A R

e - R g

[

AN1310

Using the MC68332 Microcontroller for
AC Induction Motor Control

Prapared by: Jeff Baum and Ken Berringer
Discrete Applications and Systems Engineering

ABSTRACT

AC induction motors offer a low cost variable speed
solution for many motor control applications. The most
common method for controlling an AC induction motor uses
a three phase voltage source inverter with sine wave pulse
width modulation (PWM) voltage control. One must have the
means to produce sine waves of variable voltage and
frequency. Specifically, sine wave frequency and amplitude
are used to control motor speed and acceleration. A single
microcontroller can be employed to generate sine wave
modulated PWM waveforms and provide controd functions.

Motorola's MCB88332 ('332) is particularly well suited for
the control of AC induction motors. The '332 is built around
the CPU 32, a new 32 bit core. The CPU 32 utilizes an
instruction set which is almost identical to that of MC68020.
One new instruction, Table Look-up and interpoiation (TBL),
provides for linear interpolation between points in & look-up
table. In this paper, this instruction is used to generate very
precise sine waves from a relatively small table. The '332
also contains the Time Processor Unit (TPU). This module
is a microcoded processor dedicated to handling time
function tasks. One of the microcoded primitives, Synchro-
nous Puise Width Modulation (SPWM), is utilized to generate
three PWM waveforms for the AC induction moter. The TPU
and SPWM primitive are configured to produce three
waveforms with a2 common period, independently varying
pulse widths, and well controiled time relationships between
phases. The TPU limitations for minimum and maximum
pulse width, minimum offset between waveforms, worst case
latency, and update coherency are discussed.

An algorithm for generating variable voltage and
frequency sine waves is presented. The CPU handles all
calculations and periodically updates the TPU output
waveforms. The relationships between the parameters of this
algerithm, such as PWM frequency and sine wave voltage
resolution, are also presented.

509

HISTORY

AC induction motors have been used for many years in
a variety of applications. Three phase AC induction motors
are readily avaitable in a wide range of sizes from 1/4 HP
up to 1000 HP. With the advent of large bipolar power
transistors in the 1960's, it became possible to build variable
speed systemns using conventicnal AC induction motors. The
complexity and cost of these drives has generally imited the
application of variable speed AC motors to industrial
applications where variable speed is reguired. Also, the slow
switching speeds of the larger power devices limits operation
to the audible range. While the noise associated with large
variable speed drives is usually acceptable in noisy industrial
environments, it is undesirable for consumer applications.

MARKET

The Japanese have adapted industrial AC drive principles
to the consumer air conditioning market. Most of the variable
speed air conditioners in Japan are small single room or spiit
rack units and utilize 250 volt MOSFETs. The United States
consumer air conditioning market requires larger units due
to the larger average size home. Alsc, the U.S. standard
house wiring of 230 VAC for larger appliances requires the
use of 500-600 volt transistors. The recent development of
high speed Insulated Gate Bipolar Transistors {IGBTs) will
permit the operation of a large variable speed air conditioner
at 20 kHz.

Another potentially large consumer market of variable
speed AC induction motors is electric vehicles. The Califarnia
legislature has mandated the production of electric vehicles
by 1688. While the exact configuration of motcr type,
trans-axle, and battery voltage is still subject to much debate,
other requirements are quite clear. A practical electric vehicle
will have an inverter or inverters capable of supplying
50-100 kW at high switching frequencies. One of the most
promising approaches is a high-speed AC induction motor
and a three phase IGBT inverter.

AC INDUCTION MOTORS

An AC induction motor requires three nearly sinusoidal
voltages, each 120° apant. Originally, these motors had been
designed o operate at constant frequency and constant
voltage (eg. 60 Hz and 230 VAC). These are not synchronous
mators, and the actyal speed of the motor is determined by
the load and the resulting shp frequency. induction motors
are relatively inexpensive t¢ manufacture. The rotor is a
copper squirrel cage within laminations and does not require
expensive permanent magnets. Three phase induction
molors are ideal for the transmission of large amounts of
power because they have a constant, nonpulsating 1otal
power and present a balanced inductive load 1o the AC
mains.

In order to run an inguction motor at variable speeds it
is necessary to vary the sine wave frequency. In order to
maintain control over the motor torque and current, the
voltage applied to the motor must ¢lso be varied. Two
common methods of controlling the: motor speed are
constant voltage over frequency control (constant V/) and
vector control. Much has been written on the subject of vector
control. Vector control has some advantages for servo
applications and applicatons where efficiency is of primary
importance. Due to the complexity of vector control, the
rerainder of the paper will deal exclusively with simpler
control methods.

