

Motorola itability
of its prod ny and
all liability cluding
"Typicals others.
Motorola nded to
support o d Buyer
purchase idiaries,
affiliates, ersonal
injury or d part.
 MOTOR

 reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the su
ucts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims a
, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, in
" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of
 products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications inte
r sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Shoul
 or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subs
 and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of p
eath associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the

OLA and ! are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© MOTOROLA, INC., 1990, 1996

CPU32
REFERENCE MANUAL

PREFACE

This reference manual describes programming and operation of the CPU32 in-
struction processing module, found in the M68300 Family of embedded controllers.
It is part of a multivolume set of manuals — each volume corresponds to a major
module in the M68300 Family.

A user's manual for each device incorporating the CPU32 describes processor
function and operation with reference to other modules within the device.

This manual consists of the following sections and appendix:

Section 1 Overview

Section 2 Architecture Summary

Section 3 Data Organization and Addressing Capabilities

Section 4 Instruction Set

Section 5 Processing States

Section 6 Exception Processing

Section 7 Development Support

Section 8 Instruction Execution Timing

Appendix A M68000 Family Summary

Index

NOTE

In this manual, the terms assertion and negation specifya particular
logic state. Assert and assertion refer to an active or true signal.
Negate and negation refer to an inactive or false signal. These
terms are used independently of the voltage level that they represent.

This manual is written for systems designers, systems programmers, and applica-
tions programmers. Systems designers need general knowledge of the entire vol-
ume, with particular emphasis on Section 1, Section 7, and Appendix A — they will
also need to be familiar with electrical specifications and mechanical data con-
tained in the user’s manual. Systems programmers should become familiar with
Sections 1 through 6, Section 8, and Appendix A. Applications programmers can
find most of the information they need in Sections 1 through 5, Section 8, and Ap-
pendix A.

This manual is also written for users of the M68000 Family that are not familiar with
the CPU32. Although there are comparative references to other Motorola micro-
processors throughout the manual, Section 1, Section 2, and Appendix A specifi-
cally identify the CPU32 within the M68000 Family, and discuss the differences
betweeen it and related devices.
CPU32 REFERENCE MANUAL MOTOROLA

iii

 MOTOROLA CPU32 REFERENCE MANUAL

iv

Paragraph Title Page

TABLE OF CONTENTS
SECTION 1 OVERVIEW

1.1 Features ..1-1
1.1.1 Virtual Memory ..1-2
1.1.2 Loop Mode Instruction Execution ..1-2
1.1.3 Vector Base Register ..1-3
1.1.4 Exception Handling ...1-3
1.1.5 Enhanced Addressing Modes ...1-4
1.1.6 Instruction Set ...1-4
1.1.6.1 Table Lookup and Interpolation Instructions1-4
1.1.6.2 Low-Power Stop Instruction ..1-6
1.1.7 Processing States ...1-6
1.1.8 Privilege States ...1-6
1.2 Block Diagram ...1-6

SECTION 2ARCHITECTURE SUMMARY

2.1 Programming Model ..2-1
2.2 Registers ...2-2
2.3 Data Types ..2-3
2.3.1 Organization in Registers ..2-4
2.3.1.1 Data Registers ..2-4
2.3.1.2 Address Registers ...2-5
2.3.1.3 Control Registers ..2-5
2.3.2 Organization in Memory ..2-6

SECTION 3 DATA ORGANIZATION AND ADDRESSING CAPABILITIES

3.1 Program and Data References ..3-1
3.2 Notation Conventions ..3-2
3.3 Implicit Reference ..3-2
3.4 Effective Address ..3-3
3.4.1 Register Direct Mode ...3-3
3.4.1.1 Data Register Direct ..3-3
3.4.1.2 Address Register Direct ..3-3
3.4.2 Memory Addressing Modes ...3-4
3.4.2.1 Address Register Indirect ..3-4
3.4.2.2 Address Register Indirect With Postincrement3-4
3.4.2.3 Address Register Indirect With Predecrement3-4
3.4.2.4 Address Register Indirect With Displacement3-5
3.4.2.5 Address Register Indirect With Index (8-Bit Displacement)3-5
3.4.2.6 Address Register Indirect With Index (Base Displacement)3-6
CPU32 MOTOROLA

REFERENCE MANUAL v

(Continued)
Paragraph Title Page

TABLE OF CONTENTS

3.4.3 Special Addressing Modes ..3-7
3.4.3.1 Program Counter Indirect With Displacement3-7
3.4.3.2 Program Counter Indirect with Index (8-Bit Displacement)3-7
3.4.3.3 Program Counter Indirect with Index (Base Displacement)3-8
3.4.3.4 Absolute Short Address ..3-8
3.4.3.5 Absolute Long Address ...3-9
3.4.3.6 Immediate Data ...3-9
3.4.4 Effective Address Encoding Summary ..3-9
3.5 Programming View of Addressing Modes ...3-11
3.5.1 Addressing Capabilities ...3-11
3.5.2 General Addressing Mode Summary ..3-14
3.6 M68000 Family Addressing Capability ..3-14
3.7 Other Data Structures ...3-15
3.7.1 System Stack ..3-15
3.7.2 User Stacks ...3-16
3.7.3 Queues ..3-17

SECTION 4 INSTRUCTION SET

4.1 M68000 Family Compatibility ..4-1
4.1.1 New Instructions ..4-1
4.1.1.1 Low-Power Stop (LPSTOP) ..4-1
4.1.1.2 Table Lookup and Interpolation (TBL)4-2
4.1.2 Unimplemented Instructions ..4-2
4.2 Instruction Format ...4-2
4.2.1 Notation ...4-3
4.3 Instruction Summary ...4-5
4.3.1 Condition Code Register ...4-5
4.3.2 Data Movement Instructions ..4-6
4.3.3 Integer Arithmetic Operations ..4-7
4.3.4 Logic Instructions ..4-8
4.3.5 Shift and Rotate Instructions ...4-9
4.3.6 Bit Manipulation Instructions ...4-9
4.3.7 Binary-Coded Decimal (BCD) Instructions4-10
4.3.8 Program Control Instructions ...4-10
4.3.9 System Control Instructions ..4-11
4.3.10 Condition Tests ...4-12
4.4 Instruction Details ..4-13
4.5 Instruction Format Summary ...4-170
4.6 Table Lookup and Interpolation Instructions ...4-188
4.6.1 Table Example 1: Standard Usage ...4-188
4.6.2 Table Example 2: Compressed Table ...4-189
 MOTOROLA CPU32

vi REFERENCE MANUAL

(Continued)
Paragraph Title Page

TABLE OF CONTENTS

4.6.3 Table Example 3: 8-Bit Independent Variable4-191
4.6.4 Table Example 4: Maintaining Precision4-192
4.6.5 Table Example 5: Surface Interpolations4-194
4.7 Nested Subroutine Calls ..4-194
4.8 Pipeline Synchronization with the NOP Instruction4-194

SECTION 5PROCESSING STATES

5.1 State Transitions ...5-1
5.2 Privilege Levels ...5-1
5.2.1 Supervisor Privilege Level ...5-2
5.2.2 User Privilege Level ..5-2
5.2.3 Changing Privilege Level ...5-2
5.3 Types of Address Space ...5-3
5.3.1 CPU Space Access ..5-3
5.3.1.1 Type 0000 — Breakpoint ..5-4
5.3.1.2 Type 0001 — MMU Access ..5-4
5.3.1.3 Type 0010 — Coprocessor Access ...5-4
5.3.1.4 Type 0011 — Internal Register Access5-4
5.3.1.5 Type 1111 — Interrupt Acknowledge ..5-5

SECTION 6 EXCEPTION PROCESSING

6.1 Definition of Exception Processing ..6-1
6.1.1 Exception Vectors ...6-1
6.1.2 Types of Exceptions ..6-2
6.1.3 Exception Processing Sequence ...6-3
6.1.4 Exception Stack Frame ...6-3
6.1.5 Multiple Exceptions ...6-4
6.2 Processing of Specific Exceptions ..6-5
6.2.1 Reset ...6-5
6.2.2 Bus Error ...6-6
6.2.3 Address Error ..6-7
6.2.4 Instruction Traps ..6-8
6.2.5 Software Breakpoints ..6-8
6.2.6 Hardware Breakpoints ...6-8
6.2.7 Format Error ..6-9
6.2.8 Illegal or Unimplemented Instructions ...6-9
6.2.9 Privilege Violations ..6-10
6.2.10 Tracing ..6-11
6.2.11 Interrupts ...6-12
6.2.12 Return from Exception ...6-13
CPU32 MOTOROLA

REFERENCE MANUAL vii

(Continued)
Paragraph Title Page

TABLE OF CONTENTS

6.3 Fault Recovery ..6-14
6.3.1 Types of Faults ..6-16
6.3.1.1 Type I: Released Write Faults ...6-16
6.3.1.2 Type II: Prefetch, Operand, RMW, and MOVEP Faults6-17
6.3.1.3 Type III: Faults During MOVEM Operand Transfer6-17
6.3.1.4 Type IV: Faults During Exception Processing6-18
6.3.2 Correcting a Fault ..6-18
6.3.2.1 (Type I) Completing Released Writes via Software6-19
6.3.2.2 (Type I) Completing Released Writes via RTE6-19
6.3.2.3 (Type II) Correcting Faults via RTE ...6-19
6.3.2.4 (Type III) Correcting Faults via Software6-20
6.3.2.5 (Type III) Correcting Faults By Conversion and Restart6-20
6.3.2.6 (Type III) Correcting Faults via RTE ..6-21
6.3.2.7 (Type IV) Correcting Faults via Software6-21
6.4 CPU32 Stack Frames ..6-21
6.4.1 Normal Four-Word Stack Frame ...6-22
6.4.2 Normal Six-Word Stack Frame ..6-22
6.4.3 BERR Stack Frame ...6-22

SECTION 7 DEVELOPMENT SUPPORT

7.1 CPU32 Integrated Development Support ..7-1
7.1.1 Background Debug Mode (BDM) Overview7-1
7.1.2 Deterministic Opcode Tracking Overview ...7-2
7.1.3 On-Chip Hardware Breakpoint Overview ..7-3
7.2 Background Debug Mode (BDM) ..7-3
7.2.1 Enabling BDM ...7-4
7.2.2 BDM Sources ..7-4
7.2.2.1 External BKPT Signal ..7-4
7.2.2.2 BGND Instruction ..7-4
7.2.2.3 Double Bus Fault ...7-5
7.2.2.4 Peripheral Breakpoints ..7-5
7.2.3 Entering BDM ..7-5
7.2.4 Command Execution ...7-5
7.2.5 Background Mode Registers ...7-6
7.2.5.1 Fault Address Register (FAR) ...7-6
7.2.5.2 Return Program Counter (RPC) ..7-6
7.2.5.3 Current Instruction Program Counter (PCC)7-7
7.2.6 Returning from BDM ..7-7
7.2.7 Serial Interface ..7-7
7.2.7.1 CPU Serial Logic ...7-8
7.2.7.2 Development System Serial Logic ..7-10
 MOTOROLA CPU32

viii REFERENCE MANUAL

(Continued)
Paragraph Title Page

TABLE OF CONTENTS

7.2.8 Command Set ...7-11
7.2.8.1 Command Format ...7-11
7.2.8.2 Command Sequence Diagram ..7-12
7.2.8.3 Command Set Summary ...7-14
7.2.8.4 Read A/D Register (RAREG/RDREG)7-15
7.2.8.5 Write A/D Register (WAREG/WDREG)7-15
7.2.8.6 Read System Register (RSREG) ..7-16
7.2.8.7 Write System Register (WSREG) ...7-16
7.2.8.8 Read Memory Location (READ) ..7-17
7.2.8.9 Write Memory Location (WRITE) ..7-18
7.2.8.10 Dump Memory Block (DUMP) ...7-19
7.2.8.11 Fill Memory Block (FILL) ...7-21
7.2.8.12 Resume Execution (GO) ...7-22
7.2.8.13 Call User Code (CALL) ...7-22
7.2.8.14 Reset Peripherals (RST) ...7-24
7.2.8.15 No Operation (NOP) ..7-24
7.2.8.16 Future Commands ..7-25
7.3 Deterministic Opcode Tracking ...7-25
7.3.1 Instruction Fetch (IFETCH) ...7-25
7.3.2 Instruction Pipe (IPIPE) ...7-25
7.3.3 Opcode Tracking during Loop Mode ...7-27

SECTION 8 INSTRUCTION EXECUTION TIMING

8.1 Resource Scheduling ..8-1
8.1.1 Microsequencer ...8-1
8.1.2 Instruction Pipeline ..8-2
8.1.3 Bus Controller Resources ...8-2
8.1.3.1 Prefetch Controller ..8-3
8.1.3.2 Write-Pending Buffer ...8-3
8.1.3.3 Microbus Controller ...8-3
8.1.4 Instruction Execution Overlap ...8-4
8.1.5 Effects of Wait States ..8-5
8.1.6 Instruction Execution Time Calculation ...8-5
8.1.7 Effects of Negative Tails ..8-6
8.2 Instruction Stream Timing Examples ...8-7
8.2.1 Timing Example 1: Execution Overlap ..8-7
8.2.2 Timing Example 2: Branch Instructions ...8-8
8.2.3 Timing Example 3: Negative Tails ...8-9
8.3 Instruction Timing Tables ..8-10
8.3.1 Fetch Effective Address ..8-12
8.3.2 Calculate Effective Address ..8-13
CPU32 MOTOROLA

REFERENCE MANUAL ix

(Continued)
Paragraph Title Page

TABLE OF CONTENTS

8.3.3 MOVE Instruction ..8-14
8.3.4 Special-Purpose MOVE Instruction ...8-14
8.3.5 Arithmetic/Logic Instructions ...8-15
8.3.6 Immediate Arithmetic/Logic Instructions ..8-17
8.3.7 Binary-Coded Decimal and Extended Instructions8-18
8.3.8 Single Operand Instructions ..8-18
8.3.9 Shift/Rotate Instructions ..8-19
8.3.10 Bit Manipulation Instructions ...8-20
8.3.11 Conditional Branch Instructions ...8-20
8.3.12 Control Instructions ...8-21
8.3.13 Exception-Related Instructions and Operations8-21
8.3.14 Save and Restore Operations ...8-22

APPENDIX AM68000 FAMILY SUMMARY

INDEX
 MOTOROLA CPU32

x REFERENCE MANUAL

Figure Title Page

LIST OF ILLUSTRATIONS
1-1 Loop Mode Instruction Sequence ... 1-3
1-2 CPU32 Block Diagram ... 1-7
2-1 User Programming Model .. 2-2
2-2 Supervisor Programming Model Supplement ... 2-2
2-3 Status Register ... 2-3
2-4 Data Organization in Data Registers .. 2-4
2-5 Address Organization in Address Registers ... 2-5
2-6 Memory Operand Addressing .. 2-7
3-1 Single-Effective-Address Instruction Operation Word 3-1
3-2 Effective Address Specification Formats .. 3-10
3-3 Using SIZE in the Index Selection .. 3-12
3-4 Using Absolute Address with Indexes .. 3-12
3-5 Addressing Array Items .. 3-13
3-6 M68000 Family Address Extension Words .. 3-15
4-1 Instruction Word General Format ... 4-2
4-2 Instruction Description Format ... 4-14
4-3 Table Example 1 .. 4-188
4-4 Table Example 2 .. 4-189
4-5 Table Example 3 .. 4-191
6-1 Exception Stack Frame .. 6-4
6-2 Reset Operation Flowchart ... 6-6
6-3 Format $0 — Four-Word Stack Frame ... 6-22
6-4 Format $2 — Six-Word Stack Frame ... 6-22
6-5 Internal Transfer Count Register .. 6-23
6-6 Format $C — BERR Stack for Prefetches and Operands 6-24
6-7 Format $C — BERR Stack on MOVEM Operand .. 6-24
6-8 Format $C — Four- and Six-Word BERR Stack .. 6-24
7-1 In-Circuit Emulator Configuration ... 7-2
7-2 Bus State Analyzer Configuration .. 7-2
7-3 BDM Block Diagram ... 7-3
7-4 BDM Command Execution Flowchart .. 7-6
7-5 Debug Serial I/O Block Diagram .. 7-8
7-6 Serial Interface Timing Diagram ... 7-9
7-7 BKPT Timing for Single Bus Cycle ... 7-10
7-8 BKPT Timing for Forcing BDM ... 7-10
7-9 BKPT/DSCLK Logic Diagram ... 7-11
7-10 Command-Sequence-Diagram Example .. 7-13
7-11 Functional Model of Instruction Pipeline ... 7-26
7-12 Instruction Pipeline Timing Diagram ... 7-26
8–1 Block Diagram of Independent Resources ... 8-2
8-2 Simultaneous Instruction Execution ... 8-4
CPU32 MOTOROLA

REFERENCE MANUAL xi

(Continued)
Figure Title Page

LIST OF ILLUSTRATIONS

8–3 Attributed Instruction Times .. 8-4
8-4 Example 1 — Instruction Stream .. 8-7
8-5 Example 2 — Branch Taken .. 8-8
8-6 Example 2 — Branch Not Taken .. 8-8
8-7 Example 3 — Branch Negative Tail ... 8-9
 MOTOROLA CPU32

xii REFERENCE MANUAL

Table Title Page

LIST OF TABLES
1-1 Instruction Set Summary ... 1-5
3-1 Effective Addressing Mode Categories.. 3-11
4-1 Condition Code Computations... 4-5
4-2 Data Movement Operations... 4-6
4-3 Integer Arithmetic Operations.. 4-7
4-4 Logic Operations.. 4-8
4-5 Shift and Rotate Operations .. 4-9
4-6 Bit Manipulation Operations.. 4-10
4-7 Binary-Coded Decimal Operations .. 4-10
4-8 Program Control Operations.. 4-10
4-9 System Control Operations.. 4-11
4-10 Condition Tests.. 4-12
4-11 Operation Code Map ... 4-170
5-1 Address Spaces... 5-3
6-1 Exception Vector Assignments .. 6-2
6-2 Exception Priority Groups.. 6-4
6-3 Tracing Control .. 6-11
7-1 BDM Source Summary.. 7-4
7-2 Polling the BDM Entry Source ... 7-5
7-3 CPU Generated Message Encoding.. 7-8
7-4 BDM Command Summary... 7-14
A-1 M68000 instruction Set Extensions...A-3
A-2 M68000 Addressing Modes...A-4
CPU32 MOTOROLA

REFERENCE MANUAL xiii

(Continued)
Table Title Page

LIST OF TABLES
 MOTOROLA CPU32

xiv REFERENCE MANUAL

SECTION 1 OVERVIEW
The CPU32, the first-generation instruction processing module of the M68300 Family,
is based on the industry-standard MC68000 processor. It has many features of the
MC68010 and MC68020, as well as unique features suited for high-performance con-
troller applications. The CPU32 is source code and binary code compatible with the
M68000 Family.

CPU32 power consumption during normal operation is low because it is a high-speed
complementary metal-oxide semiconductor (HCMOS) device. Power consumption
can be reduced to a minimum during periods of inactivity by executing the low-power
stop (LPSTOP) instruction, which shuts down the CPU32 and other intermodule bus
(IMB) submodules.

Ease of programming is an important consideration in using a microcontroller. The
CPU32 instruction format reflects a predominately register-memory interaction philos-
ophy. All data resources are available to all operations requiring those resources.
There are eight multifunction data registers and seven general-purpose addressing
registers. The data registers readily support 8-bit (byte), 16-bit (word), and 32-bit (long
word) operand lengths for all operations. Address manipulation is supported by word
and long-word operations. Although the program counter (PC) and stack pointers (SP)
are special purpose registers, they are also available for most data addressing activi-
ties. Ease of program checking and diagnosis is enhanced by trace and trap capabil-
ities at the instruction level.

As controller applications become more complex and control programs become larger,
high-level language (HLL) will become the system designer's choice in programming
languages. HLL aids rapid development of complex algorithms, with less error, and is
readily portable. The CPU32 instruction set will efficiently support HLL.

1.1 Features

Features of the CPU32 are as follows:

• Fully Upward Object Code Compatible with M68000 Family
• Virtual Memory Implementation
• Loop Mode of Instruction Execution
• Fast Multiply, Divide, and Shift Instructions
• Fast Bus Interface with Dynamic Bus Port Sizing
• Improved Exception Handling for Controller Applications
• Enhanced Addressing Modes

— Scaled Index
— Address Register Indirect with Base Displacement and
— Expanded PC Relative Modes
— 32-Bit Branch Displacements

• Instruction Set Enhancements
CPU32 OVERVIEW MOTOROLA

REFERENCE MANUAL 1-1

— High-Precision Multiply and Divide
— Trap On Condition Codes
— Upper and Lower Bounds Checking

• Enhanced Breakpoint Instruction
• Trace on Change of Flow
• Table Lookup and Interpolate Instruction
• Low-Power Stop Instruction
• Hardware Breakpoint Signal, Background Mode
• 16.77-MHz Operating Frequency (–40 to 125°C)
• Fully Static Implementation

1.1.1 Virtual Memory

A system that supports virtual memory has a limited amount of high-speed physical
memory that can be accessed directly by the processor and maintains an image of a
much larger “virtual” memory on a secondary storage device. When the processor at-
tempts to access a location in the virtual memory map that is not resident in physical
memory, a page fault occurs. The access to that location is temporarily suspended
while the necessary data is fetched from secondary storage and placed in physical
memory. The suspended access is then restarted or continued. The CPU32 uses in-
struction restart, which requires that only a small portion of the internal machine state
be saved. After correcting the fault, the machine state is restored, and the instruction
is refetched and restarted. This process is completely transparent to the application
program.

1.1.2 Loop Mode Instruction Execution

The CPU32 has several features that provide efficient execution of program loops.
One of these features is the DBcc looping primitive. To increase the performance of
the CPU32, a loop mode has been added to the processor. The loop mode is used by
any single-word instruction that does not change the program flow. Loop mode is im-
plemented in conjunction with the DBcc instruction. Figure 1-1 shows the required
form of an instruction loop for the processor to enter loop mode.

Loop mode is entered when DBcc is executed and loop displacement is –4. Once in
loop mode, the processor performs only data cycles associated with the instruction
and suppresses instruction fetches. Termination condition and count are checked after
each execution of looped instruction data operations. The CPU automatically exits
loop mode for interrupts or other exceptions.
 MOTOROLA OVERVIEW CPU32

1-2 REFERENCE MANUAL

Figure 1-1 Loop Mode Instruction Sequence

1.1.3 Vector Base Register

The vector base register (VBR) contains the base address of the 1024-byte exception
vector table. The table contains 256 exception vectors. Exception vectors are the
memory addresses of routines that begin execution at the completion of exception pro-
cessing. Each routine performs operations appropriate to the corresponding excep-
tion. Because exception vectors are memory addresses, each table entry is a single
long word.

Each vector is assigned an 8-bit number. Vector numbers for some exceptions are ob-
tained from an external device; others are supplied automatically by the processor.
The processor multiplies the vector number by four to calculate vector offset, then
adds the offset to the VBR base address. The sum is the memory address of the vec-
tor.

Because the VBR stores the vector table base address, the table can be located any-
where in memory. It can also be dynamically relocated for each task executed by an
operating system. Details of exception processing are provided in SECTION 6 EX-
CEPTION PROCESSING.

1.1.4 Exception Handling

The processing of an exception occurs in four steps, with variations for different ex-
ception causes. During the first step, a temporary internal copy of the status register
is made, and the status register is set for exception processing. During the second
step, the exception vector is determined. During the third step, the current processor
context is saved. During the fourth step, a new context is obtained, and the processor
then proceeds with normal instruction execution.

Exception processing saves the most volatile portion of the current context by pushing
it on the supervisor stack. This context is organized in a format called an exception
stack frame. The stack frame always includes the status register and program counter
at the time an exception occurs. To support generic handlers, the processor also plac-
es the vector offset in the exception stack frame and marks the frame with a format
code. The return-from-exception (RTE) instruction uses the format code to determine
what information is on the stack, so that context can be properly restored.

ONE-WORD INSTRUCTION

DBcc

 DBcc DISPLACEMENT
$FFFC = –4
CPU32 OVERVIEW MOTOROLA

REFERENCE MANUAL 1-3

1.1.5 Enhanced Addressing Modes

Addressing in the CPU32 is register oriented. Most instructions allow the results of the
specified operation to be placed either in a register or in memory. There is no need for
extra instructions to store register contents in memory.

There are seven basic addressing modes:

1. Register Direct
2. Register Indirect
3. Register Indirect with Index
4. Program Counter Indirect with Displacement
5. Program Counter Indirect with Index
6. Absolute
7. Immediate

The register indirect addressing modes include postincrement, predecrement, and off-
set capability. The PC relative mode also has index and offset capabilities. In addition
to the addressing modes, many instructions implicitly specify the use of a status reg-
ister, SP, and/or PC. Addressing is explained fully in SECTION 3 DATA ORGANIZA-
TION AND ADDRESSING CAPABILITIES. A summary of M68000 Family addressing
modes is found in APPENDIX A M68000 FAMILY SUMMARY.

1.1.6 Instruction Set

The instruction set of the CPU32 is very similar to that of the MC68020 (see Table 1-
1). Two new instructions have been added to facilitate controller applications — low-
power stop (LPSTOP) and table lookup and interpolate (TBL). The following M68020
instructions are not implemented on the CPU32:

BFxxx — Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU, BFFFO
BFINS, BFSET, BFTST)

CALLM, RTM — Call Module, Return Module
CAS, CAS2 — Compare and Set (Read-Modify-Write Instructions)
cpxxx Coprocessor Instructions (cpBcc, cpDBcc, cpGEN, cp RESTORE,

cpSAVE, cpScc, cpTRAPcc)
PACK, UNPK Pack, Unpack BCD Instructions

The CPU32 traps on unimplemented instructions and illegal effective addressing
modes, allowing the user to emulate instructions or to define special-purpose func-
tions. However, Motorola reserves the right to use all currently uniplemented instruc-
tions operation codes for future M68000 core enhancements.

See SECTION 4 INSTRUCTION SET for comprehensive information.

1.1.6.1 Table Lookup and Interpolation Instructions

To speed up real-time applications, a range of discrete data points is often precalcu-
lated from a continuous control function, then stored in memory. A full range of data
can require an inordinate amount of memory. The table instructions make it possible
 MOTOROLA OVERVIEW CPU32

1-4 REFERENCE MANUAL

to store a sample of the full range and recover intermediate values quickly via linear
interpolation. A round-to-nearest algorithm can be applied to the results.

Table 1-1 Instruction Set Summary

Mnemonic Description Mnemonic Description
ABCD
ADD
ADDA
ADDI
ADDQ
ADDX
AND
ANDI
ASL, ASR

Add Decimal with Extend
Add
Add Address
Add Immediate
Add Quick
Add with Extend
Logical AND
Logical AND Immediate
Arithmetic Shift Left and Right

MOVE
MOVE CCR
MOVE SR
MOVE USP
MOVEA
MOVEC
MOVEM
MOVEP
MOVEQ
MOVES

Move
Move Condition Code Register
Move Status Register
Move User Stack Pointer
Move Address
Move Control Register
Move Multiple Registers
Move Peripheral
Move Quick
Move Alternate Address SpaceBcc

BCHG
BCLR
BGND
BKPT
BRA
BSET
BSR
BTST

Branch Conditionally
Test Bit and Change
Test Bit and Clear
Background
Breakpoint
Branch
Test Bit and Set
Branch to Subroutine
Test Bit

MULS, MULS.L
MULU, MULU.L

Signed Multiply
Unsigned Multiply

NBCD
NEG
NEGX
NOP

Negate Decimal with Extend
Negate
Negate with Extend
No Operation

OR
ORI

Logical Inclusive OR
Logical Inclusive OR Immediate

CHK, CHK2

CLR
CMP
CMPA
CMPI
CMPM
CMP2

Check Register Against Upper
and Lower Bounds
Clear
Compare
Compare Address
Compare Immediate
Compare Memory to Memory
Compare Register Against
Upper and Lower Bounds

PEA Push Effective Address
RESET
ROL, ROR
ROXL, ROXR

RTD
RTE
RTR
RTS

Reset External Devices
Rotate Left and Right
Rotate with Extend Left and
Right
Return and Deallocate
Return from Exception
Return and Restore Codes
Return from Subroutine

DBcc

DIVS, DIVSL
DIVU, DIVUL

Test Condition, Decrement and
Branch
Signed Divide
Unsigned Divide

SBCD
Scc
STOP
SUB
SUBA
SUBI
SUBQ
SUBX
SWAP

Subtract Decimal with Extend
Set Conditionally
Stop
Subtract
Subtract Address
Subtract Immediate
Subtract Quick
Subtract with Extend
Swap Register Words

EOR
EORI
EXG
EXT, EXTB

Logical Exclusive OR
Logical Exclusive OR Immediate
Exchange Registers
Sign Extend

LEA
LINK
LPSTOP
LSL, LSR

Load Effective Address
Link and Allocate
Low Power Stop
Logical Shift Left and Right

TBLS, TBLSN

TBLU, TBLUN

Table Lookup and Interpolate
(Signed)
Table Lookup and Interpolate
 (Unsigned)ILLEGAL Take Illegal Instruction Trap

JMP
JSR

Jump
Jump to Subroutine

TAS
TRAP
TRAPcc
TRAPV
TST

Test Operand and Set
Trap
Trap Conditionally
Trap on Overflow
Test Operand

UNLK Unlink
CPU32 OVERVIEW MOTOROLA

REFERENCE MANUAL 1-5

1.1.6.2 Low-Power Stop Instruction

The CPU32 is a fully static design. Power consumption can be reduced to a minimum
during periods of inactivity by stopping the system clock. The CPU32 instruction set
includes a low-power stop command (LPSTOP) that efficiently implements this capa-
bility. The processor will remain in stop mode until a user-specified interrupt, or reset,
occurs.

1.1.7 Processing States

There are four processing states — normal, exception, background and halted.

Normal processing is associated with instruction execution. The bus is used to fetch
instructions and operands, and to store results.

Exception processing is associated with interrupts, trap instructions, tracing, and other
exception conditions.

Background processing allows interactive debugging of the system.

Halted processing is an indication of catastrophic hardware failure.

See SECTION 5 PROCESSING STATES for complete information.

1.1.8 Privilege States

The processor can operate at either of two privilege levels. Supervisor level is more
privileged than user level — all instructions are available at supervisor level, but ac-
cess is restricted at user level.

Effective use of privilege level can protect system resources from uncontrolled access.
The state of the S bit in the status register determines access level and whether the
stack pointer (USP) or the supervisor stack pointer (SSP) is used for stack operations.

See SECTION 5 PROCESSING STATES for a complete explanation of privilege lev-
els.

1.2 Block Diagram

A block diagram of the CPU32 is shown in Figure 1-2. The functional elements oper-
ate concurrently. Essential synchronization of instruction execution and buss opera-
tion is maintained by the sequencer/control unit. The bus controller prefetches
instructions and operands. A three-stage pipeline is used to hold and decode instruc-
tions prior to execution. The execution unit maintains the program counter under se-
quencer control. The bus control contains a write-pending buffer that allows the
sequencer to continue execution of instructions after a request for a write cycle is
queued. See SECTION 8 INSTRUCTION EXECUTION TIMING for a detailed expla-
nation of instruction execution.
 MOTOROLA OVERVIEW CPU32

1-6 REFERENCE MANUAL

Figure 1-2 CPU32 Block Diagram

BUS CONTROL

INSTRUCTION
PIPELINE

AND
DECODE

EXECUTION
UNIT

SEQUENCER

CONTROL
UNIT

BUS
CONTROL

ADDRESS BUS

DATA BUS 16

32
CPU32 OVERVIEW MOTOROLA

REFERENCE MANUAL 1-7

 MOTOROLA OVERVIEW CPU32

1-8 REFERENCE MANUAL

SECTION 2ARCHITECTURE SUMMARY
The CPU32 is upward source and object code compatible with the MC68000 and
MC68010. It is downward source and object code compatible with the MC68020. With-
in the M68000 Family, architectural differences are limited to the supervisory operating
state. User state programs can be executed unchanged on upward compatible devic-
es.

The major CPU32 features are as follows:

• 32-Bit Internal Data Path and Arithmetic Hardware
• 32-Bit Address Bus Supported by 32-Bit Calculations
• Rich Instruction Set
• Eight 32-Bit General-Purpose Data Registers
• Seven 32-Bit General-Purpose Address Registers
• Separate User and Supervisor Stack Pointers
• Separate User and Supervisor State Address Spaces
• Separate Program and Data Address Spaces
• Many Data Types
• Flexible Addressing Modes
• Full Interrupt Processing
• Expansion Capability

2.1 Programming Model

The CPU32 programming model consists of two groups of registers that correspond
to the user and supervisor privilege levels. User programs can only use the registers
of the user model. The supervisor programming model, which supplements the user
programming model, is used by CPU32 system programmers who wish to protect sen-
sitive operating system functions. The supervisor model is identical to that of
MC68010 and later processors.

The CPU32 has eight 32-bit data registers, seven 32-bit address registers, a 32-bit
program counter, separate 32-bit supervisor and user stack pointers, a 16-bit status
register, two alternate function code registers, and a 32-bit vector base register (see
Figure 2-1 and Figure 2-2).
CPU32 ARCHITECTURE SUMMARY MOTOROLA

REFERENCE MANUAL 2-1

Figure 2-1 User Programming Model

Figure 2-2 Supervisor Programming Model Supplement

2.2 Registers

Registers D7 to D0 are used as data registers for bit, byte (8-bit), word (16-bit), long-
word (32-bit), and quad-word (64-bit) operations. Registers A6 to A0 and the user and
supervisor stack pointers are address registers that may be used as software stack
pointers or base address registers. Register A7 (shown as A7 and A7' in Figure 2-1)
is a register designation that applies to the user stack pointer in the user privilege level
and to the supervisor stack pointer in the supervisor privilege level. In addition, ad-
dress registers may be used for word and long-word operations. All of the 16 general-
purpose registers (D7 to D0, A7 to A0) may be used as index registers.

31 16 15 8 7 0
D0
D1
D2
D3 DATA REGISTERS
D4
D5
D6
D7

31 16 15 0
A0
A1
A2
A3 ADDRESS REGISTERS
A4
A5
A6

31 16 15 0
A7 (USP) USER STACK POINTER

31 0
PC PROGRAM COUNTER

15 8 7 0
0 CCR CONDITION CODE REGISTER

31 16 15 0
A7' (SSP) SUPERVISOR STACK

POINTER
15 8 7 0

(CCR) SR STATUS REGISTER
31 0

PC VECTOR BASE REGISTER
31 3 2 0

SFC ALTERNATE FUNCTION
DFC CODE REGISTERS
 MOTOROLA ARCHITECTURE SUMMARY CPU32

2-2 REFERENCE MANUAL

The program counter (PC) contains the address of the next instruction to be executed
by the CPU32. During instruction execution and exception processing, the processor
automatically increments the contents of the PC or places a new value in the PC, as
appropriate.

The status register (SR) (see Figure 2-3) contains condition codes, an interrupt prior-
ity mask (three bits), and three control bits. Condition codes reflect the results of a pre-
vious operation. The codes are contained in the low byte, or condition code register of
the SR. The interrupt priority mask determines the level of priority an interrupt must
have in order to be acknowledged. The control bits determine trace mode and privilege
level. At user privilege level, only the condition code register is available. At supervisor
privilege level, software can access the full status register.

Figure 2-3 Status Register

The vector base register (VBR) contains the base address of the exception vector ta-
ble in memory. The displacement of an exception vector is added to the value in this
register to access the vector table.

Alternate function code registers SFC and DFC contain 3-bit function codes. The
CPU32 generates a function code each time it accesses an address. Specific codes
are assigned to each type of access. The codes can be used to select eight dedicated
4G-byte address spaces. The MOVE instructions can use registers SFC and DFC to
specify the function code of a memory address.

2.3 Data Types

Six basic data types are supported:

1. Bits
2. Binary-Coded Decimal (BCD) Digits
3. Byte Integers (8 bits)
4. Word Integers (16 bits)
5. Long-Word Integers (32 bits)
6. Quad-Word Integers (64 bits)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T1 T0 S 0 0 I2 I1 I0 0 0 0 X N Z V C

EXTEND

NEGATIVE

ZERO

OVERFLOW

CARRY

INTERRUPT
PRIORITY MASK

 SUPERVISOR/USER
STATE

TRACE
ENABLE

SYSTEM BYTE
USER BYTE

(CONDITION CODE REGISTER)
CPU32 ARCHITECTURE SUMMARY MOTOROLA

REFERENCE MANUAL 2-3

2.3.1 Organization in Registers

The eight data registers can store data operands of 1, 8, 16, 32, and 64 bits and ad-
dresses of 16 or 32 bits. The seven address registers and the two stack pointers are
used for address operands of 16 or 32 bits. The PC is 32 bits wide.

2.3.1.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the low-order 8 bits, word
operands, the low-order 16 bits, and long-word operands, the entire 32 bits. When a
data register is used as either a source or destination operand, only the appropriate
low-order byte or word (in byte or word operations, respectively) is used or changed
— the remaining high-order portion is neither used nor changed. The least significant
bit (LSB) of a long-word integer is addressed as bit zero, and the most significant bit
(MSB) is addressed as bit 31. Figure 2-4 shows the organization of various types of
data in the data registers.

Figure 2-4 Data Organization in Data Registers

Quad-word data consists of two long words: for example, the product of 32-bit multiply
or the quotient of 32-bit divide operations (signed and unsigned). Quad words may be
organized in any two data registers without restrictions on order or pairing. There are
no explicit instructions for the management of this data type; however, the MOVEM
instruction can be used to move a quad word into or out of the registers.

31 30 1 0
MSB LSB

BYTE
31 24 23 16 15 8 7 0

HIGH-ORDER BYTE MIDDLE HIGH BYTE MIDDLE LOW BYTE LOW-ORDER BYTE

WORD
31 16 15 0

HIGH-ORDER WORD LOW-ORDER WORD

LONG WORD
31 0

LONG WORD

QUAD WORD
63 62 32

MSB HIGH-ORDER LONG WORD

31 1 0
 LOW-ORDER LONG WORD LSB
 MOTOROLA ARCHITECTURE SUMMARY CPU32

2-4 REFERENCE MANUAL

BCD data represents decimal numbers in binary form. CPU32 BCD instructions use a
format in which a byte contains two digits — the four LSB contain the low digit, and the
four MSB contain the high digit. The ABCD, SBCD, and NBCD instructions operate on
two BCD digits packed into a single byte.

2.3.1.2 Address Registers

Each address register and stack pointer holds a 32-bit address. Address registers can-
not be used for byte-sized operands. When an address register is used as a source
operand, either the low-order word or the entire long-word operand is used, depending
upon the operation size. When an address register is used as a destination operand,
the entire register is affected, regardless of operation size. If the source operand is a
word, it is first sign extended to 32 bits, and then used in the operation. Address reg-
isters can be used to support address computation. The instruction set includes in-
structions that add to, subtract from, compare, and move the contents of address
registers. Figure 2-5 shows the organization of addresses in address registers.

Figure 2-5 Address Organization in Address Registers

2.3.1.3 Control Registers

The control registers contain control information for supervisor functions. The registers
vary in size. With the exception of the user portion of the SR (CCR), they are accessed
only by instructions at the supervisor privilege level.

The SR shown in Figure 2-3 is 16 bits wide. Only 11 bits of the SR are defined, and
all undefined values are reserved by Motorola for future definition. The undefined bits
are read as zeros and should be written as zeros for future compatibility. The lower
byte of the SR is the CCR. Operations to the CCR can be performed at the supervisor
or user privilege level. All operations to the SR and CCR are word-size operations. For
all CCR operations, the upper byte is read as all zeros and is ignored when written,
regardless of privilege level.

The alternate function code registers (SFC and DFC) are 32-bit registers with only bits
[2:0] implemented. These bits contain address space values (FC2 to FC0) for the read
or write operand of the MOVES instruction. The MOVEC instruction is used to transfer
values to and from the alternate function code registers. These are long-word transfers
— the upper 29 bits are read as zeros and are ignored when written.

31 16 15 0
SIGN EXTENDED 16-BIT ADDRESS OPERAND

31 0
FULL 32-BIT ADDRESS OPERAND
CPU32 ARCHITECTURE SUMMARY MOTOROLA

REFERENCE MANUAL 2-5

2.3.2 Organization in Memory

Memory is organized on a byte-addressable basis. An address corresponds to a high-
order byte. For example, the address (N) of a long-word data item is the address of
the most significant byte of the high-order word. The address of the most significant
byte of the low-order word is (N + 2), and the address of the least significant byte of
the long word is (N + 3). The CPU32 requires data words and long words, as well as
instruction words to be aligned on word boundaries. Data misalignment is not support-
ed. Figure 2-6 shows how operands and instructions are organized in memory. Note
that (N + X) is below (N) — that is, address value increases as one moves down the
page.
 MOTOROLA ARCHITECTURE SUMMARY CPU32

2-6 REFERENCE MANUAL

Figure 2-6 Memory Operand Addressing

BIT DATA

1 BYTE = 8 BITS

BYTE DATA

(8 BITS)

7 6 5 4 3 2 1 0

MSB = Most Significant Bit
LSB = Least Significant Bit

ADDRESS

(32 BITS)

(32 BITS)

(16 BITS)
15 0

WORD 1

WORD 2

HIGH ORDER

LOW ORDER

MSB

LSB

0

LSB

MSB

15

MSD = Most Significant Digit
LSD = Least Significant Digit

DECIMAL DATA

2 BCD DIGITS = 1 BYTE

15 12 11 8 7 4 3 0

MSDBCD 0

BCD 4

BCD 1

BCD 5

BCD 2

BCD 6

BCD 3

BCD 7

HIGH ORDER

LOW ORDER

MSB BYTE 0 LSB BYTE 1

BYTE 2 BYTE 3

15 8 7 0

15 0

MSB WORD 0 LSB

LSD

ADDRESS 1

ADDRESS 2

ADDRESS 0

LONG WORD 0

LONG WORD 1

LONG WORD 2

WORD DATA / INSTRUCTION

LONG WORD DATA / INSTRUCTION
CPU32 ARCHITECTURE SUMMARY MOTOROLA

REFERENCE MANUAL 2-7

 MOTOROLA ARCHITECTURE SUMMARY CPU32

2-8 REFERENCE MANUAL

SECTION 3 DATA ORGANIZATION AND ADDRESSING CAPABILITIES
The addressing mode of an instruction can specify the value of an operand (an imme-
diate operand), a register that contains the operand (register direct addressing mode),
or how the effective address of an operand in memory is derived. An assembler syntax
has been defined for each addressing mode.

Figure 3-1 shows the general format of the single-effective-address instruction oper-
ation word. The effective address field specifies the addressing mode for an operand
that can use one of the numerous defined modes. The designation is composed of two
3-bit fields, the mode field and the register field. The value in the mode field selects a
mode or a set of modes. The register field specifies a register for the mode or a sub-
mode for modes that do not use registers.

Figure 3-1 Single-Effective-Address Instruction Operation Word

Many instructions imply the addressing mode for only one of the operands. The for-
mats of these instructions include appropriate fields for operands that use only a single
addressing mode.

Additional information may be needed to specify an operand address. This information
is contained in an additional word or words called the effective address extension, and
is considered part of an instruction. Address extension formats are discussed in 3.4.4
Effective Address Encoding Summary.

When an addressing mode uses a register, the register is specified by the register field
of the operation word. Other fields within the instruction specify whether the selected
register is an address or data register and how the register is to be used.

3.1 Program and Data References

An M68000 Family processor makes two classes of memory references, each of
which has a complete, separate logical address space.

References to opcodes and extension words are program space references.

Operand reads and writes are primarily data space references. Operand reads are
from data space in all but two cases — immediate operands embedded in the instruc-
tion stream and operands addressed relative to the current program counter are pro-
gram space references. All operand writes are to data space.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X EFFECTIVE ADDRESS

MODE REGISTER
CPU32 DATA ORGANIZATION AND ADDRESSING CAPABILITIES MOTOROLA

REFERENCE MANUAL 3-1

3.2 Notation Conventions

EA — Effective address
An — Address register n

Example: A3 is address register 3
Dn — Data register n

Example: D5 is data register 5
Rn — Any register, data or address
Xn.SIZE*SCALE —

Index register n (data or address),
Index size (W for word, L for long word),
Scale factor (1, 2, 4, or 8 for byte, word, long-word or quad-word scaling)

PC — Program counter
SR — Status register
SP — Stack pointer
CCR — Condition code register
USP — User stack pointer
SSP — Supervisor stack pointer
dn — Displacement value, n bits wide
bd — Base displacement
L — Long-word size
W — Word size
B — Byte size
(An) — Identifies an indirect address in a register

3.3 Implicit Reference

Some instructions make implicit reference to the program counter, the system stack
pointer, the user stack pointer, the supervisor stack pointer, or the status register. The
following table shows the instructions and the registers involved:

Instruction Implicit Registers
ANDI to CCR SR
ANDI to SR SR
BRA PC
BSR PC, SP
CHK (exception) PC, SP
CHK2 (exception) SSP, SR
DBcc PC
DIVS (exception) SSP, SR
DIVU (exception) SSP, SR
EORI to CCR SR
EORI to SR SR
JMP PC
JSR PC, SP
LINK SP
LPSTOP SR
MOVE CCR SR
MOVE SR SR
MOVE USP USP
 MOTOROLA DATA ORGANIZATION AND ADDRESSING CAPABILITIES CPU32

3-2 REFERENCE MANUAL

3.4 Effective Address

Most instructions specify the location of an operand by a field in the operation word
called an effective address field or an effective address (〈EA〉). An EA is composed of
two 3-bit subfields: mode specification field and register specification field. Each of the
address modes is selected by a particular value in the mode specification subfield of
the EA. The EA field may require further information to fully specify the operand. This
information, called the EA extension, is in a following word or words and is considered
part of the instruction (see 3.1 Program and Data References).

3.4.1 Register Direct Mode

These EA modes specify that the operand is in one of the 16 multifunction registers.

3.4.1.1 Data Register Direct

In the data register direct mode, the operand is in the data register specified by the EA
register field.

3.4.1.2 Address Register Direct

In the address register direct mode, the operand is in the address register specified by
the EA register field.

ORI to CCR SR
ORI to SR SR
PEA SP
RTD PC, SP
RTE PS, SP, SR
RTR PC, SP, SR
RTS PC, SP
STOP SR
TRAP (exception) SSP, SR
TRAPV (exception) SSP, SR
UNLK SP

Instruction Implicit Registers

031

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
DATA REGISTER:
NUMBER OF EXTENSION WORDS:

EA = Dn
Dn
000
n
Dn
0

OPERAND

031

OPERAND

EA = An
An
001
n
An
0

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
DATA REGISTER:
NUMBER OF EXTENSION WORDS:
CPU32 DATA ORGANIZATION AND ADDRESSING CAPABILITIES MOTOROLA

REFERENCE MANUAL 3-3

3.4.2 Memory Addressing Modes

These EA modes specify the address of the memory operand.

3.4.2.1 Address Register Indirect

In the address register indirect mode, the operand is in memory, and the address of
the operand is in the address register specified by the register field.

3.4.2.2 Address Register Indirect With Postincrement

In the address register indirect with postincrement mode, the operand is in memory,
and the address of the operand is in the address register specified by the register field.
After the operand address is used, it is incremented by one, two, or four, depending
on the size of the operand: byte, word, or long word. If the address register is the stack
pointer and the operand size is byte, the address is incremented by two rather than
one to keep the stack pointer aligned to a word boundary.

3.4.2.3 Address Register Indirect With Predecrement

In the address register indirect with predecrement mode, the operand is in memory,
and the address of the operand is in the address register specified by the register field.
Before the operand address is used, it is decremented by one, two, or four, depending
on the operand size: byte, word, or long word. If the address register is the stack point-
er and the operand size is byte, the address is decremented by two rather than one to
keep the stack pointer aligned to a word boundary.

031

OPERAND

031

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 0

EA = (An)
(An)
010
n
An MEMORY ADDRESS

031

OPERAND

031

+

MEMORY ADDRESS

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 0

OPERAND LENGTH (1, 2, OR 4):

 EA = (An)
An = An + SIZE
(An) +
011
n
An

GENERATION:

ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:
 MOTOROLA DATA ORGANIZATION AND ADDRESSING CAPABILITIES CPU32

3-4 REFERENCE MANUAL

3.4.2.4 Address Register Indirect With Displacement

In the address register indirect with displacement mode, the operand is in memory.
The address of the operand is the sum of the address in the address register plus the
sign-extended 16-bit displacement integer in the extension word. Displacements are
always sign extended to 32 bits before being used in EA calculations.

3.4.2.5 Address Register Indirect With Index (8-Bit Displacement)

This mode requires one extension word that contains the index register indicator and
an 8-bit displacement. The index register indicator includes size and scale information.
In this mode, the operand is in memory. The address of the operand is the sum of the
contents of the address register, the sign-extended displacement value in the low-or-
der eight bits of the extension word, and the sign-extended contents of the index reg-
ister (possibly scaled). The user must specify displacement, address register, and
index register.

This address mode can have either of two different formats of extension. The brief for-
mat (8-bit displacement) requires one word of extension and provides fast indexed ad-
dressing. The full format (16 and 32-bit displacement) provides optional displacement
size. Both forms use an index operand.

For brief format addressing, the address of the operand is the sum of the address in
the address register, the sign-extended displacement integer in the low-order eight
bits of the extension word, and the index operand. The reference is classed as a data
reference, except for the JMP and JSR instructions. The index operand is specified
“Ri.sz*scl”.

