
AN01247-03 Copyright © 2007–2009 Texas Instruments

Application Note

Using the Stellaris® Microcontroller
Analog-to-Digital Converter (ADC)

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)

June 24, 2009 2

Copyright
Copyright © 2007–2009 Texas Instruments, Inc. All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments.
ARM and Thumb are registered trademarks, and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property
of others.

Texas Instruments
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.luminarymicro.com

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)

June 24, 2009 3

Table of Contents
Introduction ... 4
Sample Sequencers ... 4
Module Configuration Example... 5

Module Initialization .. 6
Sample Sequence Configuration .. 7
Using ADC Interrupts .. 10
Data Retrieval ... 10

Differential Sampling... 11
Hardware Averaging Circuit .. 15
Conclusion .. 16
References ... 16

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
Introduction
Stellaris® microcontrollers that are equipped with an analog-to-digital converter (ADC), use an
innovative sequence-based sampling architecture designed to be extremely flexible, yet easy to use.
This application note describes the sampling architecture of the ADC. Since programmers can
configure Stellaris microcontrollers either through the powerful Stellaris Family Driver Library or
through direct writes to the device's control registers, this application note describes both methods.
The information presented in this document is intended to complement the ADC chapter of the
device datasheet, and assumes the reader has a basic understanding of how ADCs function.

Sample Sequencers
Most analog-to-digital converter implementations in 8-,16-, and 32-bit microcontrollers require
processor intervention to configure each conversion when the analog input/channel is changed.
Stellaris' sequence-based architecture gives software the ability to enable up to four separate sample
sequences (encompassing all of the analog input channels) with a single series of configuration
writes.

The ADC module has a total of four sample sequencers that allow sampling of 1, 4 (there are two
4-beat sequencers), or 8 analog sources with a single-trigger event (see Figure 1). Each sample
sequencer has its own set of configuration registers making it completely independent from the other
sequencers. All steps in a sample sequence are configurable, allowing software to select the analog
input channel (including the temperature sensor), single-ended or differential mode sampling, and
whether or not to generate an interrupt after the step completes. The sample sequences also have
configurable priority to handle cases where multiple sequences are triggered by the same trigger
source or trigger simultaneously.

Figure 1. Sample Sequencer Structure

A sample sequence can be triggered by various sources, including the processor, timers, analog
comparators, PWM unit or GPIO. For situations where multiple sequences have the same trigger
source or are triggered simultaneously, the ADC arbitrates execution order based on the configured
sequence priorities. When a sample sequence is triggered, it begins sampling at the programmed
sampling rate (250K, 500K, or 1M samples/second, depending on the device), iterating through the

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 0

Sample Sequencer 0 Sample Sequencer 1 Sample Sequencer 2 Sample Sequencer 3

Each step can configure:

- Analog source (pin or temperature sensor)
- Interrupt generation
- Single-ended or differential sampling
- End of sequence

Step 0

Step 1

Step 2

Step 3

Step 0

Step 1

Step 2

Step 3
June 24, 2009 4

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
steps of the sequence. Sampling continues until a step has its END bit set, indicating the end of the
sequence. The END bit can be set for any step in the sequence, meaning a given sample sequence
is not required to collect its maximum number of samples. When the sample sequence completes,
the conversion results are stored in the sample sequence FIFO, and can be retrieved by the
processor.

Module Configuration Example
To demonstrate the steps required to configure the ADC, consider the example shown in Figure 2.
There are a total of three sensors being monitored, in addition to the on-chip temperature sensor.
Since three analog inputs are used, this example assumes the specific Stellaris device has at least
three analog inputs. Each sample sequence has its own FIFO with the number of slots equivalent to
the size of the sequencer.

Figure 2. Example System Configuration

Notice how the analog inputs are mapped to the individual steps in the sample sequencer. Since
there are three sensor inputs to monitor, one of the four step sequencers (in this case, sample
sequence 1) is used. The temperature sensor is sampled using sample sequence 3 since it requires
only one step and has a separate trigger source. If the temperature sensor was configured to have a
timer trigger, it could be placed in the unused step of sequence 1.

Note: All code examples in the following sections show both direct register writes/reads and API
calls to the Stellaris® Peripheral Driver Library. If attempting to reproduce the direct register
access examples, the appropriate IC header file, for example “lm3s811.h” for an LM3S811
part, must be included. These header files, one for each member of the Stellaris family, can
be found in the StellarisWare/inc directory in the installed software tree. To make use of the
Stellaris Peripheral Driver Library instead of direct register access, header files hw_types.h,
hw_memmap.h, and adc.h are required. These can be found in the StellarisWare and
StellarisWare/DriverLib directories.