The simplest form of AC motor speed control is the open
loop constant V/A. A conventional AC moter is usually rated
at a specific voitage and frequency, such as 230 VAC and
60 Hz. If the voltage and frequency are maintained at this
ratio, the motor will produce a constant maximum torgque.
For example, it a 230 VAC 60 Hz motor is operated at
115 VAC and 30 Hz, it will produce the same torque and
about half the speed. Because the system functions open
loop without any speed feedback, this system does allow
slip. Usually the slip frequency is fairly low, thus open loop
control may be used for many variable speed applications.
If the lead torque is a well defined function of speed. the
actual motor speed may be characterized as a function of
the applied voltage and frequency.

Many constant V/f controllers also utilize a constant power
aperation region in arger to improve speed range. Once the
voltage reaches the maximum output voltage of the system
the frequency can be further increased. Because the voltage
is not increased, the maximum torque will decrease,
nowever, maximum output power remains constant. Thus,
a motor can produce halt as much torque at twice the speed.
A piot of voitage and frequency for a censtant V/t controiler
with a constant power region is shown in Figure 1. This curve
characterizes an example motor which is rated at 3/4 HP,
and 1800 BPM, at nominal line voltages of 230 VAC, and
60 Hz. The speed range of a conventional AC induction
mator should not be extended above the rated speed without
assuring that the motor is physically capable of high speed
operation without causing darmage to the rotor or bearings.

510

Motors can be designed for high speed operation thus,
resulting in a smaller, less expensive motor. Electric vehicles
may utilize a small high speed motor in order to reduce
weight, size, and molor costs.

1800 RPM
1024 -
=)
=
= 512 900 APM
>
=
5
o
17 - ¥ 100 RPM
i 1 I 1
1 30 60 120
f, frequency {Hz)

Figure 1. Constant V/F Control
with Constant Power Region

PWM INVERTERS

The most common AC motor inverter today is a
hard-switched, three-phase, pulse width modulated (PWM)
inverter. The basic principle of a PWM drive is to apply a
high-voltage pulse train to the moter at a high frequency and
vary the duty cycte, or equivalently, the puise high time. The
average resulting voltage over each cycle is then the
peak-to-peak voltage times the duty cycle. The duty of each
phase is then “puise-width-modulated” by both a vanable
frequency sine wave and a variabie amplitude. This simple
principle allows the generation of variable amplitude, three
phase sine waves. This is a “textbook” exampie of a
puise-width-modulation communication system.

The actual vollage applied to the motor is a constantly
changing train of high voltage pulses. However, the motor
currents are nearly sinusoidal. The inductance of the motor
i$ very important to the operation of the inverter. The nverter
depends on the motor inductance and the back-EMF of the
motor in order to limit the high frequency ripple current. In
effect, the motor inductance integrates the applied voltage
minus the motor back-EMF.

.
=l &

1
== - EMF)d
T [(V ~ EMF) at
Integrating over one PWM period will produce the high

frequency ripple current. The motor resistance also has
some effect on the motor current, especially at low speeds.

- WMr-$1

il
T

Figure 2. Sine Wave PWM

/
1

The generation of sine wave PWM waveforms is best
understood by superimpesing a sine wave signal with a
triangle or sawtooth carrier. When the carrier amplitude is
higher than the sine wave's, the output level is high. This
is illustrated in Figure 2.

The generation of these PWM waveforms may be
accomplished by analog methods using a variable frequency
sine wave oscillator, a fixed frequency carrier wave oscillator,
an analog multiplier, and a comparator.

DIRECT MICROPROCESSOR PWM

A more eiegant approach is to do alf calculations in the
discrete time domain and avoid the analog sine wave. This
approach provides the most accurate control over the effec-
tive sine wave amplitude and frequency. A single micropro-
cessor may be used to generate all three PWM signals as
well as provide control functions, communications, and a
user interface. In this paper we will demonstrate an AC drive
system using Motorola’s MC68332 microcontroller.

PWM GENERATION

Microcontrollers (MCU's) are capable of producing
logic-level pulses. By varying the duty cycle of a square
waveform, a microcontroller can implement pulse-width
modulation. Typical 8-bit MCU's, such as Motorola’s
MCB8HC 11, use interrupt driven or polling schemes to cause
the logic-level transitions which produce specified pulse
widths and periods for a PWM waveform on a given output
pin. On occurrence of a predetermined timer match
condition, the pin state makes the appropriate transition and
the central processing unit {CPU) calculates the next
low-high and high-tow transition times. This waveform
generation method requires CPU overhead to create each
rising and falling edge on the desired signal. Since AC
induction motor control requires three PWM signals, the
service time imposed by the above technique severely limits
the maximum PWM frequency one can produce. Such
software latency is highly undesirable since it results in PWM
frequencies within the audible range.

The MC68332 is a 32-bit, 68000-based MCU which is
ideally suited for many motor control applications. The 68332

has a modular architecture which combines the high
performance data manipulation of a 32-bit CPU with
intalligent on-chip peripheral subsystems. Tha features of
this MCU which are critical to our motor drive system are:
the Time Processor Unit (TPU), the Table Look-Up and
Interpolate (TBL) instruction, and the system’s ability to
operate at 16.78 MHz,

The TPU is a 16 channel dedicated time function
processor. The 16 TPU channels, TPO-TP15, are
independent, orthogonal channels (i.e. any channel can
pertorm any of tha TPU's time functions). The TPU also
contains micracoded primitives for performing complex time
related functions, such as motor contrel and pulse-width
modulation. Once the necessary parameters for a given time
function algorithm are written to a specific TPU channel by
the CPU, the TPU runs autonomously. CPU intervention is
only needed in order to alter a previously written pararneter.

