CMM-332

An enhanced version of the Motorola MC68332 Business Card Computer

6 xiom
& anufacturing

/ @ | J a a 1999 2813 Industrial Ln. - Garland, TX 75041 - (972) 926-9303 FAX (972) 926-6063
email: Gary@axman.com - web: www.axman.com

CONTENTS

FEATURES. ... e s

GETTING STARTED ... e e e
Software DevelopPmMEeNt.......coooo o 4

TUTORIAL

Using the CPU32BUg MONITONccoiiiiiiiiiiiee e 5
USING @ BDM ... 6
USING SDS SiNGIE StEP c.ceveiiiiiiee e 7
Programming the Flash Memory ..., 8

MEMORY MAP ..t e s

HARDWARE SPECIFICATIONS ..ot 10

JUMPER OPTIONS ...ttt e e e e e ee et e e e e e e e eeeannnns 10
Memory Device Selection and Configuration..................ceeevveennnns 10

JP1 - RAM Chip SEIECT ...ttt 10
JP2 — Flash Chip SelecCt ..., 11
JP3 - Option Memory Chip SelecCt..........ccooiiiiiiiiiiiii e, 11

MEMORY OPTION JUMPEIS......iiiiiiiieeeeeii e 11

32K / 128K Byte SRAM and 32K byte EEPROM Jumper Options..12
32K, 64K, 128K, 256K Byte EPROM Jumper Options.................... 12
64K Byte Flash, 128K Byte EEPROM / Flash Jumper Options...... 12
JP4 - Address A19 — A23 Enable..........cccccov 12

PROG-EN JUMPET 12

Features

The CMMO0332 is an enhanced version of the Motorola MC68332 BCC (Business Card
Computer). With the addition of power supply, RS232 COM, and flash memory, the CMMO0332
offers a versatile stand-alone or system plug-in control board. As a development system for the
Motorola MC68332 Microcontroller, the CMMO0332 is shipped with CPU32BUG installed in
EPROM and has the standard BDM port. The system is Plug and Play with the supplied
CPU32BUG Monitor/Debugger in the on board EPROM, 128K x 16 Flash EEPROM, 128K x 16
SRAM, Serial Cable, 9v 300ma Wall Plug, printed hardware manual and the UTL332 software
disk with Assembler, programming utilities, support software.

MC68332 Controller (16MHz)
CPU32 Core (32 hits) _
16M Byte address space . goooog uuum gooem: |
16 Bit Data Bus 88 > 7@ i EEEEEEEE j:t

LE \—1

Vi CF?

Programmable Chip Selects 00 ©® IWW"W
16 channel TPU 00
32Khz crystal w/ PLL Clock (16MHz max) 00

)
o
Y/

PROG-EN

2
z
watx
Ele)
P20
=S Pt
3 B0

Butunioeynue
MC68332

=
el

5}

a
=
=
w
w
o

=

XM00B9
STEBHB T ET REV.B

Ay 8
U

O00O0D0OQO0 C)O O o
C00000000CO0OQ0

#* Standard fixed memory: oo
128Kx16 (256K bytes) Flash EEPROM °9
128Kx16 (256K bytes) SRAM o0
(Optional Larger Memory — contact factory) 00

[
el
o

Q00
[eNeNeNe]
©Q0QO0

00000 0Q0000O0O00
Q0000000000000

@]
O
g

u3
LI
ol

us
IIIIIIIIIIIIIIIIIIIIIg

[CoCl- ~[0J[0000D O]

O
O
S

Two Configurable 32pin memory sockets for 00
32K to 2MByte ROM (CPU32BUG Installed) 00

KMEB810008
T49F2048

A

0000000000000000O([000
Ojo o

00000000000 OO0O0OD0

O0000000O00O0OO0OO0
CJ 0000000000000 0OO0

Q0000 0QO00O0

COML1 — 332 SCI w/ RS232 type header connection 00

O
O
0000000000

%
;‘

[o}e]
C

§
Q
]

Eo

Back Ground Debug (BDM) Port PWR

<
T
%

181
+V D +5

C
C
1
C

M OPT
VFM

AXIOM MANUFACTURING
CMM332 AXMOOBS RFV.R

Two 60 pin DIN 1/O connectors

Easy Power Connection and Tap points
7 to 25VDC input to 5 Power Supply

Operating Power: 120ma @ 5V

The Axiom development system provides for low cost software debugging with the use of the
Motorola CPU32BUG Monitor installed in PROM. Operation allows the user to locate code in the
On-Board RAM, set Break Points, Trace, and display or modify registers or memory. After code is
operational the user may relocate the code and program the development board Flash EEPROM
for dedicated operation of new software. No additional hardware or software is required. For
higher level debug, the BDM Port is available to connect a background debugger. Board is
compatible with software compilers that provide an integrated debug interface.