Sample Sequencer 1

Step 0

Step 1

Step 2

Step 3 - Unused

Step 0

Sample Sequencer 3

AN0

AN1

AN2

Sensor 1

Sensor 2

Sensor 3

Temperature
Sensor

Stellaris Microcontroller

Timer
trigger

Processor
trigger
June 24, 2009 5

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
Module Initialization
Out of reset, all peripheral clocks are disabled to reduce power consumption and must be enabled
for each peripheral module. Enabling a peripheral's clock is a simple task, requiring a write to one of
the Run-Mode Clock Gating Control (RCGCx) registers in the System Control module. To enable the
clock to the ADC, write a '1' to bit 16 (the ADC bit) of the RCGC0 register (address 0x400FE100).

Table 1. Enabling the ADC Clock

Another aspect of the ADC that must be configured by the programmer is the sample rate. The
default sample rate following a reset is 125K samples/second. Depending on the device, the ADC
sample rate can be set to 250K, 500K, or 1M samples/second by writing bits 8-11 of the Run-Mode
Clock Gating Control 0 (RCGC0) register. Table 2 shows the valid data range for the bit field and the
available sample rates. You cannot set the sample rate higher than the maximum rate for the device.
If software attempts to configure the ADC to a sample rate that is not supported by the device, the
device remains at either the default value or the most-recently programmed value. Table 2 shows
how to configure the ADC to sample at 500K samples/second.

Table 2. Setting the ADC Sample Rate

Using Direct Register Write

//
// Enable the clock to the ADC module
//
// System Control RCGC0 register
//
SYSCTL_RCGC0_R |= SYSCTL_RCGC0_ADC;

Using DriverLib

//
// Enable the clock to the ADC module
//
SysCtlPeripheralEnable(SYSCTL_PERIPH_ADC);

Using Direct Register Write

//
// Configure the ADC to sample at 500KSps
//
// System Control RCGC0 register
//
SYSCTL_RCGC0_R |= SYSCTL_RCGC0_ADCSPD500K;

Using DriverLib

//
// Configure the ADC to sample at 500KSps
//
SysCtlADCSpeedSet(SYSCTL_SET0_ADCSPEED_500KSPS)
June 24, 2009 6

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
Sample Sequence Configuration
Before changing configuration parameters in the ADC, it is a good practice to disable the targeted
sample sequence. Disabling a sample sequence allows for safe modification of the configuration
parameters without inadvertent triggers. To disable one or more sequences, set the corresponding
bits in the ADC Active Sample Sequencer (ADCACTSS) register to '0'. For this example, sequences 1
and 3 should be disabled.

Table 3. Disabling the Sample Sequences

With the sequences disabled, it is now safe to load the new configuration parameters. Configure the
priority of the sample sequences first. In a situation where multiple ADC triggers are active
simultaneously, or multiple sequences are triggered by the same source, the ADC control logic has
to decide which sample sequence runs first. Out of reset, the sample sequences are prioritized
based on their number, meaning sequence 0 has the highest priority and sequence 3 has the lowest
priority (the register bit fields range from 0-3, with 0 being the highest priority and 3 being the lowest).
This example does not have a particular priority requirement, so sequence 3 is configured to have
the highest priority.

In addition to the priority, the ADC trigger sources must be configured. The ADC offers a wide variety
of trigger sources including the processor, analog comparators (if available), GPIO, PWM, and
timers, but this example requires sequence 1 to have a timer trigger, and sequence 3 to have a
processor trigger.

Value Sample Rate Value Sample Rate

0x0 125K samples/second 0x2 500K samples/second

0x1 250K samples/second 0x3 1M samples/second

Using Direct Register Write

//
// Disable sample sequences 1 and 3
//
// ADC Active Sample Sequencer register
//
ADC_ACTSS_R &= ~(ADC_ACTSS_ASEN1 | ADC_ACTSS_ASEN3);

Using DriverLib

//
// Disable sample sequences 1 and 3
//
ADCSequenceDisable(ADC_BASE, 1);
ADCSequenceDisable(ADC_BASE, 3);
June 24, 2009 7

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
Table 4. Configuring the Sequence Priority and Trigger

The next step in the configuration process is setting up the sequence steps. There are two registers
that are responsible for the individual steps of the sample sequence: the ADC Sample Sequence Input
Multiplexer Select (ADCSSMUX) and ADC Sample Sequence Control (ADCSSCTL) registers.