For the PWM example given above, one simply assigns

* a desired high time, period, and some reference addresses

511

to a TPU channel parameter block, and the corresponding
pin for that channel will output the desired waveform. To
perform PWM, one can have the TPU cause an interrupt
to the CPU to calculate and write a new high time {i.e. puise
width) to a given TPU channel parameter block. Typically,
a MCU must interrupt the CPU to generate each logic
transition of a PWM signal. In contrast, The TPU calculates
all of the rising and falling transition fimes and affects the
output pin accordingly without CPU intervention. CPU
overhead is only needed to alter the current duty cycle (i.e.
write new high times). Besides avoiding interrupt and polling
latencies, the TPU offers additional speed, since the
primitives are implemented in microcode. In addition, the
68332's 16.78 MMz system clock provides 240 ns timing
resolution. This is twice the resolution of the HC11's general
purpose timer, The effects of such timing resolution will be
discussed in a subsequent section.

The TBL instruction can be used with signed or unsigned
data (i.e. TBLS or TBLU, respectively). This instruction
allows one to use a data table of up to 257 points and get
65,536 values of the function represented by the actual data
points. In other words, this instruction performs an 8-bit table
look-up and an B-bit interpolation between consecutive data
entries.

TPU CONFIGURATION

Five TPU channels have been used to realize this sine
wave generation algorithm. A single channel configured to
output a 50% duty cycle square wave with a pericd of 50 us
(20 kHz) is used as a “master” timing channe!l. Each sample
of the resultant sine waves has a finite duration before the
next sample is produced. This “master” channel is used to
control the sine sample update rate, as well as for temporal
alignment of signals on other TPU channels. Another
channel uses the Input Transition Counter {ITC) primitive.
This channel is programmed to count rising logic-level
transitions that occur at the channei’s associated input pin.
This channel, in conjunction with the “master” timing channel

described above, provides the means for updating the sine
wave samples at a designated time interval.

Three TPU channels are defined to execule the
Synchroncus PWM (SPWM) primitive. This TPU protocol
allows muitiple PWM channels to be configured with
specified timing relationships between the c¢hannels. By
synchranizing each PWM waveform to the “master” timing
channel, coherent updating of PWM parameters and other
penelits are obtainable. The specific details of how each TPU
channel is used to implement our overall sine wave
generation/motor centrol algorithm will be presented in the
following sections.

INITIAL ALGORITHM

Originally, we chose 1o represent a singé wave using 21
samples of a sine function per wave cycle. Each sample of
the sine function translates into a particular high time for the
PWM waveforms. The pulse widths (high times) tor each of
the three PWM phases are determined by the following
equations.

PWMA :(V’——S‘”; 1) PER

oWMB = (v sin (6 +2240v) +1) oER
BWMC =(v sin (B +2120w) .1) oER

where;
V is the voltage ampiitude of the sine wave,
8 is the angle of the sine function,
PER is the period of the PWM waveforms.

For a fixed number of 21 sine samples per sine wave cycle,
0= (szi?—) .where 1=0.123...,20

The 21 values of the sine function are stored as data in
a iook-up table (LUT) within the MCU. The rate at which we
step through the values of the LUT and compute new puise
width values determines the treguency of the resulting sine
wave. The algorthm sine modulates the high times of the
three PWM signals. which drive their corresponding
transistor bridges. The mator then integrates the voltages
on it to produce sine wave currents.

This simple method has been modified to better drive the
motor over the desired voltage and frequency range. The
ability to vary the number of samples per sine cycle, update
all PWM parameters conerently, and use a simple interface
for speed control are some of the enhancements which have
been examined o imprave the above algorithm.

SINE WAVE APPROXIMATION

Since MCU's cperate in the digital domain, sine waves
must be constructed from discrete values of a sinusoidal
function. Thus, a “stair-case” approximation to a sinusoid is

512

the actual goal we wish to accomplish, As a result, one must
consider the effect that sample duration, or "step"” size, has
on motor performance.

The simple algorithm above used a constant number of
samples (21) per sine cycle and varied the duration of each
step to create sine waves of diffarent frequencies.
Twenty-cne steps of approximately 48 ms and 400 us each
must be produced (per cycle) for the lowest and highest sine
frequencies, respectively. One design “rule-of-thumb”
requires the step size to be less than or equal to one-half
of the stator time constant of the motor. As determined by
the inductance of the motor we are driving, the stator time
constant is estimated at 500 ps. Therefore, it is desirable
to maintain a step size which does not exceed 250 pus. Even
for the best case example above (400 us for a sine frequency
of 120 Hz), the 21 sample mettiod will not result in efficient
motor control. One would need to have a data tabie of at
least 4000 values in order to use a constant nurmber of
samples with an acceptable step size o produce the
frequencies of interest. In addition to the undesirable LUT
length demanded by this scenario, producing a frequency
of 120 Hz (requiring four-thousand 2 us steps) may not be
feasible.

