value = XXhex: has no effect as there is no backlighting on the
 OLED display. This is only retained for legacy.

mode : = 01hex : DISPLAY ON/OFF.
 value = 00hex: Display OFF

= 01hex: Display ON

mode : = 02hex : OLED CONTRAST.
 value = 0dec to 15dec : Contrast range (default = 15dec)

mode : = 03hex : OLED POWER-UP/POWER-DOWN.
 value = 00hex: OLED Power-Down

= 01hex: OLED Power-Up

Note: It is important that the µOLED be issued with the Power-Down command
before switching off the power. This command switches off the internal voltage
boosters and current amplifiers and they need to be turned off before main
power is removed. If the power is removed without issuing this command, the
OLED display maybe damaged (over a period of time). This command also
turns off the display. This command need not only be issued to shutdown but
can be issued to conserve power by turning off the display and the backlight.
The Power-Up command does not need to be executed when applying power.
If a Power-Down command has been issued and Power is not switched off, the
Power-Up command can be sent to Power the display back up again.

www.4dsystems.com.au 26

2.1.18 Add User Bitmapped Character (A)

Syntax : cmd, char#, data1, data2, …….., dataN

cmd : 41hex, Aascii

char# : bitmap character number to add to memory:

0 to 63 (00h to 3Fh), 64 characters of 8x8 format.

data1 to dataN : number of data bytes that make up the composition and

format of the bitmapped character. The 8x8 bitmap composition is 1
byte wide (8bits) by 8 bytes deep which makes N = 1x8 = 8.

Description : This command will add a user defined bitmapped character into
the internal memory.

Example1: 41hex, 01hex, 18hex, 24hex, 42hex, 81hex, 81hex, 42hex, 24hex,

18hex

This adds and saves user defined 8x8 bitmap as character number 1 into
memory as seen below.

 b7 b6 b5 b4 b3 b2 b1 b0
 data1 (hex = 18h)
 data2 (hex = 24h)
 data3 (hex = 42h)
 data4 (hex = 81h)
 data5 (hex = 81h)
 data6 (hex = 42h)
 data7 (hex = 24h)
 data8 (hex = 18h)

 Example of a 8x8 user defined bitmap

www.4dsystems.com.au 27

2.1.19 Display User Bitmapped Character (D)

Syntax : cmd, char#, x, y, colour(msb), colour(lsb)

cmd : 44hex, Dascii

char# : which user defined character number to display from the selected

group. 0dec to 63dec (00hex to 3Fhex), of 8x8 format.

x : horizontal display position of the character. 0dec to 95dec (00hex to

5Fhex).

y : vertical display position of the character. 0dec to 63dec (00hex to

3Fhex).

colour : character colour value: 2 bytes (16 bits) msb, lsb

 65,536 colours to choose from
Black = 0000hex, 0dec
White = FFFFhex, 65,535dec, 1111111111111111bin

Description : This command displays the previously defined user bitmapped
character at location (x, y) on the screen. User defined bitmaps allow drawing &
displaying unlimited graphic patterns quickly & effectively.

Example 1: 44hex, 01hex , 00hex, 00hex, F8hex, 00hex
Display 8x8 bitmap character number 1 at x = 0, y = 0, colour = red

Example 2: 44hex, 01hex, 08hex, 00hex, 07hex, E0hex
Display 8x8 bitmap character number 1 at x = 8, y = 0, colour = green

Example 3: 44hex , 01hex, 10hex, 00hex, 00hex, 1Fhex
Display 8x8 bitmap character number 1 at x = 16, y = 0, colour = blue

www.4dsystems.com.au 28

2.1.20 Display Image (I)

Syntax : cmd, x, y, width, height, colour_mode, pixel1, .. pixelN

cmd : 49hex, Iascii

x : Image horizontal start position (top left corner)

y : Image vertical start position (top left corner)

width : horizontal size of the image

height : vertical size of the image

colour_mode : 8dec = 256 colour mode, 8bits/1byte per pixel

 16dec = 65K colour mode, 16bits/2bytes per pixel (msb, lsb)

pixel1..pixelN : image pixel data and N is the total number of pixels
 N = height x width when colour_mode = 0