OPERAND

MEMORY ADDRESS

031

031
MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 0

OPERAND LENGTH (1, 2, OR 4):

An = An SIZE
EA = (An)
 (An)
100
n
An

GENERATION:

ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

+

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

DISPLACEMENT:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1

EA = (An) + d
(d An)

n
An MEMORY ADDRESS

OPERAND

0

0

31

31 15

031

SIGN EXTENDED INTEGER

16
16,

101
CPU32 DATA ORGANIZATION AND ADDRESSING CAPABILITIES MOTOROLA

REFERENCE MANUAL 3-5

“Ri” specifies a general data or address register used as an index register. The index
operand is derived from the index register. The index register is a data register if bit
[15] = 0 in the first extension word and an address register if bit [15] = 1. The index
register number is given by extension word bits [14:12].

Index size is referred to as “sz”. It may be either “W” or “L”. Index size is given by bit
[11] of the extension word. If bit [11] = 0, the index value is the sign-extended low-order
word integer of the index register (W). If bit [11] = 1, the index value is the long integer
in the index register (L).

The term “scl” refers to index scale selection and may be 1, 2, 4, or 8. The index value
is scaled according to bits [10:9]. Codes 00, 01, 10, or 11 select index scaling of 1, 2,
4, or 8, respectively.

3.4.2.6 Address Register Indirect With Index (Base Displacement)

The full format indexed addressing mode requires an index register indicator and an
optional 16- or 32-bit sign-extended base displacement. The index register indicator
includes size and scale information. In this mode, the operand is in memory. The ad-
dress of the operand is the sum of the contents of the address register, the scaled con-
tents of the sign-extended index register, and the base displacement.

+

+

OPERAND

031

031

031

X

MEMORY ADDRESS

INTEGERSIGN EXTENDED

SIGN-EXTENDED VALUE

SCALE VALUE

0

7

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

DISPLACEMENT:

INDEX REGISTER:

SCALE:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1

31

EA = (An) + (Xn*SCALE) + d
(d An. SIZE*SCALE)

n
An

8
8

,
110

SIGN-EXTENDED VALUE +

+

OPERAND

031

031

031

X

MEMORY ADDRESS

SIGN-EXTENDED VALUE

SCALE VALUE

0

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

INDEX REGISTER:

SCALE:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1, 2, OR 3

31n
An

110

EA = (An) + (Xn*SCALE) + bd
(bd, An, Xn. SIZE*SCALE)

BASE DISPLACEMENT:
 MOTOROLA DATA ORGANIZATION AND ADDRESSING CAPABILITIES CPU32

3-6 REFERENCE MANUAL

3.4.3 Special Addressing Modes

These special addressing modes do not use the register field to specify a register num-
ber but rather to specify a submode.

3.4.3.1 Program Counter Indirect With Displacement

In this mode, the operand is in memory. The address of the operand is the sum of the
address in the program counter and the sign-extended 16-bit displacement integer in
the extension word. The value in the program counter is the address of the extension
word. The reference is a program space reference and is only allowed for read access-
es.

3.4.3.2 Program Counter Indirect with Index (8-Bit Displacement)

This mode is similar to the address register indirect with index (8-bit displacement)
mode described in 3.4.2.5 Address Register Indirect With Index (8-Bit Displace-
ment), but the program counter is used as the base register.

The operand is in memory. The address of the operand is the sum of the address in
the program counter, the sign-extended displacement integer in the lower eight bits of
the extension word, and the sized, scaled, and sign-extended index operand. The val-
ue in the program counter is the address of the extension word. This reference is a
program space reference and is only allowed for reads. The user must include the dis-
placement, the program counter, and the index register when specifying this address-
ing mode.

+

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:

DISPLACEMENT:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1

OPERAND

0

0

31

31 15

031

SIGN EXTENDED INTEGER

16
EA = (PC) + d
(d , PC)
111
010

ADDRESS OF EXTENSION WORDPROGRAM COUNTER:

16

+

+

OPERAND

031

031

031

X

INTEGERSIGN EXTENDED

SIGN-EXTENDED VALUE

SCALE VALUE

0

7

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:

DISPLACEMENT:

INDEX REGISTER:

SCALE:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1

31

EA = (PC) + (Xn) + d
(d , PC, Xn. SIZE*SCALE)
111
011

PROGRAM COUNTER:

8
8

ADDRESS OF EXTENSION WORD
CPU32 DATA ORGANIZATION AND ADDRESSING CAPABILITIES MOTOROLA

REFERENCE MANUAL 3-7

3.4.3.3 Program Counter Indirect with Index (Base Displacement)

This mode is similar to the address register indirect with index (base displacement)
mode described in 3.4.2.6 Address Register Indirect With Index (Base Displace-
ment), but the program counter is used as the base register. It requires an index reg-
ister indicator and an optional 16- or 32-bit sign-extended base displacement.

The operand is in memory. The address of the operand is the sum of the contents of
the program counter, the scaled contents of the sign-extended index register, and the
base displacement. The value of the program counter is the address of the first exten-
sion word. The reference is a program space reference and is only allowed for read
accesses.

In this mode, the program counter, the index register, and the displacement are all op-
tional. However, the user must supply the assembler notation “ZPC” (zero value is tak-
en for the program counter) to indicate that the program counter is not used. This
scheme allows the user to access the program space without using the program
counter in calculating the EA. The user can access the program space with a data reg-
ister indirect access by placing ZPC in the instruction and specifying a data register
(Dn) as the index register.

3.4.3.4 Absolute Short Address

In this addressing mode, the operand is in memory, and the address of the operand is
in the extension word. The 16-bit address is sign extended to 32 bits before it is used.

SIGN-EXTENDED VALUE +

+

OPERAND

031

031

031

X

SIGN-EXTENDED VALUE

SCALE VALUE

0

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:

INDEX REGISTER:

SCALE:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1, 2, OR 3

31

BASE DISPLACEMENT:

ADDRESS OF EXTENSION WORD

EA = (PC) + (Xn) + bd
(bd, PC, Xn. SIZE*SCALE)
111
011

PROGRAM COUNTER:

031

OPERAND

031

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1

EXTENSION WORD: MEMORY ADDRESSSIGN EXTENDED

15

EA GIVEN
(xxx).W
111
000
 MOTOROLA DATA ORGANIZATION AND ADDRESSING CAPABILITIES CPU32

3-8 REFERENCE MANUAL

3.4.3.5 Absolute Long Address

In this mode, the operand is in memory, and the address of the operand occupies the
two extension words following the instruction word in memory. The first extension word
contains the high-order part of the address; the low-order part of the address is the
second extension word.

3.4.3.6 Immediate Data

In this addressing mode, the operand is in one or two extension words:

Byte Operation
The operand is in the low-order byte of the extension word.

Word Operation
The operand is in the extension word.

Long-Word Operation
The high-order 16 bits of the operand are in the first extension word; the low-order
16 bits are in the second extension word.

3.4.4 Effective Address Encoding Summary

Most addressing modes use one of the three formats shown in Figure 3-2. The single
EA instruction is in the format of the instruction word. The mode field of this word se-
lects the addressing mode. The register field contains the general register number or
a value that selects the addressing mode when the mode field contains “111”.

Some indexed or indirect modes use the instruction word followed by the brief format
extension word. Other indexed or indirect modes consist of the instruction word and
the full format of extension words. The longest instruction for the CPU32 contains six
extension words. It is a MOVE instruction with full format extension words for both
source and destination EA and a 32-bit base displacement for both addresses.

0

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 2

15 0

15 0

EA GIVEN
(xxx).L
111
001

FIRST EXTENSION WORD:

SECOND EXTENSION WORD:

ADDRESS HIGH

ADDRESS LOW

CONCATENATION

OPERAND

031

031

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
NUMBER OF EXTENSION WORDS:

OPERAND GIVEN
#XXX
111
100
1 OR 2
CPU32 DATA ORGANIZATION AND ADDRESSING CAPABILITIES MOTOROLA

REFERENCE MANUAL 3-9

Field Definition Field Definition
Instruction BS Base Register Suppress
Register General Register Number 0 = Base Register Added
Extension 1 = Base Register Suppressed
Register Index Register Number IS Index Suppress
D/A Index Register Type 0 = Evaluate and Add Index Operand

0 = Dn 1 = Suppress Index Operand
1 = An BD SIZE Base Displacement Size

W/L Word/Long Word Index Size 00 = Reserved
0 = Sign-Extended Word 01 = Null Displacement
1 = Long Word 10 = Word Displacement

Scale Scale Factor 11 = Long-Word Displacement
00 = 1 I/IS * Index/Indirect Selection
01 = 2 Indirect and Indexing Operand
10 = 4 Determined in Conjunction with Bit 6,
11 = 8 Index Suppress

*Memory indirect addressing will cause illegal instruction trap; must be = 000 if IS = 1

Figure 3-2 Effective Address Specification Formats

EA modes can be classified as follows:

Data A data addressing EA mode refers to data operands.
Memory A memory addressing EA mode refers to memory operands.
Alterable An alterable addressing EA mode refers to writable operands.
Control A control addressing EA mode refers to unsized memory operands.

Categories are sometimes combined, forming new, more restrictive, categories. Two
examples are alterable memory or alterable data. The former refers to addressing
modes that are both alterable and memory addresses; the latter refers to addressing
modes that are both alterable and data addresses. Table 3-1 shows categories to
which each of the EA modes belong.

SINGLE EA INSTRUCTION FORMAT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

X X X X X X X X X X

MODE REGISTER

BRIEF FORMAT EXTENSION WORD

15 14 12 11 10 9 8 7 0

D/A REGISTER W/ L SCALE 0 DISPLACEMENT

FULL FORMAT EXTENSION WORD(S)

15 14 12 11 10 9 8 7 6 5 4 3 2 0

D/A REGISTER W/ L SCALE 1 BS IS BD SIZE 0 I/IS

BASE DISPLACEMENT (0, 1, OR 2 WORDS)
 MOTOROLA DATA ORGANIZATION AND ADDRESSING CAPABILITIES CPU32

3-10 REFERENCE MANUAL

3.5 Programming View of Addressing Modes

Extensions to indexed addressing modes, indirection, and full 32-bit displacements
provide additional programming capabilities for the CPU32. The following paragraphs
describe addressing techniques and summarize addressing modes from a program-
ming point of view.

3.5.1 Addressing Capabilities

In the CPU32, setting the base register suppress (BS) bit in the full format extension
word (see Figure 3-2) suppresses use of the base address register in calculating the
EA, allowing any index register to be used in place of the base register. Because any
data register can be an index register, this provides a data register indirect form (Dn).
This mode could also be called register indirect (Rn) because either a data register or
an address register can be used to address memory — an extension of M68000 Fam-
ily addressing capability.

The ability to specify the size and scale of an index register (Xn.SIZE ∗ SCALE) in
these modes provides additional addressing flexibility. When using the SIZE parame-
ter, either the entire contents of the index register can be used, or the least significant
word can be sign extended to provide a 32-bit index value (refer to Figure 3-3).

Table 3-1 Effective Addressing Mode Categories

Addressing Mode Code Register Data Memory Control Alterable Syntax
Data Register Direct 000 reg. no. X — — X Dn
Address Register Direct 001 reg. no. — — — X An
Address Register Indirect 010 reg.no. X X X X (An)
Address Register Indirect
with Postincrement

011 reg. no. X X — X (An) +

Address Register Indirect
with Predecrement

100 reg. no. X X — X – (An)

Address Register Indirect
with Displacement

101 reg.no. X X X X (d16, An)

Address Register Indirect
with Index
(8-Bit Displacement)

110 reg. no. X X X X (d8, An, Xn)

Address Register Indirect
with Index
(Base Displacement)

110 reg. no. X X X X (bd, An, Xn)

Absolute Short 111 000 X X X X (xxx).W
Absolute Long 111 001 X X X X (xxx).L
Program Counter Indirect
with Displacement

111 010 X — X X (d16, PC)

Program Counter Indirect
with Index
(8-Bit Displacement)

111 011 X — X X (d8, PC, Xn)

Program Counter Indirect
with Index
(Base Displacement)
Immediate 111 100 X X — — #(data)
CPU32 DATA ORGANIZATION AND ADDRESSING CAPABILITIES MOTOROLA

REFERENCE MANUAL 3-11

Figure 3-3 Using SIZE in the Index Selection

For the CPU32, the register indirect modes can be extended further. Because dis-
placements can be 32 bits wide, they can represent absolute addresses or the results
of expressions that contain absolute addresses. This scheme allows the general reg-
ister indirect form to be (bd, Rn) or (bd, An, Rn) when the base register is not sup-
pressed. Thus, an absolute address can be directly indexed by one or two registers
(refer to Figure 3-4).

Setting the index register suppress bit (IS) in the full format extension word suppresses
the index operand. The indirect suppressed index register mode uses the contents of
register An as an index to the pointer located at the address specified by the displace-
ment. The actual data item is at the address in the selected pointer.

An optional scaling function supports direct array subscripting. An index register can
be left shifted by zero, one, two, or three bits before use in an EA calculation, to scale
for an array of elements of corresponding size. This is much more efficient than using
an arithmetic value in one of the general-purpose registers to multiply the index regis-
ter by one, two, four, or eight.

Figure 3-4 Using Absolute Address with Indexes

Scaling does not add to the EA calculation time. However, when combined with the
appropriate derived modes, scaling produces additional capabilities. Arrayed struc-
tures can be addressed absolutely and then subscripted; for example, (bd, Rn ∗
SCALE). Optionally, an address register that contains a dynamic displacement can be

31 16 15 0

USED IN ADDRESS CALCULATION

DLW D1

An

Rn

bd

 SYNTAX: (bd,An,Rn)
 MOTOROLA DATA ORGANIZATION AND ADDRESSING CAPABILITIES CPU32

3-12 REFERENCE MANUAL

included in the address calculation (bd, An, Rn ∗ SCALE). Another variation that can
be derived is (An, Rn ∗ SCALE). In the first case, the array address is the sum of the
contents of a register and a displacement (see Figure 3-5). In the second example,
An contains the address of an array and Rn contains a subscript.

Figure 3-5 Addressing Array Items

NOTE: Regardless of array structure,
 software increments index to
 point to next record.

SYNTAX: MOVE.W (A5,A6.L*SCALE),(A7)
 WHERE:
 A5 = ADDRESS OF ARRAY STRUCTURE
 A6 = INDEX NUMBER OF ARRAY ITEM
 A7 = STACK POINTER

A6 = 1

A6 = 1

0

SIMPLE ARRAY
(SCALE = 1)

RECORD OF 1 WORD
(SCALE = 2)

15 0

RECORD OF 2 WORDS
(SCALE = 4)

RECORD OF 4 WORDS
(SCALE = 8)

15

7

3
4

2

2

A6 = 1

0

2

15

A6 = 1

0

2

CPU32 DATA ORGANIZATION AND ADDRESSING CAPABILITIES MOTOROLA

REFERENCE MANUAL 3-13

3.5.2 General Addressing Mode Summary

The addressing modes described in the previous paragraphs are derived from specific
combinations of options in the indexing mode or a selection of two alternate address-
ing modes. For example, the addressing mode called register indirect (Rn) assembles
as address register indirect if the register is an address register. If Rn is a data register,
the assembler uses address register indirect with index mode, with a data register as
the indirect register, and suppresses the address register by setting the base suppress
bit in the EA specification.

Assigning an address register as Rn provides higher performance than using a data
register as Rn. Another case is (bd, An), which selects an addressing mode based on
the size of the displacement. If the displacement is 16 bits or less, the address register
indirect with displacement mode (d16, An) is used. When a 32-bit displacement is re-
quired, the address register indirect with index (bd, An, Xn) is used with the index reg-
ister suppressed.

It is useful to examine the derived addressing modes available to a programmer (with-
out regard to the CPU32 EA mode actually encoded) because the programmer need
not be concerned about these decisions. The assembler can choose the more efficient
addressing mode to encode.

3.6 M68000 Family Addressing Capability

Programs can be easily transported from one member of the M68000 Family to anoth-
er. The user object code of earlier members of the family is upwardly compatible with
later members and can be executed without change. The address extension word(s)
are encoded with information that allows the CPU32 to distinguish new additions to the
basic M68000 Family architecture.

Earlier microprocessors have no knowledge of extension word formats implemented
in later processors, and, while they do detect illegal instructions, they do not decode
invalid encodings of the extension words as exceptions.

Address extension words for the early MC68000, MC68008, MC68010, and MC68020
microprocessors are shown in Figure 3-6.
 MOTOROLA DATA ORGANIZATION AND ADDRESSING CAPABILITIES CPU32

3-14 REFERENCE MANUAL

D/A: 0 = Data Register Select
1 = Address Register Select

W/L 0 = Word-Sized Operation
1 = Long-Word-Sized Operation

D/A: 0 = Data Register Select
1 = Address Register Select

W/L 0 = Word-Sized Operation
1 = Long-Word-Sized Operation

SCALE: 00 = Scale Factor 1 (Compatible with MC68000)
01 = Scale Factor 2 (Extension to MC68000)
10 = Scale Factor 4 (Extension to MC68000)
11 = Scale Factor 8 (Extension to MC68000)

Figure 3-6 M68000 Family Address Extension Words

The encoding for SCALE used by the CPU32 and the MC68020 is a compatible ex-
tension of the M68000 architecture. A value of zero for SCALE is the same encoding
for both extension words; thus, software that uses this encoding is both upward and
downward compatible across all processors in the product line. However, the other
values of SCALE are not found in both extension formats; therefore, while software
can be easily migrated in an upward compatible direction, only nonscaled addressing
is supported in a downward fashion. If the MC68000 were to execute an instruction
that encoded a scaling factor, the scaling factor would be ignored and would not ac-
cess the desired memory address.

3.7 Other Data Structures

In addition to supporting the array data structure with the index addressing mode,
M68000 processors also support stack and queue data structures with the address
register indirect postincrement and predecrement addressing modes. A stack is a last-
in-first-out (LIFO) list; a queue is a first-in-first-out (FIFO) list. When data is added to a
stack or queue, it is pushed onto the structure; when it is removed, it is “popped”, or
pulled, from the structure. The system stack is used implicitly by many instructions;
user stacks and queues may be created and maintained through use of addressing
modes.

3.7.1 System Stack

Address register 7 (A7) is the system stack pointer (SP). The SP is either the supervi-
sor stack pointer (SSP) or the user stack pointer (USP), depending on the state of the
S bit in the status register. If the S bit indicates the supervisor state, the SSP is the SP,
and the USP cannot be referenced as an address register. If the S bit indicates the
user state, the USP is the active SP, and the SSP cannot be referenced. Each system

MC6800/MC68008/MC68010 ADDRESS EXTENSION WORD
15 14 12 11 10 9 8 7 0

D/A REGISTER W/ L 0 0 0 DISPLACEMENT INTEGER

CPU32/MC68020 EXTENSION WORD
15 14 12 11 10 9 8 7 0

D/A REGISTER W/ L SCALE 0 DISPLACEMENT INTEGER
CPU32 DATA ORGANIZATION AND ADDRESSING CAPABILITIES MOTOROLA

REFERENCE MANUAL 3-15

stack fills from high memory to low memory. The address mode –(SP) creates a new
item on the active system stack, and the address mode (SP)+ deletes an item from the
active system stack.

The program counter is saved on the active system stack on subroutine calls and is
restored from the active system stack on returns. On the other hand, both the program
counter and the status register are saved on the supervisor stack during the process-
ing of traps and interrupts. Thus, the correct execution of the supervisor state code is
not dependent on the behavior of user code, and user programs may use the USP ar-
bitrarily.

To keep data on the system stack aligned properly, data entry on the stack is restricted
so that data is always put in the stack on a word boundary. Thus, byte data is pushed
on or pulled from the system stack in the high-order half of the word; the low-order half
is unchanged.

3.7.2 User Stacks

The user can implement stacks with the address register indirect with postincrement
and predecrement addressing modes. With address register An (n = 0 to 6), the user
can implement a stack that is filled either from high to low memory or from low to high
memory. Important considerations are as follows:

• Use the predecrement mode to decrement the register before its contents are
used as the pointer to the stack.

• Use the postincrement mode to increment the register after its contents are used
as the pointer to the stack.

• Maintain the SP correctly when byte, word, and long-word items are mixed in
these stacks.

To implement stack growth from high to low memory, use –(An) to push data on the
stack, (An)+ to pull data from the stack.

For this type of stack, after either a push or a pull operation, register An points to the
top item on the stack. This scheme is illustrated as follows:

To implement stack growth from low to high memory, use (An) + to push data on the
stack, –(An) to pull data from the stack.

In this case, after either a push or pull operation, register An points to the next avail-
able space on the stack. This scheme is illustrated as follows:

An

LOW MEMORY
(FREE)

TOP OF STACK

BOTTOM OF STACK
HIGH MEMORY
 MOTOROLA DATA ORGANIZATION AND ADDRESSING CAPABILITIES CPU32

3-16 REFERENCE MANUAL

3.7.3 Queues

Queues can be implemented using the address register indirect with postincrement or
predecrement addressing modes. Queues are pushed from one end and pulled from
the other, and use two registers. A queue filled either from high to low memory or from
low to high memory can be implemented with a pair (two of A0 to A6) of address reg-
isters. (An) is the “put” pointer and (Am) is the “get” pointer.

To implement growth of the queue from low to high memory, use (An)+ to put data into
the queue, (Am)+ to get data from the queue.

After a “put” operation, the “put” register points to the next available queue space, and
the unchanged “get” register points to the next item to be removed from the queue.
After a “get” operation, the “get” register points to the next item to be removed from the
queue, and the unchanged “put” register points to the next available queue space,
which is illustrated as follows:

To implement a queue as a circular buffer, the relevant address register should be
checked and (if necessary) adjusted before performing a “put” or “get” operation. The
address register is adjusted by subtracting the buffer length (in bytes) from the register
contents.

To implement growth of the queue from high to low memory, use –(An) to put data into
the queue, –(Am) to get data from the queue.

After a “put” operation, the “put” register points to the last item placed in the queue,
and the unchanged “get” address register points to the last item removed from the
queue. After a “get” operation, the “get” register points to the last item removed from
the queue, and the unchanged “put” register points to the last item placed in the queue,
which is illustrated as follows:

BOTTOM OF STACK
LOW MEMORY

TOP OF STACK
(FREE)

HIGH MEMORY

An

GET (Am) +

PUT (An) +

HIGH MEMORY

LOW MEMORY

(FREE)

LAST GET (FREE)
NEXT GET

LAST PUT
CPU32 DATA ORGANIZATION AND ADDRESSING CAPABILITIES MOTOROLA

REFERENCE MANUAL 3-17

To implement the queue as a circular buffer, the “get” or “put” operation should be per-
formed first, and then the relevant address register should be checked and (if neces-
sary) adjusted. The address register is adjusted by adding the buffer length (in bytes)
to the register contents.

GET – (Am)

PUT – (An)

HIGH MEMORY

LOW MEMORY

LAST PUT

(FREE)

NEXT GET
LAST GET (FREE)
 MOTOROLA DATA ORGANIZATION AND ADDRESSING CAPABILITIES CPU32

3-18 REFERENCE MANUAL

SECTION 4 INSTRUCTION SET
This section describes the set of instructions provided in the CPU32 and demonstrates
their use. Descriptions of the instruction format and the operands used by instructions
are included. After a summary of the instructions by category, a detailed description of
each instruction is listed in alphabetical order. Complete programming information is
provided, as well as a description of condition code computation and an instruction for-
mat summary.

The CPU32 instructions include machine functions for all the following operations:

• Data movement
• Arithmetic operations
• Logical operations
• Shifts and rotates
• Bit manipulation
• Conditionals and branches
• System control

The large instruction set encompasses a complete range of capabilities and, com-
bined with the enhanced addressing modes, provides a flexible base for program de-
velopment.

4.1 M68000 Family Compatibility

It is the philosophy of the M68000 Family that all user-mode programs can execute
unchanged on a more advanced processor and that supervisor-mode programs and
exception handlers should require only minimal alteration.

The CPU32 can be thought of as an intermediate member of the M68000 Family. Ob-
ject code from an MC68000 or MC68010 may be executed on the CPU32, and many
of the instruction and addressing mode extensions of the MC68020 are also support-
ed.

4.1.1 New Instructions

Two instructions have been added to the M68000 instruction set for use in controller
applications. These are the low-power stop (LPSTOP) and the table lookup and inter-
polation (TBL) commands.

4.1.1.1 Low-Power Stop (LPSTOP)

In applications where power consumption is a consideration, the CPU32 can force the
device into a low-power standby mode when immediate processing is not required.
The low-power mode is entered by executing the LPSTOP instruction. The processor
remains in this mode until a user-specified or higher level interrupt, or a reset, occurs.
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-1

4.1.1.2 Table Lookup and Interpolation (TBL)

To maximize throughput for real-time applications, reference data is often precalculat-
ed and stored in memory for quick access. The storage of sufficient data points can
require an inordinate amount of memory. The TBL instruction uses linear interpolation
to recover intermediate values from a sample of data points, and thus conserves mem-
ory.

When the TBL instruction is executed, the CPU32 looks up two table entries bounding
the desired result and performs a linear interpolation between them. Byte, word, and
long-word operand sizes are supported. The result can be rounded according to a
round-to-nearest algorithm, or returned unrounded along with the fractional portion of
the calculated result (byte and word results only). This extra “precision” can be used
to reduce cumulative error in complex calculations. See 4.6 Table Lookup and Inter-
polation Instructions for examples.

4.1.2 Unimplemented Instructions

The ability to trap on unimplemented instructions allows user-supplied code to emulate
unimplemented capabilities or to define special-purpose functions. However, Motorola
reserves the right to use all currently unimplemented instruction operation codes for
future M68000 enhancements. See 6.2.8 Illegal or Unimplemented Instructions for
more details.

4.2 Instruction Format

All instructions consist of at least one word. Some instructions can have as many as
seven words, as shown in Figure 4-1. The first word of the instruction, called the op-
eration word, specifies instruction length and the operation to be performed. The re-
maining words, called extension words, further specify the instruction and operands.
These words may be immediate operands, extensions to the effective address mode
specified in the operation word, branch displacements, bit number, special register
specifications, trap operands, or argument counts.

Figure 4-1 Instruction Word General Format

15 0
OPERATION WORD

(ONE WORD, SPECIFIES OPERATION AND MODES)
SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE ADDRESS EXTENSION
(IF ANY, ONE TO THREE WORDS)

DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO THREE WORDS)
 MOTOROLA INSTRUCTION SET CPU32

4-2 REFERENCE MANUAL

Besides the operation code, which specifies the function to be performed, an instruc-
tion defines the location of every operand for the function. Instructions specify an op-
erand location in one of three ways:

• Register specification A register field of the instruction contains the
number of the register.

• Effective address An effective address field of the instruction con-
tains address mode information.

• Implicit reference The definition of an instruction implies the use of
specific registers.

The register field within an instruction specifies the register to be used. Other fields
within the instruction specify whether the register is an address or data register and
how it is to be used. SECTION 3 DATA ORGANIZATION AND ADDRESSING CA-
PABILITIES contains detailed register information.

4.2.1 Notation

Except where noted, the following notation is used in this section:

Data Immediate data from an instruction
Destination Destination contents

Source Source contents
Vector Location of exception vector

An Any address register (A7 to A0)
Ax, Ay Address registers used in computation

Dn Any data register (D7 to D0)
Rc Control register (VBR, SFC, DFC)
Rn Any address or data register

Dh, Dl Data registers, high and low order 32 bits of product
Dr, Dq Data registers, division remainder, division quotient
Dx, Dy Data registers, used in computation

Dym, Dyn Data registers, table interpolation values
Xn Index register

[An] Address extension
cc Condition code
d# Displacement

Example: d16 is a 16-bit displacement
〈ea〉 Effective address

#〈data〉 Immediate data; a literal integer
label Assembly program label

list List of registers
Example: D3–D0

[...] Bits of an operand
Examples: [7] is bit 7; [31:24] are bits 31 to 24

(...) Contents of a referenced location
Example: (Rn) refers to the contents of Rn
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-3

CCR Condition code register (lower byte of status register)
X — extend bit
N — negative bit
Z — zero bit
V — overflow bit
C — carry bit

PC Program counter
SP Active stack pointer
SR Status register

SSP Supervisor stack pointer
USP User stack pointer

FC Function code
DFC Destination function code register
SFC Source function code register

+ Addition or post increment
– Subtraction or predecrement
/ Division or conjunction
∗ Multiplication

= Equal to
≠ Not equal to
> Greater than
≥ Greater than or equal to
< Less than
≤ Less than or equal to

• Boolean AND
+ Boolean OR
⊕ Boolean XOR (exclusive OR)

not Boolean complement (operand is inverted)

BCD Binary coded decimal, indicated by subscript
Example: Source10 is a BCD source operand.

LSW Least significant word
MSW Most significant word
{R/W} Read/write indicator

In description of an operation, a destination operand is placed to the right of source
operands, and is indicated by an arrow (→).
 MOTOROLA INSTRUCTION SET CPU32

4-4 REFERENCE MANUAL

4.3 Instruction Summary

The instructions form a set of tools to perform the following operations:

Data movement Bit manipulation
Integer arithmetic Binary-coded decimal arithmetic
Logic Program control
Shift and rotate System control

The complete range of instruction capabilities combined with the addressing modes
described previously provide flexibility for program development.

4.3.1 Condition Code Register

The condition code register portion of the status register contains five bits that indicate
the result of a processor operation. Table 4-1 lists the effect of each instruction on
these bits. The carry bit and the multiprecision extend bit are separate in the M68000
Family to simplify programming techniques that use them. Refer to Table 4-5 as an
example.

Table 4-1 Condition Code Computations

Operations X N Z V C Special Definition

ABCD * U ? U ? C = Decimal Carry
Z = Z • Rm • ... • R0

ADD, ADDI, ADDQ * * * ? ? V = Sm • Dm • Rm + Sm • Dm • Rm
C = Sm • Dm; Rm • Dm + Sm • Rm

ADDX
* * ? ? ?

V = Sm • Dm • Rm + Sm • Dm • Rm
C = Sm • Dm + Rm • Dm + Sm • Rm
Z = Z • Rm • ... • R0

AND, ANDI, EOR, EORI,
MOVEQ, MOVE, OR,
ORI, CLR, EXT, NOT,
TAS, TST

— * * 0 0

CHK — * U U U

CHK2, CMP2
— U ? U ?

Z = (R = LB) + (R = UB)
C = (LB UB) • (IR < LB) + (R > UB) +

(UB < LB) • (R > UB) • (R < LB)

SUB, SUBI, SUBQ * * * ? ? V = Sm • Dm • Rm + Sm • Dm • Rm
C = Sm • Dm + Rm • Dm + Sm • Rm

SUBX
* * ? ? ?

V = Sm • Dm • Rm + Sm • Dm • Rm
C = Sm • Dm + Rm • Dm + Sm • Rm
Z = Z • Rm • ... • R0

CMP, CMPI, CMPM — * * ? ? V = Sm • Dm • Rm + Sm • Dm • Rm
C = Sm • Dm + Rm • Dm + Sm • Rm

DIVS, DIVU — * * ? 0 V = Division Overflow

MULS, MULU — * * ? 0 V = Multiplication Overflow

SBCD, NBCD * U ? U ? C = Decimal Borrow Z =
Z • Rm • ... • R0

NEG * * * ? ? V = Dm • Rm
C = Dm + Rm

NEGX
* * ? ? ?

V = Dm • Rm
C = Dm + Rm
Z = Z • Rm • ... • R0
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-5

Note: The following notation applies to this table only.
 — Not affected Sm Source operand MSB

 U Undefined Dm Destination operand MSB
 ? See special definition Rm Result operand MSB

∗ General case R Register tested
X = C r Shift count
N = Rm LB Lower bound
Z = Rm • ... • R0 UB Upper bound

4.3.2 Data Movement Instructions

The MOVE instruction is the basic means of transferring and storing address and data.
MOVE instructions transfer byte, word, and long-word operands from memory to
memory, memory to register, register to memory, and register to register. Address
movement instructions (MOVE or MOVEA) transfer word and long-word operands and
ensure that only valid address manipulations are executed.

In addition to the general MOVE instructions, there are several special data movement
instructions — move multiple registers (MOVEM), move peripheral data (MOVEP),
move quick (MOVEQ), exchange registers (EXG), load effective address (LEA), push
effective address (PEA), link stack (LINK), and unlink stack (UNLK). Table 4-2 is a
summary of the data movement operations.

ASL
* * * ? ?

V = Dm • (Dm – 1 + ... + Dm – r) + Dm •
(Dm-1 +...+ Dm – r)

C = Dm – r + 1

ASL (r = 0) * * 0 0

LSL, ROXL * * * 0 ? C = Dm – r + 1

LSR (r = 0) — * * 0 0

ROXL (r = 0) — * * 0 ? C = X

ROL — * * 0 ? C = Dm – r + 1

ROL (r = 0) — * * 0 0

ASR, LSR, ROXR * * * 0 ? C = Dr – 1

ASR, LSR (r = 0) — * * 0 0

ROXR (r = 0) — * * 0 ? C = X

ROR — * * 0 ? C = Dr – 1

ROR (r = 0) — * * 0 0

Table 4-2 Data Movement Operations

Instruction Syntax Operand Size Operation

EXG Rn, Rn 32 Rn → Rn

LEA 〈ea〉, An 32 〈ea〉 → An

LINK An, #〈d〉 16, 32 SP – 4 → SP, An → (SP); SP → An, SP + d → SP

MOVE 〈ea〉, 〈ea〉 8, 16, 32 Source → Destination

MOVEA 〈ea〉, An 16, 32 → 32 Source → Destination

Table 4-1 Condition Code Computations (Continued)

Operations X N Z V C Special Definition
 MOTOROLA INSTRUCTION SET CPU32

4-6 REFERENCE MANUAL

4.3.3 Integer Arithmetic Operations

The arithmetic operations include the four basic operations of add (ADD), subtract
(SUB), multiply (MUL), and divide (DIV) as well as arithmetic compare (CMP, CMPM,
CMP2), clear (CLR), and negate (NEG). The instruction set includes ADD, CMP, and
SUB instructions for both address and data operations with all operand sizes valid for
data operations. Address operands consist of 16 or 32 bits. The clear and negate in-
structions apply to all sizes of data operands.

Signed and unsigned MUL and DIV instructions include:

• Word multiply to produce a long-word product
• Long-word multiply to produce a long-word or quad-word product
• Division of a long-word dividend by a word divisor (word quotient and word re-

mainder)
• Division of a long-word or quad-word dividend by a long-word divisor (long-word

quotient and long-word remainder)

A set of extended instructions provides multiprecision and mixed-size arithmetic.
These instructions are add extended (ADDX), subtract extended (SUBX), sign extend
(EXT), and negate binary with extend (NEGX). Refer to Table 4-3 for a summary of
the integer arithmetic operations.

MOVEM list, 〈ea〉
〈ea〉, list

16, 32
16, 32 → 32

Listed registers → Destination
Source → Listed registers

MOVEP Dn, (d16, An)

 (d16, An), Dn

16, 32 Dn [31: 24] → (An + d); Dn [23 : 16] → (An + d + 2);
Dn [15 : 8] → (An + d + 4)+ Dn [7 : 0] → (An + d + 6)

(An + d) → Dn [31 : 24] : (An + d + 2) → Dn [23 : 16];
(An + d + 4) → Dn [15 : 8] : (An + d + 6) → Dn [7 : 0]

MOVEQ #〈data〉, Dn 8 → 32 Immediate data → Destination

PEA 〈ea〉 32 SP – 4 → SP+ 〈ea〉 → SP

UNLK An 32 An → SP+ (SP) → An, SP + 4 → SP

Table 4-3 Integer Arithmetic Operations

Instruction Syntax Operand Size Operation

ADD Dn, 〈ea〉
〈ea〉, Dn

8, 16, 32
8, 16, 32

Source + Destination → Destination

ADDA 〈ea〉, An 16, 32 Source + Destination → Destination

ADDI #〈data〉, 〈ea〉 8, 16, 32 Immediate data + Destination → Destination

ADDQ #〈data〉, 〈ea〉 8, 16, 32 Immediate data + Destination → Destination

ADDX Dn, Dn
– (An), – (An)

8, 16, 32
8, 16, 32

Source + Destination + X → Destination

CLR 〈ea〉 8, 16, 32 0 → Destination

CMP 〈ea〉, Dn 8, 16, 32 (Destination – Source), CCR shows results

CMPA 〈ea〉, An 16, 32 (Destination – Source), CCR shows results

CMPI #〈data〉, 〈ea〉 8, 16, 32 (Destination – Data), CCR shows results

CMPM (An) +, (An) + 8, 16, 32 (Destination – Source), CCR shows results

Table 4-2 Data Movement Operations

Instruction Syntax Operand Size Operation
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-7

4.3.4 Logic Instructions

The logical operation instructions (AND, OR, EOR, and NOT) perform logical opera-
tions with all sizes of integer data operands. A similar set of immediate instructions
(ANDI, ORI, and EORI) provide these logical operations with all sizes of immediate da-
ta. The TST instruction arithmetically compares the operand with zero, placing the re-
sult in the condition code register. Table 4-4 summarizes the logical operations.

CMP2 〈ea〉, Rn 8, 16, 32 Lower bound Rn Upper bound, CCR shows result

DIVS/DIVU 〈ea〉, Dn 32/16 → 16 : 16 Destination / Source → Destination
(signed or unsigned)

DIVSL/DIVUL 〈ea〉, Dr : Dq
 〈ea〉, Dq

 〈ea〉, Dr : Dq

64/32 → 32 : 32
32/32 → 32

32/32 → 32 : 32

Destination / Source → Destination
(signed or unsigned)

EXT Dn Dn 8 → 16
16 → 32

Sign extended Destination → Destination

EXTB Dn 8 → 32 Sign extended Destination → Destination

MULS/MULU 〈ea〉, Dn 〈ea〉, Dl
〈ea〉, Dh : Dl

16 ∗ 16 → 32
32 ∗ 32 → 32
32 ∗ 32 → 64

Source ∗ Destination → Destination
(signed or unsigned)

NEG 〈ea〉 8, 16, 32 0 – Destination → Destination

NEGX 〈ea〉 8, 16, 32 0 – Destination – X → Destination

SUB 〈ea〉, Dn Dn, 〈ea〉 8, 16, 32 Destination – Source → Destination

SUBA 〈ea〉, An 16, 32 Destination – Source → Destination

SUBI #〈data〉, 〈ea〉 8, 16, 32 Destination – Data → Destination

SUBQ #〈data〉, 〈ea〉 8, 16, 32 Destination – Data → Destination

SUBX Dn, Dn
– (An), – (An)

8, 16, 32
8, 16, 32

Destination – Source – X → Destination

TBLS/TBLU 〈ea〉, Dn
Dym : Dyn, Dn

8, 16, 32 Dyn – Dym → Temp
(Temp ∗ Dn [7 : 0]) → Temp
(Dym ∗ 256) + Temp → Dn

TBLSN/TBLUN 〈ea〉, Dn
Dym : Dyn, Dn

8, 16, 32 Dyn – Dym → Temp
(Temp ∗ Dn [7 : 0]) / 256 → Temp
Dym + Temp → Dn

Table 4-4 Logic Operations

Instruction Syntax Operand Size Operation

AND
〈ea〉, Dn
Dn, 〈ea〉

8, 16, 32
8, 16, 32

Source • Destination → Destination

ANDI #〈data〉, 〈ea〉 8, 16, 32 Data • Destination → Destination

EOR Dn, 〈ea〉 8, 16, 32 Source ⊕ Destination → Destination

EORI #〈data〉, 〈ea〉 8, 16, 32 Data ⊕ Destination → Destination

NOT 〈ea〉 8, 16, 32 Destination → Destination

OR
〈ea〉, Dn
Dn, 〈ea〉

8, 16, 32
8, 16, 32

Source + Destination → Destination

ORI #〈data〉, 〈ea〉 8, 16, 32 Data + Destination → Destination

TST 〈ea〉 8, 16, 32 Source – 0, to set condition codes

Table 4-3 Integer Arithmetic Operations

Instruction Syntax Operand Size Operation
 MOTOROLA INSTRUCTION SET CPU32

4-8 REFERENCE MANUAL

4.3.5 Shift and Rotate Instructions

The arithmetic shift instructions, ASR and ASL, and logical shift instructions, LSR and
LSL, provide shift operations in both directions. The ROR, ROL, ROXR, and ROXL in-
structions perform rotate (circular shift) operations, with and without the extend bit. All
shift and rotate operations can be performed on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count may be
specified in the instruction operation word (to shift from 1 to 8 places) or in a register
(modulo 64 shift count).

Memory shift and rotate operations shift word-length operands one bit position only.
The SWAP instruction exchanges the 16-bit halves of a register. Performance of shift/
rotate instructions is enhanced so that use of the ROR and ROL instructions with a
shift count of eight allows fast byte swapping. Table 4-5 is a summary of the shift and
rotate operations.

4.3.6 Bit Manipulation Instructions

Bit manipulation operations are accomplished using the following instructions: bit test
(BTST), bit test and set (BSET), bit test and clear (BCLR), and bit test and change
(BCHG). All bit manipulation operations can be performed on either registers or mem-

Table 4-5 Shift and Rotate Operations

Instruction Syntax Operand Size Operation
ASL Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16
ASR Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16

LSL Dn, Dn
#〈data〉, Dn

〈ea〉

8, 16, 32
8, 16, 32

16
LSR Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16
ROL Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16
ROR Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16
ROXL Dn, Dn

#〈data〉, Dn
〈ea〉

8, 16, 32
8, 16, 32

16

ROXR Dn, Dn
#〈data〉, Dn

〈ea〉

8, 16, 32
8, 16, 32

16

SWAP Dn 16

X/C 0

X/C

X/C 0

X/C0

C

C

C X

CX

MSW LSW
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-9

ory. The bit number is specified as immediate data or in a data register. Register op-
erands are 32 bits long, and memory operands are 8 bits long. Table 4-6 is a summary
of bit manipulation instructions.

4.3.7 Binary-Coded Decimal (BCD) Instructions

Five instructions support operations on BCD numbers. The arithmetic operations on
packed BCD numbers are add decimal with extend (ABCD), subtract decimal with ex-
tend (SBCD), and negate decimal with extend (NBCD). Table 4-7 is a summary of the
BCD operations.

4.3.8 Program Control Instructions

A set of subroutine call and return instructions and conditional and unconditional
branch instructions perform program control operations. Table 4-8 summarizes these
instructions.

Table 4-6 Bit Manipulation Operations

Instruction Syntax Operand Size Operation

BCHG Dn, 〈ea〉
#〈data〉, 〈ea〉

8, 32
8, 32

(〈bit number〉 of destination) → Z →
bit of destination

BCLR Dn, 〈ea〉
#〈data〉, 〈ea〉

8, 32
8, 32

(〈bit number〉 of destination) → Z;
0 → bit of destination

BSET Dn, 〈ea〉
#〈data〉, 〈ea〉

8, 32
8, 32

(〈bit number〉 of destination) → Z;
1 → bit of destination

BTST Dn, 〈ea〉
#〈data〉, 〈ea〉

8, 32
8, 32

(〈bit number〉 of destination) → Z

Table 4-7 Binary-Coded Decimal Operations

Instruction Syntax Operand Size Operation

ABCD
Dn, Dn

– (An), – (An)
8
8

Source10 + Destination10+ X → Destination

NBCD 〈ea〉 8
8

0 – Destination10 – X → Destination

SBCD
Dn, Dn

– (An), – (An)
8
8

Destination10 – Source10 – X → Destination

Table 4-8 Program Control Operations

Instruction Syntax Operand Size Operation

Conditional

Bcc 〈 label〉 8, 16, 32 If condition true, then PC + d → PC

DBcc Dn, 〈label〉 16 If condition false, then Dn – 1 → PC;
if Dn ≠ (– 1), then PC + d → PC

Scc 〈ea〉 8 If condition true, then destination bits are set to one;
else, destination bits are cleared to zero

Unconditional

BRA 〈 label〉 8, 16, 32 PC + d → PC

BSR 〈 label〉 8, 16, 32 SP – 4 → SP; PC → (SP); PC + d → PC
 MOTOROLA INSTRUCTION SET CPU32

4-10 REFERENCE MANUAL

To specify conditions for change in program control, condition codes must be substi-
tuted for the letters “cc” in conditional program control opcodes. Condition test mne-
monics are given below. Refer to 4.3.10 Condition Tests for detailed information on
condition codes.

CC—Carry clear LS—Low or same
CS—Carry set LT—Less than
EQ—Equal MI—Minus
F—False* NE—Not equal
GE—Greater or equal PL—Plus
GT—Greater than T—True
HI—High VC—Overflow clear
LE—Less or equal VS—Overflow set

*Not applicable to the Bcc instruction

4.3.9 System Control Instructions

Privileged instructions, trapping instructions, and instructions that use or modify the
condition code register provide system control operations. All of these instructions
cause the processor to flush the instruction pipeline. Table 4-9 summarizes the in-
structions. The preceding list of condition tests also applies to the TRAPcc instruction.
Refer to 4.3.10 Condition Tests for detailed information on condition codes.

JMP 〈ea〉 none Destination → PC

JSR 〈ea〉 none SP – 4 → SP; PC → (SP); destination → PC

NOP none none PC + 2 → PC

Returns

RTD #〈d〉 16 (SP) → PC; SP + 4 + d → SP

RTR none none (SP) → CCR; SP + 2 → SP; (SP) → PC;
SP + 4 → SP

RTS none none (SP) → PC; SP + 4 → SP

Table 4-9 System Control Operations

Instruction Syntax Size Operation
Privileged

ANDI #〈data〉, SR 16 Data • SR → SR
EORI #〈data〉, SR 16 Data ⊕ SR → SR
MOVE 〈ea〉, SR

SR, 〈ea〉
16
16

Source → SR
SR → Destination

MOVEA USP, An
An, USP

32
 32

USP → An An → USP

MOVEC Rc, Rn
Rn, Rc

32
 32

Rc → Rn
Rn → Rc

MOVES Rn, 〈ea〉
〈ea〉, Rn

8, 16, 32 Rn → Destination using DFC
Source using SFC → Rn

ORI #〈data〉, SR 16 Data + SR → SR

Table 4-8 Program Control Operations

Instruction Syntax Operand Size Operation
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-11

4.3.10 Condition Tests

Conditional program control instructions and the TRAPcc instruction execute on the
basis of condition tests. A condition test is the evaluation of a logical expression relat-
ed to the state of the CCR bits. If the result is one, the condition is true. If the result is
zero, the condition is false. For example, the T condition is always true, and the EQ
condition is true only if the Z bit condition code is true. Table 4-10 lists each condition
test.

RESET none none Assert RESET line
RTE none none (SP) → SR; SP + 2 → SP; (SP) → PC;

SP + 4 → SP;
 restore stack according to format

STOP #〈data〉 16 Data → SR; STOP
LPSTOP #〈data〉 none Data → SR; interrupt mask → EBI; STOP

Trap Generating
BKPT #〈data〉 none If breakpoint cycle acknowledged, then execute

returned operation word, else trap as illegal
instruction.

BGND none none If background mode enabled, then enter
background mode, else format/vector offset →
– (SSP);

PC → 〉 (SSP); SR → 〉 (SSP); (vector) → PC
CHK 〈ea〉, Dn 16, 32 If Dn < 0 or Dn < (ea), then CHK exception
CHK2 〈ea〉, Rn 8, 16, 32 If Rn < lower bound or Rn > upper bound, then CHK

exception
ILLEGAL none none SSP – 2 → SSP; vector offset → (SSP);

SSP – 4 → SSP; PC → (SSP);
SSP – 2 → SSP; SR → (SSP);
Illegal instruction vector address → PC

TRAP #〈data〉 none SSP – 2 → SSP; format/vector offset → (SSP);
SSP – 4 → SSP; PC → (SSP); SR → (SSP);
vector address → PC

TRAPcc none
#〈data〉

none
16, 32

If cc true, then TRAP exception

TRAPV none none If V set, then overflow TRAP exception
Condition Code Register

ANDI #〈data〉, CCR 8 Data • CCR → CCR
EORI #〈data〉, CCR 8 Data ⊕ CCR → CCR
MOVE 〈ea〉, CCR

 CCR, 〈ea〉
16
16

Source → CCR
CCR → Destination

ORI #〈data〉, CCR 8 Data + CCR → CCR

Table 4-10 Condition Tests

Mnemonic Condition Encoding Test
T True 0000 1
F* False 0001 0
HI High 0010 C • Z
LS Low or Same 0011 C + Z
CC Carry Clear 0100 C
CS Carry Set 0101 C

Table 4-9 System Control Operations (Continued)

Instruction Syntax Size Operation
 MOTOROLA INSTRUCTION SET CPU32

4-12 REFERENCE MANUAL

* Not available for the Bcc instruction.

4.4 Instruction Details

The following paragraphs contain detailed information about each instruction in the
CPU32 instruction set. The instruction descriptions are arranged alphabetically by in-
struction mnemonic. Figure 4-2 shows the format of the instruction descriptions. 4.2.1
Notation applies, with the following additions.