3

GETTING STARTED

This section assumes you have just received your board from the manufacturer. If this is not the
case then jumpers and switches may have been changed so that the board may not function as
expected. In this case, see the "Jumpers and Switches" section of this manual and return
everything to their "default" positions before proceeding.

To get started quickly, perform the following test now to make sure the board is working correctly:

1. Connect one end of the supplied 9-pin serial cable to a free COM port on your PC. Connect
the other end of the cable to the COM-1 port connector on the board.

2. Run a standard ANSI terminal communications program set to 9600 baud, N,8,1. Any
terminal program will work, including the simple terminal that comes with MS Windows.

3. Apply power to the board by plugging in the 9V power transformer wall plug that came with
the system.

4. If everything is working properly, you should see the utilities menu on in your terminal, similar
to the following:

d. Debug Monitor - CPU32Bug
f. Flash EEPROM Utilities
t. Test Hardware

Sel ect :

Your board is now ready to use. If you do not see the menu, press then release the RESET
button on the board.

Software Development

The example utility software initializes the system clock to run this board at 16 MHz on power-up.
You can modify this by changing the PLL register configuration in your software.

Software development on the CMM332 is best performed using a BDM tool connected to the
BDM-PORT connector on the board. This provides real-time access to all hardware, peripherals
and memory on the board. BDM software is also available for high-level source code debugging.
The SDS Single-Step debugging software was used in this boards development and an example
register configuration file for that software is provided on the utility disk, called 68332. CFG

When a BDM is not available, software development can be done using the CPU32Bug monitor
software to upload your code to RAM and execute it. Type HELP at the monitor prompt for a list
of commands. See the CPU32Bug manual for more information.

In either case, you can uploaded your application program to internal or external RAM and
executed it from there during development, then program it into Flash to execute on power-up.
You can program the onboard flash by selecting (f) from the utility menu. You will be prompted to
send your S-Record (hex) file to the board. See the Tutorial section of this manual for more
information.

TUTORIAL

The following tutorial sections were created to help you become familiar with the utilities and
support software provided with this board.

Using the CPU32Bug Monitor

The CMM-332 ships with a modified version of the Motorola CPU32Bug Debugger/Diagnostics
software programmed into the U7 and U8 EPROMS. See "Getting Started" for startup
instructions.

Using this monitor program and any serial communications terminal program, you can display or
modify memory and registers from any PC as well as upload and run programs in RAM with
simple debugging functions such as trace and breakpoints. This is done by typing commands
into the terminal program on the PC. Type help and hit <enter> for a complete list of available
commands or see the CPU32Bug manual.

You can experiment with some of the commands like reading (MD) and modifying (MM) memory.
Make sure you are modifying memory that is mapped to valid addresses or the monitor program
will "hang" or throw an exception. You may then have to RESET the board to get the monitor
back. See the Memory Map for The provided utility maps the External RAM starting at 0x0000
(with JP1 jumper set to 2-3).

NOTE: CPU32Bug uses the first 12K of external RAM (0000-2FFF) for internal stack, variables
and vector space. You should locate your program above address Ox2FFF when using
CPU32Bug.

You can upload and execute a program into RAM memory using CPU32Bug. A simple "hello
world" program is provided for you on the disk as an example. Follow these steps to load and
execute it from RAM:

1. Atthe CPU32Bug prompt > type lo and hit <enter>.

2. Select the send text file (or upload) command from your terminal program and locate the file
named "HELLO_R.S19" included on the software disk. Send this file to the board.

3. If your terminal is set to Echo characters sent, you should see a each line of the S-Record file
sent. The last line of the file starts with S7 and in this case contains the START address of
the hello program, which is 3002. (note the last 2 characters are always the checksum).

4. If you do not receive a prompt back, hit the ENTER key several times.

5. Type go a000 at the prompt. You should see the phrase " Hello World! " echoed back to the
screen, which is all this simple test program does. Hit any key and it displays the string
again.