 N = height x width x 2 when colour_mode = 1

Description : This command displays a bitmap image on to the screen with the
top left corner specified by (x, y) and size of the image specified by width and
height parameters. This command is more effective than using the “Put Pixel”
command, where there are no overheads in specifying the x, y location of each
pixel.

x,y

height

width
screen

www.4dsystems.com.au 29

2.1.21 Version/Device Info Request (V)

Syntax : cmd, output
Response : device_type, hardware_rev, firmware_rev, horizontal_res,

vertical_res, flash_memory_size

cmd : 56hex, Vascii

output : 00hex : outputs the version and device info to the serial port only.
 01hex : outputs the version and device info to the serial port as well

as to the screen.

device_type : this response indicates the device type.
 00hex = micro-OLED.
 01hex = micro-LCD.
 02hex = micro-VGA.

hardware_rev : this response indicates the device hardware version.

firmware_rev : this response indicates the device firmware version.

horizontal_res : this response indicates the horizontal resolution of the display.
 22hex : 220 pixels
 28hex : 128 pixels
 60hex : 160 pixels
 64hex : 64 pixels
 76hex : 176 pixels
 96hex : 96 pixels

vertical_res : this response indicates the vertical resolution of the display. See

horizontal_res above for resolutions.

flash_memory_size: this response indicates the size of the flash memory.

00hex : No Flash on board
 13hex : 1Mbyte Flash on board
 14hex : 2Mbytes Flash on board
 15hex : 4Mbytes Flash on board
 16hex : 8Mbytes Flash on board

Description : This command requests all the necessary information from the
module about its characteristics and capability.

www.4dsystems.com.au 30

2.2 µOLED-96-xMb Additional Command Set

The following are additional commands related to the µOLED-96-xMb range of
micro-OLED modules and they are described in this section. The µOLED-96-xMb
modules incorporate additional enhanced hardware and software features.
Depending on the model, these devices have onboard flash memory ranging from
1Mb to 8Mb.

The µOLED-96-xMb modules incorporate all of the µOLED-96 commands, as
described in the previous section, plus the additional commands outlined here. The
features and commands set out in this section help differentiate µOLED-96-xMb
enhanced models from the standard µOLED-96 model.
You will find references being made to “Objects” throughout this section. An object
can be simply defined as those commands that reside inside the flash memory
(programmed/downloaded) and can be displayed on the screen by the “Display
Object from Flash Memory” command.
There are also some commands that can only reside inside the flash memory and
must be executed from there. These commands will return a NAK if executed live
from the serial link.
Tables below list all of the commands for both µOLED-96 and the µOLED-96-xMb
models.

www.4dsystems.com.au 31

Command Set Summary (µOLED-96 & µOLED-96-xMb)

 Live Object Flash
Erase Screen x x
Background Colour x x
Put Pixel x
Read Pixel x
Draw Circle x x x
Draw Circle with Fill x x x
Draw Line x x x
Draw Rectangle x
Paint Area x x x
Place Button Icon x x x
Block Copy & Paste (Screen Bitmap Copy) x
Font Size x x
Opaque or Transparent Text x
Place Text Character (formatted) x x x
Place Text Character (unformatted) x x x
Place String of ASCII Text (formatted) x x x
OLED Display Control Functions x x
Add User Bitmapped Character x
Display User Bitmapped Character x
Display Image x x x
Version/Device Info Request x

www.4dsystems.com.au 32

Command Set Summary (µOLED-96-xMb only)

NOTES:
Live : Those commands that can be sent via the serial link and executed by the host.
Object : Those commands that can be recalled from the flash memory at any time by the host

and displayed on the screen using the “Display Object from Flash Memory”
command.

Flash : Those commands that can reside and be executed from inside the flash memory.