A. The attributes line specifies the size of the operands of an instruction. When an
instruction can use operands of more than one size, a suffix is used with the
mnemonic of the instruction:

.B Byte

.W Word

.L Long word

B. In instruction set descriptions, changes in CCR bits are shown as follows:

* Set according to result of operation
— Not affected by operation
0 Cleared
1 Set
U Undefined after operation

NE Not Equal 0110 Z
EQ Equal 0111 Z
VC Overflow Clear 1000 V
VS Overflow Set 1001 V
PL Plus 1010 N
MI Minus 1011 N
GE Greater or Equal 1100 N • V + N • V

LT Less Than 1101 N • V + N • V

GT Greater Than 1110 N • V • Z + N • V • Z

LE Less or Equal 1111 Z; N • V; N • V

Table 4-10 Condition Tests (Continued)

Mnemonic Condition Encoding Test
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-13

Figure 4-2 Instruction Description Format

X Set the same as the carry bit.
N Undefined.
Z Cleared if the result is nonzero. Unc
V Undefined.
C Set if a decimal carry was generate

Register Rx field - Specifies the destin
 If R/M = 0, specifies a data register
 If R/M = 1, specifies an address regi

R/M Field: 0 = Data Register to Data Register

If R/M = 0, Rx and Ry are Data Registers
If R/M = 1, Rx and Ry are Address Registers for th

INSTRUCTION NAME

OPERATION DESCRIPTION

ASSEMBLER SYNTAX FOR THIS INSTRUCTION

SIZE ATTRIBUTE

TEXT DESCRIPTION OF INSTRUCTION OPERATION

CONDITION CODE EFFECTS

ABCD
Operation:

Assembler
Syntax:

MEANINGS AND ALLOWED VALUES (FOR THE VARIOUS
FIELDS REQUIRED BY THE INSTRUCTION FORMAT)

Add Decim

 Source + Destination + X10

ABCD Dy,Dx
ABCD - (Ay), - (Ax)

Attributes: Size = (Byte)

 Condition Codes:

INSTRUCTION FORMAT (THIS SPECIFIES THE BIT PATTERN AND
FIELDS OF THE OPERATION AND COMMAND WORDS, AND ANY
OTHER WORDS THAT ARE ALWAYS PART OF THE
INSTRUCTION.) THE EFFECTIVE ADDRESS EXTENSIONS ARE
NOT EXPLICITLY ILLUSTRATED. THE EXTENSION WORDS (IF
ANY) FOLLOW IMMEDIATELY AFTER THE ILLUSTRATED
PORTIONS OF THE INSTRUCTIONS.

R/M field - Specifies the operand addr
 0 - the operation is data register to
 1 - the operation is memory to mem

Normally the Z condition code bit is
an operation. This allows successf
of multiple-precision operations.

Description: Adds the source operation
 and stores the result in the destinatio
 decimal arithmetic. The operands, w
 different ways:

1. Data register to data register:
 specified in the instruction.
2. Memory to memory: The opera
 addressing mode using the add

Instruction Format:

Instruction Fields:

NOTE

Register Ry field - Specifies the sourc
 If R/M = 0, specifies a data regist
 If R/M = 1, specifies an address

X N Z V C

U U

15 14 13 12 11 10
1 1 0 0 REGISTER Rx 1
 MOTOROLA INSTRUCTION SET CPU32

4-14 REFERENCE MANUAL

ABCD Add Decimal with Extend ABCD
Operation: Source10 + Destination10 + X → Destination

Assembler ABCD Dy, Dx
Syntax: ABCD – (Ay), – (Ax)

Attributes: Size = (Byte)

Description: Adds the source operand to the destination operand along with the
extend bit, and stores the result in the destination location. The addition is performed
using binary coded decimal arithmetic. The operands, which are packed BCD num-
bers, can be addressed in two different ways:

1. Data register to data register — Operands are contained in data registers spec-
ified by the instruction.

2. Memory to memory — Operands are addressed with the predecrement ad-
dressing mode using address registers specified by the instruction.

Condition Codes:

X Set the same as the carry bit.
N Undefined.
Z Cleared if the result is nonzero. Unchanged otherwise.
V Undefined.
C Set if a decimal carry was generated. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the
start of an operation. This allows successful tests for zero results
upon completion of multiple-precision operations.

Instruction Format:

X N Z V C

* U * U *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 REGISTER Rx 1 0 0 0 0 R/M REGISTER Ry
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-15

ABCD Add Decimal with Extend ABCD
Instruction fields:

Register Rx field — Specifies the destination register:
If R/M = 0, specifies a data register
If R/M = 1, specifies an address register for predecrement addressing mode

R/M field — Specifies the operand addressing mode:
0 — the operation is data register to data register
1 — the operation is memory to memory

Register Ry field — Specifies the source register:
If R/M = 0, specifies a data register
If R/M = 1, specifies an address register for predecrement addressing mode
 MOTOROLA INSTRUCTION SET CPU32

4-16 REFERENCE MANUAL

ADD Add ADD
Operation: Source + Destination → Destination

Assembler: ADD 〈 ea〉, Dn

Syntax: ADD Dn, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Adds the source operand to the destination operand using binary
addition, and stores the result in the destination location. The mode of the instruction
indicates which operand is the source and which is the destination as well as the
operand size.

Condition Codes:

X Set the same as the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.

Instruction Format:

Instruction Fields: .
Register field — Specifies any of the eight data registers.
Opmode field:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 1 REGISTER OPMODE

MODE REGISTER

Byte Word Long Operation
000 001 010 〈ea〉 + 〈Dn〉 → 〈Dn〉
100 101 110 〈Dn〉 + 〈ea〉 → 〈ea〉
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-17

ADD Add ADD
Effective Address Field — Determines addressing mode:
If the location specified is a source operand, all addressing modes are allowed as
shown:

*Word and long word only

If the location specified is a destination operand, only memory alterable addressing
modes are allowed as shown:

NOTES:
1. Dn mode is used when destination is a data register. Destination 〈ea〉 mode is invalid for a data register.
2. ADDA is used when the destination is an address register. ADDI and ADDQ are used when the source is

immediate data. Most assemblers automatically make this distinction.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An* 001 Reg. number: An (xxx).L 111 001
(An) 010 Reg. number: An #〈data〉 111 100

(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-18 REFERENCE MANUAL

ADDA Add Address ADDA
Operation: Source + Destination → Destination

Assembler
Syntax: ADDA 〈ea〉 An

Attributes: Size = (Word, Long)

Description: Adds the source operand to the destination address register and
stores the result in the address register. The entire destination address register is
used regardless of the operation size.

Condition Codes:
Not affected

Instruction Format:

Instruction Fields:
Register field — Specifies any of the eight address registers. This is always the desti-

nation.
Opmode field — Specifies the size of the operation:

011 — Word operation. The source operand is sign-extended to a long oper-
and and the operation is performed on the address register using all 32 bits.
111 — Long operation.

Effective Address field — Specifies source operand. All addressing modes are al-
lowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 1 REGISTER OPMODE

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An 001 Reg. number: An (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-19

ADDI Add Immediate ADDI
Operation: Immediate Data + Destination → Destination

Assembler
Syntax: ADDI #〈data〉, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Adds the immediate data to the destination operand, and stores the
result in the destination location. The size of the immediate data must match the oper-
ation size.

Condition Codes:

X Set the same as the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.

Instruction Format:

Instruction Fields:
Size field — Specifies the size of the operation:

00 — Byte operation
01 — Word operation
10 — Long operation

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 0 1 1 0 SIZE

MODE REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)
 MOTOROLA INSTRUCTION SET CPU32

4-20 REFERENCE MANUAL

ADDI Add Immediate ADDI
Effective Address field — Specifies the destination operand.

Only data alterable addressing modes are allowed as shown:

Immediate field — (Data immediately following the instruction):
If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
- (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-21

ADDQ Add Quick ADDQ
Operation: Immediate Data + Destination → Destination

Assembler
Syntax: ADDQ #〈data〉, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Adds an immediate value in the range (1–8) to the operand at the
destination location. Word and long operations are allowed on the address registers.
When adding to address registers, the condition codes are not altered, and the entire
destination address register is used, regardless of the operation size.

Condition Codes:

X Set the same as the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a carry occurs. Cleared otherwise.

The condition codes are not affected when the destination is an address register.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 1 DATA 0 SIZE

MODE REGISTER
 MOTOROLA INSTRUCTION SET CPU32

4-22 REFERENCE MANUAL

ADDQ Add Quick ADDQ
Instruction Fields: .

Data field — Three bits of immediate data, (9–11), with 0 representing a value of 8).
Size field — Specifies the size of the operation:

00 — Byte operation
01 — Word operation
10 — Long operation

Effective Address field — Specifies the destination location.
Only alterable addressing modes are allowed as shown:

*Word and long only

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An* 001 Reg. number: An (xxx).L 111 001
(An) 010 Reg. number: An #〈data〉 111 100

(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-23

ADDX Add Extended ADDX
Operation: Source + Destination + X → Destination

Assembler ADDX Dy, Dx
Syntax: ADDX – (Ay), – (Ax)

Attributes: Size = (Byte, Word, Long)

Description: Adds the source operand to the destination operand along with the
extend bit and stores the result in the destination location. The operands can be
addressed in two ways:

1. Data register to data register: Data registers specified by the instruction contain
the operands.

2. Memory to memory: Address registers specified by the instruction address the
operands using the predecrement addressing mode.

Condition Codes:

X Set the same as the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Cleared if the result is nonzero. Unchanged otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the
start of an operation. This allows successful tests for zero results
upon completion of multiple-precision operations.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 REGISTER Rx 1 SIZE 0 0 R/M REGISTER Ry
 MOTOROLA INSTRUCTION SET CPU32

4-24 REFERENCE MANUAL

ADDX Add Extended ADDX
Instruction Fields:

Register Rx field — Specifies the destination register:
If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for predecrement addressing mode.

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

R/M field — Specifies the operand address mode:
0 — The operation is data register to data register.
1 — The operation is memory to memory.

Register Ry field — Specifies the source register:
If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for predecrement addressing mode.
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-25

AND Logical AND AND
Operation: Source • Destination → Destination

Assembler AND 〈ea〉,Dn
Syntax: AND Dn, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Performs an AND operation of the source operand with the destina-
tion operand and stores the result in the destination location. The contents of an
address register may not be used as an operand.

Condition Codes:

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

Instruction Fields:

Register field — Specifies any of the eight data registers.
Opmode field:

X N Z V C

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 0 REGISTER OPMODE

MODE REGISTER

Byte Word Long Operation
000 001 010 (〈ea〉) • (〈Dn〉) → Dn
100 101 110 (〈Dn〉) • (〈ea〉) → ea
 MOTOROLA INSTRUCTION SET CPU32

4-26 REFERENCE MANUAL

AND Logical AND AND
Effective Address field — Determines addressing mode:

If the location specified is a source operand, only data addressing modes are
allowed as shown:

If the location specified is a destination operand, only memory alterable addressing
modes are allowed as shown:

NOTES:
1. The Dn mode is used when the destination is a data register; the destination 〈ea〉 mode is invalid for a data

register.
2. Most assemblers use ANDI when the source is immediate data.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-27

ANDI AND Immediate ANDI
Operation: Immediate Data • Destination → Destination

Assembler
Syntax: ANDI #〈data〉, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Performs an AND operation of the immediate data with the destina-
tion operand and stores the result in the destination location. The size of the immedi-
ate data must match the operation size.

Condition Codes:

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

Instruction Fields:

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

X N Z V C

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 0 0 1 0 SIZE

MODE REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)
 MOTOROLA INSTRUCTION SET CPU32

4-28 REFERENCE MANUAL

ANDI AND Immediate ANDI
Effective Address field — Specifies the destination operand.

Only data alterable addressing modes are allowed as shown:

Immediate field — (Data immediately following the instruction):
If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-29

ANDI AND Immediate to Condition Code Register ANDI
to CCR to CCR
Operation: Source • CCR → CCR

Assembler
Syntax: ANDI #〈data〉, CCR

Attributes: Size = (Byte)

Description: Performs an AND operation of the immediate operand with the con-
dition codes and stores the result in the low-order byte of the status register.

Condition Codes:

X Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.
N Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Z Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
V Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
C Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 BYTE DATA (8 BITS)
 MOTOROLA INSTRUCTION SET CPU32

4-30 REFERENCE MANUAL

ANDI AND Immediate to the Status Register ANDI
to SR (Privileged Instruction) to SR
Operation: If supervisor state

then Source • SR →SR
else TRAP

Assembler
Syntax: ANDI #〈data〉, SR

Attributes: Size = (Word)

Description: Performs an AND operation of the immediate operand with the con-
tents of the status register and stores the result in the status register. All implemented
bits of the status register are affected.

Condition Codes:

X Cleared if bit 4 of immediate operand is zero. Unchanged otherwise.
N Cleared if bit 3 of immediate operand is zero. Unchanged otherwise.
Z Cleared if bit 2 of immediate operand is zero. Unchanged otherwise.
V Cleared if bit 1 of immediate operand is zero. Unchanged otherwise.
C Cleared if bit 0 of immediate operand is zero. Unchanged otherwise.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0

WORD DATA
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-31

ASL, ASR Arithmetic Shift ASL, ASR
Operation: Destination Shifted by 〈count〉 → Destination

Assembler ASd Dx,Dy
Syntax: ASd #〈data〉, Dy

ASd 〈ea〉
where d is direction, L or R

Attributes: Size = (Byte, Word, Long)

Description: Arithmetically shifts the bits of the operand in the direction (L or R)
specified. The carry bit receives the last bit shifted out of the operand. The shift count
for shifting a register may be specified in two ways:

1. Immediate — Shift count is specified by the instruction (shift range, 8–1).
2. Register — The shift count is the value in the data register specified by the in-

struction, modulo 64.

An operand in memory can be shifted one bit only, and the operand size is restricted
to a word.

For ASL, the operand is shifted left; the number of positions shifted is the shift count.
Bits shifted out of the high-order bit go to both the carry and the extend bits; zeros are
shifted into the low-order bit. The overflow bit indicates if any sign changes occur dur-
ing the shift.

For ASR, the operand is shifted right; the number of positions shifted is the shift count.
Bits shifted out of the low-order bit go to both the carry and the extend bits; the sign-
bit (MSB) is shifted into the high-order bit.

X/C 0ASL

X/CASR
 MOTOROLA INSTRUCTION SET CPU32

4-32 REFERENCE MANUAL

ASL, ASR Arithmetic Shift ASL, ASR
Condition Codes:

X Set according to the last bit shifted out of the operand. Unaffected for a shift
count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if the most significant bit is changed during the shift operation. Cleared

otherwise.
C Set according to the last bit shifted out of the operand. Cleared for a shift count

of zero.

Instruction Format (Register Shifts):

Instruction Fields (Register Shifts):
Count/Register field — Specifies shift count or register that contains shift count:

If i/r = 0, this field contains the shift count. The values one to seven represent
counts of one to seven; value of zero represents a count of eight.
If i/r = 1, this field specifies the data register that contains the shift count (mod-
ulo 64).

dr field — Specifies the direction of the shift:
0 — Shift right
1 — Shift left

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

i/r field:
If i/r = 0, specifies immediate shift count.
If i/r = 1, specifies register shift count.

Register field — Specifies a data register to be shifted.

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 COUNT/REGISTER dr SIZE i/r 0 0 REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-33

ASL, ASR Arithmetic Shift ASL, ASR
Instruction Format (Memory Shifts):

Instruction Fields (Memory Shifts):
dr field — Specifies the direction of the shift:

0 — Shift right
1 — Shift left

Effective Address field — Specifies the operand to be shifted.
Only memory alterable addressing modes are allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 1 0 0 0 0 dr 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-34 REFERENCE MANUAL

Bcc Branch Conditionally Bcc
Operation: If (condition true) then PC+ d → PC

Assembler
Syntax: Bcc 〈 label〉Attributes:

Size = (Byte, Word, Long)

Description: If the specified condition is true, program execution continues at
location (PC) + displacement. The PC contains the address of the instruction word of
the Bcc instruction plus two. The displacement is a twos complement integer that rep-
resents the relative distance in bytes from the current PC to the destination PC. If the
8-bit displacement field in the instruction word is zero, a 16-bit displacement (the
word immediately following the instruction) is used. If the 8-bit displacement field in
the instruction word is all ones ($FF), the 32-bit displacement (long word immediately
following the instruction) is used. Condition codes are specified as follows:

Condition Codes:
Not affected.

Instruction Format:

cc Name Code Description cc Name Code Description
CC Carry Clear 0100 C LS Low or Same 0011 C; Z
CS Carry Set 0101 C LT Less Than 1101 N • V; N • V
EQ Equal 0111 Z MI Minus 1011 N

GE Greater or Equal 1100 N •V; N • V
N
E

Not Equal 0110 Z

GT Greater Than 1110 N • V • Z; N • V • Z PL Plus 1010 N

HI High 0010 C • Z
V
C

Overflow Clear 1000 V

LE Less or Equal 1111 Z; N • V; N • V
V
S

Overflow Set 1001 V

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 CONDITION 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-35

Bcc Branch Conditionally Bcc
Instruction Fields:

Condition field — The binary code for one of the conditions listed in the table.
8-Bit Displacement field — Twos complement integer specifying the number of bytes

between the branch instruction and the next instruction to be executed if the
condition is met.

16-Bit Displacement field — Used for displacement when 8-bit displacement field
contains$00.

32-Bit Displacement field — Used for displacement when 8-bit displacement field
contains $FF.

NOTE

A branch to the instruction immediately following automatically uses
16-bit displacement because the 8-bit displacement field contains
$00 (zero offset).
 MOTOROLA INSTRUCTION SET CPU32

4-36 REFERENCE MANUAL

BCHG Test a Bit and Change BCHG
Operation: (〈number〉 of Destination) → Z;

(〈number〉 of Destination) → 〈bit number〉 of Destination

Assembler: BCHG Dn, 〈ea〉Syntax:
BCHG #〈data〉, 〈ea〉Attributes:
Size = (Byte, Long)

Description: Tests a specified bit in the destination operand, sets the Z condition
code appropriately, then inverts the specified bit. When the destination is a data regis-
ter, any of the 32 bits can be specified by the modulo 32 bit number. When the desti-
nation is a memory location, the operation is a byte operation, and the bit number is
modulo 8. In all cases, bit zero refers to the least significant bit. The bit number for this
operation may be specified in either of two ways:

1. Immediate — The bit number is specified by a second instruction word

2. Register — The specified data register contains the bit number.

Condition Codes:

X Not affected
N Not affected
Z Set if the bit tested is zero. Cleared otherwise
V Not affected
C Not affected

Instruction Format (Bit Number Static, specified as immediate data):

X N Z V C

— — * — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 0 0 0 0 1

MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-37

BCHG Test a Bit and Change BCHG
Instruction Fields (Bit Number Static):

Bit Number field — Specifies the bit number.
Effective Address field — Specifies the destination location.

Only data alterable addressing modes are allowed as shown:

*Long only; all others are byte only

Instruction Format (Bit Number Dynamic, specified in a register):

Instruction Fields (Bit Number Dynamic):

Register field — Specifies the data register that contains the bit number.
Effective Address field — Specifies the destination location. Only data alterable

addressing modes are allowed as shown:

*Long only; all others are byte only

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 REGISTER 1 0 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-38 REFERENCE MANUAL

BCLR Test a Bit and Clear BCLR
Operation: (〈bit number〉 of Destination) → Z;

0 → 〈bit number〉 of Destination

Assembler BCLR Dn, 〈ea〉
Syntax: BCLR #〈data〉, 〈ea〉
Attributes: Size = (Byte, Long)

Description: Tests a specified bit in the destination operand, sets the Z condition
code appropriately, then clears the bit. When a data register is the destination, any of
the 32 bits can be specified by a modulo 32 bit number. When a memory location is
the destination, the operation is a byte operation, and the bit number is modulo 8. In
all cases, bit zero refers to the least significant bit. The bit number for this operation
can be specified in either of two ways:

1. Immediate — The bit number is specified by a second instruction word.

2. Register — The specified data register contains the bit number.

Condition Codes:

X Not affected
N Not affected
Z Set if the bit tested is zero. Cleared otherwise
V Not affected
C Not affected

Instruction Format (Bit Number Static, specified as immediate data):

X N Z V C

— — * — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 0 0 0 1 0

MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-39

BCLR Test a Bit and Clear BCLR
Instruction Fields (Bit Number Static):

Bit Number field — Specifies the bit number.
Effective Address field — Specifies the destination location.

Only data alterable addressing modes are allowed as shown:

*Long only; all others are byte only

Instruction Format (Bit Number Dynamic, specified in a register):

Instruction Fields (Bit Number Dynamic): .
Register field — Specifies the data register that contains the bit number.
Effective Address field — Specifies the destination location. Only data alterable

addressing modes are allowed as shown:

*Long only; all others are byte only

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 REGISTER 1 1 0

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-40 REFERENCE MANUAL

BGND Enter Background Mode BGND
Operation: If (background mode enabled)

then enter Background Mode
else Format/Vector offset → – (SSP)
PC → – (SSP)
SR → – (SSP)
(Vector) → PC

Assembler
Syntax: BGND

Attributes: Size = (Unsized)

Description: The processor suspends instruction execution and enters back-
ground mode (if enabled). The freeze output is asserted to acknowledge entrance
into background mode. Upon exiting background mode, instruction execution contin-
ues with the instruction pointed to by the program counter.

If background mode is not enabled, the processor initiates illegal instruction
exception processing. The vector number is generated to reference the illegal
instruction exception vector. Background mode is covered in SECTION 7 DEVEL-
OPMENT SUPPORT.

Condition Codes:

X Not affected
N Not affected
Z Not affected
V Not affected
C Not affected

Instruction Format:

X N Z V C

— — — — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 1 0 1 1 1 1 1 0 1 0
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-41

BKPT Breakpoint BKPT
Operation: Run breakpoint acknowledge cycle;

If acknowledged
then execute returned operation word
else TRAP as illegal instruction

Assembler
Syntax: BKPT #〈data〉
Attributes: Unsized

Description: Executes a breakpoint acknowledge bus cycle. Bits [2:4] of the
address bus are set to the value of the immediate data (0 to 7) and bits 0 and 1 of the
address bus are set to 0.

The breakpoint acknowledge cycle accesses the CPU space, addressing type 0, and
provides the breakpoint number specified by the instruction on address lines A4 to A2.
If external hardware terminates the cycle with DSACKx, the data on the bus (an in-
struction word) is inserted into the instruction pipe and is executed after the breakpoint
instruction. The breakpoint instruction requires a word transfer — if the first bus cycle
accesses an 8-bit port, a second cycle is required. If external logic terminates the
breakpoint acknowledge cycle with BERR (i.e., no instruction word available) the pro-
cessor takes an illegal instruction exception. Refer to 6.2.5 Software Breakpoints for
details of breakpoint operation.

This instruction supports breakpoints for debug monitors and real-time hardware em-
ulators. The exact operation performed by the instruction is implementation-depen-
dent. Typically, this instruction replaces an instruction in a program and the replaced
instruction is returned by the breakpoint acknowledge cycle.

Condition Codes: Not affected.

Instruction Format:

Instruction Fields:

Vector field — Contains immediate data in the range (0–7). This is the breakpoint
number.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 0 0 1 VECTOR
 MOTOROLA INSTRUCTION SET CPU32

4-42 REFERENCE MANUAL

BRA Branch Always BRA
Operation: PC + d → PC

Assembler
Syntax: BRA 〈 label〉
Attributes: Size = (Byte, Word, Long)

Description: Program execution continues at location (PC) + displacement. The
PC contains the address of the instruction word of the BRA instruction plus two. The
displacement is a twos complement integer that represents the relative distance in
bytes from the current PC to the destination PC. If the 8-bit displacement field in the
instruction word is zero, a 16-bit displacement (the word immediately following the
instruction) is used. If the 8-bit displacement field in the instruction word is all ones
($FF), the 32-bit displacement (long word immediately following the instruction) is
used.

Condition Codes: Not affected.

Instruction Format:

Instruction Fields:

8-Bit Displacement field — Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed.

16-Bit Displacement field — Used for a larger displacement when 8-bit displacement
is $00.

32-Bit Displacement field — Used for a larger displacement when 8-bit displacement
is $FF.

NOTE

A branch to the instruction immediately following automatically uses
16-bit displacement because the 8-bit displacement field contains
$00 (zero offset).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-43

BSET Test a Bit and Set BSET
Operation: (〈bit number〉of Destination) → Z;

1 → 〈bit number〉 of Destination

Assembler: BSET Dn, 〈ea〉Syntax:
BSET #〈data〉, 〈ea〉

Attributes: Size = (Byte, Long)

Description: Tests a bit in the destination operand, sets the Z condition code
appropriately, then sets the specified bit in the destination operand. When a data reg-
ister is the destination, any of the 32 bits can be specified by a modulo 32 bit number.
When a memory location is the destination, the operation is a byte operation, and the
bit number is modulo 8. In all cases, bit zero refers to the least significant bit. The bit
number for this operation can be specified in two ways:

1. Immediate — The bit number is specified by the second word of the instruc-
tion.

2. Register — The specified data register contains the bit number.

Condition Codes:

X Not affected.
N Not affected
Z Set if the bit tested is zero. Cleared otherwise
V Not affected
C Not affected.

Instruction Format (Bit Number Static, specified as immediate data):

X N Z V C

— — * — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 0 0 0 1 1

MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER
 MOTOROLA INSTRUCTION SET CPU32

4-44 REFERENCE MANUAL

BSET Test a Bit and Set BSET
Instruction Fields (Bit Number Static):

Bit Number field — Specifies the bit number.
Effective Address field — Specifies the destination location. Only data alterable

addressing modes are allowed as shown:

*Long only; all others are byte only

Instruction Format (Bit Number Dynamic, specified in a register):

Instruction Fields (Bit Number Dynamic):

Register field — Specifies the data register that contains the bit number.
Effective Address field — Specifies the destination location. Only data alterable

addressing modes are allowed as shown:

*Long only; all others are byte only

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 REGISTER 1 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-45

BSR Branch to Subroutine BSR
Operation: SP – 4 → SP; PC → (SP); PC + d → PC

Assembler
Syntax: BSR 〈 label〉
Attributes: Size = (Byte, Word, Long)

Description: Pushes the long word address of the instruction immediately follow-
ing the BSR instruction onto the system stack. The PC contains the address of the
instruction word plus two. Program execution then continues at location (PC) + dis-
placement. The displacement is a twos complement integer that represents the rela-
tive distance in bytes from the current PC to the destination PC. If the 8-bit
displacement field in the instruction word is zero, a 16-bit displacement (the word
immediately following the instruction) is used. If the 8-bit displacement field in the
instruction word is all ones ($FF), the 32-bit displacement (long word immediately fol-
lowing the instruction) is used.

Condition Codes:

Not affected.

Instruction Format:

Instruction Fields:

8-Bit Displacement field — Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed.

16-Bit Displacement field — Used for larger displacement when 8-bit displacement is
$00.

32-Bit Displacement field — Used for larger displacement when 8-bit displacement is
$FF.

NOTE

A branch to the instruction immediately following automatically uses
16-bit displacement because the 8-bit displacement field contains
$00 (zero offset).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 1 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF
 MOTOROLA INSTRUCTION SET CPU32

4-46 REFERENCE MANUAL

BTST Test a Bit BTST
Operation: – (〈bit number〉 of Destination) → Z

Assembler BTST Dn, 〈ea〉
Syntax: BTST #〈data〉, 〈ea〉
Attributes: Size = (Byte, Long)

Description: Tests a bit in the destination operand and sets the Z condition code
appropriately. When a data register is the destination, any of the 32 bits can be spec-
ified by a modulo 32 bit number. When a memory location is the destination, the oper-
ation is a byte operation, and the bit number is modulo 8. In all cases, bit zero refers
to the least significant bit. The bit number for this operation can be specified in either
of two ways:

1. Immediate — The bit number is specified by a second word of the instruction.

2. Register — The specified data register contains the bit number.

Condition Codes:

X Not affected.
N Not affected.
Z Set if the bit tested is zero. Cleared otherwise.
V Not affected.
C Not affected.

Instruction Format (Bit Number Static, specified as immediate data):

X N Z V C

— — * — —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 0 0 0 0 0

MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-47

BTST Test a Bit BTST
Instruction Fields (Bit Number Static):

Bit Number field — Specifies the bit number.
Effective Address field — Specifies the destination location. Only data addressing

modes areallowed as shown:

*Long only; all others are byte only

Instruction Format (Bit Number Dynamic, specified in a register):

Instruction Fields (Bit Number Dynamic):

Register field — Specifies the data register that contains the bit number.
Effective Address field — Specifies the destination location. Only data addressing

modes are allowed as shown:

*Long only; all others are byte only

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 REGISTER 1 0 0

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-48 REFERENCE MANUAL

CHK Check Register Against Bounds CHK
Operation: If Dn < 0 or Dn > Source then TRAP

Assembler
Syntax: CHK 〈ea〉, Dn

Attributes: Size = (Word, Long)

Description: Compares the value in the data register specified by the instruction
to zero and to the upper bound (effective address operand). The upper bound is a
twos complement integer. If the register value is less than zero or greater than the
upper bound, a CHK instruction exception, vector number 6, occurs.

Condition Codes:

X Not affected.
N Set if Dn < 0; cleared if Dn > effective address operand. Undefined otherwise.
Z Undefined.
V Undefined.
C Undefined.

Instruction Format:

Instruction Fields:

Register field — Specifies the data register that contains the value to be checked.
Size field — Specifies the size of the operation.

11 — Word operation.
10 — Long operation.

Effective Address field — Specifies the upper bound operand. Only data addressing
modes areallowed as shown:

X N Z V C

— * U U U

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 REGISTER SIZE 0

MODE REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-49

CHK Check Register Against Bounds CHK
Effective Address field — Specifies the destination location. Only data addressing

modes are allowed as shown:

*Long only; all others are byte only

Addressing Mode Mode Register Addressing Mode Mode Register
Dn* 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-50 REFERENCE MANUAL

CHK2 Check Register Against Bounds CHK2
Operation: If Rn < lower bound or Rn > upper bound then TRAP

Assembler
Syntax: CHK2 〈ea〉, Rn

Attributes: Size = (Byte, Word, Long)

Description: Compares the value in Rn to each bound. The effective address
contains the bounds pair: the lower bound followed by the upper bound. For signed
comparisons, the arithmetically smaller value should be used as the lower bound. For
unsigned comparisons, the logically smaller value should be the lower bound.

The size of both data and the bounds can be specified as byte, word, or long. If Rn
is a data register and the operation size is byte or word, only the appropriate low-
order part of Rn is checked. If Rn is an address register and the operation size is
byte or word, the bounds operands are sign-extended to 32 bits and the resultant
operands are compared to the full 32 bits of An.

If the upper bound equals the lower bound, the valid range is a single value. If the
register value is less than the lower bound or greater than the upper bound, a
CHK instruction exception, vector number 6, occurs.

Condition Codes:

X Not affected.
N Undefined.
Z Set if Rn is equal to either bound. Cleared otherwise.
V Undefined.
C Set if Rn is out of bounds. Cleared otherwise.

X N Z V C

— U * U *
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-51

CHK2 Check Register Against Bounds CHK2
Instruction Format:

Instruction Fields:

Size field — Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

Effective Address field — Specifies the location of the bounds operands. Only control
addressing modes are allowed as shown:

D/A field — Specifies whether an address register or data register is to be checked.
0 — Data register.
1 — Address register.

Register field — Specifies the address or data register that contains the value to be
checked.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 0 SIZE 0 0 0

MODE REGISTER

D/A REGISTER 1 0 0 0 0 0 0 0 0 0 0 0

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + — —
– (An) — —

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-52 REFERENCE MANUAL

CLR Clear an Operand CLR
Operation: 0 → Destination

Assembler
Syntax: CLR 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Clears the destination operand to zero.

Condition Codes:

X Not affected.
N Always cleared.
Z Always set.
V Always cleared.
C Always cleared.

Instruction Format:

Instruction Fields:

Size field — Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

X N Z V C

— 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 0 1 0 SIZE

MODE REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-53

CLR Clear an Operand CLR
Effective Address field — Specifies the destination location. Only data alterable
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. Number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-54 REFERENCE MANUAL

CMP Compare CMP
Operation: Destination – Source → cc

Assembler
Syntax: CMP 〈ea〉, Dn

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the source operand from the destination data register and
sets condition codes according to the result. The data register is not changed.

Condition Codes:

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a borrow occurs. Cleared otherwise.

Instruction Format:

Instruction Fields:

Register field — Specifies the destination data register.
Opmode field:

X N Z V C

— * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 0 1 1 REGISTER OPMODE

MODE REGISTER

Byte Word Long Operation
000 001 010 (〈Dn〉) − (〈ea〉)
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-55

CMP Compare CMP
Effective Address field — Specifies the source operand. All addressing modes are
allowed as shown:

*Word and long only

NOTE

CMPA is used when the destination is an address register. CMPI is
used when the source is immediate data. CMPM is used for memory-
to-memory compares. Most assemblers automatically make the dis-
tinction.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An* 001 Reg. number: An (xxx).L 111 001
(An) 010 Reg. number: An #〈data〉 111 100

(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-56 REFERENCE MANUAL

CMPA Compare Address CMPA
Operation: Destination – Source → cc

Assembler
Syntax: CMPA 〈ea〉, An

Attributes: Size = (Word, Long)

Description: Subtracts the source operand from the destination address register
and sets the condition codes according to the result. The address register is not
changed. The size of the operation can be specified as word or long. Word length
source operands are sign extended to 32-bits for comparison.

Condition Codes:

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.

Instruction Format:

Instruction Fields:

Register field — Specifies the destination address register.
Opmode field — Specifies the size of the operation:

011 — Word operation. The source operand is sign-extended to a long oper-
and and the operation is performed on the address register using all 32 bits.
111 — Long operation.

X N Z V C

— * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 0 1 1 REGISTER OPMODE

MODE REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-57

CMPA Compare Address CMPA
Effective Address field — Specifies source operand. All addressing modes are
allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An 001 Reg. number: An (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-58 REFERENCE MANUAL

CMPI Compare Immediate CMPI
Operation: Destination – Immediate Data → cc

Assembler
Syntax: CMPI #〈data〉, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Subtracts the immediate data from the destination operand and sets
condition codes according to the result. The destination location is not changed. The
size of the immediate data must match the operation size.

Condition Codes:

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a borrow occurs. Cleared otherwise.

Instruction Format:

Instruction Fields:

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

X N Z V C
— * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 1 0 0 SIZE

MODE REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-59

CMPI Compare Immediate CMPI
Effective Address field — Specifies the destination operand. Only data addressing

modes, except immediate, are allowed as shown:

Immediate field — (Data immediately following the instruction):
If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-60 REFERENCE MANUAL

CMPM Compare Memory CMPM
Operation: Destination – Source → cc

Assembler
Syntax: CMPM (Ay)+, (Ax)+

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the source operand from the destination operand and sets
the condition codes according to the results. The destination location is not changed.
The operands are always addressed with the postincrement addressing mode, using
the address registers specified by the instruction.

Condition Codes:

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.

Instruction Format:

Instruction Fields:

Register Ax field — (always the destination). Specifies an address register in the
postincrement addressing mode.

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

Register Ay field — (always the source). Specifies an address register in the postin-
crement addressing mode.

X N Z V C

— * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 REGISTER Ax 1 SIZE 0 0 1 REGISTER Ay
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-61

CMP2 Compare Register Against Bounds CMP2
Operation: Compare Rn < lower-bound or

Rn > upper-bound
and Set Condition Codes

Assembler
Syntax: CMP2 〈ea〉, Rn

Attributes: Size = (Byte, Word, Long)

Description: Compares the value in Rn to each bound. The effective address
contains the bounds pair: the lower bound followed by the upper bound. For signed
comparisons, the arithmetically smaller value should be used as the lower bound. For
unsigned comparisons, the logically smaller value should be the lower bound.

The size of the data and the bounds can be specified as byte, word, or long. If Rn
is a data register and the operation size is byte or word, only the appropriate low-
order part of Rn is checked. If Rn is an address register and the operation size is
byte or word, the bounds operands are sign-extended to 32 bits and the resultant
operands are compared to the full 32 bits of An.

If the upper bound equals the lower bound, the valid range is a single value.

NOTE

This instruction is identical to CHK2, except that it sets condition
codes rather than taking an exception when the value in Rn is out of
bounds.

Condition Codes:

X Not affected.
N Undefined.
Z Set if Rn is equal to either bound. Cleared otherwise.
V Undefined.
C Set if Rn is out of bounds. Cleared otherwise.

Instruction Format:

X N Z V C

— U * U *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 0 SIZE 0 1 1

MODE REGISTER

D/A REGISTER 0 0 0 0 0 0 0 0 0 0 0 0
 MOTOROLA INSTRUCTION SET CPU32

4-62 REFERENCE MANUAL

CMP2 Compare Register Against Bounds CMP2
Instruction Fields:

Size field — Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

Effective Address field — Specifies the location of the bounds pair. Only control
addressing modes are allowed as shown:

D/A field — Specifies whether an address register or data register is compared.
0 — Data register.
1 — Address register.

Register field — Specifies the address or data register that contains the value to be
checked.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + — —
– (An) — —

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-63

DBcc Test Condition, Decrement, and Branch DBcc
Operation: If condition false then Dn – 1 → Dn;If Dn ≠ –1 then PC + d → PC

Assembler
Syntax: DBcc Dn, 〈 label〉
Attributes: Size = (Word)

Description: Controls a loop of instructions. The parameters are a condition code,
a data register (counter), and a displacement value. The instruction first tests the con-
dition (for termination); if it is true, no operation is performed. If the termination condi-
tion is not true, the low-order 16 bits of the counter data register are decremented by
one. If the result is –1, execution continues with the next instruction. If the result is not
equal to –1, execution continues at the location indicated by the current value of the
PC, plus the sign-extended 16-bit displacement. The value in the PC is the address of
the instruction word of the DBcc instruction plus two. The displacement is a twos
complement integer that represents the relative distance in bytes from the current PC
to the destination PC.

Condition code cc specifies one of the following conditions:

Condition Codes:
Not affected.

cc Name Code Description cc Name Code Description
CC Carry Clear 0100 C LS Low or Same 0011 C; Z
CS Carry Set 0101 C LT Less Than 1101 N • V; N • V
EQ Equal 0111 Z MI Minus 1011 N

F Never equal 0001 0
N
E

Not Equal 0110 Z

GE Greater or Equal 1100 N • V; N • V PL Plus 1010 N
GT Greater Than 1110 N • V • Z; N • V • Z T Always true 0000 1

HI High 0010 C • Z
V
C

Overflow Clear 1000 V

LE Less or Equal 1111 Z; N • V; N • V
V
S

Overflow Set 1001 V
 MOTOROLA INSTRUCTION SET CPU32

4-64 REFERENCE MANUAL

DBcc Test Condition, Decrement, and Branch DBcc
Instruction Format:

Instruction Fields:
Condition field — The binary code for one of the conditions listed in the table.
Register field — Specifies the data register used as the counter.
Displacement field — Specifies the number of bytes to branch.

NOTES:
1. Terminating condition is similar to UNTIL loop clauses of high-level languages.

For example, DBMI can be stated decrement and branch until minus.''
2. Most assemblers accept DBRA for DBF when a count terminates the loop (no

condition is tested).
3. A program can enter a loop at the beginning, or by branching to the trailing

DBcc instruction. Entering the loop at the beginning is useful for indexed ad-
dressing modes and dynamically specified bit operations. In this case, the con-
trol index count must be one less than the desired number of loop executions.
However, when entering a loop by branching to the trailing DBcc instruction, the
control count should equal the loop execution count so that the DBcc instruction
will not branch and the main loop will not execute if a zero count occurs.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 CONDITION 1 1 0 0 1 REGISTER

DISPLACEMENT
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-65

DIVS Signed Divide DIVS
DIVSL DIVSL
Operation: Destination / Source → Destination

Assembler
Syntax: DIVS.W 〈ea〉, Dn32/16 → 16r:16q

DIVS.L 〈ea〉, Dq32/32 → 32q
DIVS.L 〈ea〉, Dr:Dq64/32 → 32r:32q
DIVSL.L 〈ea〉, Dr:Dq32/32 → 32r:32q

Attributes: Size = (Word, Long)

Description: Divides the signed destination operand by the signed source oper-
and and stores the signed result in the destination. The instruction uses one of four
forms.

The word form of the instruction divides a long word by a word. The result is a quotient
in the lower word (least significant 16 bits) and a remainder in the upper word (most
significant 16 bits) of the destination. The sign of the remainder is the same as the sign
of the dividend.

The first long form divides a long word by a long word. The result is a long quotient;
the remainder is discarded.

The second long form divides a quad word (in any two data registers) by a long word.
The result is a long word quotient and a long word remainder.

The third long form divides a long word by a long word. The result is a long word quo-
tient and a long word remainder.

Two special conditions may arise during the operation:

1. Division by zero causes a trap.
2. Overflow may be detected before instruction completion. If an overflow is

detected, the overflow condition code is set and the operands are unaffect-
ed.
 MOTOROLA INSTRUCTION SET CPU32

4-66 REFERENCE MANUAL

DIVS Signed Divide DIVS
DIVSL DIVSL
Condition Codes:

X Not affected.
N Set if quotient is negative. Cleared otherwise. Undefined if overflow or divide

by zero occurs.
Z Set if quotient is zero. Cleared otherwise. Undefined if overflow or divide by

zero occurs.
V Set if division overflow occurs; undefined if divide by zero occurs. Cleared oth-

erwise.
C Always cleared.

Instruction Format (word form):

Instruction Fields:
Register field — Specifies any of the eight data registers. This field always specifies

the destination operand.
Effective Address field — Specifies the source operand. Only data addressing modes

are allowed as shown:

NOTE

Overflow occurs if the quotient is larger than a 16-bit signed integer.

X N Z V C

— * * * 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 0 0 0 REGISTER 1 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-67

DIVS Signed Divide DIVS
DIVSL DIVSL
Instruction Format (long form):

Instruction Fields:
Effective Address field — Specifies the source operand. Only data addressing modes

are allowed as shown:

Register Dq field — Specifies a data register for the destination operand. The low-
order 32 bits of the dividend come from this register, and the 32-bit quotient is
loaded into this register.

Size field — Selects a 32 or 64 bit division operation.
0 — 32-bit dividend is in Register Dq.
1 — 64-bit dividend is in Dr:Dq.

Register Dr field — After the division, this register contains the 32-bit remainder. If Dr
and Dq are the same register, only the quotient is returned. If Size is 1, the Dr
field also specifies the data register that contains the high-order 32 bits of the
dividend.

NOTE

Overflow occurs if the quotient is larger than a 32-bit signed integer.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 1 0 0 0 1

MODE REGISTER

0 REGISTER Dq 1 SIZE 0 0 0 0 0 0 0 REGISTER Dr

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-68 REFERENCE MANUAL

DIVU Unsigned Divide DIVU
DIVUL DIVUL
Operation: Destination/Source → Destination

Assembler
Syntax: DIVS.W 〈ea〉, Dn32/16 → 16r:16q

DIVS.L 〈ea〉, Dq32/32 → 32q
DIVS.L 〈ea〉, Dr:Dq64/32 → 32r:32q
DIVSL.L 〈ea〉, Dr:Dq32/32 →32r:32q

Attributes: Size = (Word, Long)

Description: Divides the unsigned destination operand by the unsigned source
operand and stores the unsigned result in the destination. The instruction uses one of
four forms.

The word form of the instruction divides a long word by a word. The result is a
quotient in the lower word (least significant 16 bits) and a remainder in the upper
word (most significant 16 bits) of the destination.

The first long form divides a long word by a long word. The result is a long quo-
tient; the remainder is discarded.

The second long form divides a quad word (in any two data registers) by a long
word. The result is a long word quotient and a long word remainder.

The third long form divides a long word by a long word. The result is a long word
quotient and a long word remainder.

Two special conditions may arise during the operation:
1. Division by zero causes a trap.

2. Overflow may be detected before instruction completion. If an overflow is
detected, the overflow condition code is set and the operands are unaffected.

Condition Codes:

X Not affected.
N Set if quotient is negative. Cleared otherwise. Undefined if overflow or divide

by zero occurs.
Z Set if quotient is zero. Cleared otherwise. Undefined if overflow or divide by

zero occurs.
V Set if division overflow occurs; undefined if divide by zero occurs. Cleared oth-

erwise.
C Always cleared.

X N Z V C

— * * * 0
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-69

DIVU Unsigned Divide DIVU
DIVUL DIVUL
Instruction Format (word form):

Instruction Fields:
Register field — Specifies any of the eight data registers. This field always specifies

the destination operand.
Effective Address field — Specifies the source operand. Only data addressing modes

are allowed as shown:

NOTE

Overflow occurs if the quotient is larger than a 16-bit signed integer.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 0 0 0 REGISTER 0 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-70 REFERENCE MANUAL

DIVU Unsigned Divide DIVU
DIVUL DIVUL
Instruction Format (long form):

Instruction Fields:
Effective Address field — Specifies the source operand. Only data addressing modes

are allowed as shown:

Register Dq field — Specifies a data register for the destination operand. The low-
order 32 bits of the dividend come from this register, and the 32-bit quotient is
loaded into this register.

Size field — Selects a 32 or 64 bit division operation.
0 — 32-bit dividend is in Register Dq.
1 — 64-bit dividend is in Dr:Dq.

Register Dr field — After the division, this register contains the 32-bit remainder. If Dr
and Dq are the same register, only the quotient is returned. If Size is 1, this
field also specifies the data register that contains the high-order 32 bits of the
dividend.

NOTE

Overflow occurs if the quotient is larger than a 32-bit signed integer.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 1 0 0 0 1

MODE REGISTER

0 REGISTER Dq 1 SIZE 0 0 0 0 0 0 0 REGISTER Dr

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-71

EOR Exclusive OR EOR
Operation: Source ⊕ Destination → Destination

Assembler
Syntax: EOR Dn, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Performs an exclusive OR operation on the destination operand
using the source operand and stores the result in the destination location. The source
operand must be a data register. The destination operand is specified in the effective
address field.

Condition Codes:

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

Instruction Fields:
Register field — Specifies any of the eight data registers.
Opmode field:

X N Z V C

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 0 1 1 REGISTER OPMODE

MODE REGISTER

Byte Word Long Operation
000 001 010 (〈ea〉) ⊕ (〈Dn〉) → 〈ea〉
 MOTOROLA INSTRUCTION SET CPU32

4-72 REFERENCE MANUAL

EOR Exclusive OR EOR
Effective Address field — Specifies the destination operand. Only data alterable

addressing modes are allowed as shown:

NOTE

Memory to data register operations are not allowed. Most assem-
blers use EORI when the source is immediate data.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-73

EORI Exclusive OR Immediate EORI
Operation: Immediate Data ⊕ Destination → Destination

Assembler
Syntax: EORI #〈data〉, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Performs an exclusive OR operation on the destination operand
using the immediate data and the destination operand and stores the result in the
destination location. The size of the immediate data must match the operation size.

Condition Codes:

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

Instruction Fields:
Size field — Specifies the size of the operation:

00 — Byte operation
01 — Word operation
10 — Long operation

X N Z V C

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 0 1 0 SIZE

MODE REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)
 MOTOROLA INSTRUCTION SET CPU32

4-74 REFERENCE MANUAL

EORI Exclusive OR Immediate EORI
Effective Address field — Specifies the destination operand. Only data alterable

addressing modes are allowed as shown:

Immediate field — (Data immediately following the instruction):
If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is next two immediate words.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-75

EORI Exclusive OR Immediate EORI
to CCR to Condition Code Register to CCR
Operation: Source ⊕ CCR → CCR

Assembler
Syntax: EORI #〈data〉, CCR

Attributes: Size = (Byte)

Description: Performs an exclusive OR operation on the condition code register
using the immediate operand, and stores the result in the condition code register
(low-order byte of the status register). All implemented bits of the condition code reg-
ister are affected.

Condition Codes:

X Changed if bit 4 of immediate operand is one. Unchanged otherwise.
N Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Z Changed if bit 2 of immediate operand is one. Unchanged otherwise.
V Changed if bit 1 of immediate operand is one. Unchanged otherwise.
C Changed if bit 0 of immediate operand is one. Unchanged otherwise.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 BYTE DATA (8 BITS)
 MOTOROLA INSTRUCTION SET CPU32

4-76 REFERENCE MANUAL

EORI Exclusive OR Immediate to Status Register EORI
to SR (Privileged Instruction) to SR
Operation: If supervisor state

then Source ⊕ SR → SR
else TRAP

Assembler
Syntax: EORI #〈data〉, SR

Attributes: Size = (Word)

Description: Performs an exclusive OR operation on the contents of the status
register using the immediate operand, and stores the result in the status register. All
implemented bits of the status register are affected.

Condition Codes:

X Changed if bit 4 of immediate operand is one. Unchanged otherwise.
N Changed if bit 3 of immediate operand is one. Unchanged otherwise.
Z Changed if bit 2 of immediate operand is one. Unchanged otherwise.
V Changed if bit 1 of immediate operand is one. Unchanged otherwise.
C Changed if bit 0 of immediate operand is one. Unchanged otherwise.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0

WORD DATA (16 BITS)
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-77

EXG Exchange Registers EXG
Operation: Rx ↔ Ry

Assembler: EXG Dx, Dy
Syntax: EXG Ax, Ay

EXG Dx, Ay
EXG Ay, Dx

Attributes: Size = (Long)

Description: Exchanges the contents of two 32-bit registers. The instruction per-
forms three types of exchanges:

1. Exchange data registers.

2. Exchange address registers.

3. Exchange a data register and an address register.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Register Rx field — Specifies either a data register or an address register depending

on the mode. If the exchange is between data and address registers, this field
always specifies the data register.