The ADCSSMUX register allows software to select the analog input source for each step in the
sequence, and a step can select any one of the analog inputs. If a sequence step is sampling the
internal temperature sensor, the corresponding value in the ADCSSMUX register is ignored by the
hardware.

Control information such as sampling mode (single-ended or differential), temperature sensor
sampling, interrupts, and end-of-sequence is stored in the ADCSSCTL register. Each step in a
sample sequence has its own 4-bit nibble, allowing software to set any of the aforementioned
configuration options. The first step in the sequence occupies the least significant nibble in the
register, and so on. It is software's responsibility to set the END bit for the last step of a sequence. If
the END bit is not set for a sequence, unpredictable behavior can occur.

Figure 3 shows the layout of the configuration nibble. The “n” next to each field is associated with the
step number; for step 3, n is 3.

Using Direct Register Write

//
// Configure sequence priority: order (highest to lowest)= 3, 1, 0, 2
//
// ADC Sample Sequencer Priority register
//
ADC_SSPRI_R = (ADC_SSPRI_SS3_1ST | ADC_SSPRI_SS1_2ND |
 ADC_SSPRI_SS0_3RD | ADC_SSPRI_SS2_4TH);

//
// Set up sequence triggers: sequence 1 = timer (encoding 0x5),
// sequence 3 = Processor (encoding 0x0)
//
// ADC Event Multiplexer Select register
//
ADC_EMUX_R = (ADC_EMUX_EM1_TIMER | ADC_EMUX_EM3_PROCESSOR);

Using DriverLib

//
// Configure sample sequence 1: timer trigger, priority = 1
//
ADCSequenceConfigure(ADC_BASE, 1, ADC_TRIGGER_TIMER, 1);

//
// Configure sample sequence 3: processor trigger, priority = 0
//
ADCSequenceConfigure(ADC_BASE, 3, ADC_TRIGGER_PROCESSOR, 0);
June 24, 2009 8

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
Figure 3. Sequence Step Configuration Nibble

Table 5. Configuring the Sequence Steps
Using Direct Register Write

//
// Configure sample sequence 1 input multiplexer:
//
// - Step 0: Analog Input 0
// - Step 1: Analog Input 1
// - Step 2: Analog Input 2
//
// ADC Sample Sequence Input Multiplexer Select 1 register
//
ADC_SSMUX1_R = ((0 << ADC_SSMUX1_MUX0_S) |
 (1 << ADC_SSMUX1_MUX1_S) |
 (2 << ADC_SSMUX1_MUX2_S));

//
// Configure sample sequence 1 control
//
// - Step 0: Single-ended, No temp sensor, No interrupt
// - Step 1: Single-ended, No temp sensor, No interrupt
// - Step 2: Single-ended, No temp sensor, Interrupt, End of sequence
//
// ADC Sample Sequence Control 1 register
//
ADC_SSCTL1_R = (ADC_SSCTL1_END2 | ADC_SSCTL1_IE2);

//
// Configure sample sequence 3 input multiplexer - not necessary since
// sequence 3 samples the temperature sensor
//

//
// Configure sample sequence 3 control
//
// - Step 1: Single-ended, temp sensor, no interrupt, end of sequence
//
// ADC Sample Sequence Control 1 register
//
ADC_SSCTL3_R = (ADC_SSCTL3_TS0 | ADC_SSCTL3_END0);

TSn IEn ENDn Dn

Interrupt Enable End of Sequence Differential SamplingTemperature Sensor
June 24, 2009 9

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
Using ADC Interrupts
Stellaris' sequence-based architecture offers a vast amount of interrupt programming flexibility. All
steps of a sample sequence have the capability to trigger an interrupt, allowing software to set
indicators at any point in a sample sequence.

To enable interrupts, software must set the MASK bit for the sample sequence that requires the
interrupt. For example, if sample sequence 1 is configured to trigger an interrupt, the MASK1 bit of the
ADC Interrupt Mask (ADCIM) register is set to '1'.

Table 6. Enabling the Sample Sequencer Interrupts

Even with the interrupt mask bit set, software must set the step interrupt enable bit (IE) for one or
more steps of a sample sequence for an interrupt to occur. The step interrupt enable bit is part of a
step's configuration nibble in the ADCSSCTL register. In the example configuration being discussed,
the IE bit for step 2 is set (see Table 5, "Configuring the Sequence Steps" on page 9).