 Live Object Flash
Display Object from Flash Memory x
Display Image from Flash Memory as Icon x
Delay x
Loop Start x
Loop End x
Run x
Exit x x
Restart x
Download Data to Flash Memory x
Read Data from Flash Memory x
Erase Flash Memory x

www.4dsystems.com.au 33

2.2.1 Display Object from flash Memory (f)

Syntax : cmd, address(hi), address(mid), address(lo)

cmd : 66hex, fascii

address : 24bit (3 bytes) address of the object in flash ROM
 (hi) = Address high byte
 (mid) = Address middle byte
 (lo) = Address low byte

Description: Some of the commands can be stored as objects in the internal
flash which can be later recalled by the host on demand and displayed or
executed. The user must make sure the 24 bit address of each stored
command/object is known before using this feature.
For example, a series of images can be stored as icons and later displayed as
the application requires them. The following is a list of all the commands that
can be stored as objects within the internal flash ROM:
 Circle (empty), Circle (fill), Line, Text Character (formatted), Text
Character (unformatted), Radio Button, Paint Area, Display String,
Display Image.

www.4dsystems.com.au 34

2.2.2 Display Image from Flash Memory as Icon (o)

Syntax : cmd, x, y, address(hi), address(mid), address(lo)

cmd : 6Fhex, fascii

x : Icon horizontal position (top left corner)

y : Icon vertical position (top left corner)

address : 24bit (3 bytes) address of the image in flash ROM
 (hi) = Address high byte
 (mid) = Address middle byte
 (lo) = Address low byte

Description: Certain applications require the use of icons (samples below).
Icons are basically small image objects and they can be stored in the onboard
flash memory as such. Standard images can only be displayed back on the
screen, when recalled from the flash, at their pre-fixed x, y location. However
icons need to be displayed at different locations at different times and this is
possible with the use of this command.
Just store the icon as a normal image object with its x, y coordinates as well as
width and height. Since the image object is to be redisplayed later as an icon
object just use any arbitrary values for its (x, y) coordinates, for example (0, 0).
When the stored image is displayed as an icon the (x, y) coordinates defined in
the icon command take precedence over the image (x, y) coordinates.

www.4dsystems.com.au 35

2.2.3 Delay (must reside inside the flash) (04hex)

Syntax : cmd, value(msb), value(lsb)

cmd : 04hex

value(msb, lsb) : A 2 byte delay value in milliseconds. Maximum value of
65,535 milliseconds or 65.5 seconds.

Description : When objects from the flash memory such as images are
displayed sequentially, a delay can be inserted between subsequent objects. A
delay basically has the same effect as a NOP (No Operation) which can be
used to determine how long the object stays on the screen before the next
object is displayed.

www.4dsystems.com.au 36

2.2.4 Loop Start (must reside inside the flash) (0Dhex)

Syntax : cmd, counter

cmd : 0Dhex

counter : A 1 byte counter that determines how many times the loop occurs
between the “Loop Start” and “Loop End” commands. Practical values should
be between 2 and 255.

Description : A series of images that might be part of an animation may need
to be redisplayed over and over to achieve a lengthy viewing. This command
allows the user to determine exactly how many times the series of images are
looped. This command must always be terminated with the “Loop End”
command.
For example, we may want to animate the Globe rotating. Let’s say we have 10
image slides of the Globe at different rotated positions residing in the flash
memory. When the images are displayed sequentially, the effective duration will
only be the length of time it takes to display the 10 image frames. With this
command, we can increase that length by looping thru the animation a number
of times depending on the value set in the counter byte. When the display
reaches the end of the last frame and encounters the “Loop End” command,
the counter will be decremented and then the internal pointer will jump back to
the object just after the “Loop Begin” command. This sequence will then repeat
until the value in the counter reaches zero. The following demonstrates how
this maybe used:

Loop_Start, (counter = 25),
Image1,
Delay(10ms),
Image2,
Delay(10ms),
…,
…,
Image10,
Delay(10ms),
Loop_End (decrements counter then jumps to Image1)

www.4dsystems.com.au 37

2.2.5 Loop End (must reside inside the flash) (0Chex)

Syntax : cmd

cmd : 0Chex

Description : Decrements the “Loop Start” counter and forces the internal
flash pointer to jump to that command/object, which resides in the flash
memory, just after the “Loop Start” command. When the “Loop Start” counter
becomes zero, the “Loop End” command is bypassed and the command/object
following it is executed. See “Loop Start” command for a detailed explanation.