Opmode field — Specifies the type of exchange:
01000 — Data registers.
01001 — Address registers.
10001 — Data register and address register.

Register Ry field — Specifies either a data register or an address register depending
on the mode. If the exchange is between data and address registers, this field
always specifies the address register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 REGISTER Rx 1 OPMODE REGISTER Ry
 MOTOROLA INSTRUCTION SET CPU32

4-78 REFERENCE MANUAL

EXT Sign Extend EXT
EXTB EXTB
Operation: Destination Sign-extended → Destination

Assembler
Syntax: EXT.W Dnextend byte to word

EXT.L Dnextend word to long word
EXTB.L Dnextend byte to long word

Attributes: Size = (Word, Long)

Description: Extends a byte in a data register to a word or a long word, or a word
in a data register to a long word, by replicating the sign bit to the left. If the operation
extends a byte to a word, bit [7] of the designated data register is copied to bits [15:8]
of that data register. If the operation extends a word to a long word, bit [15] of the des-
ignated data register is copied to bits [31:16] of the data register. The EXTB form cop-
ies bit [7] of the designated register to bits [31:8] of the data register.

Condition Codes:

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

Instruction Fields:
Opmode field — Specifies the size of the sign-extension operation:

010 — Sign-extend low-order byte of data register to word.
011 — Sign-extend low-order word of data register to long.
111 — Sign-extend low-order byte of data register to long.

Register field — Specifies the data register is to be sign-extended.

X N Z V C

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 OPMODE 0 0 0 REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-79

ILLEGAL Take Illegal Instruction Trap ILLEGAL
Operation: SSP – 2 → SSP; Vector Offset → (SSP);

SSP – 4 → SSP; PC → (SSP);
SSP – 2 → SSP; SR → (SSP);
Illegal Instruction Vector Address → PC

Assembler
Syntax: ILLEGAL

Attributes: Unsized

Description: Forces an illegal instruction exception, vector number 4. All other
illegal instruction bit patterns are reserved for future extension of the instruction set
and should not be used to force an exception.

Condition Codes:

Not affected

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0
 MOTOROLA INSTRUCTION SET CPU32

4-80 REFERENCE MANUAL

JMP Jump JMP
Operation: Destination Address → PC

Assembler
Syntax: JMP 〈ea〉
Attributes: Unsized

Description: Program execution continues at the effective address specified by
the instruction. The addressing mode for the effective address must be a control
addressing mode.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Effective Address field — Specifies the address of the next instruction. Only control

addressing modes are allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 1 1 0 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + — —
– (An) — —

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-81

JSR Jump to Subroutine JSR
Operation: SP – 4 → Sp; PC → (SP)

Destination Address → PC

Assembler
Syntax: JSR 〈ea〉
Attributes: Unsized

Description: Pushes the long word address of the instruction immediately follow-
ing the JSR instruction onto the system stack. Program execution then continues at
the address specified by the instruction.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Effective Address field — Specifies the address of the next instruction. Only control

addressing modes are allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 1 1 0 1 0

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + — —
– (An) — —

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-82 REFERENCE MANUAL

LEA Load Effective Address LEA
Operation: 〈ea〉 → An

Assembler
Syntax: LEA 〈ea〉, An

Attributes: Size = (Long)

Description: Loads the effective address into the specified address register. All
32 bits of the address register are affected by this instruction.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Register field — Specifies the address register to be updated with the effective

address.
Effective Address field — Specifies the address to be loaded into the address regis-

ter. Only control addressing modes are allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 REGISTER 1 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + — —
– (An) — —

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-83

LINK Link and Allocate LINK
Operation: Sp – 4 → Sp; An → (SP);

SP → An; SP + d → SP

Assembler
Syntax: LINK An, #〈displacement〉
Attributes: Size = (Word, Long)

Description: Pushes the contents of the specified address register onto the stack,
then loads the updated stack pointer into the address register. Finally, adds the dis-
placement value to the stack pointer. For word size operation, the displacement is the
sign-extended word following the operation word. For long size operation, the dis-
placement is the long word following the operation word. The address register occu-
pies one long word on the stack. The user should specify a negative displacement to
allocate stack area.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Register field — Specifies the address register for the link.
Displacement field — Specifies the twos complement integer to be added to the stack

pointer.

NOTE

LINK and UNLK can be used to maintain a linked list of local data and
parameter areas on the stack for nested subroutine calls.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 1 0 REGISTER

WORD DISPLACEMENT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 0 0 0 1 REGISTER

HIGH-ORDER DISPLACEMENT

LOW-ORDER DISPLACEMENT
 MOTOROLA INSTRUCTION SET CPU32

4-84 REFERENCE MANUAL

LPSTOP Low Power Stop LPSTOP
Operation: If supervisor state

then Immediate Data → SR
Interrupt Mask → External Bus Interface (EBI)
STOP
else TRAP

Assembler
Syntax: LPSTOP #〈data〉
Attributes: Size = (Word) Privileged

Description: The immediate operand is moved into the entire status register, the
program counter is advanced to point to the next instruction, and the processor stops
fetching and executing instructions. A CPU LPSTOP broadcast cycle is executed to
CPU space $3 to copy the updated interrupt mask to the external bus interface (EBI).
The internal clocks are stopped.

Execution of instructions resumes when a trace, interrupt, or reset exception
occurs. A trace exception occurs if the trace state is on when the LPSTOP instruc-
tion is executed. If an interrupt request is asserted with a higher priority that the
current priority level set by the new status register value, an interrupt exception
occurs; otherwise the interrupt request is ignored. If the bit of the immediate data
corresponding to the S bit is off, execution of the instruction causes a privilege vio-
lation. An external reset always initiates reset exception processing.

Condition Codes:
Set according to the immediate operand.

Instruction Format:

Instruction Fields:
Immediate field — Specifies the data to be loaded into the status register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

IMMEDIATE DATA
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-85

LSL, LSR Logical Shift LSL, LSR
Operation: Destination Shifted by 〈count〉 → Destination

Assembler LSd Dx, Dy
Syntax: LSd #〈data〉, Dy

LSd 〈ea〉
where d is direction, L or R

Attributes: Size = (Byte, Word, Long)

Description: Shifts the bits of the operand in the direction specified (L or R). The
carry bit receives the last bit shifted out of the operand.

Shift count can be specified in one of two ways:
1. Immediate — The shift count (1–8) is specified by the instruction.

2. Register — The shift count is the value in the data register specified by the
instruction, modulo 64.

The size of the operation for register destinations may be specified as byte, word, or
long. The contents of memory, 〈ea〉, can be shifted one bit only, and the operand size
is restricted to a word.

The LSL instruction shifts the operand to the left the number of positions specified as
the shift count. Bits shifted out of the high-order bit go to both the carry and the extend
bits; zeros are shifted into the low-order bits.

The LSR instruction shifts the operand to the right the number of positions specified
as the shift count. Bits shifted out of the low-order bit go to both the carry and the ex-
tend bits; zeros are shifted into the high-order bits.

X/C 0LSL

X/C0LSR
 MOTOROLA INSTRUCTION SET CPU32

4-86 REFERENCE MANUAL

LSL, LSR Logical Shift LSL, LSR
Condition Codes:

X Set according to the last bit shifted out of the operand. Unaffected for a shift
count of zero.

N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Set according to the last bit shifted out of the operand. Cleared for a shift count

of zero.

Instruction Format (Register Shifts):

Instruction Fields (Register Shifts):
Count/Register field — Specifies shift count or register that contains shift count:

If i/r = 0, this field contains the shift count. The values one to seven represent
counts of one to seven; value of zero represents a count of eight.
If i/r = 1, this field specifies the data register that contains the shift count (mod-
ulo 64).

dr field — Specifies the direction of the shift:
0 — Shift right
1 — Shift left

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

i/r field:
If i/r = 0, specifies immediate shift count.
If i/r = 1, specifies register shift count.

Register field — Specifies a data register to be shifted.

X N Z V C

* * * 0 *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 COUNT/REGISTER dr SIZE i/r 0 1 REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-87

LSL, LSR Logical Shift LSL, LSR
Instruction Format (Memory Shifts):

Instruction Fields (Memory Shifts):
dr field — Specifies the direction of the shift:

0 — Shift right
1 — Shift left

Effective Address field — Specifies the operand to be shifted.
Only memory alterable addressing modes are allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 1 0 0 0 1 dr 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-88 REFERENCE MANUAL

MOVE Move Data from Source to Destination MOVE
Operation: Source → Destination

Assembler
Syntax: MOVE 〈ea〉, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Moves the data at the source to the destination location, and sets
the condition codes according to the data.

Condition Codes:

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

Instruction Fields:
Size field — Specifies the size of the operand to be moved:

01 — Byte operation
11 — Word operation
10 — Long operation

X N Z V C

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DESTINATION EFFECTIVE ADDRESS

0 0 SIZE

REGISTER MODE MODE REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-89

MOVE Move Data from Source to Destination MOVE
Destination Effective Address field — Specifies the destination location. Only data

alterable addressing modes are allowed as shown:

Source Effective Address field — Specifies the source operand. All addressing
modes are allowed as shown:

*For byte size operation, address register direct is not allowed.

NOTES:
1. Most assemblers use MOVEA when the destination is an address register.
2. MOVEQ can be used to move an immediate 8-bit value to a data register.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An* 001 Reg. number: An (xxx).L 111 001
(An) 010 Reg. number: An #〈data〉 111 100

(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-90 REFERENCE MANUAL

MOVEA Move Address MOVEA
Operation: Source → Destination

Assembler
Syntax: MOVEA 〈ea〉, An

Attributes: Size = (Word, Long)

Description: Moves the contents of the source to the destination address register.
The size of the operation is specified as word or long. Word size source operands are
sign-extended to 32-bit quantities.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Size field — Specifies the size of the operand to be moved:

11 — Word operation. The source operand is sign-extended to a long operand
and all 32 bits are loaded into the address register.
10 — Long operation.

Destination Register (Dst-Reg) field — Specifies the destination address register.
Effective Address field — Specifies the location of the source operand. All addressing

modes are allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 SIZE DST–REG 0 0 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An 001 Reg. number: An (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-91

MOVE Move from the MOVE
from CCR Condition Code Register from CCR
Operation: CCR → Destination

Assembler
Syntax: MOVE CCR, 〈ea〉
Attributes: Size = (Word)

Description: Moves the condition code bits (zero extended to word size) to the
destination location. Unimplemented bits are read as zeros.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Effective Address field — Specifies the destination location. Only data alterable

addressing modes are allowed as shown:

NOTE

MOVE from CCR is a word operation. ANDI, ORI, and EORI to CCR
are byte operations.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 0 1 0 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-92 REFERENCE MANUAL

MOVE Move to Condition Code Register MOVE
to CCR to CCR
Operation: Source → CCR

Assembler
Syntax: MOVE 〈ea〉, CCR

Attributes: Size = (Word)

Description: Moves the low-order byte of the source operand to the condition
code register. The upper byte of the source operand is ignored; the upper byte of the
status register is not altered.

Condition Codes:

X Set to the value of bit 4 of the source operand.
N Set to the value of bit 3 of the source operand.
Z Set to the value of bit 2 of the source operand.
V Set to the value of bit 1 of the source operand.
C Set to the value of bit 0 of the source operand.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 1 0 0 1 1

MODE REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-93

MOVE Move to Condition Code Register MOVE
to CCR to CCR
Instruction Fields:

Effective Address field — Specifies the destination location. Only data addressing
modes are allowed as shown:

NOTE

MOVE to CCR is a word operation. ANDI, ORI, and EORI to CCR are
byte operations.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-94 REFERENCE MANUAL

MOVE Move from the Status Register MOVE
from SR (Privileged Instruction) from SR
Operation: If supervisor state

then SR → Destination
else TRAP

Assembler
Syntax: MOVE SR, 〈ea〉
Attributes: Size = (Word)

Description: Moves the data in the status register to the destination location. The
destination must be of word length. Unimplemented bits are read as zeros.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Effective Address field — Specifies the destination location. Only data alterable

addressing modes are allowed as shown:

NOTE

Use the MOVE from CCR instruction to access only the condition
codes.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 0 0 0 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-95

MOVE Move to the Status Register MOVE
to SR (Privileged Instruction) to SR
Operation: If supervisor state

then Source →SR
else TRAP

Assembler
Syntax: MOVE 〈ea〉, SR

Attributes: Size = (Word)

Description: Moves the data in the source operand to the status register. The
source operand is a word and all implemented bits of the status register are affected.

Condition Codes:
Set according to the source operand.

Instruction Format:

Instruction Fields:
Effective Address field — Specifies the destination location. Only data addressing

modes are allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 1 1 0 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-96 REFERENCE MANUAL

MOVE Move User Stack Pointer MOVE
USP (Privileged Instruction) USP
Operation: If supervisor state

then USP → An or An → USP
else TRAP

Assembler MOVE USP, An
Syntax: MOVE An, USP

Attributes: Size = (Long)

Description: Moves the contents of the user stack pointer to or from the specified
address register.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
dr field — Specifies the direction of transfer:

0 — Transfer the address register to the USP.
1 — Transfer the USP to the address register.

Register field — Specifies the address register for the operation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 0 dr REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-97

MOVEC Move Control Register MOVEC
(Privileged Instruction)

Operation: If supervisor state
then Rc → Rn or Rn → Rc
else TRAP

Assembler MOVEC Rc, Rn
Syntax: MOVEC Rn, Rc

Attributes: Size = (Long)

Description: Moves the contents of the specified control register (Rc) to the spec-
ified general register (Rn), or copies the contents of the specified general register to
the specified control register. MOVEC is always a 32-bit transfer even though the con-
trol register may be implemented with fewer bits. Unimplemented bits are read as
zeros.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
dr field — Specifies the direction of the transfer:

0 — Control register to general register.
1 — General register to control register.

A/D field — Specifies the type of general register:
0 — Data register.
1 — Address register.

Register field — Specifies the register number.
Control Register field — Specifies the control register.

Hex Control Register
 000 Source Function Code (SFC)
 001 Destination Function Code (DFC)
 800 User Stack Pointer (USP)
 801 Vector Base Register (VBR)

Any other code causes an illegal instruction exception.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 dr

A/D REGISTER CONTROL REGISTER
 MOTOROLA INSTRUCTION SET CPU32

4-98 REFERENCE MANUAL

MOVEM Move Multiple Registers MOVEM
Operation: Registers → Destination

Source → Registers

Assembler MOVEM register list, 〈ea〉
Syntax: MOVEM 〈ea〉, register list

Attributes: Size = (Word, Long)

Description: Moves the contents of selected registers to or from consecutive
memory locations starting at the location specified by the effective address. A register
is selected if the bit in the mask field corresponding to that register is set. The instruc-
tion size determines whether 16 or 32 bits of each register are transferred. In the
case of a word transfer to either address or data registers, each word is sign-
extended to 32 bits, and the resulting long word is loaded into the associated register.

Selecting the addressing mode also selects the mode of operation of the MOVEM
instruction, and only the control modes, the predecrement mode, and the postin-
crement mode are valid. If the effective address is specified by one of the control
modes, the registers are transferred starting at the specified address, and the
address is incremented by the operand length (2 or 4) following each transfer. The
order of the registers is from data register 0 to data register 7, then from address
register 0 to address register 7.

If the effective address is specified by the predecrement mode, only a register-to-
memory operation is allowed. The registers are stored starting at the specified
address minus the operand length (2 or 4), and the address is decremented by
the operand length following each transfer. The order of storing is from address
register 7 to address register 0, then from data register 7 to data register 0. When
the instruction has completed, the decremented address register contains the
address of the last operand stored. In the CPU 32, if the addressing register is
also moved to memory, the value written is the decremented value.

If the effective address is specified by the postincrement mode, only a memory-to-
register operation is allowed. The registers are loaded starting at the specified
address; the address is incremented by the operand length (2 or 4) following each
transfer. The order of loading is the same as that of control mode addressing.
When the instruction has completed, the incremented address register contains
the address of the last operand loaded plus the operand length. In the CPU32, if
the addressing register is also loaded from memory, the value loaded is the value
fetched plus the operand length.
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-99

MOVEM Move Multiple Registers MOVEM
Condition Codes:

Not affected.

Instruction Format:

Instruction Field:
dr field — Specifies the direction of the transfer:

0 — Register to memory
1 — Memory to register

Size field — Specifies the size of the registers being transferred:
0 — Word transfer
1 — Long transfer

Effective Address field — Specifies the memory address for the operation. For regis-
ter-to-memory transfers, only control alterable addressing modes, or the pre-
decrement addressing mode are allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 dr 0 0 1 SIZE

MODE REGISTER

REGISTER LIST MASK

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + — —
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-100 REFERENCE MANUAL

MOVEM Move Multiple Registers MOVEM
For memory-to-register transfers, only control addressing modes or the postincre-

ment addressing mode are allowed as shown:

Register List Mask field — Specifies the registers to be transferred. The low-order bit
corresponds to the first register to be transferred; the high-order bit corre-
sponds to the last register to be transferred. Thus, both for control modes and
for the postincrement mode addresses, the mask correspondence is:

For predecrement mode addresses, the mask correspondence is reversed:

NOTE

An extra read bus cycle occurs for memory operands. This accesses
an operand at one address higher than the last register image re-
quired.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) — —

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D0 D1 D2 D3 D4 D5 D6 D7 A0 A1 A2 A3 A4 A5 A6 A7
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-101

MOVEP Move Peripheral Data MOVEP
Operation: Source → Destination

Assembler MOVEP Dx, (d, Ay)
Syntax: MOVEP (d, Ay), Dx

Attributes: Size = (Word, Long)

Description: Moves data between a data register and alternate bytes within the
address space (typically assigned to a peripheral), starting at the location specified
and incrementing by two. This instruction is designed for 8-bit peripherals on a 16-bit
data bus. The high-order byte of the data register is transferred first and the low-order
byte is transferred last. The memory address is specified by the address register indi-
rect plus 16-bit displacement addressing mode. If the address is even, all the trans-
fers are to or from the high-order half of the data bus; if the address is odd, all the
transfers are to or from the low-order half of the data bus. The instruction also
accesses alternate bytes on an 8- or 32-bit bus.

Example: Long transfer to/from an even address.

Byte Organization in Register

Byte Organization in Memory (Low Address at Top)

31 24 23 16 15 8 7 0

HIGH ORDER MID-UPPER MID-LOWER LOW ORDER

158 7 0
HIGH ORDER
MID-UPPER
MID-LOWER
LOW ORDER
 MOTOROLA INSTRUCTION SET CPU32

4-102 REFERENCE MANUAL

MOVEP Move Peripheral Data MOVEP
Example: Word transfer to/from an odd address

Byte Organization in Register

Byte Organization in Memory (Low Address at Top)

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Data Register field — Specifies the data register for the instruction.
Opmode field — Specifies the direction and size of the operation:

100 — Transfer word from memory to register.
101 — Transfer long from memory to register.
110 — Transfer word from register to memory.
111 — Transfer long from register to memory.

Address Register field — Specifies the address register which is used in the address
register indirect plus displacement addressing mode.

Displacement field — Specifies the displacement used in the operand address.

31 24 23 16 15 8 7 0

HIGH ORDER LOW ORDER

158 7 0
HIGH ORDER
LOW ORDER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 DATA REGISTER OPMODE 0 0 1 ADDR REGISTER

DISPLACEMENT (16 BITS)
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-103

MOVEQ Move Quick MOVEQ
Operation: Immediate Data → Destination

Assembler
Syntax: MOVEQ #〈data〉, Dn

Attributes: Size = (Long)

Description: Moves a byte of immediate data to a 32-bit data register. The data in
an 8-bit field within the operation word is sign-extended to a long operand in the data
register as it is transferred.

Condition Codes:

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

Instruction Fields:
Register field — Specifies the data register to be loaded.
Data field — Eight bits of data, which are sign-extended to a long operand.

X N Z V C

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 REGISTER 0 DATA
 MOTOROLA INSTRUCTION SET CPU32

4-104 REFERENCE MANUAL

MOVES Move Address Space MOVES
(Privileged Instruction)

Operation: If supervisor state
then Rn → Destination [DFC] or Source [SFC] → Rn
else TRAP

Assembler: MOVES Rn, 〈ea〉Syntax:
MOVES 〈ea〉, Rn

Attributes: Size = (Byte, Word, Long)

Description: Moves the byte, word, or long operand from the specified general
register to a location within the address space specified by the destination function
code (DFC) register; or moves the byte, word, or long operand from a location within
the address space specified by the source function code (SFC) register to the speci-
fied general register.

If the destination is a data register, the source operand replaces the correspond-
ing low-order bits of the data register, depending on the size of the operation. If
the destination is an address register, the source operand is sign-extended to 32
bits and then loaded into the address register.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Size field — Specifies the size of the operation:

00 — Byte operation
01 — Word operation
10 — Long operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 1 1 0 SIZE

MODE REGISTER

A/D REGISTER dr 0 0 0 0 0 0 0 0 0 0 0
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-105

MOVES Move Address Space MOVES
(Privileged Instruction)

Effective Address field — Specifies the source or destination location within the alter-
nate address space. Only memory alterable addressing modes are allowed as
shown:

A/D field — Specifies the type of general register:
0 — Data register
1 — Address register

Register field — Specifies the register number.
dr field — Specifies the direction of the transfer:

0 — From 〈ea〉 to general register
1 — From general register to 〈ea〉

NOTE

For either of the two following examples, which use the same ad-
dress register as both source and destination, the value stored is un-
defined. The current implementations of the MC68010, CPU32, and
MC68020 store the incremented or decremented value of An.

MOVES.x An, (An)+
MOVES.x An, –(An)

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-106 REFERENCE MANUAL

MULS Signed Multiply MULS
Operation: Source ∗ Destination → Destination

Assembler
Syntax: MULS.W 〈ea〉, Dn16x16 → 32

MULS.L 〈ea〉, Dl 32x32 → 32
MULS.L 〈ea〉, Dh:Dl32 x 32 → 64

Attributes: Size = (Word, Long)

Description:: Multiplies two signed operands yielding a signed result.

In the word form, the multiplier and multiplicand are both word operands, and the
result is a long word operand. A register operand is the low-order word; the upper
word of the register is ignored. All 32 bits of the product are saved in the destina-
tion data register.

In the long form, the multiplier and multiplicand are both long word operands, and
the result is either a long word or a quad word. The long word result is the low-
order 32 bits of the quad word result; the high-order 32 bits of the product are dis-
carded.

Condition Codes:

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if overflow. Cleared otherwise.
C Always cleared.

NOTE

Overflow (V = 1) can occur only when multiplying 32-bit operands to
yield a 32-bit result. Overflow occurs if the high-order 32 bits of the
quad word product are not the sign extension of the low-order 32 bits.

X N Z V C

— * * * 0
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-107

MULS Signed Multiply MULS
Instruction Format (word form):

Instruction Fields:
Register field — Specifies a data register as the destination.
Effective Address field — Specifies the source operand. Only data addressing modes

are allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 0 REGISTER 1 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-108 REFERENCE MANUAL

MULS Signed Multiply MULS
Instruction Format (long form):

Instruction Fields:
Effective Address field — Specifies the source operand. Only data addressing modes

are allowed as shown:

Register Dl field — Specifies a data register for the destination operand. The 32-bit
multiplicand comes from this register, and the low-order 32 bits of the product
are loaded into this register.

Size field — Selects a 32- or 64-bit product.
0 — 32-bit product to be returned to register Dl.
1 — 64-bit product to be returned to Dh:Dl.

Register Dh field — If Size is 1, specifies the data register into which the high-order
32 bits of the product are loaded. If Dh = Dl and Size is 1, the results of the
operation are undefined. This field is unused, otherwise.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 1 0 0 0 0

MODE REGISTER

0 REGISTER Dl 1 SIZE 0 0 0 0 0 0 0 REGISTER Dh

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-109

MULU Unsigned Multiply MULU
Operation: Source ∗ Destination → Destination

Assembler
Syntax: MULU.W 〈ea〉, Dn16x16 → 32

MULU.L 〈ea〉, Dl32x32 → 32
MULU.L 〈ea〉, Dh:Dl32x32 →64

Attributes: Size = (Word, Long)

Description: Multiplies two unsigned operands yielding an unsigned result.

In the word form, the multiplier and multiplicand are both word operands, and the
result is a long word operand. A register operand is the low-order word; the upper
word of the register is ignored. All 32 bits of the product are saved in the destina-
tion data register.

In the long form, the multiplier and multiplicand are both long word operands, and
the result is either a long word or a quad word. The long word result is the low-
order 32 bits of the quad word result; the high-order 32 bits of the product are dis-
carded.

Condition Codes:

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if overflow. Cleared otherwise.
C Always cleared.

NOTE

Overflow (V=1) can occur only when multiplying 32-bit operands to
yield a 32-bit result. Overflow occurs if any of the high-order 32 bits
of the quad word product are not equal to zero.

X N Z V C

— * * * 0
 MOTOROLA INSTRUCTION SET CPU32

4-110 REFERENCE MANUAL

MULU Unsigned Multiply MULU
Instruction Format (word form):

Instruction Fields:
Register field —Specifies a data register as the destination.
Effective Address field —Specifies the source operand. Only data addressing modes

are allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 0 REGISTER 0 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-111

MULU Unsigned Multiply MULU
Instruction Format (long form):

Instruction Fields:
Effective Address field — Specifies the source operand. Only data addressing modes

are allowed as shown:

Register Dl field — Specifies a data register for the destination operand. The 32-bit
multiplicand comes from this register, and the low-order 32 bits of the product
are loaded into this register.

Size field — Selects a 32- or 64-bit product.
0 — 32-bit product to be returned to Register Dl.
1 — 64-bit product to be returned to Dh:Dl.

Register Dh field — If Size is 1, specifies the data register into which the high-order
32 bits of the product are loaded. If Dh = Dl and Size is 1, the results of the
operation are undefined.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 1 0 0 0 0

MODE REGISTER

0 REGISTER Dl 0 SIZE 0 0 0 0 0 0 0 REGISTER Dh

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-112 REFERENCE MANUAL

NBCD Negate Decimal with Extend NBCD
Operation: 0 – (Destination10) – X → Destination

Assembler
Syntax: NBCD 〈ea〉
Attributes: Size = (Byte)

Description: Subtracts the destination operand and the extend bit from zero. The
operation is performed using binary coded decimal arithmetic. The packed BCD
result is saved in the destination location. This instruction produces the tens comple-
ment of the destination if the extend bit is zero, or the nines complement if the extend
bit is one.

Condition Codes:

X Set the same as the carry bit.
N Undefined.
Z Cleared if the result is non-zero. Unchanged otherwise.
V Undefined.
C Set if a decimal borrow occurs. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the
start of the operation. This allows successful tests for zero results
upon completion of multiple precision operations.

Instruction Format:

X N Z V C

* U * U *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 0 0 0 0 0

MODE REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-113

NBCD Negate Decimal with Extend NBCD
Instruction Fields:

Effective Address field — Specifies the destination operand. Only data alterable
addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-114 REFERENCE MANUAL

NEG Negate NEG
Operation: 0 – (Destination) → Destination

Assembler
Syntax: NEG 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Subtracts the destination operand from zero and stores the result in
the destination location.

Condition Codes:

X Set the same as the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Cleared if the result is zero. Set otherwise.

Instruction Format:

Instruction Fields:
Size field — Specifies the size of the operation.

00 — Byte operation
01 — Word operation
10 — Long operation

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 1 0 0 SIZE

MODE REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-115

NEG Negate NEG
Effective Address field — Specifies the destination operand. Only data alterable

addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-116 REFERENCE MANUAL

NEGX Negate with Extend NEGX
Operation: 0 – (Destination) – X → Destination

Assembler
Syntax: NEGX 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Subtracts the destination operand and the extend bit from zero.
Stores the result in the destination location.

Condition Codes:

X Set the same as the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Cleared if the result is zero. Set otherwise.

NOTE

Normally, the Z condition bit is set via programming before the start
of the operation. This allows successful tests for zero results upon
completion of multiple precision operations.

Instruction Format:

Instruction Fields:
Size field — Specifies the size of the operation.

00 — Byte operation
01 — Word operation
10 — Long operation

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 0 0 0 SIZE

MODE REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-117

NEGX Negate with Extend NEGX
Effective Address field — Specifies the destination operand. Only data alterable

addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-118 REFERENCE MANUAL

NOP No Operation NOP
Operation: None

Assembler
Syntax: NOP

Attributes: Unsized

Description: Performs no operation. The program counter is incremented, but
processor state is otherwise unaffected. Execution continues with the instruction fol-
lowing the NOP instruction. The NOP instruction does not begin execution until all
pending bus cycles are completed. This synchronizes the pipeline, and prevents
instruction overlap.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-119

NOT Logical Complement NOT
Operation: Destination → Destination

Assembler
Syntax: NOT 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Calculates the ones complement of the destination operand and
stores the result in the destination location.

Condition Codes:

X Not affected.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

Instruction Fields:
Size field — Specifies the size of the operation.

00 — Byte operation
01 — Word operation
10 — Long operation

X N Z V C

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 1 1 0 SIZE

MODE REGISTER
 MOTOROLA INSTRUCTION SET CPU32

4-120 REFERENCE MANUAL

NOT Logical Complement NOT
Effective Address field — Specifies the destination operand. Only data alterable

addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-121

OR Inclusive Logical OR OR
Operation: Source + Destination → Destination

Assembler OR 〈ea〉, Dn
Syntax: OR Dn, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Performs an inclusive OR operation on the source operand and the
destination operand and stores the result in the destination location. The contents of
an address register may not be used as an operand.

Condition Codes:

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

Instruction Fields:
Register field — Specifies any of the eight data registers.
Opmode field:

X N Z V C

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 0 REGISTER OPMODE

MODE REGISTER

Byte Word Long Operation
000 001 010 (〈ea〉) + (〈Dn〉) → Dn
100 101 110 (〈Dn〉) + (〈ea〉) → ea
 MOTOROLA INSTRUCTION SET CPU32

4-122 REFERENCE MANUAL

OR Inclusive Logical OR OR
Effective Address field — If the location specified is a source operand, only data

addressing modes are allowed as shown:

If the location specified is a destination operand, only memory alterable addressing
modes are allowed as shown:

NOTES:
1. If the destination is a data register, it must be specified using the destination Dn mode, not the

destination 〈ea〉 mode.
2. Most assemblers use ORI when the source is immediate data.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-123

ORI Inclusive OR Immediate ORI
Operation: Immediate Data; Destination → Destination

Assembler
Syntax: ORI → #〈data〉, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Performs an inclusive OR operation on the immediate data and the
destination operand and stores the result in the destination location. The size of the
immediate data must match the operation size.

Condition Codes:

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Always cleared

Instruction Format:

Instruction Fields:
Size field — Specifies the size of the operation:

00 — Byte operation
01 — Word operation
10 — Long operation

X N Z V C

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 0 0 0 0 SIZE

MODE REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)
 MOTOROLA INSTRUCTION SET CPU32

4-124 REFERENCE MANUAL

ORI Inclusive OR Immediate ORI
Effective Address field — Specifies the destination operand. Only data alterable

addressing modes are allowed as shown:

Immediate field — (Data immediately following the instruction):
If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-125

ORI Inclusive OR Immediate ORI
to CCR to Condition Code Register to CCR
Operation: Source; CCR → CCR

Assembler
Syntax: ORI #〈data〉, CCR

Attributes: Size = (Byte)

Description: Performs an inclusive OR operation on the immediate operand and
the condition codes and stores the result in the condition code register (low-order
byte of the status register). All implemented bits of the condition code register are
affected.

Condition Codes:

X Set if bit 4 of immediate operand is zero. Unchanged otherwise.
N Set if bit 3 of immediate operand is zero. Unchanged otherwise.
Z Set if bit 2 of immediate operand is zero. Unchanged otherwise.
V Set if bit 1 of immediate operand is zero. Unchanged otherwise.
C Set if bit 0 of immediate operand is zero. Unchanged otherwise.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 BYTE DATA (8 BITS)
 MOTOROLA INSTRUCTION SET CPU32

4-126 REFERENCE MANUAL

ORI Inclusive OR Immediate to Status Register ORI
to SR (Privileged Instruction) to SR
Operation: If supervisor state

then Source; SR → SR
else TRAP

Assembler
Syntax: ORI #〈data〉, SR

Attributes: Size = (Word)

Description: Performs an inclusive OR operation of the immediate operand and
the contents of the status register and stores the result in the status register. All
implemented bits of the status register are affected.

Condition Codes:

X Set if bit 4 of immediate operand is zero. Unchanged otherwise.
N Set if bit 3 of immediate operand is zero. Unchanged otherwise.
Z Set if bit 2 of immediate operand is zero. Unchanged otherwise.
V Set if bit 1 of immediate operand is zero. Unchanged otherwise.
C Set if bit 0 of immediate operand is zero. Unchanged otherwise.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

WORD DATA
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-127

PEA Push Effective Address PEA
Operation: Sp – 4 → SP; 〈ea〉 → (SP)

Assembler
Syntax: PEA 〈ea〉
Attributes: Size = (Long)

Description: Computes the effective address and pushes it onto the stack. The
effective address must be a long word address.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:

Effective Address field — Specifies the address to be pushed onto the stack. Only
control addressing modes are allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 0 0 0 0 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + — —
– (An) — —

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-128 REFERENCE MANUAL

RESET Reset External Devices RESET
(Privileged Instruction)

Operation: If supervisor state
then Assert RESET Line
else TRAP

Assembler
Syntax: RESET

Attributes: Unsized

Description: Asserts the RESET signal for 512 clock periods, resetting all exter-
nal devices. The processor state, other than the program counter, is unaffected and
execution continues with the next instruction.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-129

ROL, ROR Rotate (Without Extend) ROL, ROR
Operation: Destination Rotated by 〈count〉 → Destination

Assembler ROd Dx, Dy
Syntax: ROd # 〈data〉, Dy

ROd 〈ea〉
where d is direction, L or R

Attributes: Size = (Byte, Word, Long)

Description: Rotates the bits of the operand in the direction specified (L or R).
The extend bit is not included in the rotation. For register rotation, the rotation count
can be specified in either of two ways:

1. Immediate — The count (1-8) is specified by the instruction.
2. Register — The count is the value in the data register specified by the instruc-

tion, modulo 64.

The size of the operation for register destinations is specified as byte, word, or long.
The contents of memory, 〈ea〉; can be rotated one bit only, and operand size is restrict-
ed to a word.

The ROL instruction rotates the bits of the operand to the left; the rotate count deter-
mines the number of bit positions rotated. Bits rotated out of the high-order bit go to
the carry bit and also back into the low-order bit.

The ROR instruction rotates the bits of the operand to the right; the rotate count deter-
mines the number of bit positions rotated. Bits rotated out of the low-order bit go to the
carry bit and also back into the high-order bit.

CROL

CROR
 MOTOROLA INSTRUCTION SET CPU32

4-130 REFERENCE MANUAL

ROL, ROR Rotate (Without Extend) ROL, ROR
Condition Codes:

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Set according to the last bit rotated out of the operand. Cleared when the

rotate count is zero.

Instruction Format (Register Rotate):

Instruction Fields (Register Rotate):

Count/Register field:
If i/r = 0, this field contains the rotate count. The values 1–7 represent counts
of 1–7, and 0 specifies a count of 8.
If i/r = 1, this field specifies a data register that contains the rotate count (mod-
ulo 64).

dr field — Specifies the direction of the rotate:
0 — Rotate right
1 — Rotate left

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

i/r field — Specifies the rotate count location:
If i/r = 0, immediate rotate count
If i/r = 1, register rotate count

Register field — Specifies a data register to be rotated

NOTE

Byte swapping in the low order word of a data register is best done
with ROR/ROR, W #〈8〉, Dn. A special hardware assist has been pro-
vided to minimize operation execution.

X N Z V C

— * * 0 *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 COUNT/REGISTER dr SIZE i/r 1 1 REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-131

ROL, ROR Rotate (Without Extend) ROL, ROR
Instruction Format (Memory Rotate):

Instruction Fields (Memory Rotate):

dr field — Specifies the direction of the rotate:
0 — Rotate right
1 — Rotate left

Effective Address field — Specifies the operand to be rotated. Only memory alterable
addressing modes are allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 1 0 0 1 1 dr 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-132 REFERENCE MANUAL

ROXL, ROXR Rotate with Extend ROXL, ROXR
Operation: Destination Rotated with X by 〈count〉 → Destination

Assembler ROXd Dx, Dy
Syntax: ROXd #〈data〉, Dy

ROXd 〈ea〉
where d is direction, L or R

Attributes: Size = (Byte, Word, Long)

Description: Rotates the bits of the operand in the direction specified (L or R). The ex-
tend bit is included in the rotation. For register rotation, the rotation count can be spec-
ified in either of two ways:

1. Immediate — The count (1–8) is specified by the instruction.
2. Register — The count is the value in the data register specified by the instruc-

tion, modulo 64.

The size of the operation for register destinations is specified as byte, word, or long.
The contents of memory, 〈ea〉, can be rotated one bit only, and operand size is restrict-
ed to a word.

The ROXL instruction rotates the bits of the operand to the left; the rotate count deter-
mines the number of bit positions rotated. Bits rotated out of the high-order bit go to
the carry bit and the extend bit; the previous value of the extend bit rotates into the low-
order bit.

The ROXR instruction rotates the bits of the operand to the right; the rotate count de-
termines the number of bit positions rotated. Bits rotated out of the low-order bit go to
the carry bit and the extend bit; the previous value of the extend bit rotates into the
high-order bit.

C XROXL

CX
ROXR
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-133

ROXL, ROXR Rotate with Extend ROXL, ROXR
Condition Codes:

X Set to the value of the last bit rotated out of the operand. Unaffected when
count is zero.

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Always cleared.
C Set according to the last bit rotated out of the operand. Set to the value of the

extend
 bit when count is zero.

Instruction Format (Register Rotate):

Instruction Fields (Register Rotate):

Count/Register field:
If i/r = 0, this field contains the rotate count. The values 1–7 represent counts
of 1–7, and 0 specifies a count of 8.
If i/r = 1, this field specifies a data register that contains the rotate count (mod-
ulo 64).

dr field — Specifies the direction of the rotate:
0 — Rotate right
1 — Rotate left

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

i/r field — Specifies the rotate count location:
If i/r = 0, immediate rotate count
If i/r = 1, register rotate count

Register field — Specifies a data register to be rotated

X N Z V C

* * * 0 *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 COUNT/REGISTER dr SIZE i/r 1 0 REGISTER
 MOTOROLA INSTRUCTION SET CPU32

4-134 REFERENCE MANUAL

ROXL, ROXR Rotate with Extend ROXL, ROXR
Instruction Format (Memory Rotate):

Instruction Fields (Memory Rotate):

dr field — Specifies the direction of the rotate:
0 — Rotate right
1 — Rotate left

Effective Address field — Specifies the operand to be rotated. Only memory alterable
addressing modes are allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 1 0 0 1 0 dr 1 1

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-135

RTD Return and Deallocate RTD
Operation: (SP) → PC; SP + 4 + d → SP

Assembler
Syntax: RTD #〈displacement〉
Attributes: Unsized

Description: Pulls the program counter value from the stack and adds the sign-
extended 16-bit displacement value to the stack pointer. The previous program
counter value is lost.

Condition Codes:
Not affected.

Instruction Format:

Instruction Field:
Displacement field — Specifies the twos complement integer to be sign extended and

added to the stack pointer.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0

DISPLACEMENT (16 BITS)
 MOTOROLA INSTRUCTION SET CPU32

4-136 REFERENCE MANUAL

RTE Return from Exception RTE
(Privileged Instruction)

Operation: If supervisor state
then (SP) → SR; SP + 2 → SP; (SP) → PC;
SP + 4 → SP;
restore state and de-allocate stack according to (SP)
else TRAP

Assembler
Syntax: RTE

Attributes: Unsized

Description: Loads the processor state information stored in the exception stack
frame located at the top of the stack into the processor. The instruction examines the
stack format field in the format/offset word to determine how much information must
be restored.

Condition Codes:
Set according to the condition code bits in the status register value restored from the

stack.

Instruction Format:

Format/Offset word (in stack frame):

Format Field of Format/Offset Word:
Contains the format code, which implies the stack frame size (including the format/off-

set word).
0000 — Short Format, removes four words. Loads the status register and the
program counter from the stack frame.
0001 — Throwaway Format, removes four words. Loads the status register
from the stack frame and switches to the active system stack. Continues the
instruction using the active system stack.
0010 — Instruction Error Format, removes six words. Loads the status register
and the program counter from the stack frame and discards the other words.
1000 — MC68010 Long Format. The MC68020 takes a format error exception.
1001 — Coprocessor Mid-Instruction Format, removes 10 words. Resumes
execution of coprocessor instruction.
1010 — MC68020 Short Format, removes 16 words and resumes instruction
execution.
1011 — MC68020 Long Format, removes 46 words and resumes instruction
execution.

Any other value in this field causes the processor to take a format error exception.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FORMAT 0 0 VECTOR OFFSET
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-137

RTR Return and Restore Condition Codes RTR
Operation: (SP) → CCR; SP + 2 → SP;

(SP) → PC; SP + 4 → SP

Assembler
Syntax: RTR

Attributes: Unsized

Description: Pulls the condition code and program counter values from the stack.
The previous condition codes and program counter values are lost. The supervisor
portion of the status register is unaffected.

Condition Codes:
Set to the condition codes from the stack.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1
 MOTOROLA INSTRUCTION SET CPU32

4-138 REFERENCE MANUAL

RTS Return from Subroutine RTS
Operation: (SP) → PC; SP + 4 → SP

Assembler
Syntax: RTS

Attributes: Unsized

Description: Pulls the program counter value from the stack. The previous value
is lost.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-139

SBCD Subtract Decimal with Extend SBCD
Operation: Destination10 – Source10 – X → Destination

Assembler SBCD Dx, Dy
Syntax: SBCD –(Ax), –(Ay)

Attributes: Size = (Byte)

Description: Subtracts the source operand and the extend bit from the destina-
tion operand and stores the result in the destination location. The subtraction is per-
formed using binary coded decimal arithmetic; the operands are packed BCD
numbers. The instruction has two modes:

1. Data register to data register: The data registers specified by the instruction
contain the operands.

2. Memory to memory: The address registers specified by the instruction
access the operands from memory using the predecrement addressing
mode.

Condition Codes:

X Set the same as the carry bit.
N Undefined.
Z Cleared if the result is nonzero. Unchanged otherwise.
V Undefined.
C Set if a borrow (decimal) is generated. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the
start of an operation. This allows successful tests for zero results
upon completion of multiple-precision operations.

Instruction Format:

Instruction Fields:
Register Dy/Ay field — Specifies the destination register.

If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement addressing
mode.

R/M field — Specifies the operand addressing mode:
0 — The operation is data register to data register.
1 — The operation is memory to memory.

Register Dx/Ax field — Specifies the source register:
If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement addressing
mode.

X N Z V C

* U * U *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 REGISTER Ry 1 0 0 0 0 R/M REGISTER Rx
 MOTOROLA INSTRUCTION SET CPU32

4-140 REFERENCE MANUAL

Scc Set According to Condition Code Scc
Operation: If Condition True

then set Destination
else clear Destination

Assembler
Syntax: Scc 〈ea〉
Attributes: Size = (Byte)

Description: Tests the specified condition code. If the condition is true, sets all
bits in the byte specified to 1 (TRUE). Otherwise, clears all bits to 0 (FALSE). Condi-
tion code cc specifies one of the following conditions:

Condition Codes:
Not affected.

Instruction Format:

cc Name Code Description cc Name Code Description
CC Carry Clear 0100 C LS Low or Same 0011 C; Z
CS Carry Set 0101 C LT Less Than 1101 N • V; N • V
EQ Equal 0111 Z MI Minus 1011 N

F Never equal 0001 0
N
E

Not Equal 0110 Z

GE Greater or Equal 1100 N • V; N • V PL Plus 1010 N
GT Greater Than 1110 N • V • Z; N • V • Z T Always true 0000 1

HI High 0010 C • Z
V
C

Overflow Clear 1000 V

LE Less or Equal 1111 Z; N • V; N • V
V
S

Overflow Set 1001 V

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 1 CONDITION 1 1

MODE REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-141

Scc Set According to Condition Code Scc
Instruction Fields:

Condition field — The binary code for one of the conditions listed in the table.
Effective Address field — Specifies the location in which the true/false byte is to be

stored. Only data alterable addressing modes are allowed as shown:

NOTE

A subsequent NEG.B instruction with the same effective address can
be used to change the Scc result from TRUE or FALSE to the equiv-
alent arithmetic value (TRUE = 1, FALSE = 0).

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-142 REFERENCE MANUAL

STOP Load Status Register and Stop STOP
(Privileged Instruction)

Operation: If supervisor state
then Immediate Data → SR; STOP
else TRAP

Assembler
Syntax: STOP #〈data〉
Attributes: Unsized

Description: Moves the immediate operand into the status register (both user and
supervisor portions), advances the program counter to point to the next instruction,
and stops the fetching and executing of instructions. A trace, interrupt, or reset excep-
tion causes the processor to resume instruction execution. A trace exception occurs if
instruction tracing is enabled (T0 = 1, T1=0) when the STOP instruction begins execu-
tion. If an interrupt request is asserted with a priority higher than the priority level set
by the new status register value, an interrupt exception occurs; otherwise, the inter-
rupt request is ignored. External reset always initiates reset exception processing.

Condition Codes:
Set according to the immediate operand.

Instruction Format:

Instruction Fields:
Immediate field — Specifies the data to be loaded into the status register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0

IMMEDIATE DATA
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-143

SUB Subtract SUB
Operation: Destination – Source → Destination

Assembler SUB 〈ea〉, Dn
Syntax: SUB Dn, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Subtracts the source operand from the destination operand and
stores the result in the destination. The mode of the instruction indicates which oper-
and is the source, which is the destination, and which is the operand size.

Condition Codes:

X Set to the value of the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow is generated. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.

Instruction Fields:
Register field — Specifies any of the eight data registers.
Opmode field:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 1 REGISTER OPMODE

MODE REGISTER

Byte Word Long Operation
000 001 010 (〈ea〉) – (〈Dn〉) → 〈Dn〉
100 101 110 (〈Dn〉) – (〈ea〉) → 〈ea〉
 MOTOROLA INSTRUCTION SET CPU32

4-144 REFERENCE MANUAL

SUB Subtract SUB
Effective Address field — Determines the addressing mode. If the location specified

is a source operand, all addressing modes are allowed as shown:

*For byte size operation, address register direct is not allowed.

If the location specified is a destination operand, only memory alterable addressing
modes are allowed as shown:

NOTES:
1. If the destination is a data register, it must be specified as a destination Dn address, not as a destination 〈ea〉

address.
2. Most assemblers use SUBA when the destination is an address register, and SUBI or SUBQ when the source

is immediate data.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An* 001 Reg. number: An (xxx).L 111 001
(An) 010 Reg. number: An #〈data〉 111 100

(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-145

SUBA Subtract Address SUBA
Operation: Destination – Source → Destination

Assembler
Syntax: SUBA 〈ea〉, An

Attributes: Size = (Word, Long)

Description: Subtracts the source operand from the destination address register
and stores the result in the address register. Word size source operands are sign
extended to 32-bit quantities prior to the subtraction.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Register field — Specifies the destination, any of the eight address registers.
Opmode field — Specifies the size of the operation:

011 — Word operation. The source operand is sign extended to a long oper-
and and theoperation is performed on the address register using all 32 bits.
111 — Long operation.

Effective Address field — Specifies the source operand. All addressing modes are
allowed as shown:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 0 0 1 REGISTER OPMODE

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An 001 Reg. number: An (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 111 100
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-146 REFERENCE MANUAL

SUBI Subtract Immediate SUBI
Operation: Destination – Immediate Data → Destination

Assembler
Syntax: SUBI #〈data〉, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Subtracts the immediate data from the destination operand and
stores the result in the destination location. The size of the immediate data must
match the operation size.

Condition Codes:

X Set to the value of the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a borrow occurs. Cleared otherwise.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 0 1 0 0 SIZE

MODE REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-147

SUBI Subtract Immediate SUBI
Instruction Fields:

Size field — Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

Effective Address field — Specifies the destination operand. Only data alterable
addressing modes are allowed as shown:

Immediate field — (Data immediately following the instruction)
If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-148 REFERENCE MANUAL

SUBQ Subtract Quick SUBQ
Operation: Destination – Immediate Data → Destination

Assembler
Syntax: SUBQ #〈data〉, 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Subtracts the immediate data (1–8) from the destination operand.
Only word and long operations are allowed with address registers, and the condition
codes are not affected. When subtracting from address registers, the entire destina-
tion address register is used, regardless of the operation size.

Condition Codes:

X Set to the value of the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a borrow occurs. Cleared otherwise.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 1 DATA 1 SIZE

MODE REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-149

SUBQ Subtract Quick SUBQ
Instruction Fields:

Data field — Three bits of immediate data; 1–7 represent immediate values of 1–7,
and 0 represents 8.

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

Effective Address field — Specifies the destination location. Only alterable address-
ing modes are allowed as shown:

*Word and long only

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An* — — (xxx).L 111 001
(An) 010 Reg. number: An #〈data〉 — —

(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
 MOTOROLA INSTRUCTION SET CPU32

4-150 REFERENCE MANUAL

SUBX Subtract with Extend SUBX
Operation: Destination – Source – X → Destination

Assembler SUBX Dx, Dy
Syntax: SUBX –(Ax), –(Ay)

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the source operand and the extend bit from the destination
operand and stores the result in the destination location. The instruction has two
modes:

1. Register to register: Data registers specified by the instruction contain the op-
erands.

2. Memory to memory: Address registers specified by the instruction access op-
erands from memory using predecrement addressing mode.