Data Retrieval
Each sample sequence has its own FIFO with a depth equal to the number of steps the particular
sequence supports (that is, sample sequence 0 has an 8-entry FIFO since it has 8 steps). Data
retrieval from the FIFO is very straightforward; reading the ADC Sample Sequence FIFO n
(ADCSSFIFOn) register returns a value from the FIFO.

Using DriverLib

//
// Configure sample sequence 3 steps 0, 1 and 2
//
ADCSequenceStepConfigure(ADC_BASE, 1, 0, ADC_CTL_CH0);
ADCSequenceStepConfigure(ADC_BASE, 1, 1, ADC_CTL_CH1);
ADCSequenceStepConfigure(ADC_BASE, 1, 2, ADC_CTL_CH2 | ADC_CTL_IE | ADC_CTL_END)

//
// Configure sample sequence 3 step 0
//
ADCSequenceStepConfigure(ADC_BASE, 3, 0, ADC_CTL_TS | ADC_CTL_END);

Using Direct Register Write

//
// Enable the interrupt for sample sequence 1
//
// ADC Interrupt Mask register
//
ADC_IM_R = ADC_IM_MASK1;

Using DriverLib

//
// Enable the interrupt for sample sequence 1
//
ADCIntEnable(ADC_BASE, 1);
June 24, 2009 10

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
The data returned during a FIFO read is a 32-bit value with the conversion result stored in the lower
10 bits. There are FIFO overflow and underflow flags available in the ADC Overflow Status
(ADCOSTAT) and ADC Underflow Status (ADCUSTAT) registers, as well as FIFO empty, full, head, and
tail pointer information in the ADC Sample Sequence FIFO registers.

Table 7. Retrieving Data from the FIFO

Differential Sampling
In addition to traditional single-ended sampling, the ADC module supports differential sampling of
two analog input channels. To enable differential sampling, software must set the D bit in a step's
configuration nibble (see Figure 3 on page 9).

When a sequence step is configured for differential sampling, its corresponding value in the
ADCSSMUX register must be set to one of the four differential pairs, numbered 0-3. Differential pair 0
samples analog inputs 0 and 1; differential pair 1 samples analog inputs 2 and 3; and so on (see
Table 8). The ADC does not support other differential pairings such as analog input 0 with analog
input 3. The number of differential pairs supported is dependent on the number of analog inputs on
the particular Stellaris microcontroller device.

Using Direct Register Read

//
// Retrieve data from sample sequence 1 FIFO
//
// ADC Sample Sequence 1 FIFO register
//
ulSensor0Data = ADC_SSFIFO1_R;
ulSensor1Data = ADC_SSFIFO1_R;
ulSensor2Data = ADC_SSFIFO1_R;

//
// Retrieve data from sample sequence 3 FIFO
//
// ADC Sample Sequence 3 FIFO register
//
ulTempSensorData = ADC_SSFIFO3_R;

Using DriverLib

//
// Retrieve data from sample sequence 1 FIFO
//
ADCSequenceDataGet(ADC_BASE, 1, &ulSeq1DataBuffer);

//
// Retrieve data from sample sequence 3 FIFO
//
ADCSequenceDataGet(ADC_BASE, 3, &ulSeq3DataBuffer);
June 24, 2009 11

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
The voltage sampled in differential mode is the difference between the odd and even channels:

ΔV (differential voltage) = V0 (even channels) – V1 (odd channels), therefore,

If ΔV = 0, then the conversion result = 0x1FF
If ΔV > 0, then the conversion result > 0x1FF (range is 0x1FF–0x3FF)
If ΔV < 0, then the conversion result < 0x1FF (range is 0–0x1FF)

The differential pairs assign polarities to the analog inputs: the even-numbered input is always
positive, and the odd-numbered input is always negative. In order for a valid conversion result to
appear, the negative input must be in the range of ± 1.5 V of the positive input. If an analog input is
greater than 3 V or less than 0 V (the valid range for analog inputs), the input voltage is clipped,
meaning it appears as either 3 V or 0 V, respectively, to the ADC.

Figure 4 shows an example of the negative input centered at 1.5 V. In this configuration, the
differential range spans from -1.5 V to 1.5 V. Figure 5 shows an example where the negative input is
centered at -0.75 V meaning inputs on the positive input saturate past a differential voltage of -0.75 V
since the input voltage is less than 0 V. Figure 6 shows an example of the negative input centered at
2.25 V, where inputs on the positive channel saturate past a differential voltage of 0.75 V since the
input voltage would be greater than 3 V.