www.4dsystems.com.au 38

2.2.6 Run (06hex)

Syntax : cmd

cmd : 06hex

Description : The Run command forces the 24bit internal flash pointer to reset
to zero (000000hex) and automatically start executing commands, from the
flash memory, without any further interaction by the host processor. It will
sequentially execute any valid flash related commands and display objects until
it gets to the end of the 1Mb flash memory. It is advisable to have the “Exit” or
the “Restart” command at the end of the user composed slide show so that the
pointer does not run off so to speak.

www.4dsystems.com.au 39

2.2.7 Exit (07hex)

Syntax : cmd

cmd : 07hex

Description : This command forces the program to stop executing from the
internal flash memory and ready to accept and execute commands from the
host via the serial interface. It can reside in the flash which will force the slide
show to stop or it can be sent via the serial port while the program is running
from the internal flash.

www.4dsystems.com.au 40

2.2.8 Restart (must reside inside the flash) (05hex)

Syntax : cmd

cmd : 05hex

Description : The Restart command forces the 24bit internal flash pointer to
reset to zero (000000hex). If a certain slide show is composed inside the flash
memory and the “Restart” command is encountered at the end of it, the
program will then jump back to the start of the flash and begin executing again.

www.4dsystems.com.au 41

2.2.9 Download Data to Flash Memory (08hex)

Syntax : cmd, pageNum(msb), pageNum(lsb), data(1), .. , data(256),

chkSum(msb), chkSum(lsb)

cmd : 08hex

pageNumb(msb, lsb) : A 2 byte page number from 0 to 32,767. The internal
flash memory has 4096 pages for every 1Mbyte and each page is 256 bytes
long.

data(1 to 256) : 256 bytes of data. The data length must be 256 bytes long. If
not all used then the rest must be padded.

chkSum(msb, lsb) : A 2 byte checksum value. The checksum is calculated by
taking a binary sum of all bytes in the command frame and forming a 2 byte
value, from (and including) the pageNum(msb) byte to the last data byte
data(256). Then, the two's complement is taken (i.e., invert all bits of the result
and then add 1) to yield the checksum.
Note: If the command message is correct, adding the checksum word to the 2
byte sum of all the other bytes (excluding cmd) in the message will give a result
of zero.

Description : This command allows downloading of objects such as images
and other commands for storage that can be retrieved and used later on. For
example, the µOLED-96-xMb has a 1Mbyte of flash memory which is divided
into 4096 pages and each page is 256 bytes long. Downloads must always be
limited to 256 bytes in length. For large objects such as images, the data must
be broken up into multiple pages (chunks of 256 bytes) and this command then
maybe used many times until all of the data is downloaded. There is no
provision to download a single byte or few bytes and the data length must
always be 256 bytes long. If only few bytes of data are to be downloaded, then
make sure the rest of the remaining data are padded with 00hex or FFhex (it
can be anything).
Once the command message is sent and the checksum is correct, the µOLED
will take a few milliseconds to write the data into its flash memory and at the
end of which it will reply back with an ACK(06hex). If the checksum is incorrect
a NAK(15hex) will be sent back without any write attempts.
Only data(1) to data(256) are stored in the flash. Other bytes in the command
message such as page number and checksum are not stored.

www.4dsystems.com.au 42

2.2.10 Read Data from Flash Memory (09hex)

Syntax : cmd, pageNum(msb), pageNum(lsb)

cmd : 09hex

pageNumb(msb, lsb) : A 2 byte page number from 0 to 32,767. The internal
flash memory has 4096 pages for every 1Mbyte and each page is 256 bytes
long.