6. To return to the monitor program, press the RESET button on the board.

This example program was compiled with the Diab Data compiler. The source files scripts used
are included on the utility disk as follows:

HELLO.C Main source code file

SERIAL.C Serial port I/O and ASCII text conversion routines
HELLO_R.DLD Diab Linker script - specifies the programs memory organization
HELLO R.BAT DOS batch file used to build the program

Using a BDM

A BDM real-time debugger allows you to download to and modify internal and external memory
and peripheral registers on the board in a completely user controlled state. You must configure
the BDM software correctly to recognize this board. In your bdm software set the target
processor setting to 68332.

The BDM software writes to a number of CPU registers before your application software is
loaded, after it resets and establishes initial communication with the board. The values these
registers are set to is the source of many BDM debugging problems.

BDM software saves these initialization values in a configuration file. The SDS software, for
example, uses a file with the CFG extension under it's program \CMD directory (68332.CFG for
this board). You can change the values written to these registers by manually editing this file or
in the SDS Debug window, under the Target Configuration tab.

The Metrowerks CodeWarrior BDM software uses the "BDM/JTAG Configuration File" listed
under "EPPC Target Settings" for register configuration. This text file can be modified in a text
editor. NOTE: the manufacturer has not yet tested this board with the CodeWarrior product.

The following table contains the default register settings recommended by the board
manufacturer which can be used as an example to debug and execute software from External
RAM with a BDM. This assumes JP1 is set to its default position 2-3 which is CSO and the
program you are debugging is in the 0x0000:0000 - 0x0003:FFFF address range.

If you have trouble loading or executing the example software, you should first check these
values against the current settings in your BDM software and verify the memory jumpers on the
board are set correctly. Remove the BDM from the board then apply power to the board. Now
try to re-connect the BDM to the BDM-PORT connector. Be sure the red stripe on the bdm pod
cable lines up with pin 1 on the bdm connector.

ADDRESS NAME VALUE ADDRESS NAME VALUE
OxFFFAQO SI MMCR 0x604F OxFFFA4C CSBARO 0x0005
OxFFFAO4 SYNCR Ox7F01 OxFFFA4E CSORO 0x78F0
OxFFFA21 SYPCR 0x33 OxFFFA50 CSBARL 0x0405
OxFFFA44 CSPARO Ox3FFF OxFFFA52 SR 0x78F0
OxFFFA46 CSPARL 0x0155 OxFFFA54 CSBAR2 0x2003
OxFFFA48 | CSBARBT 0x0Q05 OxFFFA56 Ccsor2 0x7871
OxFFFAAA | CSORBT 0x78F0

Using SDS Single Step

When the Single Step software starts, you should see the debug status window. All the settings
in this window are automatically saved when you exit the program. Follow these steps to
configure the software to debug the example "hello world" program on this development board.

1.

7.

Select the Connection tab. Make sure the settings match those used to connect the BDM to
your PC. Set the delay to 0, unless you're having connection problems, in which case try 3.

Select the Processor tab and choose 68F375 or 68332 with no coprocessor.
Select the Registers tab and choose "Default..”
Select the Options tab and check all boxes under "Loading" and un-check the rest for now.

Select the Target Configuration tab. The Category should be General, the Processor should
be set to the same as Processor. Each of the registers listed in this window are written by the
BDM whenever it connects to the development board. It is important that these values match
your hardware/software configuration in order to debug your software. If you're not sure what
these registers must be set to, double-click on each of them and verify that they match with
the tables above. Alternatively, you can manually edit the file in the programs \CMD
directory, which will have the same name as the processor, with the .CFG extension.
However, if you make changes in the Target Configuration tab, this file will be overwritten.

Select the File tab again. The "debug without a file" box should be un-checked. Select
Browse and locate the file named "HELLO_R.ELF" on the utilities disk.

Make sure the BDM is connected to the board and it is powered.

The SingleStep program will first create its own debugging files based on the ELF file. It will then
attempt to connect to the development board through the BDM. If this does not work, disconnect
the BDM and power from the board, re-apply power to the board, press the RESET button, then
re-connect the BDM to the board. You can get the debug window back from the File menu.

Once connection has been made with the board, the software will execute the .CFG script then
start downloading the HELLO_R program to the board. When finished, close the debug status
window. If you did not disable the "execute till main" option it will attempt to execute your

7

program until the main() function is reached, otherwise you should see an assembly listing, which
contains startup code the compiler links at the front of your program.