Table 8. Differential Sampling

Differential Pair Analog Inputs

0 0 and 1

1 2 and 3

2 4 and 5

3 6 and 7
June 24, 2009 12

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
Figure 4. Differential Sampling Range, Vin(-) = 1.5 V

Figure 5. Differential Sampling Range, Vin(-) = 0.75 V

ADC Conversion Result

Differential Voltage,
Vin (+) = 1.5V

-1.5V +1.5V

0x1FF

0x3FF

- Input Saturation

ADC Conversion Result

-1.5V +1.5V

0x1FF

0x3FF

Differential Voltage,
Vin (+) = 0.75V

0x0FF

-0.75V

- Input Saturation
June 24, 2009 13

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
Figure 6. Differential Sampling Range, Vin(-) = 2.25 V

Table 9. Enabling Differential Sampling
Using Direct Register Write

//
// Configure sequence 3, step 0 for differential sampling
//
// ADC Sample Sequence Control 3 register
//
ADC_SSCTL3_R = (ADC_SSCTL3_D0 | ADC_SSCTL3_END0);

//
// Configure sample sequencer 3 input multiplexer to sample differential
// pair 1
//
// ADC Sample Sequence Input Multiplexer Select 3 register
//
ADC_SSMUX3_R = (1 << ADC_SSMUX3_MUX0_S);

Using DriverLib

//
// Configure sequence 3, step 0 to sample differential pair 1
//
ADCSequenceStepConfigure(ADC_BASE, 3, 0, ADC_CTL_CH1 | ADC_CTL_D | ADC_CTL_END);

ADC Conversion Result

-1.5V +1.5V

0x1FF

0x3FF

Differential Voltage,
Vin (+) = 2.25V

0x2FF

+0.75V

- Input Saturation
June 24, 2009 14

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
Hardware Averaging Circuit
Some applications require accuracy that exceeds the standard specifications of the ADC. To address
this need, the ADC module contains a built-in hardware averaging circuit that can oversample the
input source by up to 64 times.

When the hardware averaging circuit is enabled, all raw data collected by the ADC is oversampled
by the same amount; the averager cannot be enabled/disabled on a step-by-step basis in a sample
sequence. See Figure 7 for signal path details.

Figure 7. Hardware Averaging Circuit

There is also a bandwidth impact that must be considered before using the hardware averager.
Whatever oversampling factor is selected for the averaging circuit also reduces the overall ADC
throughput by the same amount. For example, oversampling by 8 reduces the throughput of a 500K
samples/second ADC module to 62.5K sample/second since the ADC collects and averages 8
samples before returning a single conversion result to the FIFO.

To enable the hardware averaging circuit, software writes a value between 1 and 6 to the AVG field of
the ADC Sample Averaging Control (ADCSAC) register. The amount of oversampling applied to the
input is equivalent to 2AVG. When the AVG bit is 0 (the default configuration), no averaging is applied
to the input.

Table 10. Enabling 8x Hardware Averaging
Using Direct Register Write

//
// Enable 8x hardware averaging
//
// ADC Sample Averaging Control register
//
ADC_SAC_R = ADC_SAC_AVG_8X;

Using DriverLib

//
// Enable 8x hardware averaging
//
ADCHardwareOversampleConfigure(ADC_BASE, 8);

10-bit SAR ADCHardware
Averager

Result to
FIFO

Analog
Inputs

Analog Input
Select
June 24, 2009 15

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
Conclusion
While architecturally different than many competitive ADC modules, the Stellaris ADC offers users
more flexibility, control, and features without added processor overhead. Combining a
straightforward programming interface and included Driver Library, many users will find the Stellaris
ADC easy to integrate into their designs.

References
The following are available for download at www.luminarymicro.com:

Stellaris® microcontroller data sheet, Publication Number DS-LM3Snnn (where nnn is the part
number for that specific Stellaris family device)

StellarisWare® Driver Library

StellarisWare® Driver Library User’s Manual, publication number SW-DRL-UG
June 24, 2009 16

Application Note Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
Important Notice
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work
right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used.
Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically
governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,
and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their
products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support
that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of
TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
 Copyright © 2009, Texas Instruments Incorporated

Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless
June 24, 2009 17

	Using the Stellaris® Microcontroller Analog-to-Digital Converter (ADC)
	Introduction
	Sample Sequencers
	Module Configuration Example
	Module Initialization
	Sample Sequence Configuration
	Using ADC Interrupts
	Data Retrieval

	Differential Sampling
	Hardware Averaging Circuit
	Conclusion
	References