Description : This command provides a means of reading data back from the
flash memory in lengths of 256 bytes. It maybe useful in validating the data that
was stored previously using the download command. Once this command is
sent, the µOLED will return 256 bytes of data relating to that particular page.

www.4dsystems.com.au 43

2.2.11 Erase Flash Memory (0Ahex)

Syntax : cmd

cmd : 0Ahex

Description : Before any data can be downloaded and stored in the flash
memory, it must first be erased. There is no provision to erase individual bytes
or pages of memory. Once this command is executed, all of the flash memory
will be erased. It will take around 10 seconds to completely erase a 1Mb flash
and around 80 seconds to erase an 8Mb flash and at the end of which an
ACK(06hex) is returned.

www.4dsystems.com.au 44

2.3 µOLED Serial Interface (TTL)
The µOLED needs to be connected via a serial link to a host system. The host uses
this serial link to send commands to the µOLED so that characters and graphics can
be displayed on the screen. Use the signal pin-outs as well as the application
example shown in the following section for correct connection to the host.

Please note that the serial connection (Rx/Tx) is at TTL levels (0 – 3.3V) and
the logic levels are “high” = 1 = 3.3V, “low” = 0 = 0V. If interfacing to a host
system running at 5V levels, then 1K series resistors must be inserted
between the Host Tx/Rx and the µOLED Rx/Tx signals.

Auto Baud Detect:
As previously mentioned, the µOLED core has an auto-baud detect function which
can operate from 300 baud to 128000 baud. Prior to any graphical formatting and
commands being sent to the core, it must first be initialized by sending the ASCII
character ‘U’ (55h) after power-up. This will allow the core to determine and lock on
to the baud rate of the host automatically without needing any further setup.
This must be done every time the core is powered up.

If the host needs to change the baud rate, the µOLED must be powered down and
powered back up again. The “U” command cannot be used to change the baud rate
during the middle of normal usage.

Serial Timing:
Each µOLED command is made up of a sequence of data bytes. Some commands
are a single byte and others are multiple bytes. When a command is sent to the
µOLED and the operation is completed, the µOLED will reply back with a single
acknowledge byte called the ACK (06h). This tells the host that the command was
understood and the operation is completed. It will take the µOLED anywhere
between 1 to several milliseconds to reply back with an ACK, depending on the
command and the operation the µOLED has to perform. If the µOLED receives a
command that it does not understand it will reply back with a negative acknowledge
called the NAK (15h).
For example, if a command has 5 bytes but only 4 bytes are sent, the command will
not be executed and when the next following command bytes are sent the µOLED
will reply back with a NAK for each and every byte it receives. For correct operation
make sure the command bytes are sent in the correct sequence.

Note: No termination character is to be sent at the end of the command sequence.
i.e. don’t send any CR, or Null, or any other end of command bytes.

www.4dsystems.com.au 45

2.4 µOLED USB Interface
The µOLED can be interfaced to a PC using a standard USB cable and any one of
the the 4D Systems microUSB modules (uUSB or the uUSB-MB) as shown below.
The microUSB module (optional extra), simply connects to the µOLED 4 pin header
and captures the USB data and converts it into serial TTL data. The microUSB
modules and drivers are available from your local 4D distributor. These are separate
products and are not included with the µOLED module.

A microUSB example interface, with uUSB-MB module A microUSB example interface, with uUSB module

www.4dsystems.com.au 46

3. Specifications

The µOLED has the following electrical specifications which must be adhered to at
all times to prevent damage to the device. The µOLED module footprint is 37mm x
38mm x 5mm.

Symbol Characteristic Min Typ Max Units
Vdd Supply voltage 4.5V 5V 5.5V V

I Current 10mA 40mA 115mA mA
Deg C Operating temp 0 30 70 C
Tpu Power-up delay 800 1000 mS

3.1 µOLED Power Consumption

Current Contrast (section 2.1.17) Notes

13.5mA High, value = 15dec All Pixels OFF (black screen)

115.0mA High, value = 15dec All Pixels ON (white screen)

40.0mA High, value = 15dec Average Usage (screen has text and graphics)

13.5mA Medium, value = 08dec All Pixels OFF (black screen)

110.0mA Medium, value = 08dec All Pixels ON (white screen)