Start your serial terminal program and make sure the serial cable is attached, as described under
"Getting Started". Select the Green GO button or press F5. You should now see the " Hello
World! " message in the terminal window. Press any key to repeat it. Some versions of
SingleStep will insert a breakpoint at the end of the main loop, which you can delete. You can
single step, examine and modify memory and other debugging stuff.

Programming the Flash Memory

After testing your program running out of RAM you will probably want to program it into Flash
Memory so that it starts whenever power is applied to the board. To do this you must first
change the starting address of your program to match that of the memory device being
programmed. You must also initialize ALL of the CPU registers that you will be using, since your
program will be running the show from power-up.

A version of the example "Hello World" program which does this for you is provided on the
utilities disk. This version is called HELLO_A. It uses the same HELLO.C and SERIAL.C source
code, but uses the following unique files:

INITA.S Example Boot initialization assembly source file
HELLO_A.DLD Diab Linker script - specifies the programs memory organization
HELLO _A.BAT DOS batch file used to build the program

The output files produced from this build are called HELLO_A.S19 and HELLO_A.ELF. Notice
that this version locates the code starting at address 0x0000:0000. This is important since the
flash programming utility will relocate the code when programming it, and expects the program to
start at 0, which is the start of the 68332 memory map.

To program the onboard flash, the jumpers should be set to their default positions.

[—

. JP3 should be set to 3, PROG_EN should be ON and JP2 set to 2-3.

2. If a BDM is connected to the board, disconnected it.

3. Reset the board to get the Utilities menu (see Getting Started for more information).
4. Select F. for flash programming

5. Select E. to erase the onboard flash chip

6. Select P. to program the flash. Select O for offset programming. Send the file named
HELLO_A.S19 to the board using your terminal program (be sure to send in text mode if
given the option).

7. The programming utility will program each data word as it is received. When finished, you will
be returned to the programming menu.

To test your program to see if it boots, you need only remove JP3 and move JP2 to 1-2.

8

Remove power from the board then power the board back up. You should see the " Hello World!
" message each time you hit a key. This should also happen if you press the RESET button on
the board.

To return to the Utilities software (booting U7/U8), move JP3 back to position 3 and JP2 to 2-3.

Although this is a simple program example, you can use the same procedure for programming
your own application using the CMM-332 board.

MEMORY MAP

Following is the DEFAULT memory map for the CMM-332 board as configured by the utility
software in U7/U8. Chip Select Address Registers can be changed by your software to map
memory any way you like. See the boot utility source code for this example. The Internal 68332
memory map is documented in the 68332 Users Manual starting at Paragraph 3.6.

0000 0000
CS0 - External SRAM U3/4 128K x 16 (256K byte) device installed
see JP1 - RAM Chip Select Jumper 00: 0000 - 03: FFFF
0004 0000
CS1- External Flash U5 128K x 16 (256K byte) device installed
see JP2 - Flash Chip Select Jumper 04: 0000 - 07: FFFF
0008 0000
CS2 — unused

can be used by U7/8 EPROM, see JP3
000C 0000

CSBOOT - U7/8 External EPROM 2) 128Kk x 8 devices installed (256K bytes)

Utilities/ CPU32Bug software installed C 0000 - OF: FFFF

see JP3 Option Jumper
0010 0000
CS3 — unused
can be used by U3/4 External SRAM, see JP1
0014 0000
not mapped
007F F000
On-chip Control and Status Registers
see 68332 Users Manual

Hardware Specifications

Oscillator 32.768 KHz Crystal
Clock 16 MHz Maximum
Operating temperature 0°Cto +70°C

Power requirement 7 - 25V @ 120 ma Typical

Jumper Options

Memory Device Selection and Configuration

The CMM-332 board provides two standard and an optional external memory bank:

Standard Low Power Static Ram 1 (U3 and U4), 128K x 16

Standard Flash (U5), 128K x 16

Standard Memory Sockets (U7 and U8), 32K Byte to 1M Byte EPROM's, EEPROM's,
RAM, Flash

Each memory bank can be configured individually to operate from the MC68332 chip selects.
Caution should be used not to place more than one memory bank on the same chip select.

JP1 - RAM Chip Select

The JP1 jumper selects which chip select accesses the on-board Static Ram memory bank (U3,
4). If no jumper is installed then the memory bank is disabled and idle. This memory bank is
128K x 16 bits (256K bytes) and operates at 70ns access time. This memory bank may be useful
for emulating program operation prior to programming into external flash memory. Absolute
addressing of the memory bank is determined by programming the associated chip select
register. Default operation is CS0O with address base 0x00:0000.