Condition Codes:

X Set to the value of the carry bit.
N Set if the result is negative. Cleared otherwise.
Z Cleared if the result is nonzero. Unchanged otherwise.
V Set if an overflow occurs. Cleared otherwise.
C Set if a carry occurs. Cleared otherwise.

NOTE

Normally the Z condition code bit is set via programming before the
start of an operation. This allows successful tests for zero results
upon completion of multiple-precision operations.

X N Z V C

* * * * *
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-151

SUBX Subtract with Extend SUBX
Instruction Format:

Instruction Fields:
Register Dy/Ay field — Specifies the destination register:

If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement addressing
mode.

Size field — Specifies the size of the operation:
00 — Byte operation
01 — Word operation
10 — Long operation

R/M field — Specifies the operand addressing mode:
0 — The operation is data register to data register.
1 — The operation is memory to memory.

Register Dx/Ax field — Specifies the source register:
If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement addressing
mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 REGISTER Rx 1 SIZE 0 0 R/M REGISTER Ry
 MOTOROLA INSTRUCTION SET CPU32

4-152 REFERENCE MANUAL

SWAP Swap Register Halves SWAP
Operation: Register [31:16] ↔ Register [15:0]

Assembler
Syntax: SWAP Dn

Attributes: Size = (Word)

Description: Exchange the 16-bit words (halves) of a data register.

Condition Codes:

X Not affected.
N Set if the most significant bit of the 32-bit result is set. Cleared otherwise.
Z Set if the 32-bit result is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

Instruction Fields:
Register field — Specifies the data register to swap.

X N Z V C

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 0 0 0 REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-153

TBLS Table Lookup and Interpolate (Signed) TBLS
TBLSN TBLSN
Operation: Rounded:

ENTRY(n) + {(ENTRY(n + 1) – ENTRY(n)) ∗ Dx [7:0]} / 256 → Dx
Unrounded:
ENTRY(n) ∗ 256 + {(ENTRY(n + 1) – ENTRY(n)) ∗ Dx [7:0]} → Dx

Where ENTRY(n) and ENTRY(n + 1) are either:
1. Consecutive entries in the table pointed to by the 〈ea〉 and
indexed by Dx [15:8] ∗ size or,
2. The registers Dym, Dyn, respectively

Assembler
Syntax: TBLS.〈size〉〈 ea〉,Dx(Result rounded)

TBLSN.〈size〉〈 ea〉,Dx(Result not rounded)
TBLS.〈size〉Dym:Dyn,Dx(Result rounded)
TBLSN.〈size〉Dym:Dyn, Dx(Result not rounded)

Attributes: Size = (Byte, Word, Long)

Description: The signed table lookup and interpolate instruction, TBLS, allows
the efficient use of compressed linear data tables to model complex functions. The
TBLS instruction has two modes of operation: table lookup and interpolate mode, and
data register interpolate mode.

For table lookup and interpolate mode, data register Dx [15:0] contains the indepen-
dent variable X. The effective address points to the start of a signed byte, word, or
long-word table containing a linear representation of the dependent variable, Y, as a
function of X. In general, the independent variable, located in the low-order word of Dx,
consists of an 8-bit integer part and an 8-bit fractional part. An assumed radix point is
located between bits 7 and 8. The integer part, Dx [15:8], is scaled by the operand size
and is used as an offset into the table. The selected entry in the table is subtracted
from the next consecutive entry. A fractional portion of this difference is taken by mul-
tiplying by the interpolation fraction, Dx [7:0]. The adjusted difference is then added to
the selected table entry. The result is returned in the destination data register, Dx.

For register interpolate mode, the interpolation occurs using the Dym and Dyn regis-
ters in place of the two table entries. For this mode, only the fractional portion, Dx [7:0],
is used in the interpolation, and the integer portion, Dx [15:8], is ignored. The register
interpolation mode may be used with several table lookup and interpolations to model
multidimensional functions.
 MOTOROLA INSTRUCTION SET CPU32

4-154 REFERENCE MANUAL

TBLS Table Lookup and Interpolate (Signed) TBLS
TBLSN TBLSN

Signed table entries range from –2n–1 to 2n–1 – 1, where n is 8, 16, or 32 for byte, word,
and long-word tables, respectively.

Rounding of the result is optionally selected via the ’R’ instruction field. If R = 0 (TBLS),
the fractional portion is rounded according to the round-to-nearest algorithm. The
rounding procedure can be summarized by the following table.

The adjusted difference is then added to the selected table entry. The rounded result
is returned in the destination data register, Dx. Only the portion of the register corre-
sponding to the selected size is affected.

If R =1 (TBLSN), the result is returned in register Dx without rounding. If the size is
byte, the integer portion of the result is returned in Dx [15:8]. The integer portion of a
word result is stored in Dx [23:8]. The least significant 24 bits of a long result are stored
in Dx [31:8]. Byte and word results are sign extended to fill the entire 32-bit register.

NOTE

A long-word result contains only the least significant 24 bits of integer
precision.

Adjusted Difference Fraction Rounding Adjustment
n ≤ – ∫ –1

– ∫ < n < ∫ +0
n ≥ ∫ +1

31 24 23 16 15 8 7 0
BYTE UNAFFECTED UNAFFECTED UNAFFECTED RESULT
WORD UNAFFECTED UNAFFECTED RESULT RESULT
LONG RESULT RESULT RESULT RESULT

31 24 23 16 15 8 7 0
BYTE SIGN EXTENDED SIGN EXTENDED RESULT FRACTION
WORD SIGN EXTENDED RESULT RESULT FRACTION
LONG RESULT RESULT RESULT FRACTION
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-155

TBLS Table Lookup and Interpolate (Signed) TBLS
TBLSN TBLSN

For all sizes, the 8-bit fractional portion of the result is returned in the low byte of the
data register, Dx [7:0]. User software can make use of the fractional data to reduce
cumulative errors in lengthy calculations or implement rounding algorithms different
from those provided by other forms of TBLS. The assumed radix point described pre-
viously places two restrictions on the programmer:

1. Tables are limited to 257 entries in length.

2. Interpolation resolution is limited to 1/256 the distance between consecutive
table entries. The assumed radix point should not, however, be construed by
the programmer as a requirement that the independent variable be calcu-
lated as a fractional number in the range 0 ≤ X ≤ 255. On the contrary, X
should be considered an integer in the range 0 ≤ X ≤ 65535, realizing that the
table is actually a compressed linear representation of a function in which
only every 256th value is actually stored in memory.

See 4.6 Table Lookup and Interpolation Instructions for more information on the
TBLS/TBLSN instruction.

Condition Codes:

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if the integer portion of an unrounded long result is not in the range, – (223)

≤ Result ≤ (223) – 1. Cleared otherwise.
C Always cleared.

Instruction Format:
Table lookup and interpolate:

X N Z V C

— * * * 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 1 1 1 0 0 0 0 0

MODE REGISTER

0 REGISTER Dx 1 R 0 1 SIZE 0 0 0 0 0 0
 MOTOROLA INSTRUCTION SET CPU32

4-156 REFERENCE MANUAL

TBLS Table Lookup and Interpolate (Signed) TBLS
TBLSN TBLSN

Data Register Interpolate:

Instruction Fields:
Effective address field (table lookup and interpolate mode only:

Specifies the source location. Only control addressing modes are allowed as
shown:

Size field:
Specifies the size of operation.

00 — byte operation
01 — word operation
10 — long operation

Register field:
Specifies the destination data register, Dx. On entry, the register contains the
interpolation fraction and entry number.

Dym, Dyn field:
If the effective address mode field is nonzero, this operand register is unused
and should be zero. If the effective address mode field is zero, the surface
interpolation variant of this instruction is implied, and Dyn specifies one of the
two source operands.

Rounding mode field:
The ’R’ bit controls rounding of the final result. When R = 0, the result is
rounded according to the round-to-nearest algorithm. When R = 1, the result is
returned unrounded.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 REGISTER Dym

0 REGISTER Dx 1 R 0 0 SIZE 0 0 0 REGISTER Dyn

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + — —
– (An) — —

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-157

TBLU Table Lookup and Interpolate (Unsigned) TBLU
TBLUN TBLUN
Operation: Rounded:

ENTRY(n) + {(ENTRY(n + 1) – ENTRY(n)) ∗ Dx [7:0]} / 256 → Dx
Unrounded:
ENTRY(n) ∗ 256 + {(ENTRY(n + 1) – ENTRY(n)) ∗ Dx [7:0]} → Dx

Where ENTRY(n) and ENTRY(n + 1) are either:
1. Consecutive entries in the table pointed to by the 〈ea〉 and
indexed by Dx [15:8] ∗ size or,
2. The registers Dym, Dyn respectively

Assembler
Syntax: TBLU.〈size〉〈 ea〉,Dx(Result rounded)

TBLUN.〈size〉〈 ea〉,Dx(Result not rounded)
TBLU.〈size〉Dym:Dyn,Dx(Result rounded)
TBLUN.〈size〉Dym:Dyn, Dx(Result not rounded)

Attributes: Size = (Byte, Word, Long)

Description: The signed table lookup and interpolate instruction, TBLU, allows
the efficient use of compressed linear data tables to model complex functions. The
TBLU instruction has two modes of operation: table lookup and interpolate mode, and
data register interpolate mode.

For table lookup and interpolate mode, data register Dx [15:0] contains the indepen-
dent variable X. The effective address points to the start of a signed byte, word, or
long-word table containing a linear representation of the dependent variable, Y, as a
function of X. In general, the independent variable, located in the low-order word of Dx,
consists of an 8-bit integer part and an 8-bit fractional part. An assumed radix point is
located between bits 7 and 8. The integer part, Dx [15:8], is scaled by the operand size
and is used as an offset into the table. The selected entry in the table is subtracted
from the next consecutive entry. A fractional portion of this difference is taken by mul-
tiplying by the interpolation fraction, Dx [7:0]. The adjusted difference is then added to
the selected table entry. The result is returned in the destination data register, Dx.

For register interpolate mode, the interpolation occurs using the Dym and Dyn regis-
ters in place of the two table entries. For this mode, only the fractional portion, Dx [7:0],
is used in the interpolation, and the integer portion, Dx [15:8], is ignored. The register
interpolation mode may be used with several table lookup and interpolations to model
multidimensional functions.
 MOTOROLA INSTRUCTION SET CPU32

4-158 REFERENCE MANUAL

TBLU Table Lookup and Interpolate (Unsigned) TBLU
TBLUN TBLUN

Unsigned table entries range from 0 to 2n–1 where n is 8, 16, or 32 for byte, word, and
long-word tables, respectively. Unsigned and unrounded table results are zero extend-
ed.

Rounding of the result is optionally selected via the ’R’ instruction field. If R = 0 (TBLU),
the fractional portion is rounded according to the round-to-nearest algorithm. The
rounding procedure can be summarized by the following table.

The adjusted difference is then added to the selected table entry. The rounded result
is returned in the destination data register, Dx. Only the portion of the register corre-
sponding to the selected size is affected.

If R = 1 (TABLUN), the result is returned in register Dx without rounding. If the size is
byte, the integer portion of the result is returned in Dx (15:8). The integer portion of a
word result is stored in Dx (23:8). The least significant 24 bits of a long result are stored
in Dx (31:8). Byte and word results are zero extended to fill the entire 32-bit register.

NOTE

A long-word result contains only the least significant 24 bits of integer
precision.

Adjusted Difference Fraction Rounding Adjustment
n < ∫ +0
n ≥ ∫ +1

31 24 23 16 15 8 7 0
BYTE UNAFFECTED UNAFFECTED UNAFFECTED RESULT
WORD UNAFFECTED UNAFFECTED RESULT RESULT
LONG RESULT RESULT RESULT RESULT

31 24 23 16 15 8 7 0
BYTE ZERO EXTENDED ZERO EXTENDED RESULT FRACTION
WORD ZERO EXTENDED RESULT RESULT FRACTION
LONG RESULT RESULT RESULT FRACTION
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-159

TBLU Table Lookup and Interpolate (Unsigned) TBLU
TBLUN TBLUN

For all sizes, the 8-bit fractional portion of the result is returned in the low byte of
the data register, Dx (7:0). User software can make use of the fractional data to re-
duce cumulative errors in lengthy calculations or implement rounding algorithms
different from those provided by other forms of TBLU. The assumed radix point de-
scribed previously places two restrictions on the programmer:

1. Tables are limited to 257 entries in length.
2. Interpolation resolution is limited to 1/256 the distance between consecutive ta-

ble entries.The assumed radix point should not, however, be construed by the
programmer as a requirement that the independent variable be calculated as a
fractional number in the range 0 ≤ X ≤ 255. On the contrary, X should be con-
sidered to be an integer in the range 0 ≤ X ≤ 65535, realizing that the table is
actually a compressed linear representation of a function in which only every
256th value is actually stored in memory.

See 4.6 Table Lookup and Interpolation Instructions for more information on the
TBLU/TBLUN instruction.

Condition Codes:

X Not affected.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if the integer portion of an unrounded long result is not in the range,0 ≤

Result ≤ (224) – 1. Cleared otherwise.
C Always cleared.

Instruction Format:
Table Lookup and Interpolate:

X N Z V C

— * * * 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 1 1 1 0 0 0 0 0

MODE REGISTER

0 REGISTER Dx 0 R 0 1 SIZE 0 0 0 0 0 0
 MOTOROLA INSTRUCTION SET CPU32

4-160 REFERENCE MANUAL

TBLU Table Lookup and Interpolate (Unsigned) TBLU
TBLUN TBLUN

Data Register Interpolate:

Instruction Fields:
Effective address field (table lookup and interpolate mode only):

Specifies the source location. Only control addressing modes are allowed as
shown:

Size field:
Specifies the size of operation.

00 — byte operation
01 — word operation
10 — long operation

Register field:
Specifies the destination data register, Dx. On entry, the register contains the
interpolation fraction and entry number.

Dym, Dyn field:
If the effective address mode field is nonzero, this operand register is unused
and should be zero. If the effective address mode field is zero, the surface
interpolation variant of this instruction is implied, and Dyn specifies one of the
two source operands.

Rounding mode field:
The ’R’ bit controls rounding of the final result. When R = 0, the result is
rounded according to the round-to-nearest algorithm. When R = 1, the result is
returned unrounded.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 REGISTER Dym

0 REGISTER Dx 0 R 0 0 SIZE 0 0 0 REGISTER Dyn

Addressing Mode Mode Register Addressing Mode Mode Register
Dn — — (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + — —
– (An) — —

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-161

TAS Test and Set an Operand TAS
Operation: Destination Tested → Condition Codes; 1 → bit 7 of Destination

Assembler
Syntax: TAS 〈ea〉
Attributes: Size = (Byte)

Description: Tests and sets the byte operand addressed by the effective address
field. The instruction tests the current value of the operand and sets the N and Z con-
dition bits appropriately. TAS also sets the high-order bit of the operand. The opera-
tion uses a read-modify-write memory cycle that completes the operation without
interruption. This instruction supports use of a flag to coordinate several processors.

Condition Codes:

X Not affected.
N Set if the most significant bit of the operand is currently set. Cleared otherwise.
Z Set if the operand was zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

X N Z V C

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 0 1 0 1 1

MODE REGISTER
 MOTOROLA INSTRUCTION SET CPU32

4-162 REFERENCE MANUAL

TAS Test and Set an Operand TAS
Instruction Fields: Effective Address field — Specifies the location of the tested oper-

and. Only data alterable addressing modes are allowed as shown:

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An — — (xxx).L 111 001

(An) 010 Reg. number: An #〈data〉 — —
(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) — —

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) — —

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) — —
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-163

TRAP Trap TRAP
Operation: SSP – 2 → SSP; Format/Offset → (SSP);

SSP – 4 → SSP; PC → (SSP); SSP – 2 → SSP;
SR → (SSP); Vector Address → PC

Assembler
Syntax: TRAP #〈vector〉
Attributes: Unsized

Description: Causes a TRAP #〈vector〉 exception. A vector number is generated
by adding the immediate vector operand to 32. The range of vector operand values is
0–5, thus there are 16 possible vector numbers.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Vector field — Specifies the trap vector to be taken.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 0 VECTOR
 MOTOROLA INSTRUCTION SET CPU32

4-164 REFERENCE MANUAL

TRAPcc Trap on Condition TRAPcc
Operation: If cc then TRAP

Assembler TRAPcc
Syntax: TRAPcc.W #〈data〉TRAPcc.L #〈data〉
Attributes: Unsized or Size = (Word, Long)

Description: If the specified condition is true, causes a TRAPcc exception (vector
number 7). The address of the next instruction word (current PC) is pushed onto the
stack. If the condition is not true, the processor performs no operation and execution
continues with the next instruction. The immediate data operand must be placed in
the word(s) immediately following the operation word. It is available to the trap han-
dler. Condition code cc specifies one of the following conditions.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Condition field — The binary code for one of the conditions listed in the table.
Opmode field — Selects the instruction form.

010 — Instruction is followed by word-size operand.
011 — Instruction is followed by long-word-size operand.
100 — Instruction has no operand.

cc Name Code Description cc Name Code Description
CC Carry Clear 0100 C LS Low or Same 0011 C; Z
CS Carry Set 0101 C LT Less Than 1101 N • V; N • V
EQ Equal 0111 Z MI Minus 1011 N

F Never equal 0001 0
N
E

Not Equal 0110 Z

GE Greater or Equal 1100 N • V; N • V PL Plus 1010 N
GT Greater Than 1110 N • V • Z; N • V • Z T Always true 0000 1

HI High 0010 C • Z
V
C

Overflow Clear 1000 V

LE Less or Equal 1111 Z; N • V; N • V
V
S

Overflow Set 1001 V

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 CONDITION 1 1 1 1 1 OPMODE

OPTIONAL WORD

OR LONG WORD
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-165

TRAPV Trap on Overflow TRAPV
Operation: If V then TRAP

Assembler
Syntax: TRAPV

Attributes: Unsized

Description: If the CCR overflow bit is set, there is a TRAPV exception (vector
number 7). If the bit is not set, the processor performs no operation and execution
continues with the next instruction.

Condition Codes:
Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0
 MOTOROLA INSTRUCTION SET CPU32

4-166 REFERENCE MANUAL

TST Test an Operand TST
Operation: Destination Tested → Condition Codes

Assembler
Syntax: TST 〈ea〉
Attributes: Size = (Byte, Word, Long)

Description: Compares the operand with zero and sets condition codes accord-
ing to the results of the test.

Condition Codes:

X Not affected.
N Set if the operand is negative. Cleared otherwise.
Z Set if the operand is zero. Cleared otherwise.
V Always cleared.
C Always cleared.

Instruction Format:

Instruction Fields:
Size field — Specifies the size of the operation:

00 — Byte operation
01 — Word operation
10 — Long operation

X N Z V C

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 0 1 0 SIZE

MODE REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-167

TST Test an Operand TST
Effective Address field — Specifies the destination operand. All addressing modes

are allowed as shown:

*Word or long word operation only

Addressing Mode Mode Register Addressing Mode Mode Register
Dn 000 Reg. number: Dn (xxx).W 111 000
An* 001 Reg. number: An (xxx).L 111 001
(An) 010 Reg. number: An #〈data〉 111 100

(An) + 011 Reg. number: An
– (An) 100 Reg. number: An

(d16, An) 101 Reg. number: An (d16, PC) 111 010

(d8, An, Xn) 110 Reg. number: An (d8, PC, Xn) 111 011

(bd, An, Xn) 110 Reg. number: An (bd, PC, Xn) 111 011
 MOTOROLA INSTRUCTION SET CPU32

4-168 REFERENCE MANUAL

UNLK Unlink UNLK
Operation: An → SP; (SP) → An; SP + 4 → SP

Assembler
Syntax: UNLK An

Attributes: Unsized

Description: Loads the stack pointer from the specified address register then
loads the address register with a long word pulled from the top of the stack.

Condition Codes:
Not affected.

Instruction Format:

Instruction Fields:
Register field — Specifies the address register for the instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 1 REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-169

4.5 Instruction Format Summary

A summary of the primary words in each instruction of the instruction set follows. The
complete instruction definition consists of the primary words followed by the address-
ing mode operands such as immediate data fields, displacements, and index oper-
ands. The four most significant bits of the first (or only) primary word provide a means
of categorizing the instructions. Table 4-11 is an operation code (opcode) map that
lists an instruction category for each combination of these bits.

Table 4-11 Operation Code Map

Bits [15:12] Operation
0000 Bit Manipulation/MOVEP/Immediate
0001 Move Byte
0010 Move Long
0011 Move Word
0100 Miscellaneous
0101 ADDQ/SUBQ/Scc/DBcc/TRAPcc
0110 Bcc/BSR/BRA
0111 MOVEQ
1000 OR/DIV/SBCD
1001 SUB/SUBX
1010 (Unassigned, Reserved)
1011 CMP/ EOR
1100 AND/MUL/ABCD/EXG
1101 ADD/ADDX
1110 Shift/Rotate/Bit Field
1111 Table Lookup and Interpolation
 MOTOROLA INSTRUCTION SET CPU32

4-170 REFERENCE MANUAL

ORI
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 0 0 0 0 SIZE

MODE REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)

Size Field: 00 = Byte 01 = Word 10 = Long

ORI to CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 BYTE DATA (8 BITS)

ORI to SR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

WORD DATA

CMP2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 0 SIZE 0 1 1

MODE REGISTER

D/A REGISTER 0 0 0 0 0 0 0 0 0 0 0 0

Size Field: 00 = Byte 01 = Word 10 = Long

CHK2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 0 SIZE 0 1 1

MODE REGISTER

D/A REGISTER 1 0 0 0 0 0 0 0 0 0 0 0

Size Field: 00 = Byte 01 = Word 10 = Long

BTST (Dynamic)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 REGISTER 1 0 0

MODE REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-171

BCHG (Dynamic)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 REGISTER 1 0 1

MODE REGISTER

BCLR (Dynamic)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 REGISTER 1 1 0

MODE REGISTER

BSET (Dynamic)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 REGISTER 1 1 1

MODE REGISTER

MOVEP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 DATA REGISTER OPMODE 0 0 1 ADDR REGISTER

DISPLACEMENT (16 BITS)

OPMODE FIELD: 100 = Transfer Word From Memory to Register
101 = Transfer Long From Memory to Register
110 = Transfer Word From Register to Memory
111 = Transfer Word From Register to Memory

ANDI
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 0 0 1 0 SIZE

MODE REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)

Size Field: 00 = Byte 01 = Word 10 = Long

ANDI to CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 BYTE DATA (8 BITS)

ANDI to SR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0

WORD DATA
 MOTOROLA INSTRUCTION SET CPU32

4-172 REFERENCE MANUAL

SUBI
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 0 1 0 0 SIZE

MODE REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)

Size Field: 00 = Byte 01 = Word 10 = Long

ADDI
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 0 1 1 0 SIZE

MODE REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)

Size Field: 00 = Byte 01 = Word 10 = Long

BTST (Static)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 0 0 0 0 0

MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER

Bit Number Field: Modulo 32-bit selection

BCHG (Static)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 0 0 0 0 1

MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER

Bit Number Field: Modulo 32-bit selection

BCLR (Static)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 0 0 0 1 0

MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER

Bit Number Field: Modulo 32-bit selection
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-173

BSET (Static)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 0 0 0 1 1

MODE REGISTER

0 0 0 0 0 0 0 0 BIT NUMBER

Bit Number Field: Modulo 32-bit selection

EORI
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 0 1 0 SIZE

MODE REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)

Size Field: 00 = Byte 01 = Word 10 = Long

EORI to CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 BYTE DATA (8 BITS)

EORI to SR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0

WORD DATA (16 BITS)

CMPI
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 1 0 0 SIZE

MODE REGISTER

WORD DATA (16 BITS) BYTE DATA (8 BITS)

LONG DATA (32 BITS)

Size Field: 00 = Byte 01 = Word 10 = Long

MOVES
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 0 0 0 1 1 1 0 SIZE

MODE REGISTER

A/D REGISTER dr 0 0 0 0 0 0 0 0 0 0 0

dr Field: 0 = EA to Register 1 = Register to EA
 MOTOROLA INSTRUCTION SET CPU32

4-174 REFERENCE MANUAL

MOVE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DESTINATION EFFECTIVE ADDRESS

0 0 SIZE

REGISTER MODE MODE REGISTER

Size Field: 00 = Byte 01 = Word 10 = Long

Note register and mode locations.

MOVEA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DESTINATION EFFECTIVE ADDRESS

0 0 SIZE 0 0 1

REGISTER MODE REGISTER

Size Field: 00 = Byte 01 = Word 10 = Long

NEGX
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 0 0 0 SIZE

MODE REGISTER

Size Field: 00 = Byte 01 = Word 10 = Long

MOVE from SR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 0 0 0 1 1

MODE REGISTER

CHK
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 REGISTER SIZE 0

MODE REGISTER

Size Field: 00 = Byte 01 = Word 10 = Long

LEA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 REGISTER 1 1 1

MODE REGISTER
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-175

CLR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 0 1 0 SIZE

MODE REGISTER

Size Field: 00 = Byte 01 = Word 10 = Long

MOVE from CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 0 1 0 1 1

MODE REGISTER

NEG
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 0 0 0 SIZE

MODE REGISTER

Size Field: 00 = Byte 01 = Word 10 = Long

MOVE to CCR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 1 0 0 1 1

MODE REGISTER

NOT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 1 1 0 SIZE

MODE REGISTER

Size Field: 00 = Byte 01 = Word 10 = Long

MOVE to SR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 0 1 1 0 1 1

MODE REGISTER

NBCD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 0 0 0 0 0

MODE REGISTER
 MOTOROLA INSTRUCTION SET CPU32

4-176 REFERENCE MANUAL

LINK Long
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 0 0 0 1 REGISTER

HIGH-ORDER DISPLACEMENT

LOW-ORDER DISPLACEMENT

SWAP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 0 0 0 REGISTER

BKPT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0 1 0 0 1 VECTOR

PEA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 0 0 0 0 1

MODE REGISTER

Size Field: 00 = Byte 01 = Word 10 = Long

EXT, EXTB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 OPMODE 0 0 0 REGISTER

Opmode Field: 010 = Extend Word 011 = Extend Long 111 = Extend Byte Long

MOVEM
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 dr 0 0 1 SIZE

MODE REGISTER

REGISTER LIST MASK

Size Field: 00 = Byte 01 = Word 10 = Long

Register to EA Mask

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

EA to Register Mask

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D0 D1 D2 D3 D4 D5 D6 D7 A0 A1 A2 A3 A4 A5 A6 A7
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-177

TST
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 0 1 0 SIZE

MODE REGISTER

Size Field: 00 = Byte 01 = Word 10 = Long

TAS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 0 1 0 1 1

MODE REGISTER

BGND
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 1 1 1 0 1 0

ILLEGAL
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 0 1 1 1 1 1 1 0 0

MULU (Long)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 1 0 0 0 0

MODE REGISTER

0 REGISTER Dl 0 SIZE 0 0 0 0 0 0 0 REGISTER Dh

Size Field: 0 = Long Word Product 1 = Quad Word Product

MULS (Long)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 1 0 0 0 1

MODE REGISTER

0 REGISTER Dq 1 SIZE 0 0 0 0 0 0 0 REGISTER Dr

Size Field: 0 = Long Word Product 1 = Quad Word Product

TRAP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 0 VECTOR
 MOTOROLA INSTRUCTION SET CPU32

4-178 REFERENCE MANUAL

LINK (Word)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 1 0 REGISTER

WORD DISPLACEMENT

UNLK
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 0 1 1 REGISTER

MOVE USP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 0 DR REGISTER

DR Field: 0 = Move An to USP 1 = Move USP to An

RESET
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0

NOP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1

STOP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0

IMMEDIATE DATA

RTE
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1

Format/Offset Word (in stack frame)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FORMAT 0 0 VECTOR OFFSET

Format Field: Four bits imply frame size; only values 000–0010 and 1000–1011 are used.

RTD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0

DISPLACEMENT (16 BITS)
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-179

RTS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1

TRAPV
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0

RTR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1

MOVEC
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 dr

A/D REGISTER CONTROL REGISTER

dr Field: 0 = Control Register to General Register 1 = General Register to Control Register

Control Register Field: $000 = SFC$801 = VBR
$001 = DFC$802 = CAAR
$002 = CACR$803 = MSP
$800 = USP$804 = ISP

JSR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 1 1 0 1 0

MODE REGISTER

JMP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 0 1 1 1 0 1 1

MODE REGISTER

ADDQ
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 1 DATA 0 SIZE

MODE REGISTER

Data Field: Three bits of immediate data; 000–111 represent values of 1–7; 000 represents 8

Size Field: 00 = Byte 01 = Word 10 = Long
 MOTOROLA INSTRUCTION SET CPU32

4-180 REFERENCE MANUAL

Scc
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 1 CONDITION 1 1

MODE REGISTER

DBcc
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 CONDITION 1 1 0 0 1 REGISTER

DISPLACEMENT

TRAPcc
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 CONDITION 1 1 1 1 1 OPMODE

OPTIONAL WORD

OR LONG WORD

Opmode Field: 010 = Word Operand 011 = Long Operand 100 = No Operand

SUBQ
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

0 1 0 1 DATA 1 SIZE

MODE REGISTER

Data Field: Three bits of immediate data; 000–111 represent values of 1–7; 000 represents 8

Size Field: 00 = Byte 01 = Word 10 = Long

Bcc
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 CONDITION 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

BRA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

BSR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 1 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-181

MOVEQ
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 REGISTER 0 DATA

Data Field: Data is sign extended to a long operand, and all 32 bits are transferred to the data register.

OR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 0 REGISTER OPMODE

MODE REGISTER

Opmode Field:

Byte Word Long Operation

000 001 010 (〈ea〉); (〈Dn〉) → Dn

100 101 110 (〈Dn〉); (〈ea〉) → ea

DIVU
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 0 0 0 REGISTER 0 1 1

MODE REGISTER

DIVS
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 0 0 0 REGISTER 1 1 1

MODE REGISTER

SBCD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 REGISTER Ry 1 0 0 0 0 R/M REGISTER Rx

R/M Field: 0 = Data Register to Data Register 1 = Memory to Memory

If R/M = 0, both registers must be data registers

If R/M = 1, both registers must be address registers for Predecrement Addressing mode

SUB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 1 REGISTER OPMODE

MODE REGISTER

Opmode Field:

Byte Word Long Operation

000 001 010 (〈ea〉) – (〈Dn〉) → 〈Dn〉
100 101 110 (〈Dn〉) – (〈ea〉) → 〈ea〉
 MOTOROLA INSTRUCTION SET CPU32

4-182 REFERENCE MANUAL

SUBA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 0 0 1 REGISTER OPMODE

MODE REGISTER

Opmode Field:

Word Long Operation

011 111 (〈An〉) – (〈ea〉) → 〈Dn〉

SUBX
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 REGISTER Rx 1 SIZE 0 0 R/M REGISTER Ry

Size Field: 00 = Byte 01 = Word 10 = Long

R/M Field: 0 = Data Register to Data Register 1 = Memory to Memory

If R/M = 0, both registers must be data registers

If R/M = 1, both registers must be address registers for Predecrement Addressing mode

CMP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 0 1 1 REGISTER OPMODE

MODE REGISTER

Opmode Field:

Byte Word Long Operation

000 001 010 (〈Dn〉) – (〈ea〉) → CCR

CMPA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 0 1 1 REGISTER OPMODE

MODE REGISTER

Opmode Field:

Word Long Operation

011 111 (〈An〉) – (〈ea〉) → CCR

EOR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 0 1 1 REGISTER OPMODE

MODE REGISTER

Opmode Field:

Byte Word Long Operation

100 101 110 (〈ea〉) ⊕ (〈Dn〉) → 〈ea〉
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-183

CMPM
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 REGISTER Ax 1 SIZE 0 0 1 REGISTER Ay

Size Field: 00 = Byte 01 = Word 10 = Long

AND
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 0 REGISTER OPMODE

MODE REGISTER

Opmode Field:

Byte Word Long Operation

000 001 010 (〈ea〉) • (〈Dn〉) → 〈Dn〉
100 101 110 (〈Dn〉) • (〈ea〉) → 〈ea〉

MULU (Word)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 0 REGISTER 0 1 1

MODE REGISTER

MULS (Word)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 0 REGISTER 1 1 1

MODE REGISTER

ABCD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 REGISTER Rx 1 0 0 0 0 R/M REGISTER Ry

R/M Field: 0 = Data Register to Data Register 1 = Memory to Memory

If R/M = 0, both registers must be data registers

If R/M = 1, both registers must be address registers for Predecrement Addressing mode

EXG
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 REGISTER Rx 1 OPMODE REGISTER Ry

Opmode Field: Specifies type of exchange

01000 — Data Register Exchange

01001 — Address Register Exchange

10001 — Data Register / Address Register (Rx specifies data register, Ry specifies address register)
 MOTOROLA INSTRUCTION SET CPU32

4-184 REFERENCE MANUAL

ADD
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 1 REGISTER OPMODE

MODE REGISTER

Opmode Field:

Byte Word Long Operation

000 001 010 (〈ea〉) + (〈Dn〉) → 〈Dn〉
100 101 110 (〈Dn〉) + (〈ea〉) → 〈ea〉

ADDA
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 0 1 REGISTER OPMODE

MODE REGISTER

Opmode Field:

Word Long Operation

011 111 (〈ea〉) + (〈An〉) → 〈An〉

ADDX
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 REGISTER Rx 1 SIZE 0 0 R/M REGISTER Ry

Size Field: 00 = Byte 01 = Word 10 = Long

R/M Field: 0 = Data Register to Data Register 1 = Memory to Memory

If R/M = 0, both registers must be data registers

If R/M = 1, both registers must be address registers for Predecrement Addressing mode

ASL, ASR (Register)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 COUNT/REGISTER dr SIZE i/r 0 0 REGISTER

Count/Register Field:

If I/R Field = 0, Specifies Shift Count

If I/R Field = 1, Specifies Data Register that contains Shift Count

dr Field: 0 = Right 1 = Left

Size Field: 00 = Byte 01 = Word 10 = Long

I/R Field: 0 = Immediate Shift Count 1 = Register Shift Count
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-185

LSL, LSR (Register)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 COUNT/REGISTER dr SIZE i/r 0 1 REGISTER

Count/Register Field:

If I/R Field = 0, Specifies Shift Count

If I/R Field = 1, Specifies Data Register that contains Shift Count

dr Field: 0 = Right 1 = Left

Size Field: 00 = Byte 01 = Word 10 = Long

I/R Field: 0 = Immediate Shift Count 1 = Register Shift Count

ROXL, ROXR (Register)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 COUNT/REGISTER dr SIZE i/r 1 0 REGISTER

Count/Register Field:

 If I/R Field = 0, Specifies Shift Count

If I/R Field = 1, Specifies Data Register that contains Shift Count

dr Field: 0 = Right 1 = Left

Size Field: 00 = Byte 01 = Word 10 = Long

I/R Field: 0 = Immediate Shift Count 1 = Register Shift Count

ROL, ROR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 COUNT/REGISTER dr SIZE i/r 1 1 REGISTER

Count/Register Field:

If I/R Field = 0, Specifies Shift Count

If I/R Field = 1, Specifies Data Register that contains Shift Count

dr Field: 0 = Right 1 = Left

Size Field: 00 = Byte 01 = Word 10 = Long

I/R Field: 0 = Immediate Shift Count 1 = Register Shift Count

ASL, ASR (Memory)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 1 0 0 0 0 dr 1 1

MODE REGISTER

dr Field: 0 = Right 1 = Left

LSL, LSR (Memory)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 1 0 0 0 1 dr 1 1

MODE REGISTER

dr Field: 0 = Right 1 = Left
 MOTOROLA INSTRUCTION SET CPU32

4-186 REFERENCE MANUAL

ROXL, ROXR (Memory)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 1 0 0 1 0 dr 1 1

MODE REGISTER

dr Field: 0 = Right 1 = Left

ROL, ROR (Memory)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 1 0 0 1 1 dr 1 1

MODE REGISTER

dr Field: 0 = Right 1 = Left

LPSTOP
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

IMMEDIATE DATA

TBLU, TBLUN (Data Register Interpolate)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 REGISTER Dym

REGISTER Dx 0 R 0 0 SIZE 0 0 0 REGISTER Dyn

R Field: 0 = Unrounded 1 = Rounded

TBLU, TBLUN (Lookup and Interpolate)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 1 1 1 0 0 0 0 0

MODE REGISTER

0 REGISTER Dx 0 R 0 1 SIZE 0 0 0 0 0 0

R Field: 0 = Unrounded 1 = Rounded

TBLS, TBLSN (Data Register Interpolate)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 REGISTER Dym

REGISTER Dx 1 R 0 0 SIZE 0 0 0 REGISTER Dyn

R Field: 0 = Unrounded 1 = Rounded

TBLS, TBLSN (Lookup and Interpolate)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EFFECTIVE ADDRESS

1 1 1 1 1 0 0 0 0 0

MODE REGISTER

0 REGISTER Dx 1 R 0 1 SIZE 0 0 0 0 0 0

R Field: 0 = Unrounded 1 = Rounded
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-187

4.6 Table Lookup and Interpolation Instructions

There are four table lookup and interpolate instructions. TBLS returns a signed, round-
ed byte, word, or long-word result. TBLSN returns a signed, unrounded byte, word, or
long-word result. TBLU returns an unsigned, rounded byte, word, or long-word result.
TBLUN returns an unsigned, unrounded byte, word, or long-word result. All four in-
structions support two types of interpolation data: an n-element table stored in mem-
ory, and a two-element range stored in a pair of data registers. The latter form provides
a means of performing surface (3D) interpolation between two previously calculated
linear interpolations.

The following examples show how to compress tables and use fewer interpolation lev-
els between table entries. Example 1 (see Figure 4-3) demonstrates table lookup and
interpolation for a 257-entry table, allowing up to 256 interpolation levels between en-
tries. Example 2 (see Figure 4-4) reduces table length for the same data to four en-
tries. Example 3 (see Figure 4-5) demonstrates use of an 8-bit independent variable
with an instruction.

Two additional examples show how TBLSN can reduce cumulative error when multi-
ple table lookup and interpolation operations are used in a calculation. Example 4
demonstrates addition of the results of three table interpolations. Example 5 illustrates
use of TBLSN in surface interpolation.

4.6.1 Table Example 1: Standard Usage

Figure 4-3 Table Example 1

The table consists of 257 word entries. As shown in Figure 4-3, the function is linear
within the range 32768 ≤ X ≤ 49152. Table entries within this range are as follows:

X

16384 32768 49152 65536

INDEPENDENT VARIABLE

D
EP

EN
D

EN
T

VA
R

IA
BL

E

Y

 MOTOROLA INSTRUCTION SET CPU32

4-188 REFERENCE MANUAL

*These values are the end points of the range.
 All entries between these points fall on the line.

The table instruction is executed with the following bit pattern in Dx:

Table Entry Offset → Dx [8:15] = $A3 = 163

Interpolation Fraction → Dx [0:7] = $80 = 128

Using this information, the table instruction calculates dependent variable Y:

Y = 1669 + (128 (1679 – 1669)) / 256 = 1674

4.6.2 Table Example 2: Compressed Table

Figure 4-4 Table Example 2

Entry
Number

X
Value

Y
Value

128* 32768 1311
162 41472 1659
163 41728 1669
164 41984 1679
165 42240 1690
192* 49152 1966

31 16 15 0

NOT USED 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0

X

256 512 786 1024

INDEPENDENT VARIABLE

D
EP

EN
D

EN
T

VA
R

IA
BL

E

Y

CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-189

In Example 2, the data from Example 1 has been compressed by limiting the maximum
value of the independent variable. Instead of the range 0 ≤ X = 65535, X is limited to
0 ≤ X ≤ 1023. The table has been compressed to only 5 entries, but up to 256 levels
of interpolation are allowed between entries.

CAUTION

Extreme table compression with many levels of interpolation is pos-
sible only with highly linear functions.

The table entries within the range of interest are as follows:

Since the table is reduced from 257 to 5 entries, independent variable X must be
scaled appropriately. In this case the scaling factor is 64, and the scaling is done by a
single instruction:

LSR.W #6,Dx

Thus, Dx now contains the following bit pattern:

Table Entry Offset → Dx [8:15] = $02 = 2

Interpolation Fraction → Dx [0:7] = $8E = 142

Using this information, the table instruction calculates dependent variable Y: .

Y = 1331 + (142 (1966 – 1311)) / 256 = 1674

The function chosen for Examples 1 and 2 is linear between data points. If another
function had been used, interpolated values might not have been identical.

Entry
Number

X
Value

Y
Value

2 512 1311
3 786 1966

31 16 15 0

NOT USED 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0
 MOTOROLA INSTRUCTION SET CPU32

4-190 REFERENCE MANUAL

4.6.3 Table Example 3: 8-Bit Independent Variable

Figure 4-5 Table Example 3

This example shows how to use a table instruction within an interpolation subroutine.
Independent variable X is calculated as an 8-bit value, allowing 16 levels of interpola-
tion on a 17-entry table. X is passed to the subroutine, which returns an 8-bit result.
The subroutine uses the following data, based on the function shown in Figure 4-5.

X
(Subroutine)

X
(Instruction)

Y

0 0 0
1 256 16
2 512 32
3 768 48
4 1024 64
5 1280 80
6 1536 96
7 1792 112
8 2048 128
9 2304 112
10 2560 96
11 2816 80
12 3072 64
13 3328 48
14 3584 32
15 3840 16
16 4096 0

Y

X
1024 2048 3072 4096

INDEPENDENT VARIABLE

 IN
D

EP
EN

D
EN

T
VA

R
IA

BL
E

CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-191

The first column is the value passed to the subroutine, the second column is the value
expected by the table instruction, and the third column is the result returned by the
subroutine.

The following value has been calculated for independent variable X:

Since X is an 8-bit value, the upper four bits are used as a table offset and the lower
four bits are used as an interpolation fraction. The following results are obtained from
the subroutine:

Table Entry Offset → Dx [4:7] = $B = 11

Interpolation Fraction → Dx [0:3] = $D = 13

Thus, Y is calculated as follows:

Y = 80 + (13 (64 – 80)) / 16 = 67

If the 8-bit value for X were used directly by the table instruction, interpolation would
be incorrectly performed between entries 0 and 1. Data must be shifted to the left four
places before use:

LSL.W #4, Dx

The new range for X is 0 ≤ X ≤ 4096; however, since a left shift fills the least significant
digits of the word with zeroes, the interpolation fraction can only have one of 16 values.

After the shift operation, Dx contains the following value:

Execution of the table instruction using the new value in Dx yields:

Table Entry Offset → Dx [8:15] = $0B = 11

Interpolation Fraction → Dx [0:7] = $D0 = 208

Thus, Y is calculated as follows:

Y = 80 + (208 (64 – 80)) / 256 = 67

4.6.4 Table Example 4: Maintaining Precision

In this example, three table lookup and interpolation (TLI) operations are performed
and the results are summed. The calculation is done once with the result of each TLI
rounded before addition and once with only the final result rounded. Assume that the
result of the three interpolations are as follows (a “.” indicates the binary radix point).

31 16 15 0

NOT USED 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1

31 16 15 0

NOT USED 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0
 MOTOROLA INSTRUCTION SET CPU32

4-192 REFERENCE MANUAL

First, the results of each TLI are rounded with the TBLS round-to-nearest-even algo-
rithm. The following values would be returned by TBLS:

Summing, the following result is obtained:

Now, using the same TLI results, the sum is first calculated and then rounded accord-
ing to the same algorithm:

Rounding yields:

The second result is preferred. The following code sequence illustrates how addition
of a series of table interpolations can be performed without loss of precision in the in-
termediate results:

L0:
TBLSN.B 〈ea〉, Dx
TBLSN.B 〈ea〉, Dx
TBLSN.B 〈ea〉, Dl
ADD.L Dx, Dm Long addition avoids problems with carry
ADD.L Dm, Dl
ASR.L#8, Dl Move radix point
BCC.B L1 Fraction MSB in carry
ADDQ.B #1, Dl

L1: . . .

TLI # 1 0010 0000 . 0111 0000
TLI # 2 0011 1111 . 0111 0000
TLI # 3 0000 0001 . 0111 0000

TLI # 1 0010 0000 .
TLI # 2 0011 1111 .
TLI # 3 0000 0001 .

0010 0000 .
0011 1111 .
0000 0001 .
0110 0000 .

0010 0000 . 0111 0000
0011 1111 . 0111 0000
0000 0001 . 0111 0000
0110 0001 . 0101 0000

0110 0001 .
CPU32 INSTRUCTION SET MOTOROLA

REFERENCE MANUAL 4-193

4.6.5 Table Example 5: Surface Interpolations

The various forms of table can be used to perform surface (3D) TLIs. However, since
the calculation must be split into a series of 2D TLIs, the possibility of losing precision
in the intermediate results is possible. The following code sequence, incorporating
both TBLS and TBLSN, eliminates this possibility.

L0:
MOVE.W Dx, Dl Copy entry number and fraction number
TBLSN.B 〈ea〉, Dx
TBLSN.B 〈ea〉, Dl
TBLS.W Dx:Dl, Dm Surface interpolation, with round
ASR.L #8, Dm Read just the result
BCC.B L1 No round necessary
ADDQ.B #1, Dl Half round up

L1: . . .

Before execution of this code sequence, Dx must contain fraction and entry numbers
for the two TLI, and Dm must contain the fraction for surface interpolation. The 〈ea〉
fields in the TBLSN instructions point to consecutive columns in a 3D table. The TBLS
size parameter must be word if the TBLSN size parameter is byte, and must be long
word if TBLSN is word. Increased size is necessary because a larger number of sig-
nificant digits is needed to accommodate the scaled fractional results of the 2D TLI.

4.7 Nested Subroutine Calls

The LINK instruction pushes an address onto the stack, saves the stack address at
which the address is stored, and reserves an area of the stack for use. Using this in-
struction in a series of subroutine calls will generate a linked list of stack frames.

The UNLK instruction removes a stack frame from the end of the list by loading an ad-
dress into the stack pointer and pulling the value at that address from the stack. When
the instruction operand is the address of the link address at the bottom of a stack
frame, the effect is to remove the stack frame from both the stack and the linked list.

4.8 Pipeline Synchronization with the NOP Instruction

Although the no operation (NOP) instruction performs no visible operation, it does
force synchronization of the instruction pipeline, since all previous instructions must
complete execution before the NOP begins.
 MOTOROLA INSTRUCTION SET CPU32

4-194 REFERENCE MANUAL

SECTION 5PROCESSING STATES
This section describes the processing states of the CPU32. It includes a functional de-
scription of the bits in the supervisor portion of the status register and an overview of
actions taken by the processor in response to exception conditions.

5.1 State Transitions

The processor is in normal, background, or exception state unless halted.

When the processor fetches instructions and operands or executes instructions, it is
in the normal processing state. The stopped condition, which the processor enters
when a STOP or LPSTOP instruction is executed, is a variation of the normal state in
which no further bus cycles are generated.

Background state is an alternate operational mode used for system debugging. Refer
to SECTION 7 DEVELOPMENT SUPPORT for more information.

Exception processing refers specifically to the transition from normal processing of a
program to normal processing of system routines, interrupt routines, and other excep-
tion handlers. Exception processing includes the stack operations, the exception vec-
tor fetch, and the filling of the instruction pipeline caused by an exception. Exception
processing ends when execution of an exception handler routine begins. Refer to
SECTION 6 EXCEPTION PROCESSING for comprehensive information.

A catastrophic system failure occurs if the processor detects a bus error or generates
an address error while in the exception processing state. This type of failure halts the
processor. For example, if a bus error occurs during exception processing caused by
a bus error, the CPU32 assumes that the system is not operational and halts.

The halted condition should not be confused with the stopped condition. After the pro-
cessor executes a STOP or LPSTOP instruction, execution of instructions can resume
when a trace, interrupt, or reset exception occurs.

5.2 Privilege Levels

To protect system resources, the processor can operate with either of two levels of ac-
cess — user or supervisor. Supervisor level is more privileged than user level. All in-
structions are available at the supervisor level, but execution of some instructions is
not permitted at the user level. There are separate stack pointers for each level. The
S bit in the status register indicates privilege level, and determines which stack pointer
is used for stack operations. The processor identifies each bus access (supervisor or
user mode) via function codes to enforce supervisor and user access levels.

In a typical system most programs execute at the user level. User programs can ac-
cess only their own code and data areas, and are restricted from accessing other in-
formation. The operating system executes at the supervisor privilege level, has access
CPU32 PROCESSING STATES MOTOROLA

REFERENCE MANUAL 5-1

to all resources, performs the overhead tasks for the user level programs, and coordi-
nates their activities.

5.2.1 Supervisor Privilege Level

If the S bit in the status register is set, supervisor privilege level applies, and all instruc-
tions are executable. The bus cycles generated for instructions executed in supervisor
level are normally classified as supervisor references, and the values of the function
codes on FC[2:0] refer to supervisor address spaces.

All exception processing is performed at the supervisor level. All bus cycles generated
during exception processing are supervisor references, and all stack accesses use the
supervisor stack pointer.