A more desirable approach to sine wave frequency control
is the use of a constant step duration of 250 us, or less,
and varying the number of samples used for sine wave
construction. A sine-frequency dependent number of sine
samples could be implemented by having a different length
LUT for each sine frequency to be produced. For frequencies
at one Hertz increments (over the range of 1-120 Hz), 120
{UT's with lengths ranging from 33 to 4000 values would
need to be derived and stored in memory. This woulgd be
bath an inefficient use of memory and a tedious data entry
task. One alternative to creating multiple LUT's is to use a
single LUT of reasonabie length (257 values' or less) in
conjunction with the "332's TBLS instruction.

The argument of the TBLS instruction is a word-size
operand in which the upper byte is used as a pointer 1o an
entry in the LUT, while the lower byte determines how far
lo interpolate between the entry specified by the upper byte
and the next entry in the table. By clever manipufation of
the TBLS operand, one can effectively create “virtual” LUT's
of varying size from a single data table of fixed iength.

SINE WAVE GENERATION

The code that has been developed for this task consists
of a main program which simply initializes some parameters,
branches 1o two subroutines to contigure ihe TPU and
Queued Serial Module (QSM) subsystems of the '332, and
loads the interrupt vectors for the ITC and Serial
Communications Interface {SCI) Interrupt Service Routines
(ISR's). This sine wave generation scheme is 'mterrupf'
driven. As mentioned previously. the “master” timing channel
outputs a 20 kHz square wave. This channel serves as the
input to another TPU channe! which has been initialized as
an input transition counter. The ITC parameters are
configured to generate an interrupt to the CPU after detecting
every fifth rising edge of the timing channel. Since the timing

i e A

i

RS N

o -

!

channel has a 50 ps period, ITC interrupts will occur at
250 s intervals (one-haif stator time constant). Each time
the interrupt is serviced, the CPU will write a new high time
10 the three SPWM outputs. By making the “CPU-provided”
high times be values of a sine function, one can produce
a sine-medulated PWM signal. Thus, the ITC ISR, combined
with the sine function LUT, is the "heart” of this algorithm.
By preducing three such PWM waveforms with 120° phase
shifls to each other, three-phase power can then be realized.

Upon entering the ISR, the new high times for all three
phases are written to their respective TPU PWM channels,
These values were calculated during the previous ITC
interrupt service. The calculations which occur in the ISR
implement the equations shown in the Initial Algorithm
section. The flowchart in Figure 3 illustrates the computations
which generate the duty cycles that effect sine-modulated
PWM waveforms. The entries in the LUT are 256 scaled
values of the sine function. The numbers are scaled by 1024
so that all operations can be done using integer arithmetic.
The actual table values have been halved to satisfy the
pulse-width equations, while avoiding an extra division
operation in tha ISR,

SINE FREQUENCY
N
1
; &
z TBLNUM
240°
120°
X
z
SIN/2 FCT LOOK-UP TABLE
USING TBLS INSTRUCTICN

VOLTAGE —

:
i
!

PWM_PER.2 ———-Czb

z
TPUCH_1-CH_3
SPWM HI_TIMES

Figure 3. Three Phase Sine Wave
Generation Algorithm

RESULTS, LIMITATIONS, AND FUTURE
DIRECTIONS

A set of three-phase sine waves which were generated
for a desired speed of 3600 RPM's are shown in Figure 4.
These signals are indeed at full voltage and 120 Hz, as
predicted by the speed characteristic of Figure 1. High quality
sine wave voltages can be observed through direct
integration (i.e. low-pass filtering) of the SPWM outputs, A
simple user interface was developed to demonstrate speed
control. The user could vary the voltage and frequency of
the resulting sine waves by specitying “f" for faster, or “s"
for siower. The protocol echoes the carrect speed (in RPM's)
of the demonstration motor to the screen. The sine wave
frequency changes occur smoathly without any abrupt
vollage changes.

AF1 2,00V 2ms
AF22.00 V 2ms
RFI2.00 V 2ms

Figure 4. Three Phase Sine Waves

Hardware was designed and developed tor AC motor
control, and a single phase of the circuit was tested with the
‘332 microcontroller and an inductive load. The circuit
employs the use of an analog dead time circuit, a
high-voitage IC gate drive, and high speed IGBT's. A
compiete three phase inverter printed circuit board layout
will be completed shortly.