1 Position 1-2 = CS3 Alternate chip select
2
3 Position 2-3 = CS0* Default Position for monitor use

10

JP2 - Flash Chip Select

The JP2 jumper selects which chip select accesses the on-board Flash memory bank (U5). If no
jumper is installed then the memory bank is disabled and idle. This memory bank is standard
128K x 16 (256K bytes) and operates at 120ns access maximum. The memory bank is available
to the user to provide additional program code or data space and optional Boot start memory
space. Absolute addressing of the memory bank is determined by programming the chip select
register.

1 Position 1-2 = CSBOOT Position to Boot from user application in Flash.
2
3 Position 2-3 = CS1* Default Position for Flash Programming Utility

JP3 - Option Memory Chip Select

The JP3 jumper selects which chip select accesses the on-board Option Memory bank (U7, U8).
If no jumper is installed then the memory bank is disabled and idle. This memory bank is 16 bits
wide and requires two 8 bit memory devices for 16 bit (Word) wide access. If EPROM's are to be
used, they should be programmed even and odd split with the even EPROM installed in the U7
socket. Devices from 32K byte to 128K byte can be used in the U7 and U8 sockets for 256K byte
total space. If larger devices are used, the code size should be limited to 256K Bytes maximum
and should be located in the upper memory area of the larger devices for proper operation. The
memory bank may be used for Boot Start program code from Power On Reset of the board. The
board ships with a CPU32BUG plus utility Monitor program in EPROM's installed in the sockets.
Absolute addressing of the memory bank is determined by programming the chip select register.
See MEM Option jumpers for device selection information.

11 Position 1 = CS2
- -2 Position 2 = CS1
= | 3 Position 3 = CSBOOT* Default Position to Boot Utilities

MEMORY OPTION Jumpers

The MEMORY OPTION jumper block selects the TYPE of devices installed in the 32 pin U7 and
U8 optional memory sockets. RAM, Flash, EEPROM, and EPROM may be installed. Following
is a list of the jumper signal options and a chart showing standard jumper positions for typical
devices. Note that U7/8 device pins without an option jumper installed are pulled to a high level.
The option jumpers are setup in pairs for device pins so that Only One jumper is installed for
each pair 1/2, 3/4, 5/6, 7/8, for a maximum of 4 jumpers.

12345678 Position 1 = A15 to U7/8 pin 3
I Position 2 = A16 to U7/8 pin 3
Position 3 = A16 to U7/8 pin 31

Position 4 = WEO to U7/8 pin 31 * removed for write protection
Position 5 = A15 to U7 pin 29

Position 6 = WEO to U7 pin 29 * removed for write protection
Position 7 = A15 to U8 pin 29
Position 8 = WE1 to U8 pin 29 * removed for write protection

11

32K / 128K Byte SRAM and 32K byte EEPROM Jumper Options

Manufacturer device types: KM68256, KM681000, TC551001, AT28C256 and others
123456738

| : I - | : l Standard device types: 62256, 68256, 681000, 551001, 28C256
o Note: Positions 6 and 8 can be removed to write protect devices

32K, 64K, 128K, 256K Byte EPROM Jumper Options
12345678

: | - | : I : Standard device types: 27C256, 27C512, 27C010
L Manufacturer device types: NM27C512 and others

64K Byte Flash, 128K Byte EEPROM / Flash Jumper Options
12345678

: | .o | : I : Standard device types: 28C010, 29C512, 29C010, 49F010
L Manufacturer device types: AT28C010 and others

Note: Position 5 can be removed to write protect devices, write is 16 bits wide.

JP4 - Address A19 - A23 Enable

The JP4 option jumper provides Reset configuration selection option for the high order address
lines and CS6 — 10 chip selects. Default position is installed. JP4 installed will select operation
of A19 to A23 on the 68332 address bus. JP4 open or removed will select operation of CS6 to
CS10 on the 68332 address bus. This selection can be changed by software but if chip select
operation is needed, the jumper should be removed.

PROG-EN Jumper

The PROG-ENable option jumper provides write protection to the on-board flash memory bank.
Jumper is open or off by default. The on-board flash memory cannot be written to if the PROG-
EN jumper is not installed. For programming operations the jumper should be installed. The
jumper prevents unscheduled writes to the on board flash memory.

12

13