Instructions that have important system effects can only be executed at supervisor lev-
el. For instance, user programs are not permitted to execute STOP, LPSTOP, or RE-
SET instructions. To prevent a user program from gaining privileged access, except in
a controlled manner, instructions that can alter the S bit in the status register are priv-
ileged. The TRAP #n instruction provides controlled user access to operating system
services.

5.2.2 User Privilege Level

If the S bit in the status register is cleared, the processor executes instructions at the
user privilege level. The bus cycles for an instruction executed at the user privilege lev-
el are classified as user references, and the values of the function codes on FC[2:0]
specify user address spaces. While the processor is at the user level, implicit referenc-
es to the system stack pointer and explicit references to address register seven (A7)
refer to the user stack pointer (USP).

5.2.3 Changing Privilege Level

To change from user privilege level to supervisor privilege level, a condition that caus-
es exception processing must occur. When exception processing begins, the current
values in the status register, including the S bit, are saved on the supervisor stack, and
then the S bit is set, enabling supervisory access. Execution continues at supervisor
level until exception processing is complete.

To return to user access level, a system routine must execute one of the following in-
structions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE. These instruc-
tions execute only at supervisor privilege level, and can modify the S bit of the status
register. After these instructions execute, the instruction pipeline is flushed, then re-
filled from the appropriate address space.

The RTE instruction causes a return to a program that was executing when an excep-
tion occurred. When RTE is executed, the exception stack frame saved on the super-
visor stack can be restored in either of two ways.
 MOTOROLA PROCESSING STATES CPU32

5-2 REFERENCE MANUAL

If the frame was generated by an interrupt, breakpoint, trap, or instruction exception,
the status register and program counter are restored to the values saved on the su-
pervisor stack, and execution resumes at the restored program counter address, with
access level determined by the S bit of the restored status register.

If the frame was generated by a bus error or an address error exception, the entire pro-
cessor state is restored from the stack.

5.3 Types of Address Space

During each bus cycle, the processor generates function code signals that permit se-
lection of eight distinct 4-Gigabyte address spaces. Not all devices that incorporate the
CPU32 support a full complement of memory. (Refer to the appropriate user's manual
for details.) Selection varies according to the access required. Automatic selection of
supervisor and user space, and of program and data space, is provided. In addition,
certain special processor cycles, such as the interrupt acknowledge cycle or the LP-
STOP broadcast cycle are recognized, and appropriate codes are generated. Table
5-1 shows function code values and the corresponding address space.

*Address space 3 is reserved for user definition;
 0 and 4 are reserved for future use by Motorola.

Although an appropriate address space is selected, memory locations of user program
and data, and of supervisor data, within that address space are not predefined. Dur-
ing reset, two long words beginning at memory location zero in the supervisor program
space are used for processor initialization. No other memory locations are explicitly
defined by the CPU32.

5.3.1 CPU Space Access

Function code $7 ([FC2:FC0] = 111) selects CPU address space. The processor com-
municates with external devices for special purposes by accessing this space. All
M68000 processors use CPU space for interrupt acknowledge cycles. The CPU32
also uses CPU space for breakpoint acknowledge and the LPSTOP broadcast.

Supervisor programs can use the MOVES instruction to access all address spaces,
including user spaces and CPU address space. Although the MOVES instruction can
be used to generate CPU space cycles, doing so may interfere with proper system op-
eration. Exercise caution when using MOVES to access CPU space.

Table 5-1 Address Spaces

FC2 FC1 FC0 Address Space
0 0 0 Undefined Reserved*
0 0 1 User Data Space
0 1 0 User Program Space
0 1 1 Undefined Reserved*
1 0 0 Undefined Reserved*
1 0 1 Supervisor Data Space
1 1 0 Supervisor Program Space
1 1 1 CPU Space
CPU32 PROCESSING STATES MOTOROLA

REFERENCE MANUAL 5-3

Address bus encoding facilitates CPU space transactions. Bits A[19:16], the CPU
space type field, show which transaction is being performed. Currently, only five of the
16 possible encodings are defined: 0000, 0001, 0010, 0011, and 1111. Of these, only
0000, 0011, and 1111 are supported by the CPU32.

Address bits A[31:20] are not present on all M68000 processors, and thus cannot be
essential to CPU space transaction decoding. The function of other address bus bit
fields depends on the transaction being performed. A description of each defined CPU
space types follows.

5.3.1.1 Type 0000 — Breakpoint

This CPU space type is used for breakpoint acknowledge.

BKPT# field A[4:2] indicates the breakpoint number. Software breakpoints set this val-
ue to the number of the executing breakpoint instruction. Hardware breakpoints al-
ways set BKPT# to 7 (%111).

T bit A1 designates the type of breakpoint. T = 0 indicates a software breakpoint; T =
1 indicates a hardware breakpoint.

5.3.1.2 Type 0001 — MMU Access

This type of access is not supported by the CPU32 processor. This space is reserved
for future use.

5.3.1.3 Type 0010 — Coprocessor Access

This type of access is not supported by the CPU32 processor. This space is reserved
for future use.

5.3.1.4 Type 0011 — Internal Register Access

Type 0011 space is used to access certain critical system configuration or control reg-
isters.

The CPU32 external bus interface interrupt mask register resides in CPU space. This
register is written to when LPSTOP is executed, and masks off external interrupts
while in stop mode. A[3:1] indicate the encoded interrupt mask level.

31 5 4 2 1 0

0 BKPT # T 0

31 18 17 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 BKPT # T 0

DATA 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

15 3 2 1 0
 MOTOROLA PROCESSING STATES CPU32

5-4 REFERENCE MANUAL

These control registers, reserved for future expansion, also reside in CPU space 3,
and are only accessible through the MOVES command. The general format of this
CPU space type is defined as follows:

A[15:12] are used as 1 of 16 external chip selects.
A[11: 8] are used as 1 of 16 internal module selects.
A[7:0] are used as 1 of 256 module register addresses.

5.3.1.5 Type 1111 — Interrupt Acknowledge

Interrupt acknowledge is a CPU space type used for interrupt acknowledge. A[4:1] in-
dicate the encoded interrupt level being acknowledged.

31 18 17 16 15 12 11 8 7 5 4 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 C C C C M M M M A A A A A A A A

31 5 4 1 0

1 LEVEL 1
CPU32 PROCESSING STATES MOTOROLA

REFERENCE MANUAL 5-5

 MOTOROLA PROCESSING STATES CPU32

5-6 REFERENCE MANUAL

SECTION 6 EXCEPTION PROCESSING
This section discusses system resources related to exception handling, exception pro-
cessing sequence, and specific features of individual exception processing routines

6.1 Definition of Exception Processing

An exception is a special condition that preempts normal processing. Exception pro-
cessing is the transition from normal mode program execution to execution of a routine
that deals with an exception.

6.1.1 Exception Vectors

An exception vector is the address of a routine that handles an exception. The vector
base register (VBR) contains the base address of a 1024-byte exception vector table,
which consists of 256 exception vectors. Sixty-four vectors are defined by the proces-
sor, and 192 vectors are reserved for user definition as interrupt vectors. Except for
the reset vector, each vector in the table is one long word in length. The reset vector
is two long words in length. Refer to Table 6-1 for information on vector assignment.

CAUTION

Because there is no protection on the 64 processor-defined vectors,
external devices can access vectors reserved for internal purposes
— this practice is strongly discouraged.

All exception vectors, except the reset vector, are located in supervisor data space.
The reset vector is located in supervisor program space. Only the initial reset vector is
fixed in the processor memory map. When initialization is complete, there are no fixed
assignments. Since the VBR stores the vector table base address, the table can be
located anywhere in memory. It can also be dynamically relocated for each task exe-
cuted by an operating system.
CPU32 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 6-1

Each vector is assigned an 8-bit number. Vector numbers for some exceptions are ob-
tained from an external device; others are supplied by the processor. The processor
multiplies the vector number by four to calculate vector offset, then adds the offset to
the contents of the VBR. The sum is the memory address of the vector.

6.1.2 Types of Exceptions

An exception can be caused by internal or external events.

An internal exception can be generated by an instruction or by an error. The TRAP,
TRAPcc, TRAPV, BKPT, CHK, CHK2, RTE, and DIV instructions can cause excep-
tions during normal execution. Illegal instructions, instruction fetches from odd ad-
dresses, word or long-word operand accesses from odd addresses, and privilege
violations also cause internal exceptions.

Table 6-1 Exception Vector Assignments

Vector
Number

Vector Offset Assignment
Dec Hex Space

0 0 000 SP Reset: Initial Stack Pointer
1 4 004 SP Reset: Initial Program Counter
2 8 008 SD Bus Error
3 12 00C SD Address Error
4 16 010 SD Illegal Instruction
5 20 014 SD Zero Division
6 24 018 SD CHK, CHK2 Instructions
7 28 01C SD TRAPcc, TRAPV Instructions
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SD Line 1010 Emulator
11 44 02C SD Line 1111 Emulator
12 48 030 SD Hardware Breakpoint
13 52 034 SD (Reserved, Coprocessor Protocol Violation)
14 56 038 SD Format Error and Uninitialized Interrupt
15 60 03C SD Format Error and Uninitialized Interrupt

16–23 64
92

040
05C

SD (Unassigned, Reserved)

24 96 060 SD Spurious Interrupt
25 100 064 SD Level 1 Interrupt Autovector
26 104 068 SD Level 2 Interrupt Autovector
27 108 06C SD Level 3 Interrupt Autovector
28 112 070 SD Level 4 Interrupt Autovector
29 116 074 SD Level 5 Interrupt Autovector
30 120 078 SD Level 6 Interrupt Autovector
31 124 07C SD Level 7 Interrupt Autovector

32–47 128
188

080
0BC

SD Trap Instruction Vectors (0–15)

48–58 192
232

0C0
0E8

SD (Reserved, Coprocessor)

59–63 236
252

0EC
0FC

SD (Unassigned, Reserved)

64–255 256
1020

100
3FC

SD User Defined Vectors (192)
 MOTOROLA EXCEPTION PROCESSING CPU32

6-2 REFERENCE MANUAL

Sources of external exception include interrupts, breakpoints, bus errors, and reset re-
quests. Interrupts are peripheral device requests for processor action. Breakpoints are
used to support development equipment. Bus error and reset are used for access con-
trol and processor restart.

6.1.3 Exception Processing Sequence

For all exceptions other than a reset exception, exception processing occurs in the fol-
lowing sequence. Refer to 6.2.1 Reset for details of reset processing.

As exception processing begins, the processor makes an internal copy of the sta-
tus register. After the copy is made, the processor state bits in the status register
are changed — the S bit is set, establishing supervisor access level, and bits T1
and T0 are cleared, disabling tracing. For reset and interrupt exceptions, the inter-
rupt priority mask is also updated.

Next, the exception number is obtained. For interrupts, the number is fetched ROM
CPU space $F (the bus cycle is an interrupt acknowledge). For all other excep-
tions, internal logic provides a vector number.

Next, current processor status is saved. An exception stack frame is created and
placed on the supervisor stack. All stack frames contain copies of the status regis-
ter and the program counter for use by RTE. The type of exception and the context
in which the exception occurs determine what other information is stored in the
stack frame.

Finally, the processor prepares to resume normal execution of instructions. The ex-
ception vector offset is determined by multiplying the vector number by four, and
the offset is added to the contents of the VBR to determine displacement into the
exception vector table. The exception vector is loaded into the program counter. If
no other exception is pending, the processor will resume normal execution at the
new address in the PC.

6.1.4 Exception Stack Frame

During exception processing, the most volatile portion of the current context is saved
on the top of the supervisor stack. This context is organized in a format called the ex-
ception stack frame.

The exception stack frame always includes the contents of status register and pro-
gram counter at the time the exception occurred. To support generic handlers, the pro-
cessor also places the vector offset in the exception stack frame and marks the frame
with a format code. The format field allows an RTE instruction to identify stack infor-
mation so that it can be properly restored.

The general form of the exception stack frame is illustrated in Figure 6-1. Although
some formats are peculiar to a particular M68000 Family processor, format 0000 is al-
ways legal and always indicates that only the first four words of a frame are present.
See 6.4 CPU32 Stack Frames for a complete discussion of exception stack frames.
CPU32 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 6-3

Figure 6-1 Exception Stack Frame

6.1.5 Multiple Exceptions

Each exception has been assigned a priority based on its relative importance to sys-
tem operation. Priority assignments are shown in Table 6-2. Group 0 exceptions have
the highest priorities. Group 4 exceptions have the lowest priorities. Exception pro-
cessing for exceptions that occur simultaneously is done by priority, from highest to
lowest.

It is important to be aware of the difference between exception processing mode and
execution of an exception handler. Each exception has an assigned vector that points
to an associated handler routine. Exception processing includes steps described in
6.1.3 Exception Processing Sequence, but does not include execution of handler
routines, which is done in normal mode.

When the CPU32 completes exception processing, it is ready to begin either exception
processing for a pending exception, or execution of a handler routine. Priority assign-
ment governs the order in which exception processing occurs, not the order in which
exception handlers are executed.

Table 6-2 Exception Priority Groups

Group/
Priority

Exception and
Relative Priority

Characteristics

0 Reset Aborts all processing (instruction or
exception); does not save old context

1.1
1.2

Address Error
Bus Error

Suspends processing (instruction or
exception); saves internal context

2 BKPT#n, CHK, CHK2,
Division by Zero, RTE,
TRAP#n, TRAPcc, TRAPV

Exception processing is a part of instruction
execution

3 Illegal Instruction, Line A,
Unimplemented Line F,
Privilege Violation

Exception processing begins before
instruction execution

4.1
4.2
4.3

Trace
Hardware Breakpoint
Interrupt

Exception processing begins when current
instruction or previous exception processing
is complete

STATUS REGISTER

PROGRAM COUNTER LOW

FORMAT VECTOR OFFSET

OTHER PROCESSOR STATE INFORMATION,
DEPENDING ON EXCEPTION

(0, 2, OR 8 WORDS)

PROGRAM COUNTER HIGH

H
IG

H
ER

 A
D

D
R

ES
SE

S

SP
(AFTER STACKING)

ST
AC

KI
N

G
 O

R
D

ER

0 15
 MOTOROLA EXCEPTION PROCESSING CPU32

6-4 REFERENCE MANUAL

As a general rule, when simultaneous exceptions occur, the handler routines for lower
priority exceptions are executed before the handler routines for higher priority excep-
tions. For example, consider the arrival of an interrupt during execution of a TRAP in-
struction, while tracing is enabled. Trap exception processing (2) is done first, followed
immediately by exception processing for the trace (4.1), and then by exception pro-
cessing for the interrupt (4.3). Each exception places a new context on the stack.
When the processor resumes normal instruction execution, it is vectored to the inter-
rupt handler, which returns to the trace handler that returns to the trap handler.

There are special cases to which the general rule does not apply. The reset exception
will always be the first exception handled, since reset clears all other exceptions. It is
also possible for high priority exception processing to begin before low priority excep-
tion processing is complete. For example, if a bus error occurs during trace exception
processing, the bus error will be processed and handled before trace exception pro-
cessing is completed.

6.2 Processing of Specific Exceptions

The following paragraphs provide details concerning sources of specific exceptions,
how each arises, and how each is processed.

6.2.1 Reset

Assertion of RESET by external hardware, or assertion of the internal RESET signal
by an internal module, causes a reset exception. The reset exception has the highest
priority of any exception. Reset is used for system initialization and for recovery from
catastrophic failure. The reset exception aborts any processing in progress when it is
recognized, and that processing cannot be recovered. Reset performs the following
operations:

1. Clears T0 and T1 in the status register to disable tracing
2. Sets the S bit in the status register to establish supervisor privilege
3. Sets the interrupt priority mask to the highest priority level (%111)
4. Initializes the vector base register to zero ($00000000)
5. Generates a vector number to reference the reset exception vector
6. Loads the first long word of the vector into the interrupt stack pointer
7. Loads the second long word of the vector into the program counter
8. Fetches and initiates decode of the first instruction to be executed

Figure 6-2 is a flowchart of the reset exception.

After initial instruction prefetches, normal program execution begins at the address in
the program counter. The reset exception does not save the value of either the pro-
gram counter or the status register.

If a bus error or address error occurs during reset exception processing sequence, a
double bus fault occurs. The processor halts, and the HALT signal is asserted to indi-
cate the halted condition.

Execution of the RESET instruction does not cause a reset exception nor does it affect
any internal CPU register, but it does cause the CPU32 to assert the RESET signal,
resetting all internal and external peripherals.
CPU32 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 6-5

Figure 6-2 Reset Operation Flowchart

6.2.2 Bus Error

A bus error exception occurs when an assertion of the BERR signal is acknowledged.
The BERR signal can be asserted by one of three sources:

1. External logic by assertion of the BERR input pin
2. Direct assertion of the internal BERR signal by an internal module
3. Direct assertion of the internal BERR signal by the on-chip hardware watchdog

after detecting a no-response condition

Bus error exception processing begins when the processor attempts to use informa-
tion from an aborted bus cycle.

 1 S
 0 T0,T1
$7 12:IO
$0 VBR

ENTRY

FETCH VECTOR # 0

FETCH VECTOR # 1

 OTHERWISE
SP (VECTOR # 0)

PREFETCH FIRST WORD

OTHERWISE BEGIN
INSTRUCTION
EXECUTION

EXIT

(DOUBLE BUS FAULT)

ASSERT HALT

EXIT

 OTHERWISE
PC (VECTOR # 1)

 BUS ERROR

 BUS ERROR

BUS ERROR/
ADDRESS

ERROR
 MOTOROLA EXCEPTION PROCESSING CPU32

6-6 REFERENCE MANUAL

When the aborted bus cycle is an instruction prefetch, the processor will not initiate
exception processing unless the prefetched information is used. For example, if a
branch instruction flushes an aborted prefetch, that word is not accessed, and no ex-
ception occurs.

When the aborted bus cycle is a data access, the processor initiates exception pro-
cessing immediately, except in the case of released operand writes. Released write
bus errors are delayed until the next instruction boundary or until another operand ac-
cess is attempted.

Exception processing for bus error exceptions follows the regular sequence, but con-
text preservation is more involved than for other exceptions because a bus exception
can be initiated while an instruction is executing. Several bus error stack format orga-
nizations are utilized to provide additional information regarding the nature of the fault.

First, any register altered by a faulted-instruction effective address calculation is re-
stored to its initial value. Then a special status word (SSW) is placed on the stack. The
SSW contains specific Information about the aborted access — size, type of access
(read or write), bus cycle type, and function code are saved. Finally, fault address, bus
error exception vector number, program counter value, and a copy of the status regis-
ter are saved.

If a bus error occurs during exception processing for a bus error, an address error, a
reset, or while the processor is loading stack information during RTE execution, the
processor halts. This simplifies isolation of catastrophic system failure by preventing
processor interaction with stacks and memory. Only assertion of RESET can restart a
halted processor.

6.2.3 Address Error

Address error exceptions occur when the processor attempts to access an instruction,
word operand, or long-word operand at an odd address. The effect is much the same
as an internally generated bus error. The exception processing sequence is the same
as that for bus error, except that the vector number refers to the address error excep-
tion vector.

Address error exception processing begins when the processor attempts to use infor-
mation from the aborted bus cycle.

If the aborted cycle is a data space access, exception processing begins when the pro-
cessor attempts to use the data, except in the case of a released operand write. Re-
leased write exceptions are delayed until the next instruction boundary or attempted
operand access.

An address exception on a branch to an odd address is delayed until the program
counter is changed. No exception occurs if the branch is not taken. In this case, the
fault address and return program counter value placed in the exception stack frame
are the odd address, and the current instruction program counter points to the instruc-
tion that caused the exception.
CPU32 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 6-7

If an address error occurs during exception processing for a bus error, another ad-
dress error, or a reset, the processor halts.

6.2.4 Instruction Traps

Traps are exceptions caused by instructions. They arise from either processor recog-
nition of abnormal conditions during instruction execution or from use of specific trap-
ping instructions. Traps are generally used to handle abnormal conditions that arise in
control routines.

The TRAP instruction, which always forces an exception, is useful for implementing
system calls for user programs. The TRAPcc, TRAPV, CHK, and CHK2 instructions
force exceptions when a program detects a run-time error. The DIVS and DIVU in-
structions force an exception if a division operation is attempted with a divisor of zero.

Exception processing for traps follows the regular sequence. If tracing is enabled
when an instruction that causes a trap begins execution, a trace exception will be gen-
erated by the instruction, but the trap handler routine will not be traced (the trap excep-
tion will be processed first, then the trace exception).

The vector number for the TRAP instruction is internally generated — part of the num-
ber comes from the instruction itself. The trap vector number, program counter value,
and a copy of the status register are saved on the supervisor stack. The saved pro-
gram counter value is the address of the instruction that follows the instruction which
generated the trap. For all instruction traps other than TRAP, a pointer to the instruc-
tion causing the trap is also saved in the fifth and sixth words of the exception stack
frame.

6.2.5 Software Breakpoints

To support hardware emulation, the CPU32 must provide a means of inserting break-
points into target code and of announcing when a breakpoint is reached.

The MC68000 and MC68008 can detect an illegal instruction inserted at a breakpoint
when the processor fetches from the illegal instruction exception vector location. Since
the VBR on the CPU32 allows relocation of exception vectors, the exception vector ad-
dress is not a reliable indication of a breakpoint. CPU32 breakpoint support is provided
by extending the function of a set of illegal instructions ($4848–$484F).

When a breakpoint instruction is executed, the CPU32 performs a read from CPU
space $0, at a location corresponding to the breakpoint number (See 5.3 Types of Ad-
dress Space). If this bus cycle is terminated by BERR, the processor performs illegal
instruction exception processing. If the bus cycle is terminated by DSACK, the proces-
sor uses the data returned to replace the breakpoint in the instruction pipeline and be-
gins execution of that instruction.

6.2.6 Hardware Breakpoints

The CPU32 recognizes hardware breakpoint requests. Hardware breakpoint requests
do not force immediate exception processing, but are left pending. An instruction
 MOTOROLA EXCEPTION PROCESSING CPU32

6-8 REFERENCE MANUAL

breakpoint is not made pending until the instruction corresponding to the request is ex-
ecuted.

A pending breakpoint can be acknowledged between instructions or at the end of ex-
ception processing. To acknowledge a breakpoint, the CPU performs a read from CPU
space $0 at location $1E. See 5.3 Types of Address Space for a detailed description
of CPU space operations.

If the bus cycle terminates normally, instruction execution continues with the next in-
struction, as if no breakpoint request occurred. If the bus cycle is terminated by BERR,
the CPU begins exception processing. Data returned during this bus cycle is ignored.

Exception processing follows the regular sequence. Vector number 12 (offset $30) is
internally generated. The program counter of the currently executing instruction, the
program counter of the next instruction to execute, and a copy of the status register
are saved on the supervisor stack.

6.2.7 Format Error

The processor checks certain data values for control operations. The validity of the
stack format code and, in the case of a bus cycle fault format, the version number of
the processor that generated the frame are checked during execution of the RTE in-
struction. This check ensures that the program does not make erroneous assumptions
about information in the stack frame.

If the format of the control data is improper, the processor generates a format error ex-
ception. This exception saves a four-word format exception frame and then vectors
through vector table entry number 14. The stacked program counter is the address of
the RTE instruction that discovered the format error.

6.2.8 Illegal or Unimplemented Instructions

An instruction is illegal if it contains a word bit pattern that does not correspond to the
bit pattern of the first word of a legal CPU32 instruction, if it is a MOVEC instruction
that contains an undefined register specification field in the first extension word, or if it
contains an indexed addressing mode extension word with bits [5:4] = 00 or bits [3:0]
≠ 0000.

If an illegal instruction is fetched during instruction execution, an illegal instruction ex-
ception occurs. This facility allows the operating system to detect program errors or to
emulate instructions in software.

Word patterns with bits [15:12] = 1010 (referred to as A-line opcodes) are unimple-
mented instructions. A separate exception vector (vector 10, offset $28) is given to un-
implemented instructions to permit efficient emulation.

Word patterns with bits [15:12] = 1111 (referred to as F-line opcodes) are used for
M68000 Family instruction set extensions. They can generate an unimplemented in-
struction exception caused by the first extension word of the instruction or by the ad-
dressing mode extension word. A separate F-line emulation vector (vector 11, offset
$2C) is used for the exception vector.
CPU32 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 6-9

All unimplemented instructions are reserved for use by Motorola for enhancements
and extensions to the basic M68000 architecture. Opcode pattern $4AFC is defined to
be illegal on all M68000 Family members. Those customers requiring the use of an
unimplemented opcode for synthesis of “custom instructions,” operating system calls,
etc., should use this opcode.

Exception processing for illegal and unimplemented instructions is similar to that for
traps. The instruction is fetched and decoding is attempted. When the processor de-
termines that execution of an illegal instruction is being attempted, exception process-
ing begins. No registers are altered.

Exception processing follows the regular sequence. The vector number is generated
to refer to the illegal instruction vector or, in the case of an unimplemented instruction,
to the corresponding emulation vector. The illegal instruction vector number, current
program counter, and a copy of the status register are saved on the supervisor stack,
with the saved value of the program counter being the address of the illegal or unim-
plemented instruction.

6.2.9 Privilege Violations

To provide system security, certain instructions can be executed only at the supervisor
access level An attempt to execute one of these instructions at the user level will cause
an exception. The privileged exceptions are as follows:

• AND Immediate to SR
• EOR Immediate to SR
• LPSTOP
• MOVE from SR
• MOVE to SR
• MOVE USP
• MOVEC
• MOVES
• OR Immediate to SR
• RESET
• RTE
• STOP

Exception processing for privilege violations is nearly identical to that for illegal instruc-
tions. The instruction is fetched and decoded. If the processor determines that a priv-
ilege violation has occurred, exception processing begins before instruction execution.

Exception processing follows the regular sequence. The vector number (8) is gener-
ated to reference the privilege violation vector. Privilege violation vector offset, current
program counter, and status register are saved on the supervisor stack. The saved
program counter value is the address of the first word of the instruction causing the
privilege violation.
 MOTOROLA EXCEPTION PROCESSING CPU32

6-10 REFERENCE MANUAL

6.2.10 Tracing

To aid in program development, M68000 processors include a facility to allow tracing
of instruction execution. CPU32 tracing also has the ability to trap on changes in pro-
gram flow. In trace mode, a trace exception is generated after each instruction exe-
cutes, allowing a debugging program to monitor the execution of a program under test.
The T1 and T0 bits in the supervisor portion of the status register are used to control
tracing.

When T[1:0] = 00, tracing is disabled, and instruction execution proceeds normally
(see Table 6-3).

When T[1:0] = 01 at the beginning of instruction execution, a trace exception will be
generated if the program counter changes sequence during execution. All branches,
jumps, subroutine calls, returns, and status register manipulations can be traced in this
way. No exception occurs if a branch is not taken.

When T[1:0] = 10 at the beginning of instruction execution, a trace exception will be
generated when execution is complete. If the instruction is not executed, either be-
cause an interrupt is taken or because the instruction is illegal, unimplemented, or priv-
ileged, an exception is not generated.

At the present time, T[1:0] = 11 is an undefined condition. It is reserved by Motorola
for future use.

Exception processing for trace starts at the end of normal processing for the traced
instruction and before the start of the next instruction. Exception processing follows
the regular sequence (tracing is disabled so that the trace exception itself is not
traced). A vector number is generated to reference the trace exception vector. The ad-
dress of the instruction that caused the trace exception, the trace exception vector off-
set, the current program counter, and a copy of the status register are saved on the
supervisor stack. The saved value of the program counter is the address of the next
instruction to be executed.

A trace exception can be viewed as an extension to the function of any instruction. If
a trace exception is generated by an instruction, the execution of that instruction is not
complete until the trace exception processing associated with it is also complete:

If an instruction is aborted by a bus error or address error exception, trace exception
processing is deferred until the suspended instruction is restarted and completed nor-
mally. An RTE from a bus error or address error will not be traced because of the pos-
sibility of continuing the instruction from the fault.

Table 6-3 Tracing Control

T1 T0 Tracing Function

0 0 No tracing
0 1 Trace on change of flow
1 0 Trace on instruction execution
1 1 (Undefined; reserved)
CPU32 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 6-11

If an instruction is executed and an interrupt is pending on completion, the trace
exception is processed before the interrupt exception.

If an instruction forces an exception, the forced exception is processed before the
trace exception.

If an instruction is executed and a breakpoint is pending upon completion of the in-
struction, the trace exception is processed before the breakpoint.

If an attempt is made to execute an illegal, unimplemented, or privileged instruction
while tracing is enabled, no trace exception will occur because the instruction is not
executed. This is particularly important to an emulation routine that performs an in-
struction function, adjusts the stacked program counter to beyond the unimple-
mented instruction, and then returns. The status register on the stack must be
checked to determine if tracing is on before the return is executed. If tracing is on,
trace exception processing must be emulated so that the trace exception handler
can account for the emulated instruction.

Tracing also affects normal operation of the STOP and LPSTOP instructions. If either
begins execution with T1 set, a trace exception will be taken after the instruction loads
the status register. Upon return from the trace handler routine, execution will continue
with the instruction following STOP (LPSTOP), and the processor will not enter the
stopped condition.

6.2.11 Interrupts

There are seven levels of interrupt priority and 192 assignable interrupt vectors within
each exception vector table. Judicious use of multiple vector tables and hardware
chaining will permit a virtually unlimited number of peripherals to interrupt the proces-
sor.

Interrupt recognition and subsequent processing are based on internal interrupt re-
quest signals (IRQ7–IRQ1) and the current priority set in status register priority mask
I[2:0]. Interrupt request level zero (IRQ7–IRQ1 negated) indicates that no service is re-
quested. When an interrupt of level one through six is requested via IRQ6–IRQ1, the
processor compares the request level with the interrupt mask to determine whether
the interrupt should be processed. Interrupt requests are inhibited for all priority levels
less than or equal to the current priority. Level seven interrupts are nonmaskable.

IRQ7–IRQ1 are synchronized and debounced by input circuitry on consecutive rising
edges of the processor clock. To be valid, an interrupt request must be held constant
for at least two consecutive clock periods.

Interrupt requests do not force immediate exception processing, but are left pending.
A pending interrupt is detected between instructions or at the end of exception pro-
cessing — all interrupt requests must be held asserted until they are acknowledged by
the CPU. If the priority of the interrupt is greater than the current priority level, excep-
tion processing begins.
 MOTOROLA EXCEPTION PROCESSING CPU32

6-12 REFERENCE MANUAL

Exception processing occurs as follows. First, the processor makes an internal copy
of the status register. After the copy is made, the processor state bits in the status reg-
ister are changed — the S bit is set, establishing supervisor access level, and bits T1
and T0 are cleared, disabling tracing. Then, priority level is set to the level of the inter-
rupt and the processor fetches a vector number from the interrupting device (CPU
space $F). The fetch bus cycle is classified as an interrupt acknowledge and the en-
coded level number of the interrupt is placed on the address bus.

If an interrupting device requests automatic vectoring, the processor generates a vec-
tor number (25 to 31) determined by the interrupt level number.

If the response to the interrupt acknowledge bus cycle is a bus error, the interrupt is
taken to be spurious, and the spurious interrupt vector number (24) is generated.

The exception vector number, program counter, and status register are saved on the
supervisor stack. The saved value of the program counter is the address of the instruc-
tion that would have executed if the interrupt had not occurred.

Priority level seven interrupt is a special case. Level seven interrupts are nonmaskable
interrupts (NMI). Level seven requests are transition sensitive to eliminate redundant
servicing and concomitant stack overflow. Transition sensitive means that the level
seven input must change state before the CPU will detect an interrupt.

An NMI is generated each time the interrupt request level changes to level seven (re-
gardless of priority mask value), and each time the priority mask changes from seven
to a lower number while request level remains at seven.

Many M68000 peripherals provide for programmable interrupt vector numbers to be
used in the system interrupt request/acknowledge mechanism. If the vector number is
not initialized after reset and if the peripheral must acknowledge an interrupt request,
the peripheral should return the uninitialized interrupt vector number (15).

See the system integration user's manual for detailed information on interrupt ac-
knowledge cycles.

6.2.12 Return from Exception

When exception stacking operations for all pending exceptions are complete, the pro-
cessor begins execution of the handler for the last exception processed. After the ex-
ception handler has executed, the processor must restore the system context in
existence prior to the exception. The RTE instruction is designed to accomplish this
task.

When RTE is executed, the processor examines the stack frame on top of the super-
visor stack to determine if it is valid and determines what type of context restoration
must be performed. See 6.4 CPU32 Stack Frames for a description of stack frames.

For a normal four-word frame, the processor updates the status register and program
counter with data pulled from the stack, increments the supervisor stack pointer by
eight, and resumes normal instruction execution. For a six-word frame, the status reg-
CPU32 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 6-13

ister and program counter are updated from the stack, the active supervisor stack
pointer is incremented by 12, and normal instruction execution resumes.

For a bus fault frame, the format value on the stack is first checked for validity. In ad-
dition, the version number on the stack must match the version number of the proces-
sor that is attempting to read the stack frame. The version number is located in the
most significant byte (bits [15:8]) of the internal register word at location SP + $14 in
the stack frame. The validity check insures that stack frame data will be properly inter-
preted in multiprocessor systems.

If a frame is invalid, a format error exception is taken. If it is inaccessible, a bus error
exception is taken. Otherwise, the processor reads the entire frame into the proper in-
ternal registers, de-allocates the stack (12 words), and resumes normal processing.
Bus error frames for faults during exception processing require the RTE instruction to
rewrite the faulted stack frame. If an error occurs during any of the bus cycles required
by rewrite, the processor halts.

If a format error occurs during RTE execution, the processor creates a normal four-
word fault stack frame below the frame that it was attempting to use. If a bus error oc-
curs, a bus-error stack frame will be created. The faulty stack frame remains intact, so
that it may be examined and repaired by an exception handler, or used by a different
type of processor (e.g., an MC68010, MC68020, or a future M68000 processor) in a
multiprocessor system.

6.3 Fault Recovery

There are four phases of recovery from a fault: recognizing the fault, saving the pro-
cessor state, repairing the fault (if possible), and restoring the processor state. Saving
and restoring the processor state are described in the following paragraphs.

The stack contents are identified by the special status word (SSW). In addition to iden-
tifying the fault type represented by the stack frame, the SSW contains the internal pro-
cessor state corresponding to the fault.

TP BERR frame type
MV MOVEM in progress
TR Trace pending
B1 Breakpoint channel 1 pending
B0 Breakpoint channel 0 pending
RR Rerun write cycle after RTE
RM Faulted cycle was read-modify-write
IN Instruction/other
RW Read/write of faulted bus cycle
LG Original operand size was long word
SIZ Remaining size of faulted bus cycle
FUNC Function code of faulted bus cycle

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TP MV 0 TR B1 B0 RR RM IN RW LG SIZ FUNC
 MOTOROLA EXCEPTION PROCESSING CPU32

6-14 REFERENCE MANUAL

The TP field defines the class of the faulted bus operation. Two BERR exception frame
types are defined. One is for faults on prefetch and operand accesses, and the other
is for faults during exception frame stacking:

0 — Operand or prefetch bus fault
1 — Exception processing bus fault

MV is set when the operand transfer portion of the MOVEM instruction is in progress
at the time of a bus fault. If a prefetch bus fault occurs while refetching the MOVEM
opcode and extension word, both the MV and IN bits will be set.

0 — MOVEM was not in progress when fault occurred
1 — MOVEM in progress when fault occurred

TR indicates that a trace exception was pending when a bus error exception was pro-
cessed. The instruction that generated the trace will not be restarted upon return from
the exception handler. This includes MOVEM and released write bus errors indicated
by the assertion of either MV or RR in the SSW.

0 — Trace not pending
1 — Trace pending

B1 indicates that a breakpoint exception was pending on channel 1 (external break-
point source) when a bus error exception was processed. Pending breakpoint status
is stacked, regardless of the type of bus error exception.

0 — Breakpoint not pending
1 — Breakpoint pending

B0 indicates that a breakpoint exception was pending on channel 0 (internal break-
point source) when the bus error exception was processed. Pending breakpoint status
is stacked, regardless of the type of bus error exception.

0 — Breakpoint not pending
1 — Breakpoint pending

RR will be set if the faulted bus cycle was a released write. If the write is completed
(rerun) in the exception handler, the RR bit should be cleared before executing RTE.
The bus cycle will be rerun if the RR bit is set upon return from the exception handler.

0 — Faulted cycle was read, RMW, or unreleased write
1 — Faulted cycle was a released write

Faulted RMW bus cycles set the RM bit. RM is ignored during unstacking.
0 — Faulted cycle was non-RMW cycle
1 — Faulted cycle was either the read or write of an RMW cycle

Instruction prefetch faults are distinguished from operand (both read and write) faults
by the IN bit. If IN is cleared, the error was on an operand cycle; if IN is set, the error
was on an instruction prefetch. IN is ignored during unstacking.

0 — Operand
1 — Prefetch

Read and write bus cycles are distinguished by the RW bit. Read bus cycles will set
the bit, and write bus cycles will clear it. The bit is reloaded into the bus controller if the
RR bit is set during unstacking.

0 — Faulted cycle was an operand write
1 — Faulted cycle was a prefetch or operand read

The LG bit indicates an original operand size of long word. LG is cleared if the original
operand was a byte or word — SIZ will indicate original (and remaining) size. LG is set
if the original was a long word — SIZ will indicate the remaining size at the time of fault.
CPU32 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 6-15

LG is ignored during unstacking.
0 — Original operand size was byte or word
1 — Original operand size was long word

The SSW SIZ field shows operand size remaining when a fault was detected. This field
does not indicate the initial size of the operand. It also does not necessarily indicate
the proper status of a dynamically sized bus cycle. Dynamic sizing occurs on the ex-
ternal bus and is transparent to the CPU. Byte size is shown only when the original
operand was a byte. The field is reloaded into the bus controller if the RR bit is set dur-
ing unstacking. The SIZ field is encoded as follows:

00 — Long word
01 — Byte
10 — Word
11 — Unused, reserved

The function code for the faulted cycle is stacked in the FUNC field of the SSW, which
is a copy of [FC2:FC0] for the faulted bus cycle. This field is reloaded into the bus con-
troller if the RR bit is set during unstacking. All unused bits are stacked as zeros and
are ignored during unstacking. Further discussion of the SSW is included in 6.3.1
Types of Faults.

6.3.1 Types of Faults

An efficient implementation of instruction restart dictates that faults on some bus cy-
cles be treated differently than faults on other bus cycles. The CPU32 defines four fault
types: released write faults, faults during exception processing, faults during MOVEM
operand transfer, and faults on any other bus cycle.

6.3.1.1 Type I: Released Write Faults

CPU32 instruction pipelining can cause a final instruction write to overlap the execu-
tion of a following instruction. A write that is overlapped is called a released write.
Since the machine context for the instruction that queued the write is lost as soon as
the following instruction starts, it is impossible to restart the faulted instruction.

Released write faults are taken at the next instruction boundary. The stacked program
counter is that of the next unexecuted instruction. If a subsequent instruction attempts
an operand access while a released write fault is pending, the instruction is aborted
and the write fault is acknowledged. This action prevents stale data from being used
by the instruction.

The SSW for a released write fault contains the following bit pattern:

TR, B1, and B0 are set if the corresponding exception is pending when the BERR ex-
ception is taken. Status regarding the faulted bus cycle is reflected in the SSW LG,
SIZ, and FUNC fields.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 TR B1 B0 1 0 0 0 LG SIZ FUNC
 MOTOROLA EXCEPTION PROCESSING CPU32

6-16 REFERENCE MANUAL

The remainder of the stack contains the program counter of the next unexecuted in-
struction, the current status register, the address of the faulted memory location, and
the contents of the data buffer which was to be written to memory. This data is written
on the stack in the format depicted in Figure 6-3.

6.3.1.2 Type II: Prefetch, Operand, RMW, and MOVEP Faults

The majority of BERR exceptions are included in this category — all instruction
prefetches, all operand reads, all RMW cycles, and all operand accesses resulting
from execution of MOVEP (except the last write of a MOVEP Rn,〈ea〉 or the last write
of MOVEM, which are type I faults). The TAS, MOVEP, and MOVEM instructions ac-
count for all operand writes not considered released.

All type II faults cause an immediate exception that aborts the current instruction Any
registers that were altered as the result of an effective address calculation (i.e., postin-
crement or predecrement) are restored prior to processing the bus cycle fault.

The SSW for faults in this category contains the following bit pattern:

The trace pending bit is always cleared, since the instruction will be restarted upon re-
turn from the handler. Saving a pending exception on the stack would result in a trace
exception being taken prior to restarting the instruction. If the exception handler does
not alter the stacked SR trace bits, the trace is requeued when the instruction is start-
ed.

The breakpoint pending bits are stacked in the SSW, even though the instruction is
restarted upon return from the handler. This avoids problems with bus state analyzer
equipment that has been programmed to breakpoint only the first access to a specific
location, or to count accesses to that location. If this response is not desired, the ex-
ception handler can clear the bits before return. The RM, IN, RW, LG, FUNC, and SIZ
fields all reflect the type of bus cycle that caused the fault. If the bus cycle was an
RMW, the RM bit will be set and the RW bit will show whether the fault was on a read
or write.

6.3.1.3 Type III: Faults During MOVEM Operand Transfer

Bus faults that occur as a result of MOVEM operand transfer are classified as type III
faults. MOVEM Instruction prefetch faults are type II faults.

Type III faults cause an immediate exception that aborts the current instruction. None
of the registers altered during execution of the faulted instruction are restored prior to
execution of the fault handler. This includes any register predecremented as a result
of the effective address calculation or any register overwritten during instruction exe-
cution. Since postincremented registers are not updated until the end of an instruction,
the register retains its preinstruction value unless overwritten by operand movement.

The SSW for faults in this category contains the following bit pattern:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 B1 B0 0 RM IN RW LG SIZ FUNC
CPU32 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 6-17

MV is set, indicating that MOVEM should be continued from the point where the fault
occurred upon return from the exception handler. TR, B1, and B0 are set if a corre-
sponding exception is pending when the BERR exception is taken. IN is set if a bus
fault occurs while refetching an opcode or an extension word during instruction restart.
RW, LG, SIZ, and FUNC all reflect the type of bus cycle that caused the fault. All write
faults have the RR bit set, to indicate that the write should be rerun upon return from
the exception handler.

The remainder of the stack frame contains sufficient information to continue MOVEM
with operand transfer following a faulted transfer. The address of the next operand to
be transferred, incremented or decremented by operand size, is stored in the faulted
address location ($08). The stacked transfer counter is set to 16 minus the number of
transfers attempted (including the faulted cycle). Refer to Figure 6-3 for the stacking
format.

6.3.1.4 Type IV: Faults During Exception Processing

The fourth type of fault occurs during exception processing. If this exception is a sec-
ond address or bus error, the machine halts in the “double bus fault” condition. How-
ever, if the exception is one that causes a four- or six-word stack frame to be written,
a bus cycle fault frame is written below the faulted exception stack frame.

The SSW for a fault within an exception contains the following bit pattern:

TR, B1, and B0 are set if a corresponding exception is pending when the BERR ex-
ception is taken.

The contents of the faulted exception stack frame are included in the bus fault stack
frame. The pre-exception status register and the format/vector word of the faulted
frame are stacked. The type of exception can be determined from the format/vector
word. If the faulted exception stack frame contains six words, the program counter of
the instruction that caused the initial exception is also stacked. This data is placed on
the stack in the format shown in Figure 6-4. The return address from the initial excep-
tion is stacked for RTE.

6.3.2 Correcting a Fault

Fault correction methods are discussed in the following paragraphs.

There are two ways to complete a faulted released write bus cycle. The first is to use
a software handler. The second is to rerun the bus cycle via RTE.

Type II fault handlers must terminate with RTE, but specific requirements must also be
met before an instruction is restarted.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 TR B1 B0 RR 0 IN RW LG SIZ FUNC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 0 0 TR B1 B0 0 0 0 1 LG SIZ FUNC

15 0
 MOTOROLA EXCEPTION PROCESSING CPU32

6-18 REFERENCE MANUAL

There are three varieties of Type III operand fault recovery. The first is completion of
an instruction in software. The second is conversion to Type II with restart via RTE.
The third is continuation from the fault via RTE.

6.3.2.1 (Type I) Completing Released Writes via Software

To complete a bus cycle in software, a handler must first read the SSW function code
field to determine the appropriate address space, then access the fault address point-
er on the stack, and then transfer data from the stacked image of the output buffer to
the fault address.

Because the CPU32 has a 16-bit internal data bus, long operands require two bus ac-
cesses. A fault during the second access of a long operand causes the LG bit in the
SSW to be set. The SIZ field indicates remaining operand size. If operand coherency
is important, the complete operand must be rewritten. After a long operand is rewritten,
the RR bit must be cleared. Failure to clear the RR bit can cause RTE to rerun the bus
cycle. Following rewrite, it is not necessary to adjust the program counter (or other
stack contents) before executing RTE.

6.3.2.2 (Type I) Completing Released Writes via RTE

An exception handler can use the RTE instruction to complete a faulted bus cycle.
When RTE executes, the fault address, data output buffer, program counter, and sta-
tus register are restored from the stack. Any pending breakpoint or trace exceptions,
as indicated by TR, B1, and B0 in the stacked SSW, are requeued during SSW resto-
ration. The RR bit in the SSW is checked during the unstacking operation — if it is set,
the RW, FUNC, and SIZ fields are restored and the released write cycle is rerun.

To maintain long-word operand coherence, stack contents must be adjusted prior to
RTE execution. The fault address must be decremented by two if LG is set and SIZ
indicates a remaining byte or word. SIZ must be set to long. All other fields should be
left unchanged. The bus controller uses the modified fault address and SIZ field to re-
run the complete released write cycle

Manipulating the stacked SSW can cause unpredictable results because RTE checks
only the RR bit to determine if a bus cycle must be rerun. Inadvertent alteration of the
control bits could cause the bus cycle to be a read instead of a write, or could cause
access to a different address space than the original bus cycle. If the rerun bus cycle
is a read, returned data will be ignored.

6.3.2.3 (Type II) Correcting Faults via RTE

Instructions aborted because of a type II fault are restarted upon return from the ex-
ception handler. A fault handler must establish safe restart conditions. If a fault is
caused by a nonresident page in a demand-paged virtual memory configuration, the
fault address must be read from the stack, and the appropriate page retrieved. An RTE
instruction terminates the exception handler. After unstacking the machine state, the
instruction is refetched and restarted.
CPU32 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 6-19

6.3.2.4 (Type III) Correcting Faults via Software

Sufficient information is contained in the stack frame to complete MOVEM in software.
After the cause of the fault is corrected, the faulted bus cycle must be rerun. Do the
following to complete an instruction through software:

A. Setup for Rerun

Read the MOVEM opcode and extension from locations pointed to by stack
frame PC and PC + 2. The effective address need not be recalculated, since
the next operand address is saved in the stack frame. However, the opcode ef-
fective address field must be examined to determine how to update the address
register and program counter when the instruction is complete.

Adjust the mask to account for operands already transferred. Subtract the
stacked operand transfer count from 16 to obtain the number of operands trans-
ferred. Scan the mask using this count value. Each time a set bit is found, clear
it and decrement the counter. When the count is zero, the mask is ready for use.

Adjust the operand address. If the predecrement addressing mode is in effect,
subtract the operand size from the stacked value; otherwise, add the operand
size to the stacked value.

B. Rerun Instruction

Scan the mask for set bits. Read/write the selected register from/to the operand
address as each bit is found.

As each operand is transferred, clear the mask bit and increment (decrement)
the operand address. When all bits in the mask are cleared, all operands have
been transferred.

If the addressing mode is predecrement or postincrement, update the register
to complete the execution of the instruction.

If the TR bit is set in the stacked SSW, create a six-word stack frame and ex-
ecute the trace handler. If either B1 or B0 in the SSW is set, create another six
word stack frame and execute the hardware breakpoint handler.

De-allocate the stack and return control to the faulted program.

6.3.2.5 (Type III) Correcting Faults By Conversion and Restart

In some situations it may be necessary to rerun all the operand transfers for a faulted
instruction rather than continue from a faulted operand. Clearing the MV bit in the
stacked SSW converts a type III fault into a type II fault. Consequently, MOVEM, like
all other type II exceptions, will be restarted upon return from the exception handler.
When a fault occurs after an operand has transferred, that transfer is not “undone”.
However, these memory locations are accessed a second time when the instruction is
restarted. If a register used in an effective address calculation is overwritten before a
fault occurs, an incorrect effective address is calculated upon instruction restart.
 MOTOROLA EXCEPTION PROCESSING CPU32

6-20 REFERENCE MANUAL

6.3.2.6 (Type III) Correcting Faults via RTE

The preferred method of MOVEM bus fault recovery is to correct the cause of the fault
and then execute an RTE instruction without altering the stack contents.

The RTE recognizes that MOVEM was in progress when a fault occurred, restores the
appropriate machine state, refetches the instruction, repeats the faulted transfer, and
continues the instruction.

MOVEM is the only instruction continued upon return from an exception handler. Al-
though the instruction is refetched, the effective address is not recalculated, and the
mask is rescanned the same number of times as before the fault — modifying the code
prior to RTE can cause unexpected results.

6.3.2.7 (Type IV) Correcting Faults via Software

BERR exceptions can occur during exception processing while the processor is fetch-
ing an exception vector or while it is stacking. The same stack frame and SSW are
used in both cases, but each has a distinct fault address. The stacked faulted excep-
tion format/vector word identifies the type of faulted exception and the contents of the
remainder of the frame. A fault address corresponding to the vector specified in the
stacked format/vector word indicates that the processor could not obtain the address
of the exception handler.