High resclution three-phase sine waves were accurately
generdted; however, there were several limitations of this
system. TPU microcode service time imposes a constraint
on the minimum and maximum pulse-widths the SPWM
primitive can produce. Approximately 1900 ns and 1300 ns
were the minimum high time and low time, respectively. This
limits the maximum duty cycle to approximately 94%. in order
to prevent the possibility of inaccurate high times, which
could occur as a result of TPU latency, each SPWM TPU
channel was offset from the previous channel by 2.4 us.

The voltage resclution of the sine waves is determined
by the PWM frequency chosen. For a 20 kHz PWM
frequency, the period is 50 us or 210 counts of the TPU time
base {240 ns/count). Since PWM duty cycle corresponds to
sine wave voltage amplitude, the voitage resoiution is limited
to 210 levels. Thus, voltage resolution is approximately 0.5%
of the fuli-scale voltage. Higher resolution would provide

petter low level sine waves at very low motor speeds.
However, the bandwidth of the entire inverter must be higher
than 4 MHz in order to utilize higher resolution.

Future improvements to the sine wave algorithm may be
impiemented in custom microcode. The use of two adjacent
channels per phase allows the rising edge to be updated
prior to the occurrence of the falling edge, and vise versa.
This will permit minimum high and low times of 240 ns {one
timer count). Centering the pulses with respect 1o each other
may also be accomplished in micraocode. This would allow
the high frequency npple currert to be further reduced.
particularty important in low inductance motors. Coherent
updating of all TPU variables can be implemented at the
microcode level. Lastly, simple open loop, constant V/F
contral could be replaced by mere complex vector controb.

This algorithm for generating variable voltage and
frequency sine waves ¢an be downloaded from the Motorofa
MCU Freeware Line by dialing (512} 891-FREE (3733). The
Directory is MCU332 and the lile is acinddriv.asm.

514

ACKNOWLEDGEMENTS

We would like to thank Or. Allan Plunkett for his
contributions 1o the final algorithm. His inputs were essential
for a thorough understanding of the details involved in sine
wave PWM generation. We also thank Peter Pinewski for
his assistance throughout the development of the '332 code.

GLOSSARY OF ACRONYMS

CPU — Central Processor Unit

IGBT — Insulated Gate Bipolar Transistor
ISR — Interrupt Service Routine

LUT — Look Up Table

MCU — Microcontroller Unit

PWM — Pulse Width Modulation

SPWM — Synchronous PWM

TPU — Time Processor Unit

Vi — Constant Voltage over Fregquency

o——

R P L P

[ZEZEXZTEEEEERREE AR RENRR SRR RRREAERR RS AR R A AAS AR R NSRS RS RN R NSRS RSN RSD L]

* MC68332 AC INDUCTION MOTOR THREE PHASE SINEWAVE GENERATION PROGRAM *

LA 222 22 X R 22222 SRR AR AR R R AR Rt it i i sl i R il st st i Ll)l

[ZZXTZERXTXRISFYI RS RR R RER RS RS RS 222 R RAR R AR SR N RS NE X
** Joaff Baum e
** Digcrete Systemd and Applicationa Engineering =»»
** Motorola, Inc. .

** 5005 E. McDowall -
** Phoenix, Arizona 85008 LA
** §02-952-4360 MD 56-116 - *

L Y R R Y R R R R A R R R XA AR AR R R Y X

This code realizes a novel mathod for generating high-quality three-phase
sinewaves intended for driving the electronica which in-turn drive a

3/4 HP AC Induction Motor. This motor has a rating of 1800 RPM at 230 V
and 60 Hz. The simple user interface only recognizes the inputs “F” or "S5~
for faster or alower, respectively (case insensitive). The number of RPM's
that the resultant sinewavee will produce for this specific motor will be
echoed to the screen. Communications is via the 332 QSM (SCI).

» % & % ® » ¥

* All EQUate statements using only & hex digit addressing will require the
* the use of a “.L” extension when using such labels as an operand.

IR X R LR R R R R R R R R R R R R R R R L R R L e L A R AR R R SR RS R ARl XY

*TPU module registers

TMCR EQU $FFFEQO
TICR EQU $FFFEQS
CIER EQU SFFFEQA
CFSR2 EQU $FFFE10
CFSR3 EQU $FPFPEl12
CPR1 EQU $FFFELE
HSQR1 EQU $PFFE16
HSRR1 EQU SFFFEl1A
CISR EQU $FFFE20

*QSM/SCI control registers

QMCR EQU $FFFCO0
QILVR EQU $FFFCO4
SCCRO BQU 4FFPFCO8
SCCR1 EQU $FPFCOA
SCSR BQU $FFFCOC
SCDR EQU $FFFCOE

* TPU parameter registers

*magter SPWM timing channel used for PWM alignment and aine function update

CHLCTL_0 EQU $FFFFOO
HIPER_ 0 EQU SFFFFO4
LNKREF1_0 EQU $FFFFO8
DELAY_0 EQU SFFFFOA

*TP1-TP3 are phase A, phase B, phase C PWM outputs

CHLCTL_1 EQU $FFPPLO
HITIMB_1 EQU $FFFF14
DELAY_ 1 EQU $FFFF16
REFADS_1 EQU $PPPF18
CHLCTL_2 EQU SFPFP20

515

HITIME 2 EQU SFFFF24

DELAY_2 EQU SFPFFI6E
REFADS_2 EQU $FFFPF28
CHLCTL_3 EQU $FFFF30
HITIME 3 EQU $FFFF34
DELAY 3 EQU $FFPFF36
REFADS_3 EQU $FFFF38