32.0mA Medium, value = 08dec Average Usage (screen has text and graphics)

13.5mA Low, value = 00dec All Pixels OFF (black screen)

41.0mA Low, value = 00dec All Pixels ON (white screen)

18.0mA Low, value = 00dec Average Usage (screen has text and graphics)

10.3mA Low, Medium, High Screen Power Down Command

www.4dsystems.com.au 47

3.2 µOLED Host Interface pin-outs

www.4dsystems.com.au 48

3.3 65,536 Colour Bitmap Organisation
The µOLED 65K colour byte is organised as 5 bits for Red(D11, D12, D13, D14,
D15), 6 bits for Green(D5, D6, D7, D8, D9, D10) and 5 bits for Blue(D0, D1, D2,
D3, D4). This will give a combination of 32x64x32 = 65,536 colours. Each colour is
not limited to 4 shades. For example a lighter shade of Red can be obtained by
adding a little bit of the Green and a little bit of the Blue. Full Red and full Green will
result in Yellow. Some experimentation will be needed to obtain the desired colour.

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
R
E
D

x

R
E
D

x

R
E
D

x

R
E
D

x

R
E
D

x

G
R
E
E
N
x

G
R
E
E
N
x

G
R
E
E
N
x

G
R
E
E
N
x

G
R
E
E
N
x

G
R
E
E
N
X

B
L
U
E

x

B
L
U
E

x

B
L
U
E

x

B
L
U
E

x

B
L
U
E

x

Example: To Obtain the Colour Yellow

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
R
E
D

1

R
E
D

1

R
E
D

1

R
E
D

1

R
E
D

1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

B
L
U
E

0

B
L
U
E

0

B
L
U
E

0

B
L
U
E

0

B
L
U
E

0

www.4dsystems.com.au 49

Example: To Obtain the Colour Magenta

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
R
E
D

1

R
E
D

1

R
E
D

1

R
E
D

1

R
E
D

1

G
R
E
E
N
0

G
R
E
E
N
0

G
R
E
E
N
0

G
R
E
E
N
0

G
R
E
E
N
0

G
R
E
E
N
0

B
L
U
E

1

B
L
U
E

1

B
L
U
E

1

B
L
U
E

1

B
L
U
E

1

Example: To Obtain the Colour White

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
R
E
D

1

R
E
D

1

R
E
D

1

R
E
D

1

R
E
D

1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

G
R
E
E
N
1

B
L
U
E

1

B
L
U
E

1

B
L
U
E

1

B
L
U
E

1

B
L
U
E

1

www.4dsystems.com.au 50

3.4 256 Colour Bitmap Organisation
The µOLED 256 colour byte is organised as 3 bits for Red (D5, D6, D7), 3 bits for
Green (D2, D3, D4) and 2 bits for Blue (D0, D1). This will give a combination of
8x8x4 = 256 colours. Each colour is not limited to 4/8 shades. For example a lighter
shade of Red can be obtained by adding a little bit of the Green and a little bit of the
Blue. Full Red and full Green will result in Yellow. Some experimentation will be
needed to obtain the desired colour.

D7 D6 D5 D4 D3 D2 D1 D0

RED2 RED1 RED0 GREEN2 GREEN1 GREEN0 BLUE2 BLUE1

Example: To Obtain the Colour Yellow

Example: To Obtain the Colour Magenta

Example: To Obtain the Colour White

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 1 1 1 1 1

D7 D6 D5 D4 D3 D2 D1 D0

1 1 1 0 0 0 1 1

D7 D6 D5 D4 D3 D2 D1 D0

1 1 1 1 1 1 1 1

www.4dsystems.com.au 51

3.5 Power-Up Reset
When the µOLED comes out of a power up reset it initialises the video RAM and the
internal Display registers. Allow up to 500ms before attempting to communicate with
the µOLED. The power up sequence of events should be as follows:

 Allow 500ms after power-up for µOLED to settle. Do not attempt to
communicate with the µOLED during this period. The µOLED may send
garbage on its Tx Data line during this period, the host should disable its Rx
Data reception.