A BERR exception handler should execute RTE after correcting a fault. RTE restores
the internal machine state, fetches the address of the original exception handler, rec-
reates the original exception stack frame, and resumes execution at the exception
handler address.

If the fault is intractable, the exception handler should rewrite the faulted exception
stack frame at SP + $14 + $06 and then jump directly to the original exception handler.
The stack frame can be generated from the information in the BERR frame: the pre-
exception status register (SP + $0C), the format/vector word (SP + $0E), and, if the
frame being written is a six-word frame, the program counter of the instruction causing
the exception (SP + $10). The return program counter value is available at SP + $02.

A stacked fault address equal to the current stack pointer may indicate that, although
the first exception received a BERR while stacking, the BERR exception stacking was
successfully completed. This is an extremely improbable occurrence, but the CPU32
supports recovery from it. Once the exception handler determines that the fault has
been corrected, recovery can proceed as described previously. If the fault cannot be
corrected, move the supervisor stack to another area of memory, copy all valid stack
frames to the new stack, create a faulted exception frame on top of the stack, and re-
sume execution at the exception handler address.

6.4 CPU32 Stack Frames

The CPU32 generates three different stack frames — the normal four- and six-word
frames, and the twelve-word BERR stack frame.
CPU32 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 6-21

6.4.1 Normal Four-Word Stack Frame

This stack frame is created by interrupt, format error, TRAP #n, illegal instruction, A-
line and F-line emulator trap, and privilege violation exceptions. Depending on the ex-
ception type, the program counter value is either the address of the next instruction to
be executed or the address of the instruction that caused the exception (see Figure
6-3).

Figure 6-3 Format $0 — Four-Word Stack Frame

6.4.2 Normal Six-Word Stack Frame

This stack frame (see Figure 6-4) is created by instruction-related traps, which include
CHK, CHK2, TRAPcc, TRAPV, and divide-by-zero, and by trace exceptions. The fault-
ed instruction program counter value is the address of the instruction that caused the
exception. The next program counter value (the address to which RTE returns) is the
address of the next instruction to be executed.

Figure 6-4 Format $2 — Six-Word Stack Frame

Hardware breakpoints also utilize this format. The faulted instruction program counter
value is the address of the instruction executing when the breakpoint was sensed.
Usually this is the address of the instruction that caused the breakpoint, but, because
released writes can overlap following instructions, the faulted instruction program
counter may point to an instruction following the instruction that caused the breakpoint.
The address to which RTE returns is the address of the next instruction to be executed

6.4.3 BERR Stack Frame

This stack frame is created when a bus cycle fault is detected. The CPU32 BERR
stack frame differs significantly from the equivalent stack frames of other M68000
Family members. The only internal machine state required in the CPU32 stack frame
is the bus controller state at the time of the error, and a single register.

15 0

SP → STATUS REGISTER

+$02 PROGRAM COUNTER HIGH

PROGRAM COUNTER LOW

+$06 0 0 0 0 VECTOR OFFSET

15 0

SP → STATUS REGISTER

+$02 NEXT INSTRUCTION PROGRAM COUNTER HIGH

NEXT INSTRUCTION PROGRAM COUNTER LOW

+$06 0 0 1 0 VECTOR OFFSET

+$08 FAULTED INSTRUCTION PROGRAM COUNTER HIGH

FAULTED INSTRUCTION PROGRAM COUNTER LOW
 MOTOROLA EXCEPTION PROCESSING CPU32

6-22 REFERENCE MANUAL

Bus operation in progress at the time of a fault is conveyed by the SSW.

The BERR stack frame is 12 words in length. There are three variations of the frame,
each distinguished by different values in the SSW TP and MV fields.

An internal transfer count register appears at location SP + 14 in all bus error stack
frames. The register contains an 8-bit microcode revision number, and, for type III
faults, an 8-bit transfer count. Register format is shown in Figure 6-5.

Figure 6-5 Internal Transfer Count Register

The microcode revision number is checked before a BERR stack frame is restored via
RTE. In a multiprocessor system, this check insures that a processor using stacked
information is at the same revision level as the processor that created it.

The transfer count is ignored unless the MV bit in the stacked SSW is set. If the MV
bit is set, the least significant byte of the internal register is reloaded into the MOVEM
transfer counter during RTE execution.

For faults occurring during normal instruction execution (both prefetches and non-
MOVEM operand accesses) SSW [TP:MV] = 00. Stack frame format is shown in Fig-
ure 6-6.

Faults that occur during the operand portion of the MOVEM instruction.are identified
by SSW [TP:MV] = 01. Stack frame format is shown in Figure 6-7.

When a bus error occurs during exception processing, SSW [TP:MV] = 10. The frame
shown in Figure 6-8 is written below the faulting frame. Stacking begins at the address
pointed to by SP – 6 (SP value is the value before initial stacking on the faulted frame).

The frame can have either four or six words, depending on the type of error. Four word
stack frames do not include the faulted instruction program counter (the internal trans-
fer count register is located at SP + $10 and the SSW is located at SP + $12).

The fault address of a dynamically sized bus cycle is the address of the upper byte,
regardless of the byte that caused the error.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TP MV 0 TR B1 B0 RR RM IN RW LG SIZ FUNC

15 8 7 0

MICROCODE REVISION NUMBER TRANSFER COUNT
CPU32 EXCEPTION PROCESSING MOTOROLA

REFERENCE MANUAL 6-23

Figure 6-6 Format $C — BERR Stack for Prefetches and Operands

Figure 6-7 Format $C — BERR Stack on MOVEM Operand

Figure 6-8 Format $C — Four- and Six-Word BERR Stack

15 0

SP → STATUS REGISTER

+$02 RETURN PROGRAM COUNTER HIGH

RETURN PROGRAM COUNTER LOW

+$06 1 1 0 0 VECTOR OFFSET

+$08 FAULTED ADDRESS HIGH

FAULTED ADDRESS LOW

+$0C DBUF HIGH

DBUF LOW

+$10 CURRENT INSTRUCTION PROGRAM COUNTER HIGH

CURRENT INSTRUCTION PROGRAM COUNTER LOW

+$14 INTERNAL TRANSFER COUNT REGISTER

+$16 0 0 SPECIAL STATUS WORD

15 0

SP → STATUS REGISTER

+$02 RETURN PROGRAM COUNTER HIGH

RETURN PROGRAM COUNTER LOW

+$06 1 1 0 0 VECTOR OFFSET

+$08 FAULTED ADDRESS HIGH

FAULTED ADDRESS LOW

+$0C DBUF HIGH

DBUF LOW

+$10 CURRENT INSTRUCTION PROGRAM COUNTER HIGH

CURRENT INSTRUCTION PROGRAM COUNTER LOW

+$14 INTERNAL TRANSFER COUNT REGISTER

+$16 0 1 SPECIAL STATUS WORD

15 0

SP → STATUS REGISTER

+$02 NEXT INSTRUCTION PROGRAM COUNTER HIGH

NEXT INSTRUCTION PROGRAM COUNTER LOW

+$06 1 1 0 0 VECTOR OFFSET

+$08 FAULTED ADDRESS HIGH

FAULTED ADDRESS LOW

+$0C PRE-EXCEPTION STATUS REGISTER

FAULTED EXCEPTION FORMAT/VECTOR WORD

+$10 FAULTED INSTRUCTION PROGRAM COUNTER HIGH (SIX WORD FRAME ONLY)

FAULTED INSTRUCTION PROGRAM COUNTER LOW (SIX WORD FRAME ONLY)

+$14 INTERNAL TRANSFER COUNT REGISTER

+$16 0 1 SPECIAL STATUS WORD
 MOTOROLA EXCEPTION PROCESSING CPU32

6-24 REFERENCE MANUAL

SECTION 7 DEVELOPMENT SUPPORT
All M68000 Family members have the following special features that facilitate applica-
tions development:

Trace on Instruction Execution — All M68000 processors include an instruction-by-
instruction tracing facility to aid in program development. The MC68020,
MC68030, and CPU32 can also trace those instructions that change program flow.
In trace mode, an exception is generated after each instruction is executed, allow-
ing a debugger program to monitor execution of a program under test. See 6.2.10
Tracing for more information.

Breakpoint Instruction — An emulator can insert software breakpoints into target
code to indicate when a breakpoint occurs. On the MC68010, MC68020,
MC68030, and CPU32, this function is provided via illegal instructions ($4848–
$484F) that serve as breakpoint instructions. See 6.2.5 Software Breakpoints for
more information.

Unimplemented Instruction Emulation — When an attempt is made to execute an
illegal instruction, an illegal instruction exception occurs. Unimplemented instruc-
tions (F-line, A-line) utilize separate exception vectors to permit efficient emulation
of unimplemented instructions in software. See 6.2.8 Illegal or Unimplemented
Instructions for more information.

7.1 CPU32 Integrated Development Support

In addition to standard MC68000 family capabilities, the CPU32 has features to sup-
port advanced integrated system development. These features include background
debug mode, deterministic opcode tracking, hardware breakpoints, and internal visi-
bility in a single-chip environment.

7.1.1 Background Debug Mode (BDM) Overview

Microprocessor systems generally provide a debugger, implemented in software, for
system analysis at the lowest level. The BDM on the CPU32 is unique because the
debugger is implemented in CPU microcode.

BDM incorporates a full set of debug options — registers can be viewed and/or altered,
memory can be read or written, and test features can be invoked.

A resident debugger simplifies implementation of an in-circuit emulator. In a common
setup (see Figure 7-1), emulator hardware replaces the target system processor. A
complex, expensive pod-and-cable interface provides a communication path between
target system and emulator.

By contrast, an integrated debugger supports use of a bus state analyzer (BSA) for in-
circuit emulation. The processor remains in the target system (see Figure 7-2) and the
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-1

interface is simplified. The BSA monitors target processor operation and the on-chip
debugger controls the operating environment. Emulation is much “closer” to target
hardware, and many interfacing problems (i.e., limitations on high-frequency opera-
tion, AC and DC parametric mismatches, and restrictions on cable length) are mini-
mized.

Figure 7-1 In-Circuit Emulator Configuration

Figure 7-2 Bus State Analyzer Configuration

7.1.2 Deterministic Opcode Tracking Overview

CPU32 function code outputs are augmented by two supplementary signals that mon-
itor the instruction pipeline. The instruction fetch (IFETCH) output identifies bus cycles
in which data is loaded into the pipeline, and signals pipeline flushes. The instruction
pipe (IPIPE) output indicates when each mid-instruction pipeline advance occurs and
when instruction execution begins. These signals allow a BSA to synchronize with in-
struction stream activity. Refer to 7.3 Deterministic Opcode Tracking for complete
information.

TARGET
SYSTEM

IN-CIRCUIT
EMULATOR

TARGET
MCU

TARGET
SYSTEM

BUS STATE
ANALYZER

TARGET
MCU
 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-2 REFERENCE MANUAL

7.1.3 On-Chip Hardware Breakpoint Overview

An external breakpoint input and an on-chip hardware breakpoint capability permit
breakpoint trap on any memory access. Off-chip address comparators preclude break-
points on internal accesses unless show cycles are enabled. Breakpoints on
prefetched instructions, which are flushed from the pipeline before execution, are not
acknowledged, but operand breakpoints are always acknowledged. Acknowledged
breakpoints can initiate either exception processing or background debug mode
(BDM). See 6.2.6 Hardware Breakpoints for more information.

7.2 Background Debug Mode (BDM)

BDM is an alternate CPU32 operating mode. During BDM, normal instruction execu-
tion is suspended, and special microcode performs debugging functions under exter-
nal control. Figure 7-3 is a BDM block diagram.

Figure 7-3 BDM Block Diagram

BDM can be initiated in several ways — by externally generated breakpoints, by inter-
nal peripheral breakpoints, by the background (BGND) instruction, or by catastrophic
exception conditions. While in BDM, the CPU32 ceases to fetch instructions via the
parallel bus and communicates with the development system via a dedicated, high-
speed, SPI-type serial command interface.

SEQUENCERMICROCODE

SERIAL
INTERFACE

BUS
CONTROL

IRC

BERR

BKPT

EXECUTION
UNIT

IPIPE/DSO

IFETCH/DSI

DATA BUS

BERR

BKPT/DSCLK

ADDRESS BUS

IRB

BERR

BKPT

IRA

BERR

BKPT

FREEZE
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-3

7.2.1 Enabling BDM

Accidentally entering BDM in a non-development environment could lock up the
CPU32 since the serial command interface would probably not be available. For this
reason, BDM is enabled during reset via the breakpoint (BKPT) signal.

BDM operation is enabled when BKPT is asserted (low), at the rising edge of RESET.
BDM remains enabled until the next system reset. A high BKPT signal on the trailing
edge of RESET disables BDM. BKPT is relatched on each rising transition of RESET.
BKPT is synchronized internally, and must be held low for at least two clock cycles pri-
or to negation of RESET.

BDM enable logic must be designed with special care. If hold time on BKPT extends
into the first bus cycle following reset, the bus cycle could inadvertently be tagged with
a breakpoint. Refer to the system integration module user's manual for timing informa-
tion.

7.2.2 BDM Sources

When BDM is enabled, any of several sources can cause the transition from normal
mode to BDM. These sources include external breakpoint hardware, the BGND in-
struction, a double bus fault, and internal peripheral breakpoints. If BDM is not enabled
when an exception condition occurs, the exception is processed normally. Table 7-1
summarizes the processing of each source for both enabled and disabled cases. As
shown in Table 7-1, the BKPT instruction never causes a transition into BDM.

7.2.2.1 External BKPT Signal

Once enabled, BDM is initiated whenever assertion of BKPT is acknowledged. If BDM
is disabled, a breakpoint exception (vector $0C) is acknowledged. The BKPT input has
the same timing relationship to the data strobe trailing edge as does read cycle data.
There is no breakpoint acknowledge bus cycle when BDM is entered.

7.2.2.2 BGND Instruction

An illegal instruction, $4AFA, is reserved for use by development tools. The CPU32
defines $4AFA (BGND) to be a BDM entry point when BDM is enabled. If BDM is dis-
abled, an illegal instruction trap is acknowledged. Illegal instruction traps are dis-
cussed in 6.2.8 Illegal or Unimplemented Instructions.

Table 7-1 BDM Source Summary

Source BDM Enabled BDM Disabled
BKPT Background Breakpoint Exception

Double Bus Fault Background Halted
BGND Instruction Background Illegal Instruction
BKPT Instruction Opcode Substitution/

Illegal Instruction
Opcode Substitution/

Illegal Instruction
 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-4 REFERENCE MANUAL

7.2.2.3 Double Bus Fault

The CPU32 normally treats a double bus fault, or two bus faults in succession, as a
catastrophic system error, and halts. When this condition occurs during initial system
debug (a fault in the reset logic), further debugging is impossible until the problem is
corrected. In BDM, the fault can be temporarily bypassed, so that its origin can be iso-
lated and eliminated.

7.2.2.4 Peripheral Breakpoints

CPU32 peripheral breakpoints are implemented in the same way as external break-
points — peripherals request breakpoints by asserting the BKPT signal. Consult the
appropriate peripheral user's manual for additional details on the generation of periph-
eral breakpoints.

7.2.3 Entering BDM

When the processor detects a breakpoint or a double bus fault, or decodes a BGND
instruction, it suspends instruction execution and asserts the FREEZE output. This is
the first indication that the processor has entered BDM. Once FREEZE has been as-
serted, the CPU enables the serial communication hardware and awaits a command.

The CPU writes a unique value indicating the source of BDM transition into temporary
register A (ATEMP) as part of the process of entering BDM. A user can poll ATEMP
and determine the source (see Table 7-2) by issuing a read system register command
(RSREG). ATEMP is used in most debugger commands for temporary storage — it is
imperative that the RSREG command be the first command issued after transition into
BDM.

*Special status word (SSW) is described in detail in 6.3 Fault Recovery.

A double bus fault during initial stack pointer/program counter (SP/PC) fetch sequence
is distinguished by a value of $FFFFFFFF in the current instruction PC. At no other
time will the processor write an odd value into this register.

7.2.4 Command Execution

Figure 7-4 summarizes BDM command execution. Commands consist of one 16-bit
operation word and can include one or more 16-bit extension words. Each incoming
word is read as it is assembled by the serial interface. The microcode routine corre-
sponding to a command is executed as soon as the command is complete. Result op-
erands are loaded into the output shift register to be shifted out as the next command
is read. This process is repeated for each command until the CPU returns to normal
operating mode.

Table 7-2 Polling the BDM Entry Source

Source ATEMP [31:16] ATEMP [15:0]
Double Bus Fault SSW* $FFFF
BGND Instruction $0000 $0001

Hardware Breakpoint $0000 $0000
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-5

7.2.5 Background Mode Registers

BDM processing uses three special purpose registers to keep track of program context
during development. A description of each follows.

7.2.5.1 Fault Address Register (FAR)

The FAR contains the address of the faulting bus cycle immediately following a bus or
address error. This address remains available until overwritten by a subsequent bus
cycle. Following a double bus fault, the FAR contains the address of the last bus cycle.
The address of the first fault (if there was one) is not visible to the user.

7.2.5.2 Return Program Counter (RPC)

The RPC points to the location where fetching will commence after transition from
background mode to normal mode. This register should be accessed to change the
flow of a program under development. Changing the RPC to an odd value will cause
an address error when normal mode prefetching begins.

Figure 7-4 BDM Command Execution Flowchart

YES

NO

CONTINUE

ENTER BDM

• ASSERT FREEZE SIGNAL
• WAIT FOR COMMAND SEND INITIAL COMMAND

• LOAD COMMAND REGISTER
• ENABLE SHIFT CLOCK
• SHIFT OUT 17 BITS
• DISABLE SHIFT CLOCK

EXECUTE COMMAND

• LOAD: NOT READY/ RESPONSE
• PERFORM COMMAND
• STORE RESULTS

READ RESULTS/NEW COMMAND

• LOAD COMMAND REGISTER
• ENABLE SHIFT CLOCK
• SHIFT IN/OUT 17 BITS
• DISABLE SHIFT CLOCK
• READ RESULT REGISTER

 IF RESULTS =
"NOT READY"

CPU ACTIVITY DEVELOPMENT SYSTEM ACTIVITY

?

 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-6 REFERENCE MANUAL

7.2.5.3 Current Instruction Program Counter (PCC)

The PCC holds a pointer to the first word of the last instruction executed prior to tran-
sition into background mode. Due to instruction pipelining, the instruction pointed to
may not be the instruction which caused the transition. An example is a breakpoint on
a released write. The bus cycle may overlap as many as two subsequent instructions
before stalling the instruction sequencer. A breakpoint asserted during this cycle will
not be acknowledged until the end of the instruction executing at completion of the bus
cycle. PCC will contain $00000001 if BDM is entered via a double bus fault immedi-
ately out of reset.

7.2.6 Returning from BDM

BDM is terminated when a resume execution (GO) or call user code (CALL) command
is received. Both GO and CALL flush the instruction pipeline and refetch instructions
from the location pointed to by the RPC.

The return PC and the memory space referred to by the status register SUPV bit reflect
any changes made during BDM. FREEZE is negated prior to initiating the first
prefetch. Upon negation of FREEZE, the serial subsystem is disabled, and the signals
revert to IPIPE/IFETCH functionality.

7.2.7 Serial Interface

Communication with the CPU32 during BDM occurs via a dedicated serial interface,
which shares pins with other development features. The BKPT signal becomes the se-
rial clock (DSCLK); serial input data (DSI) is received on IFETCH, and serial output
data (DSO) is transmitted on IPIPE.

The serial interface uses a full-duplex synchronous protocol similar to the serial pe-
ripheral interface (SPI) protocol. The development system serves as the master of the
serial link since it is responsible for the generation of DSCLK. If DSCLK is derived from
the CPU32 system clock, development system serial logic is unhindered by the oper-
ating frequency of the target processor. Operable frequency range of the serial clock
is from DC to one-half the processor system clock frequency.

The serial interface operates in full-duplex mode —data is transmitted and received
simultaneously by both master and slave devices. In general, data transitions occur on
the falling edge of DSCLK and are stable by the following rising edge of DSCLK. Data
is transmitted MSB first, and is latched on the rising edge of DSCLK.

The serial data word is 17 bits wide — 16 data bits and a status/control bit.

Bit 16 indicates status of CPU-generated messages as shown in Table 7-3.

16 15 0

S/C DATA FIELD

 ↑

STATUS CONTROL BIT
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-7

Command and data transfers initiated by the development system should clear bit 16.
The current implementation ignores this bit; however, Motorola reserves the right to
use this bit for future enhancements.

7.2.7.1 CPU Serial Logic

CPU serial logic, shown in the left-hand portion of Figure 7-5, consists of transmit and
receive shift registers and of control logic that includes synchronization, serial clock
generation circuitry, and a received bit counter.

Figure 7-5 Debug Serial I/O Block Diagram

Table 7-3 CPU Generated Message Encoding

Bit 16 Data Message Type
0 xxxx Valid Data Transfer
0 FFFF Command Complete; Status OK
1 0000 Not Ready with Response; Come Again
1 0001 BERR Terminated Bus Cycle; Data Invalid
1 FFFF Illegal Command

CONTROL
LOGIC

SERIAL IN
PARALLEL OUT

PARALLEL IN
SERIAL OUT

EXECUTION
UNIT

STATUS

SYNCHRONIZE
MICROSEQUENCER

PARALLEL IN
SERIAL OUT

SERIAL IN
PARALLEL OUT

RESULT LATCH

CONTROL
LOGIC

STATUS DATA

DSI

DSO

DSCLK SERIAL
CLOCK

16

RCV DATA LATCH

CPU
INSTRUCTION

REGISTER BUS

16

16

COMMAND LATCH

DATA

16

DEVELOPMENT SYSTEM

0

 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-8 REFERENCE MANUAL

Both DSCLK and DSI are synchronized to on-chip clocks, thereby minimizing the
chance of propagating metastable states into the serial state machine. Data is sam-
pled during the high phase of CLKOUT. At the falling edge of CLKOUT, the sampled
value is made available to internal logic. If there is no synchronization between CPU32
and development system hardware, the minimum hold time on DSI with respect to
DSCLK is one full period of CLKOUT.

Figure 7-6 Serial Interface Timing Diagram

The serial state machine begins a sequence of events based on the rising edge of the
synchronized DSCLK (see Figure 7-6). Synchronized serial data is transferred to the
input shift register, and the received bit counter is decremented. One-half clock period
later, the output shift register is updated, bringing the next output bit to the DSO signal.
DSO changes relative to the rising edge of DSCLK and does not necessarily remain
stable until the falling edge of DSCLK.

One clock period after the synchronized DSCLK has been seen internally, the updated
counter value is checked. If the counter has reached zero, the receive data latch is up-
dated from the input shift register. At this same time, the output shift register is reload-
ed with the “not ready/come again” response. Once the receive data latch has been
loaded, the CPU is released to act on the new data. Response data overwrites the “not
ready” response when the CPU has completed the current operation.

Data written into the output shift register appears immediately on the DSO signal. In
general, this action changes the state of the signal from a high (“not ready” response
status bit) to a low (valid data status bit) logic level. However, this level change only
occurs if the command completes successfully. Error conditions overwrite the “not
ready” response with the appropriate response that also has the status bit set.

CLKOUT

FREEZE

DSCLK

DSI

SAMPLE
WINDOW

INTERNAL
SYNCHRONIZED

DSCLK

INTERNAL
SYNCHRONIZED

DSI

DSO
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-9

A user can use the state change on DSO to signal hardware that the next serial trans-
fer may begin. A time-out of sufficient length to trap error conditions that do not change
the state of DSO should also be incorporated into the design. Hardware interlocks in
the CPU prevent result data from corrupting serial transfers in progress.

7.2.7.2 Development System Serial Logic

The development system, as the master of the serial data link, must supply the serial
clock. However, normal and BDM operations could interact if the clock generator is not
properly designed.

Breakpoint requests are made by asserting BKPT to the low state in either of two
ways. The primary method is to assert BKPT during a single bus cycle for which an
exception is desired. Another method is to assert BKPT, then continue to assert it until
the CPU32 responds by asserting FREEZE. This method is useful for forcing a transi-
tion into BDM when the bus is not being monitored. Each of these methods requires a
slightly different serial logic design to avoid spurious serial clocks.

Figure 7-7 represents the timing required for asserting BKPT during a single bus cy-
cle.

Figure 7-7 BKPT Timing for Single Bus Cycle

Figure 7-8 depicts the timing of the BKPT/FREEZE method. In both cases, the serial
clock is left high after the final shift of each transfer. This technique eliminates the pos-
sibility of accidentally tagging the prefetch initiated at the conclusion of a BDM session.
As mentioned previously, all timing within the CPU is derived from the rising edge of
the clock; the falling edge is effectively ignored.

Figure 7-8 BKPT Timing for Forcing BDM

SHIFT_CLK

FORCE_BGND

BKPT_TAG

FREEZE

BKPT

BKPT_TAG

FREEZE

SHIFT_CLK

FORCE_BGND

BKPT
 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-10 REFERENCE MANUAL

Figure 7-9 represents a sample circuit providing for both BKPT assertion methods. As
the name implies, FORCE_BGND is used to force a transition into BDM by the asser-
tion of BKPT. FORCE_BGND can be a short pulse or can remain asserted until
FREEZE is asserted. Once asserted, the set-reset latch holds BKPT low until the first
SHIFT_CLK is applied.

Figure 7-9 BKPT/DSCLK Logic Diagram

BKPT_TAG should be timed to the bus cycles since it is not latched. If extended past
the assertion of FREEZE, the negation of BKPT_TAG appears to the CPU32 as the
first DSCLK.

DSCLK is the gated serial clock. Normally high, it pulses low for each bit to be trans-
ferred. At the end of the seventeenth clock period, it remains high until the start of the
next transmission. Clock frequency is implementation dependent and may range from
DC to the maximum specified frequency. Although performance considerations might
dictate a hardware implementation, software solutions are not precluded, provided se-
rial bus timing is maintained.

7.2.8 Command Set

Following is a description of the command set available in BDM.

7.2.8.1 Command Format

The following standard bit format is utilized by all BDM commands.

Operation Field:
Commands are distinguished by the operation field. This 6-bit field provides for a
maximum of 64 unique commands.

R/W Field:
Direction of operand transfer is specified by this field. When the bit is set, the trans-
fer is from CPU to development system. When the bit is clear, data is written to the
CPU or to memory from the development system.

15 10 9 8 7 6 5 4 3 2 0

OPERATION 0 R/W OP SIZE 0 0 A/D REGISTER

EXTENSION WORD(S)

BKPT/DSCLK

S1

S2

R

Q

Q

RESET

 FORCE_BGND

BKPT_TAG

SHIFT_CLK
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-11

Operand Size:
For sized operations, this field specifies the operand data size. All addresses are
expressed as 32-bit absolute values. The size field is encoded as follows:

Address/Data (A/D) Field:
The A/D field is used by commands that operate on address and data registers. It
determines whether the register field specifies a data or address register. One in-
dicates an address register; zero, a data register. For other commands, this field
may be interpreted differently.

Register Field:
In most commands, this field specifies the register number when operating on an
address or data register.

Extension Words (as required):
At this time, no command requires an extension word to specify fully the operation
to be performed, but some commands require extension words for addresses or
immediate data. Addresses require two extension words because only absolute
long addressing is permitted. Immediate data can be either one or two words in
length — byte and word data each require a single extension word, long-word data
requires two words. Both operands and addresses are transferred most significant
word first.

7.2.8.2 Command Sequence Diagram

A command sequence diagram illustrates the serial bus traffic for each command.
Each bubble in the diagram represents a single 17-bit transfer across the bus. The top
half in each diagram corresponds to the data transmitted by the development system
to the CPU; the bottom half corresponds to the data returned by the CPU in response
to the development system commands. Command and result transactions are over-
lapped to minimize latency.

Figure 7-10 demonstrates the use of command sequence diagrams.

The cycle in which the command is issued contains the development system com-
mand mnemonic (in this example, read memory location). During the same cycle, the
CPU responds with either the lowest order results of the previous command or with a
command complete status (if no results were required).

During the second cycle, the development system supplies the high-order 16 bits of
the memory address. The CPU returns a “not ready” response unless the received
command was decoded as unimplemented, in which case the response data is the il-
legal command encoding. If an illegal command response occurs, the development
system should retransmit the command.

Encoding Operand Size
00 Byte
01 Word
10 Long
11 Reserved
 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-12 REFERENCE MANUAL

NOTE

The “not ready” response can be ignored unless a memory bus cycle
is in progress. Otherwise, the CPU can accept a new serial transfer
with eight system clock periods.

In the third cycle, the development system supplies the low-order 16 bits of a memory
address. The CPU always returns the “not ready” response in this cycle. At the com-
pletion of the third cycle, the CPU initiates a memory read operation. Any serial trans-
fers that begin while the memory access is in progress return the “not ready” response.

Results are returned in the two serial transfer cycles following the completion of mem-
ory access. The data transmitted to the CPU during the final transfer is the opcode for
the following command. Should a memory access generate either a bus or address
error, an error status is returned in place of the result data.

Figure 7-10 Command-Sequence-Diagram Example

 COMMANDS TRANSMITTED TO THE CPU

COMMAND CODE TRANSMITTED DURING THIS CYCLE

HIGH-ORDER 16 BITS OF MEMORY ADDRESS

LOW-ORDER 16 BITS OF MEMORY ADDRESS

SEQUENCE TAKEN IF
OPERATION HAS NOT
COMPLETED

DATA UNUSED FROM
THIS TRANSFER

SEQUENCE TAKEN IF
ILLEGAL COMMAND
IS RECEIVED BY CPU

RESULTS FROM PREVIOUS COMMAND

 RESPONSES FROM THE CPU

NONSERIAL-RELATED ACTIVITY

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD
"NOT READY"

READ (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX
BERR/AERR

MS RESULT
NEXT CMD
LS RESULT

READ
MEMORY

LOCATION

NEXT
COMMAND

CODE

SEQUENCE TAKEN IF BUS ERROR
OR ADDRESS ERROR OCCURS ON
MEMORY ACCESS

HIGH- AND LOW-ORDER
16 BITS OF RESULT

XXX
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-13

7.2.8.3 Command Set Summary

The BDM command set is summarized in Table 7-4. Subsequent paragraphs contain
detailed descriptions of each command.

Table 7-4 BDM Command Summary

Command Mnemonic Description
Read A/D Register RAREG/RDREG Read the selected address or data register and return

the results via the serial interface.
Write A/D Register WAREG/WDREG The data operand is written to the specified address or

data register.
Read System Register RSREG The specified system control register is read. All

registers that can be read in supervisor mode can be
read in BDM.

Write System Register WSREG The operand data is written into the specified system
control register.

Read Memory Location READ Read the sized data at the memory location specified
by the long-word address. The source function code
register (SFC) determines the address space
accessed.

Write Memory Location WRITE Write the operand data to the memory location
specified by the long-word address. The destination
function code register (DFC) register determines the
address space accessed.

Dump Memory Block DUMP Used in conjunction with the READ command to dump
large blocks of memory. An initial READ is executed to
set up the starting address of the block and to retrieve
the first result. Subsequent operands are retrieved with
the DUMP command.

Fill Memory Block FILL Used in conjunction with the WRITE command to fill
large blocks of memory. An initial WRITE is executed
to set up the starting address of the block and to supply
the first operand. Subsequent operands are written
with the FILL command.

Resume Execution GO The pipeline is flushed and refilled before resuming
instruction execution at the return PC.

Call User Code CALL Current PC is stacked at the location of the current SP.
Instruction execution begins at user patch code.

Reset Peripherals RST Asserts RESET for 512 clock cycles. The CPU is not
reset by this command. Synonymous with the CPU
RESET instruction.

No Operation NOP NOP performs no operation and may be used as a null
command.
 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-14 REFERENCE MANUAL

7.2.8.4 Read A/D Register (RAREG/RDREG)

Read the selected address or data register and return the results via the serial inter-
face.

Command Format:

Command Sequence:

Operand Data:

None

Result Data:

The contents of the selected register are returned as a long-word value. The data
is returned most significant word first.

7.2.8.5 Write A/D Register (WAREG/WDREG)

The operand (long-word) data is written to the specified address or data register. All
32 bits of the register are altered by the write.

Command Format:

Command Sequence:

Operand Data:

Long-word data is written into the specified address or data register. The data is
supplied most significant word first.

Result Data:

Command complete status ($0FFFF) is returned when register write is complete.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 1 0 0 0 0 1 1 0 0 0 A/D REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 1 0 0 0 0 0 1 0 0 0 A/D REGISTER

RDREG/RAREG

???

XXX
MS RESULT

XXX

"ILLEGAL"

NEXT CMD
LS RESULT

NEXT CMD
"NOT READY"

WDREG/WAREG
???

MS DATA

XXX
"ILLEGAL"

LS DATA
"NOT READY"

NEXT CMD
"NOT READY"

"CMD COMPLETE"
NEXT CMD

"NOT READY"
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-15

7.2.8.6 Read System Register (RSREG)

The specified system control register is read. All registers that can be read in supervi-
sor mode can be read in BDM. Several internal temporary registers are also accessi-
ble.

Command Format:

Command Sequence:

Operand Data:

None

Result Data:

Always returns 32 bits of data, regardless of the size of the register being read. If
the register is less than 32 bits, the result is returned zero extended.

Register Field:

The system control register is specified by the register field according to the follow-
ing table:

7.2.8.7 Write System Register (WSREG)

Operand data is written into the specified system control register. All registers that can
be written in supervisor mode can be written in BDM. Several internal temporary reg-
isters are also accessible.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 1 0 0 1 0 0 1 0 0 0 REGISTER

System Register Select Code
Return Program Counter (RPC) 0000
Current Instruction Program Counter (PCC) 0001
Status Register (SR) 1011
User Stack Pointer (USP) 1100
Supervisor Stack Pointer (SSP) 1101
Source Function Code Register (SFC) 1110
Destination Function Code Register (DFC) 1111
Temporary Register A (ATEMP) 1000
Fault Address Register (FAR) 1001
Vector Base Register (VBR) 1010

RSREG
???

XXX
MS RESULT

XXX
"ILLEGAL"

NEXT CMD
LS RESULT

NEXT CMD
"NOT READY"
 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-16 REFERENCE MANUAL

Command Sequence:

Operand Data:

The data to be written into the register is always supplied as a 32-bit long word. If
the register is less than 32 bits, the least significant word is used.

Result Data:

“Command complete” status is returned when register write is complete.

Register Field:

The system control register is specified by the register field according to the follow-
ing table. The FAR is a read-only register — any write to it is ignored.

7.2.8.8 Read Memory Location (READ)

Read the sized data at the memory location specified by the long-word address. Only
absolute addressing is supported. The SFC register determines the address space ac-
cessed. Valid data sizes include byte, word, or long word.

Command Format:

Command Sequence:

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 1 0 0 1 0 0 1 0 0 0 REGISTER

System Register Select Code
Return Program Counter (RPC) 0000
Current Instruction Program Counter (PCC) 0001
Status Register (SR) 1011
User Stack Pointer (USP) 1100
Supervisor Stack Pointer (SSP) 1101
Source Function Code Register (SFC) 1110
Destination Function Code Register (DFC) 1111
Temporary Register A (ATEMP) 1000
Fault Address Register (FAR) 1001
Vector Base Register (VBR) 1010

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 0 1 OP SIZE 0 0 0 0 0 0

MS DATA

XXX
"ILLEGAL"

LS DATA
"NOT READY"

NEXT CMD
"NOT READY"

"CMD COMPLETE"
NEXT CMDWSREG

??? "NOT READY"
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-17

Operand Data:

The single operand is the long-word address of the requested memory location.

Result Data:

The requested data is returned as either a word or long word. Byte data is returned
in the least significant byte of a word result, with the upper byte cleared. Word re-
sults return 16 bits of significant data; long-word results return 32 bits.

A successful read operation returns data bit 16 cleared. If a bus or address error is
encountered, the returned data is $10001.

7.2.8.9 Write Memory Location (WRITE)

Write the operand data to the memory location specified by the long-word address.
The destination function code (DFC) register determines the address space accessed.
Only absolute addressing is supported. Valid data sizes include byte, word, and long
word.

Command Format:

Command Sequence:

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 0 0 0 OP SIZE 0 0 0 0 0 0

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD
"NOT READY"

READ (B/W)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

NEXT CMD
RESULT

XXX
BERR/AERR

READ
MEMORY

LOCATION

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD
"NOT READY"

READ (LONG)
???

NEXT CMD

XXX
"NOT READY"

MS RESULT

XXX
BERR/AERR

READ
MEMORY

LOCATION

XXX NEXT CMD
LS RESULT

"NOT READY"

READ
MEMORY

LOCATION
 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-18 REFERENCE MANUAL

Operand Data:

Two operands are required for this instruction. The first operand is a long-word ab-
solute address that specifies a location to which the operand data is to be written.
The second operand is the data. Byte data is transmitted as a 16-bit word, justified
in the least significant byte. 16- and 32-bit operands are transmitted as 16 and 32
bits, respectively.

Result Data:

Successful write operations return a status of $0FFFF. Bus or address errors on
the write cycle are indicated by the assertion of bit 16 in the status message and
by a data pattern of $0001.

7.2.8.10 Dump Memory Block (DUMP)

DUMP is used in conjunction with the READ command to dump large blocks of mem-
ory. An initial READ is executed to set up the starting address of the block and to re-
trieve the first result. Subsequent operands are retrieved with the DUMP command.
The initial address is incremented by the operand size (1, 2, or 4) and saved in a tem-
porary register. Subsequent DUMP commands use this address, increment it by the
current operand size, and store the updated address back in the temporary register.

NEXT CMD

NEXT CMD

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD
"NOT READY"

WRITE (B/W)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX
BERR/AERR

"CMD COMPLETE"

DATA
"NOT READY"

WRITE
MEMORY

LOCATION

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD

WRITE (LONG)
???

MS DATA
"NOT READY"

LS DATA
"NOT READY"

WRITE
MEMORY

LOCATION

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX
BERR/AERR

"CMD COMPLETE"

"NOT READY"
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-19

NOTE

The DUMP command does not check for a valid address in the tem-
porary register — DUMP is a valid command only when preceded by
another DUMP or by a READ command. Otherwise, the results are
undefined. The NOP command can be used for inter-command pad-
ding without corrupting the address pointer.

The size field is examined each time a DUMP command is given, allowing the operand
size to be altered dynamically.

Command Format:

Command Sequence:

Operand Data:

None

Result Data:

Requested data is returned as either a word or long word. Byte data is returned in
the least significant byte of a word result. Word results return 16 bits of significant
data; long-word results return 32 bits. Status of the read operation is returned as in
the READ command: $0xxxx for success, $10001 for bus or address errors.

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 1 0 1 OP SIZE 0 0 0 0 0 0

DUMP (LONG)
???

XXX
"NOT READY"

NEXT CMD
 RESULT

XXX
BERR/AERR

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"NOT READY"

READ
MEMORY

LOCATION

DUMP (B/W)
???

XXX
"NOT READY"

 MS RESULT

XXX
BERR/AERR

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"NOT READY"

READ
MEMORY
LOCATION

NEXT CMD
LS RESULT

XXX
 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-20 REFERENCE MANUAL

7.2.8.11 Fill Memory Block (FILL)

FILL is used in conjunction with the WRITE command to fill large blocks of memory.
An initial WRITE is executed to set up the starting address of the block and to supply
the first operand. Subsequent operands are written with the FILL command. The initial
address is incremented by the operand size (1, 2, or 4) and is saved in a temporary
register. Subsequent FILL commands use this address, increment it by the current op-
erand size, and store the updated address back in the temporary register.

NOTE

The FILL command does not check for a valid address in the tempo-
rary register — FILL is a valid command only when preceded by an-
other FILL or by a WRITE command. Otherwise, the results are
undefined. The NOP command can be used for inter-command pad-
ding without corrupting the address pointer.

The size field is examined each time a FILL command is given, allowing the operand
size to be altered dynamically.

Command Format:

Command Sequence:

Operand Data:

A single operand is data to be written to the memory location. Byte data is trans-
mitted as a 16-bit word, justified in the least significant byte; 16- and 32-bit oper-
ands are transmitted as 16 and 32 bits, respectively.

Result Data:

Status is returned as in the WRITE command: $0FFFF for a successful operation
and $10001 for a bus or address error during write.

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 0 1 1 1 0 0 OP SIZE 0 0 0 0 0 0

NEXT CMD
"NOT READY"

"NOT READY"

XXX
BERR/AERR

"CMD COMPLETE"

MS DATA
"NOT READY"

XXX

NEXT CMD
XXX

"ILLEGAL"
NEXT CMD

"NOT READY"

FILL (B/W)
???

WRITE
MEMORY

LOCATION

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX
BERR/AERR

"CMD COMPLETE"
NEXT CMD

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

FILL (LONG)
???

DATA
"NOT READY"

WRITE
MEMORY

LOCATION

LS DATA
"NOT READY"
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-21

7.2.8.12 Resume Execution (GO)

The pipeline is flushed and refilled before normal instruction execution is resumed.
Prefetching begins at the return PC and current privilege level. If either the PC or SR
is altered during BDM, the updated value of these registers is used when prefetching
commences.

NOTE

The processor exits BDM when a bus error or address error occurs
on the first instruction prefetch from the new PC — the error is
trapped as a normal mode exception. The stacked value of the cur-
rent PC may not be valid in this case, depending on the state of the
machine prior to entering BDM. For address error, the PC does not
reflect the true return PC. Instead, the stacked fault address is the
(odd) return PC.

Command Format:

Command Sequence:

Operand Data:

None

Result Data:

None

7.2.8.13 Call User Code (CALL)

This instruction provides a convenient way to patch user code. The return PC is
stacked at the location pointed to by the current SP. The stacked PC serves as a return
address to be restored by the RTS command that terminates the patch routine. After
stacking is complete, the 32-bit operand data is loaded into the PC. The pipeline is
flushed and refilled from the location pointed to by the new PC. BDM is exited, and nor-
mal mode instruction execution begins.

NOTE

If a bus error or address error occurs during return address stacking,
the CPU returns an error status via the serial interface and remains
in BDM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

GO
???

NORMAL
MODE

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"
 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-22 REFERENCE MANUAL

If a bus error or address error occurs on the first instruction prefetch
from the new PC, the processor exits BDM and the error is trapped
as a normal mode exception. The stacked value of the current PC
may not be valid in this case, depending on the state of the machine
prior to entering BDM. For address error, the PC does not reflect the
true return PC. Instead, the stacked fault address is the (odd) return
PC.

Command Format:

Command Sequence:

Operand Data:

The 32-bit operand data is the starting location of the patch routine, which is the
initial PC upon exiting BDM.

Result Data:

None

As an example, consider the following code segment. It is supposed to output a char-
acter to an asynchronous communications interface adaptor — note that the routine
fails to check the transmit data register empty (TDRE) flag.

CHKSTAT: MOVE.B ACIAS,D0 Move ACIA status to D0
BEQ.B CHKSTAT Loop till condition true
MOVE.B DATA,ACIAD Output data
•
•
•

MISSING: ANDI.B #2,D0 Check for TDRE
RTS Return to in-line code

BDM and the CALL command can be used to patch the code as follows:

1. Breakpoint user program at CHKSTAT
2. Enter BDM
3. Execute CALL command to MISSING
4. Exit BDM
5. Execute MISSING code
6. Return to user program.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

LS ADDR
"NOT READY"

STACK
RETURN PC

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

CALL
???

NORMAL
MODE

XXX
BERR/AERR

NEXT CMD
"NOT READY"

FREEZE
NEGATED

PREFETCH
STARTED
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-23

7.2.8.14 Reset Peripherals (RST)

RST asserts RESET for 512 clock cycles. The CPU is not reset by this command. This
command is synonymous with the CPU RESET instruction.

Command Format:

Command Sequence:

Operand Data:

None

Result Data:

The “command complete” response ($0FFFF) is loaded into the serial shifter after
negation of RESET.

7.2.8.15 No Operation (NOP)

NOP performs no operation and may be used as a null command where required.

Command Format:

Command Sequence:

Operand Data:

None

Result Data:

The “command complete” response ($0FFFF) is returned during the next shift op-
eration.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RESET
???

ASSERT
RESET

XXX
"NOT READY"

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"CMD COMPLETE"

XXX
"ILLEGAL" "NOT READY"

NOP
???

NEXT CMD
"CMD COMPLETE"

NEXT CMD
 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-24 REFERENCE MANUAL

7.2.8.16 Future Commands

Unassigned command opcodes are reserved by Motorola for future expansion. All un-
used formats within any revision level will perform a NOP and return the ILLEGAL
command response.

7.3 Deterministic Opcode Tracking

The CPU32 utilizes deterministic opcode tracking to trace program execution. Two
signals, IPIPE and IFETCH, provide all the information required to analyze the opera-
tion of the instruction pipeline.

7.3.1 Instruction Fetch (IFETCH)

IFETCH indicates which bus cycles are accessing data to fill the instruction pipeline.
IFETCH is pulse-width modulated to multiplex two indications on a single pin. Asserted
for a single clock cycle, IFETCH indicates that the data from the current bus cycle is
to be routed to the instruction pipeline. IFETCH held low for two clock cycles indicates
that the instruction pipeline has been flushed. The data from the bus cycle is used to
begin filling the empty pipeline. Both user and supervisor mode fetches are signaled
by IFETCH.

Proper tracking of bus cycles via the IFETCH signal on a fast bus requires a simple
state machine. On a two-clock bus, IFETCH may signal a pipeline flush with associat-
ed prefetch followed immediately by a second prefetch. That is, IFETCH remains as-
serted for three clocks, two clocks indicating the flush/fetch and a third clock signaling
the second fetch. These two operations are easily discerned if the tracking logic sam-
ples IFETCH on the two rising edges of CLKOUT, which follow the address strobe (da-
ta strobe during show cycles) falling edge. Three-clock and slower bus cycles allow
time for negation of the signal between consecutive indications and do not experience
this operation.

7.3.2 Instruction Pipe (IPIPE)

The internal instruction pipeline can be modeled as a three-stage FIFO (see Figure 7-
11). Stage A is an input buffer — data can be used out of the stages B and C. IPIPE
signals advances of instructions in the pipeline.

Instruction register A (IRA) holds incoming words as they are prefetched. No decoding
takes place in the buffer. Instruction register B (IRB) provides initial decoding of the
opcode and decoding of extension words —it is a source of immediate data. Instruc-
tion register C (IRC) supplies residual opcode decoding during instruction execution.
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-25

Figure 7-11 Functional Model of Instruction Pipeline

Assertion of IPIPE for a single clock cycle indicates the use of data from IRB. Regard-
less of the presence of valid data in IRA, the contents of IRB are invalidated when
IPIPE is asserted. If IRA contains valid data, the data is copied into IRB (IRA → IRB),
and the IRB stage is revalidated.

Assertion of IPIPE for two clock cycles indicates the start of a new instruction and sub-
sequent replacement of data in IRC. This action causes a full advance of the pipeline
(IRB → IRC and IRA → IRB). IRA is refilled during the next instruction fetch bus cycle.

Data loaded into IRA propagates automatically through subsequent empty pipeline
stages. Signals that show the progress of instructions through IRB and IRC are nec-
essary to accurately monitor pipeline operation. These signals are provided by IRA
and IRB validity bits. When a pipeline advance occurs, the validity bit of the stage be-
ing loaded is set and the validity bit of the stage supplying the data is negated.

Because instruction execution is not timed to bus activity, IPIPE is synchronized with
the system clock and not the bus. Figure 7-12 illustrates the timing in relation to the
system clock.

Figure 7-12 Instruction Pipeline Timing Diagram

IPIPE should be sampled on the falling edge of the clock.

The assertion of IPIPE for a single cycle after one or more cycles of negation indicates
use of the data in IRB (advance of IRA into IRB). Assertion for two clock cycles indi-
cates that a new instruction has started (both IRA → IRB and IRB → IRC transfers

DATA
BUS

EXTENSION
WORDS

OPCODES
RESIDUAL

IRA IRB IRC

IRA IRA

IPIPE

EXTENSION
WORD USED

INSTRUCTION
START

EXTENSION
WORD USED

INSTRUCTION
START

IRA IRA IRA IRAIRB IRC
IRA IRA

IRB IRC

CLKOUT
 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-26 REFERENCE MANUAL

have occurred). Loading IRC always indicates that an instruction is beginning execu-
tion — the opcode is loaded into IRC by the transfer.

In some cases, instructions using immediate addressing begin executing and initiate
a second pipeline advance at the same time. IPIPE will not be negated between the
two indications, which implies the need for a state machine to track the state of IPIPE.
The state machine can be resynchronized during periods of inactivity on the signal.

7.3.3 Opcode Tracking during Loop Mode

IPIPE and IFETCH continue to work normally during loop mode. IFETCH indicates all
instruction fetches up through the point that data begins recirculating within the in-
struction pipeline. IPIPE continues to signal the start of instructions and the use of ex-
tension words even though data is being recirculated internally. IFETCH returns to
normal operation with the first fetch after exiting loop mode.
CPU32 DEVELOPMENT SUPPORT MOTOROLA

REFERENCE MANUAL 7-27

 MOTOROLA DEVELOPMENT SUPPORT CPU32

7-28 REFERENCE MANUAL

SECTION 8 INSTRUCTION EXECUTION TIMING
This section describes the instruction execution timing of the CPU32. External clock
cycles are used to provide accurate execution and operation timing guidelines, but not
exact timing for every possible circumstance. This approach is used because exact
execution time for an instruction or operation depends on concurrency of independent-
ly scheduled resources, on memory speeds, and on other variables.