«Tp4 is ITC-input transition counter channel used for counting transitions on TPO for
rupdate interval

CHLCTL_4 EQU SFFFF40
BANKAD_ 4 EQU SFFFF42
MTCOUNTS_4EQU $FFFF44

*ISR-interrupt eervice routine location vectors

VOFF2 EQU $000110 *TC" ISR vector
VQFF3 EQU $000140 *SCI ISR vector

*main program labels

v EQU 59000 *voltage value

F EQU 39002 *gine frequency

PER EQU $9004 *gine pericd

PER2 EQU $9006 +one-half sine period

DIG1 EQU $9008 *gtorage for SCI RPM digits to diaplay
DIG2 EQU $900A

nIG3 EQU 5900C

DIG4 EQU $900E

TBLNUM EQU $9010

I*i**ttt'iiitti‘li"tt.t*'i‘.!itittll.’t-‘tt**'...Qt.'tti****l""-t'*t'itttiﬁi*ttii.ﬁi'.i.ﬁ'ti

*MAIN PROGRAM

ORG 53000 *put code at address $3000

MOVE.W #$2000, SR *guperviscr mode, int mask 5

MOVE.L #45500, VOFF2.L *i1oad ISR vector starting address

MOVE.L #55800,VOFF3.L »load ISR vector starting addreas

BSR SCI_CNFG sconfigure SCI

MOVE.L #PWTBL, AQ *load starting address of lut

CLR.W V.L *initialize voltage

CLR.W F.L *initialize frequency

CLR.W TELNUM.L

MOVE . W #500d2,PER.L *initialize sine freq.

AND.W #4FPEF,CISR.L *clear TP4 interrupt flag

MOVE . W #$0065,D1 #initialize high times to 50% duty cycle

MCVE . W #50069,D2

MCVE.W #50069,D3

BSR TPU_CONFG *configure TPU and initialize TPU channel
« parameters

3FA *

ttfi.I*O'fi&t't"Ittwitii*..‘it"itiitflii"...tﬁi'-iiitl"lttil’t*'.tiittti'."ﬂ.i"*ﬁ.iitif"

516

S _1

TPU_CONFG MOVE . W #500CP, THCR. L *divide by 4 eclock,T2CG,IARB ia F
MOVE . W #50640, TICR. L *TPU IRQ leavel é,vector base 540
MOVE . W #50010,CIER.L *enable TP4 interrupts
MOVE.W #5000A,CF3SR2.L *TP4 ITC
MOVE.W #57777,CFSR3.L *TPC,TP1, TP2, TP) are SPWM
MOVE.W #30156,HSQRL.L *sequence bits for modes
b TPO RAM PWM phase 0
MOVE.W #50092, CHLCTL_O0.L *TCRl, force pin low
MOVE.L #$006930042, HIPER_0.L*50% duty cycle, 20 kHz
MOVE.W #$1300, LNKREF1_0Q.L
MOVE.W #50000, DELAY_0O.L *no delay
* TP1 RAM PWM phaae A
MOVE . W #50092,CHLCTL_1.L *TCR1, force pin low
MOVE.W #$50069, HITIME_1.L *50% duty cycle
MOVE.W #5000A, DELAY_1.1 *2.4 us delay
MOVE . W #50200, REFADS_1.L *nextrise/lastrise
* TP2 RAM PWM phase B
MOVE.W #50092,CHLCTL_2.L *TCR1, force pin low
MOVE.W #50069, HITIME_2.L *50% duty cycle
MOVE.W #50014, DELAY_2.L *4.8 pa delay

MOVE.W #50200,REFADS_2.L *nextrise/lastrise

hd TP3 RAM PWM phase C
MOVE.W #50092, CHLCTL_3J.L *TCR1l, force pin low
MOVE.W #50069,HITIME_3.L *50% duty cycle

MOVE . W #$001E,DELAY 3.L *7.2 us delay
MOVE . W #50200,REFADS_3.L *nextrise/lastriase
- TP4 RAM IC synchronous update interrupt
MOVE . W #50007, CHLCOTL_4.L *detects rising edges
MOVE.W #S$000E, BANKAD 4.L *non-eaxistent address
MOVE.L #$00050000, MTCOUNTS_4.L *MAXCOUNT=5, every fifth edge

*TPU INITIALIZATION

MOVE.W #501AA,HSRR1.L *channel initialization
MOVE . W #$01FF,CPR1.L *channel priority
RTS