 Within 50ms of powering up, the host should make sure it has its Tx line
pulled HIGH. If the host Tx (uOLED Rx) is LOW or floating after the 50ms
period, the µOLED may misinterpret this as the START bit and lock onto
some unknown Baud Rate. If the host has a slow wake up time, i.e. less than
50ms, its Tx line maybe floating. This can be easily resolved by adding a pull
up resistor on the host Tx line which will ensure the µOLED does not
encounter a false START bit. The pull up resistor can be any value within 10K
to 100K.

 The host transmits the ASCII ‘U’ (capital U, 55hex) as the first command so
the µOLED can lock onto the host’s serial baud rate. The µOLED will respond
with an ‘ACK’ (06h). See section 2.3

 The µOLED is now ready to accept screen function commands from the host.

www.4dsystems.com.au 52

4. Appendix

4.1 Available Models:

 uOLED-96 (Standard module)
 uOLED-96-1Mb (Enhanced module, additional features and 1Mb Flash)
 uOLED-96-8Mb (Enhanced module, additional features and 8Mb Flash)

Please check stock availability with your local supplier.

uOLED-96 Back view uOLED-96-1Mb Back view uOLED-96-8Mb Back view

uOLED-96 Front view

www.4dsystems.com.au 53

4.2 Related Products:

 uUSB
o microUSB module, USB to Serial Bridge
o Standard USB B connector
o 8 pin header provides the following signals:

 5V, 3.3V, GND, Tx, Rx, Reset, Suspend, -Suspend
o 5 Volts supply @ 500mA, 3.3 Volts supply @ 100mA

 uUSB-MB
o microUSB module, USB to Serial Bridge
o Standard USB miniB connector
o 10 pin header provides the following signals:

 5V, 3.3V, GND, Tx, Rx, Suspend,
 DTR, CTS, RTS, GND

o 5 Volts supply @ 500mA, 3.3 Volts supply @ 100mA
o Additional flow control signals, DTR, CTS, RTS
o Available with an additional 4pin header for µOLED interface

 USB-5V
o USB to 5 Volts supply module upto 500mA
o Also an adaptor board for the uUSB module
o Provides the 4pin header for the µOLED interface

 Graphics Composer (free download)
o PC based software utility for Windows
o Download images/text/animations into the uOLED-160-xMb/uSD flash

memory.
o For software and user guide downloads please visit the µOLED web-

page of your local distributor.

www.4dsystems.com.au 54

4.3 Auto Demo/Slide Show:

The uOLED-96-xMb modules come with a Slide Show that is factory loaded
into the onboard Flash Memory. There is a 2 pin jumper at the back of the
unit (on the component side). Upon power-up, if the shunt is inserted and
there are preloaded objects in the flash memory (images/text/animations), the
uOLED-96-xMb module will automatically play/display these from the
onboard flash.

For normal usage this jumper must be removed. There is no jumper present
on the µOLED-96 module.

4.4 Precautions:

 Avoid having a White Background. The more pixels that are lit up, the more
the µOLED module will consume current. A full white screen will have the
highest power consumption.

 Avoid displaying objects or text on White Backgrounds. This will cause a
smearing effect which is inherent to all OLED displays. Instead try a shaded
mixed colour as the background or better still a black background. Ideally
have mixed coloured objects/text/icons on a black background.

 Avoid having to display the same image/object on the screen for lengthy
periods of time. This will cause a burn-in which is a common problem with all
types display technologies. Blank the screen after a while or dim it very low by
adjusting the contrast. This can be achieved via the “OLED Display Control
Functions” command (section 2.1.17). Better still, implement a screen saver
feature.

 Observe the Power-Down procedure (section 2.1.17). The µOLED module
automatically takes care of the proper Power-Up sequence.

4.5 Help and Other Information:

 Assistance with latest information and downloads visit the µOLED product
web-page of your distributor.

 Questions and technical support please email support@4dsystems.com.au
 All related product information can be downloaded from

www.4dsystems.com.au/downloads/micro-OLED/uOLED-96