AR AL A AR AR AR AR AR R AR RSl Rl Rttt iR R 2 2 il R 22 A2 YRS RE SRR R R X222

*SCI configuration subroutine

SCI_CNFG MOVE.W #50081,0MCR.L *gup mode, jarb 1
MOVE . W #50150,QILVR.L *intlvl 1, vector $50
MOVE . W #50037,8CCRO.L *9600 baud
MOVE.W #5002C, SCCR1.L *RIE, TE, RE
RTS

LAE AL AR RS2 AR a2 X 2Rt a2 a2 iR 2R 2 22222t Rl ol Rlllls

517

*ITC ISR-interrupt service routine

ORG

MOVE.W
MOVE . W
MOVE.W

MOVE.W
LSR.W
MOVE.W
MOVE. W
MULU.W
ADD.W
MOVE.W
MOVE . W
ADD.W
MOVE.W
ADD.W

DC.W

MULS . W
MULS . W
MULS . W

ASR.L
ASR.L
ASR.L
ASR.L
ASR.L
ASR.L

MULS . W
MULS.W
MULS . W

ASR.L
ASR.L
ASR.L
ASR.L
ASR.L
ASR.L

ADD.W
ADD.W
ADD.W

AND . W
RTE

PRS2 R R 22 R A A R A A A L A A

$5500

D1,HITIME_1.L
D2 ,HITIME_Z.L
D3, HITIME_3.L

PER.L,PER2.L
PER2.L
TBLNUM.L, D1
F.L,D2
#310,D2
Dp2,D1

D1, TBLNUM. L
pl,D2
#SAARA, D2
D1, 03
#4$5555,D3

SF810,$1940.$F810.$2940,$FBlO,$3940

v.L,Dl
V.L,D2
v.L,D3

#8,D1
#2,D1
#8,D2
#2,D2
#8,D3
#2,D3

PER.L,D1l
PER.L,D2
PER.L,D3

#8,D1
#2,D1
#8,D2
#2,D2
#8.03
#2,D3

PER2.L,D1
PERZ.L,D2
PER2.L,D3

#SFFEF,CISR.L

taf*tttowwttttttttti-it'ntttt*.!ttttttt-tttttcﬁtt

*locate ITC ISR
*write new high times to all
*three PWM phases

*divide PER by 2 and store in PER2

*load previous TBLNUM in D1

*put sine freq in D2

*multiply sine frequency by 16 (min jmp)
s+add delta TBLNUM tc old TBLNUM

*gave new TBLNUM

*copy new TBLNUM to D2

«3dd 2/3 phase shift {+240 or -120 degreas)
*copy new TBLNUM to D3

*add 1/3 phase shift (+120 or -240 degrees)

*TBLS statements
*multiply sine samples by

*yx1024 values in V LUT

sdivide Vvain (f*t +phi) /2 values by 1024

*multiply sine samples by
*pER values

*rdivide by 1024

*add period/2 to all three phases’
*new pulse width calculations

#clear TP4 interrupt flag
«*return from interrupt

518

'YX EXEE RS R}

*0Q8SM/8CT ISR-interrupt service routine

CRG $5800
MOVE.W SCSR.L,D7 *read SCSR
i MOVE . W SCDR.L,D4 *recelve charactar
5 CMPI.B #546,04 *check for 'Fraster
: BEQ INCRPM
. CMPI.B #566,D4 *cheack for *‘f’'aster
’ BEQ INCRPM
! CMPI.B #3553, 04 *chack for ’'S'lower
§ BEQ DECRPM
b CMPI.B #373,D4 *check for ‘a’lower
* BEQ DECRPM
; BRA ENDSVC *jillegal character, no changes
: INCRPM = CMPI.W #578,P.L *do not exceed 120 Hz
i BGE COMPVOLT *compute voltage
f ADDG.W #51,F.L *increment frequency by 1 Hz
BRA COMPVOLT *compute voltage
i DECRPM CMPI.W #50,F.L *do pot go regative in freq
: BLE COMPVOLT *compute voltage
SUBQ.W #51,F.L *decrement fregquency by 1 Hz
COMPVOLT CMPI.W #535,F.L *check if greater or equal to 60 Hz
BGE CONSTVOLT *maintain full voltage, 4o pot exceed $400
MOVE.W F.L,D5
MULU.W #511,D5 ’ *volta=freg+*l?
MOVE.W D5,V.L *store new voltage
BRA ENDSVC *go calculate rpm’'s
CONSTVOLT MOVE.W #5385,V.L *max voltage=5$400 (1024)
ENDSVC MOVE.W F.L,D5
MULU . W #$1E, DS *rpm=30*frequency
XMIT1 BTST #$0,SCSR.L *poll bit 8 of SCSR until clear, ready to XMIT
BEQ XMITL
MOVE.W #50D, SCDR. L *output carriage return to screan
MOVE . W #50030,DIG1.L *refresh digits to blank characters

MOVE.W #50030,DIG2.L
MOVE . W #50030,DIG3.L
MOVE.W #50030,DIG4.L

MOVE.L #DIG4,Al *point to address to store digits
ADDQ.L #52,A1

' BCDCONV DIVU.W #$A, D5 *divide rpm hex by 10
MOVE.W DS5,Dé *copy DS5low (quotient) to D6
SWAP DS *put DSup (remainder) in DSlow
ADDI.B #$30,D5 *add $30 to remalnder to get ASCII
NOVE.W D5,-(Al}
CLR.L D5 *clear entire D5
MOVE . W D6,DS *reatore previous guotient to D5
CMPI. W #50,D5 *check for quotient zero, done coaverting
BNE BCDCONV *loop to next conversicn
LEA DIGL.L,Al *point to first digit to transmit
MOVE.W #3,D7 *redet transmit digit counter
AMITY BTST #50,8CSR.L *bit 8 of SCSR *poll transmit complete flag
i BEQ XMITY
; MOVE.W {Al})+,8CDR.L *write SCDR to transmit digit
: DBFP D7, XMITS *rrangmit next digit
; RTE
|
! 519

‘-t-..-w,*itti'.lﬂtt'qttti..ﬁ..-ﬁ'i.il-i..t'*ttﬂ‘Iiﬁttitiii.h..lit't'l‘-i.i.t..--."O'titttt

*LOOK-UP-TABLE {LUT)

Q
]
(1]

$6000

$OOOO,$000d,$0019,50026,$0032,$003f,$004b,$0053
50064.SOUTO.SODTC,$0089,$0095,$00a1,$00ac,$00b8
$0004,$00cf,$00db,50036.50051.SOOEG,$0107,50112
$011c,50127,$0131,$013b.$0145,$014e.$0153,50161
50165,50173.$017b.50134,$013c,$0194,$019b,$01a3
SOIaa.$01b1,$01b7,$01bd.$01c4,$01c9,$01cf,$01d4
$01d9,$01de,$0192,$0136,SOlea,SOlad,501£1,501f4
SOIEG,$01fB,501fa,$Olfc.$01£e,$01f£,$01ff,$0200
$0200,$0200,$01§f,SOlff.SOlfe.SOlfc,SOIfa,SOlfB
$01f6,$01f4,$01f1,SOled,$01oa,$01e6.$0132,$01de
501d9,501d¢,$01cf,$01c9,$01c4,$Olbd,$01b1,$01b1
$01aa,$01a3,$019b.$0194,$018c,$0184,$017b.$0173
5016a,$0161,$0155,$0143,$0145,$013b,$0131,$0127
$011c.$0112,$0107,$00fc,$00£1.$0036,$00db,$00cf
50004,$00b8,$00ac,$00a1.$0095,$0089,SOOTC,SOOTO
50064.50058,5004b,$003f,$0032,$0026,$0019,$000d
$0000,$fffB,$ffe7,$ffda,Sffce,Sffcl,Sfbe,SffaS
Sff9c,$ff90,$ff84,$ff?7,$ff6b,$ff5f,$ff54,$ff43
Sff3c,$ff31,$ff25,$ff1a.$ff0f,$ff04,$fef9,$£eea
$fee4,$fed9.$fecf,Sfecs.Sfebb,SfebZ,sfea8,$fe9f
Sfe96,$fe8d.$fe85,Sfe?c,$fe74.5fe6c,$fe65,$fe5d
$fe56,$fe4f,$fe49,$fe43,SfeBc.SfeB?,$fe31,$£e2c
$fe27,$fe22,$fe1e.stela,$fe15,$£e13,$£e0f,$fe0c
$Ee0a,$feDB.SfeOG,SfeOA,$£e02,$£e01,$£e°1,$fe00
SfaOO,$fe00,$f901.$fe01,$fe02,$feﬂ4,55306,$fe08
$Ee0a,$fe0c,$fe0f,S£e13,$fe16,$fe1a,Sfele,SerZ
$Ee27,Sfe2c,Sfe31,$fe37,$fe3c,$fe43,$fe49,$fe4f
$Ee56,SfeSd,SfeGS,SfeSc,$fe74.$fe7c,$fe35,$fead
Sfe96,$Ee9€,$feaﬂ.$Eeb2,$febb,$fec§,Sfecf,sfeGS
$feed, Sfece, $fef9, $EE04, $EFOF, $EE1a, SE£25,$1£31
Sff]c,Sff48,5f554.$ff55,$ff6b,$ff77,$ff84,$ff90
5f59c,$ffa8,$ffb5.$ffcl,Sffce,Sffda,sffe7.$fff3
$Q0000

PWTBL

¥ ST E TR EELZELELEEEE

. P .

.

%R 3% FRRRRBRRRRRABRERNRANRERRRRAAE
FEELXEETEELTEEZEESEZEHZ:R

uw*it-ttt-tit*uttt-ttiottt.iﬁttictttttit*ttttat..ttttitt**ttit.ttttaittttt*wi-tttttttt-ttit

520