An assembly language programmer or compiler writer can use the information in this
section to predict the performance of the CPU32. Additionally, timing for exception
processing is included so that designers of multitasking or real-time systems can pre-
dict task-switch overhead, maximum interrupt latency, and similar timing parameters.
Instruction timing is given in clock cycles to eliminate clock frequency dependency.

8.1 Resource Scheduling

The CPU32 contains several independently scheduled resources. The organization of
these resources within the CPU32 is shown in Figure 8–1. Some variation in instruc-
tion execution timing results from concurrent resource utilization. Because resource
scheduling is not directly related to instruction boundaries, it is impossible to make an
accurate prediction of the time required to complete an instruction without knowing the
entire context within which the instruction is executing.

8.1.1 Microsequencer

The microsequencer either executes microinstructions or awaits completion of ac-
cesses necessary to continue microcode execution. The microsequencer supervises
the bus controller, instruction execution, and internal processor operations such as
calculation of effective address and setting of condition codes. It also initiates instruc-
tion word prefetches after a change of flow and controls validation of instruction words
in the instruction pipeline.
CPU32 INSTRUCTION EXECUTION TIMING MOTOROLA

REFERENCE MANUAL 8-1

Figure 8–1 Block Diagram of Independent Resources

8.1.2 Instruction Pipeline

The CPU32 contains a two-word instruction pipeline where instruction opcodes are
decoded. Each stage of the pipeline is initially filled under microsequencer control and
subsequently refilled by the prefetch controller as it empties.

Stage A of the instruction pipeline is a buffer. Prefetches completed on the bus before
stage B empties are temporarily stored in this buffer. Instruction words (instruction op-
eration words and all extension words) are decoded at stage B. Residual decoding and
execution take place in stage C.

Each pipeline stage has an associated status bit that shows whether the word in that
stage was loaded with data from a bus cycle that terminated abnormally.

8.1.3 Bus Controller Resources

The bus controller consists of the instruction prefetch controller, the write-pending
buffer, and the microbus controller. These three resources transact all reads, writes,
and instruction prefetches required for instruction execution.

MICROSEQUENCER AND CONTROL

CONTROL STORE

CONTROL LOGIC

INSTRUCTION PIPELINE

STAGE STAGE
C B

EXECUTION UNIT

PROGRAM
COUNTER
SECTION

DATA
SECTION

WRITE-PENDING
BUFFER

PREFETCH
CONTROLLER

MICROBUS
CONTROLLER

ADDRESS
BUS

DATA
BUS

BUS CONTROL
SIGNALS

STAGE
A

 MOTOROLA INSTRUCTION EXECUTION TIMING CPU32

8-2 REFERENCE MANUAL

The bus controller and microsequencer operate concurrently. The bus controller can
perform a read or write, or schedule a prefetch, while the microsequencer controls ef-
fective address calculation or sets condition codes.

The microsequencer can also request a bus cycle that the bus controller cannot per-
form immediately. When this happens, the bus cycle is queued, and the bus controller
runs the cycle when the current cycle is complete.

8.1.3.1 Prefetch Controller

The instruction prefetch controller receives an initial request from the microsequencer
to initiate prefetching at a given address. Subsequent prefetches are initiated by the
prefetch controller whenever a pipeline stage is invalidated, either through instruction
completion or through use of extension words. Prefetch occurs as soon as the bus is
free of operand accesses previously requested by the microsequencer. Additional
state information permits the controller to inhibit prefetch requests when a change in
instruction flow (e.g. a jump or branch instruction) is anticipated.

In a typical program, 10 to 25 percent of the instructions causes a change of flow. Each
time a change occurs, the instruction pipeline must be flushed and refilled from the
new instruction stream. If instruction prefetches, rather than operand accesses, were
given priority, many instruction words would be flushed unused, and necessary oper-
and cycles would be delayed. To maximize available bus bandwidth, the CPU32 will
schedule a prefetch only when the next instruction is not a change-of-flow instruction,
and when there is room in the pipeline for the prefetch.

8.1.3.2 Write-Pending Buffer

The CPU32 incorporates a single-operand write-pending buffer. The buffer permits the
microsequencer to continue execution after a request for a write cycle is queued in the
bus controller. The time needed for a write at the end of an instruction can overlap the
head cycle time for the following instruction, and thus reduce overall execution time.
Interlocks prevent the microsequencer from overwriting the buffer.

8.1.3.3 Microbus Controller

The microbus controller performs bus cycles issued by the microsequencer. Operand
accesses always have priority over instruction prefetches. Word and byte operands
are accessed in a single CPU-initiated bus cycle, although the external bus interface
may be required to initiate a second cycle when a word operand is sent to a byte-sized
external port. Long operands are accessed in two bus cycles, most significant word
first.

The instruction pipeline is capable of recognizing instructions that cause a change of
flow. It informs the bus controller when a change of flow is imminent, and the bus con-
troller refrains from starting prefetches that would be discarded due to the change of
flow.
CPU32 INSTRUCTION EXECUTION TIMING MOTOROLA

REFERENCE MANUAL 8-3

8.1.4 Instruction Execution Overlap

Overlap is the time, measured in clock cycles, that an instruction executes concurrent-
ly with the previous instruction. As shown in Figure 8-2, portions of instructions A and
B execute simultaneously, so that total execution time is reduced. Because portions
of instructions B and C also overlap, overall execution time for all three instructions is
also reduced.

Each instruction contributes to the total overlap time. The portion of execution time at
the end of instruction A that can overlap the beginning of instruction B is called the tail
of instruction A. The portion of execution time at the beginning of instruction B that can
overlap the end of instruction A is called the head of instruction B. The total overlap
time between instructions A and B is the smaller tail of A and the head of B.

Figure 8-2 Simultaneous Instruction Execution

The execution time attributed to instructions A, B, and C after considering the overlap
is illustrated in Figure 8-3. The overlap time is attributed to the execution time of the
completing instruction. The following equation shows the method for calculating the
overlap time:

Overlap = min (TailN, HeadN+1)

Figure 8–3 Attributed Instruction Times

OVERLAP OVERLAP

INSTRUCTION A

INSTRUCTION B

INSTRUCTION C

OVERLAP
PERIOD

(ABSORBED BY
INSTRUCTION A)

OVERLAP
PERIOD

(ABSORBED BY
INSTRUCTION B)

INSTRUCTION A

INSTRUCTION B

INSTRUCTION C
 MOTOROLA INSTRUCTION EXECUTION TIMING CPU32

8-4 REFERENCE MANUAL

8.1.5 Effects of Wait States

The CPU32 access time for on-chip memory and peripherals is two clocks. While two-
clock external accesses are possible when the bus is operated in a synchronous
mode, a typical external memory speed is three or more clocks.

All instruction times listed in this section are for word access only (unless an explicit
exception is given), and are based on the assumption that both instruction fetches and
operand cycles are to a two-clock memory. Any time a long access is made, time for
the additional bus cycle(s) must be added to the overall execution time. Wait states
due to slow external memory must be added to the access time for each bus cycle.

A typical application has a mixture of bus speeds —program execution from an off-chip
ROM, accesses to on-chip peripherals, storage of variables in slow off-chip RAM, and
accesses to external peripherals with speeds ranging from moderate to very slow. To
arrive at an accurate instruction time calculation, each bus access must be individually
considered. Many instructions have a head cycle count, which can overlap the cycles
of an operand fetch to slower memory started by a previous instruction. In these cases,
an increase in access time has no effect on the total execution time of the pair of in-
structions.

To trace instruction execution time by monitoring the external bus, note that the order
of operand accesses for a particular instruction sequence is always the same — pro-
vided bus speed is unchanged, the interleaving of instruction prefetches with operands
within each sequence is identical.

8.1.6 Instruction Execution Time Calculation

The overall execution time for an instruction depends on the amount of overlap with
previous and following instructions. In order to calculate an instruction time estimate,
the entire code sequence must be analyzed. To derive the actual instruction execution
times for an instruction sequence, the instruction times listed in the tables must be ad-
justed to account for overlap.

The formula for this calculation is:

C1 − min (T1, H2) + C2 − min (T2, H3) + C3 − min (T3, H4) +

where:
CN is the number of cycles listed for instruction N
HN is the head time for instruction N
TN is the tail time for instruction N
min (TN, HM) is the minimum of parameters TN and HM
CPU32 INSTRUCTION EXECUTION TIMING MOTOROLA

REFERENCE MANUAL 8-5

The number of cycles for the instruction (CN above), can include one or two effective
address calculations in addition to the raw number in the cycles column. In these cas-
es, calculate overall instruction time as if it were for multiple instructions, using the fol-
lowing equation:

〈CEA〉 − min (TEA, HOP) + COP

where:
〈CEA〉 is the instruction's effective address time
COP is the instruction's operation time
HOP is the instruction operation's head time
TEA is the effective address's tail time
min (TN, HM) is the minimum of parameters TN and HM

The overall head for the instruction is the head for the effective address, and the over-
all tail for the instruction is the tail for the operation. Therefore, the actual equation for
execution time becomes:

COP1 − min (TOP1, HEA2) + 〈CEA〉2 − min (TEA2, HOP2) +

COP2 − min (TOP2, HEA3) + ...

Every instruction must prefetch to replace itself in the instruction pipe. Usually, these
prefetches occur during or after an instruction. A prefetch is permitted to begin in the
first clock of any indexed effective addressing mode operation.

Additionally, a prefetch for an instruction is permitted to begin two clocks before the
end of an instruction, provided the bus is not being used. If the bus is being used, then
the prefetch occurs at the next available time, when the bus would otherwise be idle.

8.1.7 Effects of Negative Tails

When the CPU32 changes instruction flow, the instruction decode pipeline must begin
refilling before instruction execution can resume. Refilling forces a two-clock idle peri-
od at the end of the change of flow instruction. This idle period can be used to prefetch
an additional word on the new instruction path.

Because of the stipulation that each instruction must prefetch to replace itself, the con-
cept of negative tails has been introduced to account for these free clocks on the bus.

On a two-clock bus, it is not necessary to adjust instruction timing to account for the
potential extra prefetch. The cycle times of the microsequencer and bus are matched
and no additional benefit or penalty is obtained. In the instruction execution time equa-
tions, a zero should be used instead of a negative number.

Negative tails are used to adjust for slower fetches on slower buses. Normally, in-
creasing the length of prefetch bus cycles directly affects the cycle count and tail val-
ues found in the tables.
 MOTOROLA INSTRUCTION EXECUTION TIMING CPU32

8-6 REFERENCE MANUAL

In the following equations, negative tail values are used to negate the effects of a slow-
er bus. The equations are generalized, however, so that they may be used on any
speed bus with any tail value.

NEW_TAIL = OLD_TAIL + (NEW_CLOCK – 2)
IF ((NEW_CLOCK – 4) >0) THEN

NEW_CYCLE = OLD_CYCLE + (NEW_CLOCK -2) + (NEW_CLOCK – 4)
ELSE

NEW_CYCLE = OLD_CYCLE + (NEW _CLOCK – 2)

where:

NEW_TAIL/NEW_CYCLE is the adjusted tail/cycle at the slower speed
OLD_TAIL/OLD_CYCLE is the value listed in the instruction timing tables
NEW_CLOCK is the number of clocks per cycle at the slower speed

Note that many instructions listed as having negative tails are change of flow instruc-
tions, and that the bus speed used in the calculation is that of the new instruction
stream.

8.2 Instruction Stream Timing Examples

The following programming examples provide a detailed examination of timing effects.
In all examples, memory access is either from internal two-clock memory or from ex-
ternal synchronous memory, the bus is idle, and the instruction pipeline is full at start.

8.2.1 Timing Example 1: Execution Overlap

Figure 8-4 illustrates execution overlap caused by the bus controller's completion of
bus cycles while the sequencer is calculating the next effective address. One clock is
saved between instructions, as that is the minimum time of the individual head and tail
numbers.

Instructions

MOVE.WA1, (A0) +
ADDQ.W#1, (A0)
CLR.W$30 (A1)

Figure 8-4 Example 1 — Instruction Stream

WRITE
FOR 1

1 PRE-
FETCH

READ
FOR 2

WRITE
FOR 2

2 PRE-
FETCH

ADDQ
TO <EA>

ADDQ.W #1,(AO)

EA FETCH
ADDQMOVE A1,(AO)+

MOVE.W A1,(AO)+

EA CALC
CLR

CLR
<EA>

3 PRE-
FETCH

3 PRE-
FETCH

WRITE
FOR 3

CLR.W $30(A1)

CLOCK

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

BUS
CONTROLLER

INSTRUCTION
CONTROLLER

EXECUTION
TIME
CPU32 INSTRUCTION EXECUTION TIMING MOTOROLA

REFERENCE MANUAL 8-7

8.2.2 Timing Example 2: Branch Instructions

Example 2 shows what happens when a branch instruction is executed, in both the
taken and not-taken cases. (Refer to Figures 8-5 and 8-6). The instruction stream is
for a simple limit check with the variable already in a data register.

Instructions

MOVEQ#7, D1
CMP.LD1, D0
BLE.BNEXT

MOVE.LD1, (A0)

Figure 8-5 Example 2 — Branch Taken

Figure 8-6 Example 2 — Branch Not Taken

1 2 3 4 5 6 7 8 9 0 1 2 3 4

CLOCK

BUS
CONTROLLER

INSTRUCTION
CONTROLLER

EXECUTION
TIME

1 PRE-
FETCH

CMP
D1,D0

2 PRE-
FETCH

WRITE
FOR 3

CMPMOVEQ

MOVEQ
#7,D1

BLE.B NOT TAKEN

OFFSET
CALC

NEXT
INST.

PRE-
FETCH

PRE-
FETCH

PRE-
FETCH

TAKEN TAKEN TAKEN

1 PRE-
FETCH

CMP
D1,D0

MOVEQ

MOVEQ
#7,D1 BLE.B NOT TAKEN

OFFSET
CALC

WRITE
FOR 4

3 PRE-
FETCH

4 PRE-
FETCH

NOT
TAKEN

WRITE
FOR 4

MOVE TO
(A0)

MOVE.L D1,(AO)

CMP

2 PRE-
FETCH

1 2 3 4 5 6 7 8 9 0 1 2 3 4

CLOCK

BUS
CONTROLLER

INSTRUCTION
CONTROLLER

EXECUTION
TIME
 MOTOROLA INSTRUCTION EXECUTION TIMING CPU32

8-8 REFERENCE MANUAL

8.2.3 Timing Example 3: Negative Tails

This example (Figure 8-7) shows how to use negative tail figures for branches and oth-
er change-of-flow instructions. In this example, bus speed is assumed to be four clocks
per access. Instruction three is at the branch destination.

Instructions

MOVEQ#7, D1
BRA.WFARAWAY

MOVE.LD1, D0

Although the CPU32 has a two-word instruction pipeline, internal delay causes mini-
mum branch instruction time to be three bus cycles. The negative tail is a reminder that
an extra two clocks are available for prefetching a third word on a fast bus — on a slow-
er bus, there is no extra time for the third word.

Figure 8-7 Example 3 — Branch Negative Tail

Example 3 illustrates three different aspects of instruction time calculation:

The branch instruction does not attempt to prefetch beyond the minimum number of
words needed for itself.

The negative tail allows execution to begin sooner than would a three-word pipeline.

There is a one-clock delay due to late arrival of the displacement at the CPU.

Only changes of flow require negative tail calculation, but the concept can be gener-
alized to any instruction — only two words are required to be in the pipeline, but up to
three words may be present. When there is an opportunity for an extra prefetch, it is
made. A prefetch to replace an instruction can begin ahead of the instruction, resulting
in a faster processor.

INSTRUCTION
CONTROLLER

MOVEQ OFFSET
CALC

9

BRANCH OFFSET

BRA.W FARAWAY

TAKENTAKEN

FETCH MOVE.L FETCH NEXT
INSTRUCTION

PREFETCH

MOVE
TO D0

MOVE.L D1,D0MOVEQ #7,D1

CLOCK

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

BUS
CONTROLLER

EXECUTION
TIME
CPU32 INSTRUCTION EXECUTION TIMING MOTOROLA

REFERENCE MANUAL 8-9

8.3 Instruction Timing Tables

The following assumptions apply to the times shown in the tables in this section:

• A 16-bit data bus is used for all memory accesses.
• Memory access times are based on two clock bus cycles with no wait states.
• The instruction pipeline is full at the beginning of the instruction and is refilled

by the end of the instruction.

Three values are listed for each instruction and addressing mode:

Head The number of cycles available at the beginning of an instruction to com-
plete a previous instruction write or to perform a prefetch.

Tail The number of cycles an instruction uses to complete a write.

Cycles Four numbers per entry, three contained in parentheses.

The outer number is the minimum number of cycles required for the in-
struction to complete.

Numbers within the parentheses represent the number of bus accesses
performed by the instruction.

The first number is the number of operand read accesses performed by
the instruction.

The second number is the number of instruction fetches performed by
the instruction, including all prefetches that keep the instruction and the
instruction pipeline filled.

The third number is the number of write accesses performed by the in-
struction.

As an example, consider an ADD.L (12, A3, D7.W ∗ 4), D2 instruction.

Section 8.3.5 Arithmetic/Logic Instructions shows that the instruction has a head =
0, a tail = 0, and cycles = 2 (0/1/0). However, in indexed, address register Indirect ad-
dressing mode, additional time is required to fetch the effective address.

Section 8.3.1 Fetch Effective Address gives addressing mode data. For (d8, An,
Xn.Sz ∗ Scale), head = 4, tail = 2, cycles = 8 (2/1/0). Because this example is for a long
access and the FEA table lists data for word accesses, add two clocks to the tail and
to the number of cycles (“X” table notation), to obtain head = 4, tail = 4, cycles = 10 (2/
1/0).

Assuming that no trailing write exists from the previous instruction, effective address
calculation requires six clocks. Replacement fetch for the effective address occurs
during these six clocks, leaving a head of four. If there is no time in the head to perform
a prefetch, due to a previous trailing write, then additional time to do the prefetches
must be allotted in the middle of the instruction or after the tail.
 MOTOROLA INSTRUCTION EXECUTION TIMING CPU32

8-10 REFERENCE MANUAL

The total number of bus-activity clocks is:

(2 Reads × 2 Clocks/Read) + (1 Instruction Access × 2 Clocks/Access) +
(0 Writes × 2 Clocks/Write) = 6 Clocks of Bus Activity

The number of internal clocks (not overlapped by bus activity) is:

10 Clocks Total − 6 Clocks Bus Activity = 4 Internal Clocks

Memory read requires two bus cycles at two clocks each. This read time, implied in
the tail figure for the effective address, cannot be overlapped with the instruction be-
cause the instruction has a head of zero.

An additional two clocks are required for the ADD instruction itself.

The total is 6 + 4 + 2 = 12 clocks. If bus cycles take more time (i.e., the memory is off-
chip), add an appropriate number of clocks to each memory access.

The instruction sequence MOVE.L D0, (A0) followed by LSL.L #7, D2 provides an ex-
ample of overlapped execution. The MOVE instruction has a head of zero and a tail of
four, because it is a long write. The LSL instruction has a head of four. The trailing write
from the MOVE overlaps the LSL head completely. Thus, the two-instruction se-
quence has a head of zero and a tail of zero, and a total execution of eight rather than
12 clocks.

General observations regarding calculation of execution time are as follows:

Any time the number of bus cycles is listed as “X”, substitute a value of one for byte
and word cycles and a value of two for long cycles. For long bus cycles, usually
add a value of two to the tail.

The time calculated for an instruction on a three-clock (or longer) bus is usually
longer than the actual execution time. All times shown are for two-clock bus cycles.

If the previous instruction has a negative tail, then a prefetch for the current instruc-
tion can begin during the execution of that previous instruction.

Certain instructions requiring an immediate extension word (immediate word effec-
tive address, absolute word effective address, address register indirect with dis-
placement effective address, conditional branches with word offsets, bit
operations, LPSTOP, TBL, MOVEM, MOVEC, MOVES, MOVEP, MUL.L, DIV.L,
CHK2, CMP2, and DBcc) are not permitted to begin until the extension word has
been in the instruction pipeline for at least one cycle. This does not apply to long
offsets or displacements.

TOTAL NUMBER OF CLOCKS
NUMBER OF READ CYCLES

NUMBER OF INSTRUCTION ACCESS CYCLES
NUMBER OF WRITE CYCLES

10 2 1 0
CPU32 INSTRUCTION EXECUTION TIMING MOTOROLA

REFERENCE MANUAL 8-11

8.3.1 Fetch Effective Address

The fetch effective address table indicates the number of clock periods needed for the
processor to calculate and fetch the specified effective address. The total number of
clock cycles is outside the parentheses. The numbers inside parentheses (r/p/w) are
included in the total clock cycle number. All timing data assumes two-clock reads and
writes.

NOTES:
1. The read of the effective address and replacement fetches overlap the head of the

operation by the amount specified in the tail.
2. Size and scale of the index register do not affect execution time.
3. The program counter may be substituted for the base address register An.
4. When adjusting the prefetch time for slower buses, extra clocks may be subtracted from

the head until the head reaches zero, at which time additional clocks must be added to
both the tail and cycle counts.

Instruction Head Tail Cycles Notes
Dn – – 0(0/0/0) –
An – – 0(0/0/0) –
(An) 1 1 3(X/0/0) 1
(An)+ 1 1 3(X/0/0) 1
−(An) 2 2 4(X/0/0) 1
(d16,An) or (d16,PC) 1 3 5(X/1/0) 1,3
(xxx).W 1 3 5(X/1/0) 1
(xxx).L 1 5 7(X/2/0) 1
#〈data〉.B 1 1 3(0/1/0) 1
#〈data〉.W 1 1 3(0/1/0) 1
#〈data〉.L 1 3 5(0/2/0) 1
(d8,An,Xn.Sz∗ Sc) or (d8,PC,Xn.Sz∗ Sc) 4 2 8(X/1/0) 1,2,3,4
(0) (All Suppressed) 2 2 6(X/1/0) 1,4
(d16) 1 3 7(X/2/0) 1,4
(d32) 1 5 9(X/3/0) 1,4
(An) 1 1 5(X/1/0) 1,2,4
(Xm.Sz∗ Sc) 4 2 8(X/1/0) 1,2,4
(An,Xm.Sz∗ Sc) 4 2 8(X/1/0) 1,2,3,4
(d16,An) or (d16,PC) 1 3 7(X/2/0) 1,3,4
(d32,An) or (d32,PC) 1 5 9(X/3/0) 1,3,4
(d16,An,Xm) or (d16,PC,Xm) 2 2 8(X/2/0) 1,3,4
(d32,An,Xm) or (d32,PC,Xm) 1 3 9(X/3/0) 1,3,4
(d16,An,Xm.Sz∗ Sc) or (d16,PC,Xm.Sz∗ Sc) 2 2 8(X/2/0) 1,2,3,4
(d32,An,Xm.Sz∗ Sc) or (d32,PC,Xm.Sz∗ Sc) 1 3 9(X/3/0) 1,2,3,4
X = There is one bus cycle for byte and word operands and two bus cycles for long operands.

For long bus cycles, add two clocks to the tail and to the number of cycles.
 MOTOROLA INSTRUCTION EXECUTION TIMING CPU32

8-12 REFERENCE MANUAL

8.3.2 Calculate Effective Address

The calculate effective address table indicates the number of clock periods needed for
the processor to calculate a specified effective address. The timing is equivalent to
fetch effective address except there is no read cycle. The tail and cycle time are re-
duced by the amount of time the read would occupy. The total number of clock cycles
is outside the parentheses. The numbers inside parentheses (r/p/w) are included in
the total clock cycle number. All timing data assumes two-clock reads and writes.

NOTES:
1. Replacement fetches overlap the head of the operation by the amount specified in the tail.
2. Size and scale of the index register do not affect execution time.
3. The program counter may be substituted for the base address register An.
4. When adjusting the prefetch time for slower buses, extra clocks may be subtracted from

the head until the head reaches zero, at which time additional clocks must be added to
both the tail and cycle counts.

Instruction Head Tail Cycles Notes
Dn – – 0(0/0/0) –
An – – 0(0/0/0) –
(An) 1 0 2(0/0/0) –
(An)+ 1 0 2(0/0/0) –
−(An) 2 0 2(0/0/0) –
(d16,An) or (d16,PC) 1 1 3(0/1/0) 1,3
(xxx).W 1 1 3(0/1/0) 1
(xxx).L 1 3 5(0/2/0) 1
(d8,An,Xn.Sz∗ Sc) or (d8,PC,Xn.Sz∗ Sc) 4 0 6(0/1/0) 2,3,4
(0) (All Suppressed) 2 0 4(0/1/0) 4
(d16) 1 1 5(0/2/0) 1,4
(d32) 1 3 7(0/3/0) 1,4
(An) 1 0 4(0/1/0) 4
(Xm.Sz∗ Sc) 4 0 6(0/1/0) 2,4
(An,Xm.Sz∗ Sc) 4 0 6(0/1/0) 2,4
(d16,An) or (d16,PC) 1 1 5(0/2/0) 1,3,4
(d32,An) or (d32,PC) 1 3 7(0/3/0) 1,3,4
(d16,An,Xm) or (d16,PC,Xm) 2 0 6(0/2/0) 3,4
(d32,An,Xm) or (d32,PC,Xm) 1 1 7(0/3/0) 1,3,4
(d16,An,Xm.Sz∗ Sc) or (d16,PC,Xm.Sz∗ Sc) 2 0 6(0/2/0) 2,3,4
(d32,An,Xm.Sz∗ Sc) or (d32,PC,Xm.Sz∗ Sc) 1 1 7(0/3/0) 1,2,3,4

X = There is one bus cycle for byte and word operands and two bus cycles for long operands.
For long bus cycles, add two clocks to the tail and to the number of cycles.
CPU32 INSTRUCTION EXECUTION TIMING MOTOROLA

REFERENCE MANUAL 8-13

8.3.3 MOVE Instruction

The MOVE instruction table indicates the number of clock periods needed for the pro-
cessor to calculate the destination effective address and to perform a MOVE or
MOVEA instruction. For entries with CEA or FEA, refer to the appropriate table to cal-
culate that portion of the instruction time.

Destination effective addresses are divided by their formats (refer to 3.4.4 Effective
Address Encoding Summary). The total number of clock cycles is outside the paren-
theses. The numbers inside parentheses (r/p/w) are included in the total clock cycle
number. All timing data assumes two-clock reads and writes.

When using this table, begin at the top and move downward. Use the first entry that
matches both source and destination addressing modes.

NOTE: For instructions not explicitly listed, use the MOVE 〈CEA〉, 〈FEA〉 entry. The source
 effective address is calculated by the calculate effective address table, and the
 destination effective address is calculated by the fetch effective address table,
 even though the bus cycle is for the source effective address.

8.3.4 Special-Purpose MOVE Instruction

The special-purpose MOVE instruction table indicates the number of clock periods
needed for the processor to fetch, calculate, and perform the special-purpose MOVE
operation on control registers or a specified effective address.

Footnotes indicate when to account for the appropriate effective address times. The
total number of clock cycles is outside the parentheses. The numbers inside parenthe-
ses (r/p/w) are included in the total clock cycle number. All timing data assumes two-
clock reads and writes.

Instruction Head Tail Cycles
MOVE Rn, Rn 0 0 2(0/1/0)
MOVE 〈FEA〉, Rn 0 0 2(0/1/0)
MOVE Rn, (Am) 0 2 4(0/1/x)
MOVE Rn, (Am)+ 1 1 5(0/1/x)
MOVE Rn, −(Am) 2 2 6(0/1/x)
MOVE Rn, 〈CEA〉 1 3 5(0/1/x)
MOVE 〈FEA, (An) 2 2 6(0/1/x)
MOVE 〈FEA〉, (An)+ 2 2 6(0/1/x)
MOVE 〈FEA〉, −(An) 2 2 6(0/1/x)
MOVE #, 〈CEA〉 2 2 6(0/1/x)∗
MOVE 〈CEA〉, 〈FEA〉 2 2 6(0/1/x)

X = There is one bus cycle for byte and word operands and two bus cycles for long
operands. For long bus cycles, add two clocks to the tail and to the number of
cycles.

∗ An # fetch effective address time must be added for this instruction:
〈FEA〉 +〈CEA〉 + 〈OPER〉
 MOTOROLA INSTRUCTION EXECUTION TIMING CPU32

8-14 REFERENCE MANUAL

NOTE: The MOVES instruction has an additional a save step which other instructions do not
 have. To calculate total the instruction time, calculate the Save, the effective
 address, and the Operation execution times, and combine in the order listed, using
 the equations given in 8.1.6 Instruction Execution Time Calculation.

8.3.5 Arithmetic/Logic Instructions

The arithmetic/logic instruction table indicates the number of clock periods needed to
perform the specified arithmetic/logical instruction using the specified addressing
mode. Footnotes indicate when to account for the appropriate effective address times.
The total number of clock cycles is outside the parentheses. The numbers inside pa-
rentheses (r/p/w) are included in the total clock cycle number. All timing data assumes
two-clock reads and writes.

Instruction Head Tail Cycles
EXG Rn, Rm 2 0 4(0/1/0)
MOVEC Cr, Rn 10 0 14(0/2/0)
MOVEC Rn, Cr 12 0 14-16(0/1/0)
MOVE CCR, Dn 2 0 4(0/1/0)
MOVE CCR, 〈CEA〉 0 2 4(0/1/1)
MOVE Dn, CCR 2 0 4(0/1/0)
MOVE 〈FEA〉, CCR 0 0 4(0/1/0)
MOVE SR, Dn 2 0 4(0/1/0)
MOVE SR, 〈CEA〉 0 2 4(0/1/1)
MOVE Dn, SR 4 −2 10(0/3/0)
MOVE 〈FEA〉, SR 0 −2 10(0/3/0)
MOVEM.W 〈CEA〉, RL 1 0 8 + n ∗ 4 (n + 1, 2, 0) 1

MOVEM.W RL, 〈CEA〉 1 0 8 + n ∗ 4 (0, 2, n) 1

MOVEM.L 〈CEA〉, RL 1 0 12 + n ∗ 4(2n + 2, 2, 0)
MOVEM.L RL, 〈CEA〉 1 2 10 + n • 4 (0, 2, 2n)
MOVEP.W Dn, (d16, An) 2 0 10(0/2/2)
MOVEP.W (d16, An), Dn 1 2 11(2/2/0)
MOVEP.L Dn, (d16, An) 2 0 14(0/2/4)
MOVEP.L (d16, An), Dn 1 2 19(4/2/0)
MOVES (Save) 〈CEA〉, Rn 1 1 3(0/1/0)
MOVES (Op) 〈CEA〉, Rn 7 1 11(X/1/0)
MOVES (Save) Rn, 〈CEA〉 1 1 3(0/1/0)
MOVES (Op) Rn, 〈CEA〉 9 2 12(0/1/X)
MOVE USP, An 0 0 2(0/1/0)
MOVE An, USP 0 0 2(0/1/0)
SWAP Dn 4 0 6(0/1/0)

X = There is one bus cycle for byte and word operands and two bus cycles for long
operands. For long bus cycles, add two clocks to the tail and to the number of
cycles.

1Each bus cycle may take up to four clocks without increasing total execution time.
Cr = Control registers USP, VBR, SFC, and DFC
n = Number of registers to transfer
RL = Register List
< = Maximum time — certain data or mode combinations may execute faster.
CPU32 INSTRUCTION EXECUTION TIMING MOTOROLA

REFERENCE MANUAL 8-15

*These instructions have an additional save operation that other instructions do not have.
To calculate total instruction time, calculate save, 〈ea〉, and operation
execution times, then combine in the order shown, using equations in
8.1.6 Instruction Execution Time Calculation. A save operation is not run for
long word divide and multiply instructions when 〈FEA〉 = Dn,

Instruction Head Tail Cycles
ADD(A) Rn, Rm 0 0 2(0/1/0)
ADD(A) 〈FEA〉, Rn 0 0 2(0/1/0)
ADD Dn, 〈FEA〉 0 3 5(0/1/x)
AND Dn, Dm 0 0 2(0/1/0)
AND 〈FEA〉, Dn 0 0 2(0/1/0)
AND Dn, 〈FEA〉 0 3 5(0/1/x)
EOR Dn, Dm 0 0 2(0/1/0)
EOR Dn, 〈FEA〉 0 3 5(0/1/x)
OR Dn, Dm 0 0 2(0/1/0)
OR 〈FEA〉, Dn 0 0 2(0/1/0)
OR Dn, 〈FEA〉 0 3 5(0/1/x)
SUB(A) Rn, Rm 0 0 2(0/1/0)
SUB(A) 〈FEA〉, Rn 0 0 2(0/1/0)
SUB Dn, 〈FEA〉 0 3 5(0/1/x)
CMP(A) Rn, Rm 0 0 2(0/1/0)
CMP(A) 〈FEA〉, Rn 0 0 2(0/1/0)
CMP2 (Save)* 〈FEA〉, Rn 1 1 3(0/1/0)
CMP2 (Op) 〈FEA〉, Rn 2 0 16 - 18(X/1/0)
MUL(S/U).W 〈FEA〉, Dn 0 0 26(0/1/0)
MUL(S/U).L (Save)* 〈FEA〉, Dn 1 1 3(0/1/0)
MUL(S/U).L (Op) 〈FEA〉, Dl 2 0 46 - 52(0/1/0)
MUL(S/U).L (Op) 〈FEA〉, Dn:Dl 2 0 46(0/1/0)
DIVU.W 〈FEA〉, Dn 0 0 32(0/1/0)
DIVS.W 〈FEA〉, Dn 0 0 42(0/1/0)
DIVU.L (Save)* 〈FEA〉, Dn 1 1 3(0/1/0)
DIVU.L (Op) 〈FEA〉, Dn 2 0 <46(0/1/0)
DIVS.L (Save)* 〈FEA〉, Dn 1 1 3(0/1/0)
DIVS.L (Op) 〈FEA〉, Dn 2 0 <62(0/1/0)
TBL(S/U) Dn:Dm, Dp 26 0 28-30(0/2/0)
TBL(S/U) (Save)* 〈CEA〉, Dn 1 1 3(0/1/0)
TBL(S/U) (Op) 〈CEA〉, Dn 6 0 33-35(2X/1/0)
TBLSN Dn:Dm, Dp 30 0 30-34(0/2/0)
TBLSN (Save)* 〈CEA〉, Dn 1 1 3(0/1/0)
TBLSN (Op) 〈CEA〉, Dn 6 0 35-39(2X/1/0)
TBLUN Dn:Dm, Dp 30 0 34-40(0/2/0)
TBLUN (Save)* 〈CEA〉, Dn 1 1 3(0/1/0)
TBLUN (Op) 〈CEA〉, Dn 6 0 39-45(2X/1/0)

X = There is one bus cycle for byte and word operands and two bus cycles for long
operands. For long bus cycles, add two clocks to the tail and to the number of
cycles.

< = Maximum time; certain data or mode combinations may execute faster.
su = The execution time is identical for signed or unsigned operands.
 MOTOROLA INSTRUCTION EXECUTION TIMING CPU32

8-16 REFERENCE MANUAL

8.3.6 Immediate Arithmetic/Logic Instructions

The immediate arithmetic/logic instruction table indicates the number of clock periods
needed for the processor to fetch the source immediate data value and to perform the
specified arithmetical/logical instruction using the specified addressing mode. Foot-
notes indicate when to account for the appropriate fetch effective or fetch immediate
effective address times. The total number of clock cycles is outside the parentheses.
The numbers inside parentheses (r/p/w) are included in the total clock cycle number.
All timing data assumes two-clock reads and writes.

Instruction Head Tail Cycles
MOVEQ #, Dn 0 0 2(0/1/0)
ADDQ #, Rn 0 0 2(0/1/0)
ADDQ #, 〈FEA〉 0 3 5(0/1/x)
SUBQ #, Rn 0 0 2(0/1/0)
SUBQ #, 〈FEA〉 0 3 5(0/1/x)
ADDI #, Rn 0 0 2(0/1/0)∗
ADDI #, 〈FEA〉 0 3 5(0/1/x)∗
ANDI #, Rn 0 0 2(0/1/0)∗
ANDI #, 〈FEA〉 0 3 5(0/1/x)∗
EORI #, Rn 0 0 2(0/1/0)∗
EORI #, 〈FEA〉 0 3 5(0/1/x)∗
ORI #, Rn 0 0 2(0/1/0)∗
ORI #, 〈FEA〉 0 3 5(0/1/x)∗
SUBI #, Rn 0 0 2(0/1/0)∗
SUBI #, 〈FEA〉 0 3 5(0/1/x)∗
CMPI #, Rn 0 0 2(0/1/0)∗
CMPI #, 〈FEA〉 0 3 5(0/1/x)∗

X = There is one bus cycle for byte and word operands and two bus cycles for long
operands. For long bus cycles, add two clocks to the tail and to the number of
cycles.

∗ An # fetch effective address time must be added for this instruction:
〈FEA〉 +〈FEA〉 + 〈OPER〉.
CPU32 INSTRUCTION EXECUTION TIMING MOTOROLA

REFERENCE MANUAL 8-17

8.3.7 Binary-Coded Decimal and Extended Instructions

The binary-coded decimal and extended instruction table indicates the number of
clock periods needed for the processor to perform the specified operation using the
specified addressing mode. No additional tables are needed to calculate total effective
execution time for these instructions. The total number of clock cycles is outside the
parentheses. The numbers inside parentheses (r/p/w) are included in the total clock
cycle number. All timing data assumes two-clock reads and writes.

8.3.8 Single Operand Instructions

The single operand instruction table indicates the number of clock periods needed for
the processor to perform the specified operation using the specified addressing mode.
The total number of clock cycles is outside the parentheses. The numbers inside pa-
rentheses (r/p/w) are included in the total clock cycle number. All timing data assumes
two-clock reads and writes.

Instruction Head Tail Cycles
ABCD Dn, Dm 2 0 4(0/1/0)
ABCD −(An), −(Am) 2 2 12(2/1/1)
SBCD Dn, Dm 2 0 4(0/1/0)
SBCD −(An), −(Am) 2 2 12(2/1/1)
ADDX Dn, Dm 0 0 2(0/1/0)
ADDX −(An), −(Am) 2 2 10(2/1/1)
SUBX Dn, Dm 0 0 2(0/1/0)
SUBX −(An), −(Am) 2 2 10(2/1/1)
CMPM (An)+, (Am)+ 1 0 8(2/1/0)

Instruction Head Tail Cycles
CLR Dn 0 0 2(0/1/0)
CLR 〈CEA〉 0 2 4(0/1/x)
NEG Dn 0 0 2(0/1/0)
NEG 〈FEA〉 0 3 5(0/1/x)
NEGX Dn 0 0 2(0/1/0)
NEGX 〈FEA〉 0 3 5(0/1/x)
NOT Dn 0 0 2(0/1/0)
NOT 〈FEA〉 0 3 5(0/1/x)
EXT Dn 0 0 2(0/1/0)
NBCD Dn 2 0 4(0/1/0)
NBCD 〈FEA〉 0 2 6(0/1/1)
Scc Dn 2 0 4(0/1/0)
Scc 〈CEA〉 2 2 6(0/1/1)
TAS Dn 4 0 6(0/1/0)
TAS 〈CEA〉 1 0 10(0/1/1)
TST 〈FEA〉 0 0 2(0/1/0)

X = There is one bus cycle for byte and word operands and two bus cycles for long
operands. For long bus cycles, add two clocks to the tail and to the number of
cycles.
 MOTOROLA INSTRUCTION EXECUTION TIMING CPU32

8-18 REFERENCE MANUAL

8.3.9 Shift/Rotate Instructions

The shift/rotate instruction table indicates the number of clock periods needed for the
processor to perform the specified operation on the given addressing mode. Footnotes
indicate when to account for the appropriate effective address times. The number of
bits shifted does not affect the execution time, unless noted. The total number of clock
cycles is outside the parentheses. The numbers inside parentheses (r/p/w) are includ-
ed in the total clock cycle number. All timing data assumes two-clock reads and writes.

NOTES:
1. Head and cycle times can be calculated as follows:

Max (3 + (n/4) + mod(n,4) + mod (((n/4) + mod (n,4) + 1,2), 6)
or derived from the following table.

2. Head and cycle times are calculated as follows: (count ≤ 63): max (3 + n+ mod (n + 1,2), 6).
3. Head and cycle times are calculated as follows: (count ≤ 8): max (2 + n+ mod (n,2), 6).
d = Direction (left or right)

Instruction Head Tail Cycles Note
LSd Dn, Dm −2 0 (0/1/0) 1
LSd #, Dm 4 0 6(0/1/0) —
LSd 〈FEA〉 0 2 6(0/1/1) —
ASd Dn, Dm −2 0 (0/1/0) 1
ASd #, Dm 4 0 6(0/1/0) —
ASd 〈FEA〉 0 2 6(0/1/1) —
ROd Dn, Dm −2 0 (0/1/0) 1
ROd #, Dm 4 0 6(0/1/0) —
ROd 〈FEA〉 0 2 6(0/1/1) —
ROXd Dn, Dm −2 0 (0/1/0) 2
ROXd #, Dm −2 0 (0/1/0) 3
ROXd 〈FEA〉 0 2 6(0/1/1) —

Clocks Shift Counts
6 0 1 2 3 4 5 6 8 9 12
8 7 10 11 13 14 16 17 20
10 15 18 19 21 22 24 25 28
12 23 26 27 29 30 32 33 36
14 31 34 35 37 38 40 41 44
16 39 42 43 45 46 48 49 52
18 47 50 51 53 54 56 57 60
20 55 58 59 61 62
22 63
CPU32 INSTRUCTION EXECUTION TIMING MOTOROLA

REFERENCE MANUAL 8-19

8.3.10 Bit Manipulation Instructions

The bit manipulation instruction table indicates the number of clock periods needed for
the processor to perform the specified operation on the given addressing mode. The
total number of clock cycles is outside the parentheses. The numbers inside parenthe-
ses (r/p/w) are included in the total clock cycle number. All timing data assumes two-
clock reads and writes.

∗ An # fetch effective address time must be added for this instruction:
〈FEA〉 + 〈FEA〉 + 〈OPER〉

8.3.11 Conditional Branch Instructions

The conditional branch instruction table indicates the number of clock periods needed
for the processor to perform the specified branch on the given branch size, with com-
plete execution times given. No additional tables are needed to calculate total effective
execution time for these instructions. The total number of clock cycles is outside the
parentheses. The numbers inside parentheses (r/p/w) are included in the total clock
cycle number. All timing data assumes two-clock reads and writes.

*In loop mode

Instruction Head Tail Cycles
BCHG #, Dn 2 0 6(0/2/0)∗
BCHG Dn, Dm 4 0 6(0/1/0)
BCHG #, 〈FEA〉 1 2 8(0/2/1)∗
BCHG Dn, 〈FEA〉 2 2 8(0/1/1)
BCLR #, Dn 2 0 6(0/2/0)∗
BCLR Dn, Dm 4 0 6(0/1/0)
BCLR #, 〈FEA〉 1 2 8(0/2/1)∗
BCLR Dn, 〈FEA〉 2 2 8(0/1/1)
BSET #, Dn 2 0 6(0/2/0)∗
BSET Dn, Dm 4 0 6(0/1/0)
BSET #, 〈FEA〉 1 2 8(0/2/1)∗
BSET Dn, 〈FEA〉 2 2 8(0/1/1)
BTST #, Dn 2 0 4(0/2/0)∗
BTST Dn, Dm 2 0 4(0/1/0)
BTST #, 〈FEA〉 1 0 4(0/2/0)∗
BTST Dn, 〈FEA〉 2 0 8(0/1/0)

Instruction Head Tail Cycles
Bcc (taken) 2 −2 8(0/2/0)
Bcc.B (not taken) 2 0 4(0/1/0)
Bcc.W (not taken) 0 0 4(0/2/0)
Bcc.L (not taken) 0 0 6(0/3/1)
DBcc (T, not taken) 1 1 4(0/2/0)
DBcc (F, −1, not taken) 2 0 6(0/2/0)
DBcc (F, not −1, taken) 6 −2 10(0/2/0)
DBcc (T, not taken) 4 0 6(0/1/0)∗
DBcc (F, −1, not taken) 6 0 8(0/1/0)∗
DBcc (F, not −1, taken) 6 0 10(0/0/0)∗
 MOTOROLA INSTRUCTION EXECUTION TIMING CPU32

8-20 REFERENCE MANUAL

8.3.12 Control Instructions

The control instruction table indicates the number of clock periods needed for the pro-
cessor to perform the specified operation on the given addressing mode. Footnotes
indicate when to account for the appropriate effective address times. The total number
of clock cycles is outside the parentheses. The numbers inside parentheses (r/p/w)
are included in the total clock cycle number. All timing data assumes two-clock reads
and writes.

NOTE: The CHK2 instruction involves a save step which other instructions do not have. To
 calculate total the instruction time, calculate the Save, the effective address, and
 the Operation execution times, and combine in the order listed, using the equations
 given in 8.1.6 Instruction Execution Time Calculation.

8.3.13 Exception-Related Instructions and Operations

The exception-related instructions and operations table indicates the number of clock
periods needed for the processor to perform the specified exception-related actions.
No additional tables are needed to calculate total effective execution time for these in-
structions. The total number of clock cycles is outside the parentheses. The numbers
inside parentheses (r/p/w) are included in the total clock cycle number. All timing data
assumes two-clock reads and writes.

Instruction Head Tail Cycles
ANDI #, SR 0 −2 12(0/2/0)
EORI #, SR 0 −2 12(0/2/0)
ORI #, SR 0 −2 12(0/2/0)
ANDI #, CCR 2 0 6(0/2/0)
EORI #, CCR 2 0 6(0/2/0)
ORI #, CCR 2 0 6(0/2/0)
BSR.B 3 −2 13(0/2/2)
BSR.W 3 −2 13(0/2/2)
BSR.L 1 −2 13(0/2/2)
CHK 〈FEA〉, Dn (no ex) 2 0 8(0/1/0)
CHK 〈FEA〉, Dn (ex) 2 −2 42(2/2/6)
CHK2 (Save) 〈FEA〉, Dn (no ex) 1 1 3(0/1/0)
CHK2 (Op) 〈FEA〉, Dn (no ex) 2 0 18(X/0/0)
CHK2 (Save) 〈FEA〉, Dn (ex) 1 1 3(0/1/0)
CHK2 (Op) 〈FEA〉, Dn (ex) 2 −2 52(x + 2/1/6)
JMP 〈CEA〉 0 −2 6(0/2/0)
JSR 〈CEA〉 3 −2 13(0/2/2)
LEA 〈CEA〉, An 0 0 2(0/1/0)
LINK.W An, # 2 0 10(0/2/2)
LINK.L An, # 0 0 10(0/3/2)
NOP 0 0 2(0/1/0)
PEA 〈CEA〉 0 0 8(0/1/2)
RTD # 1 −2 12(2/2/0)
RTR 1 −2 14(3/2/0)
RTS 1 −2 12(2/2/0)
UNLK An 1 0 9(2/1/0)

X = There is one bus cycle for byte and word operands and two bus cycles for long operands.
 For long bus cycles, add two clocks to the tail and to the number of cycles.
CPU32 INSTRUCTION EXECUTION TIMING MOTOROLA

REFERENCE MANUAL 8-21

∗ Minimum interrupt acknowledge cycle time is assumed to be three clocks.
NOTE: The F-line (Second word illegal) operation involves a save step which other

operations do not have. To calculate, total the operation time, calculate the Save,
then calculate effective address and the Operation execution times. Combine in
the order listed, using the equations given in 8.1.6 Instruction Execution Time Calculation.

8.3.14 Save and Restore Operations

The save and restore operations table indicates the number of clock periods needed
for the processor to perform the specified state save or return from exception. Com-
plete execution times and stack length are given. No additional tables are needed to
calculate total effective execution time for these instructions. The total number of clock
cycles is outside the parentheses. The numbers inside parentheses (r/p/w) are includ-
ed in the total clock cycle number. All timing data assumes two-clock reads and writes.

Instruction Head Tail Cycles
BKPT (Acknowledged) 0 0 14(1/0/0)
BKPT (Bus Error) 0 −2 35(3/2/4)
Breakpoint (Acknowledged) 0 0 10(1/0/0)
Breakpoint (Bus Error) 0 −2 42(3/2/6)
Interrupt 0 −2 30(3/2/4)∗
RESET 0 0 518(0/1/0)
STOP 2 0 12(0/1/0)
LPSTOP 3 −2 25(0/3/1)
Divide-by-Zero 0 −2 36(2/2/6)
Trace 0 −2 36(2/2/6)
TRAP # 4 −2 29(2/2/4)
ILLEGAL 0 −2 25(2/2/4)
A-line 0 −2 25(2/2/4)
F-line (First word illegal) 0 −2 25(2/2/4)
F-line (Second word illegal) ea = Rn 1 −2 31(2/3/4)
F-line (Second word illegal) ea ≠ Rn (Save) 1 1 3(0/1/0)
F-line (Second word illegal) ea ≠ Rn (Op) 4 -2 29(2/2/4)
Privileged 0 −2 25(2/2/4)
TRAPcc (trap) 2 −2 38(2/2/6)
TRAPcc (no trap) 2 0 4(0/1/0)
TRAPcc.W (trap) 2 −2 38(2/2/6)
TRAPcc.W (no trap) 0 0 4(0/2/0)
TRAPcc.L (trap) 0 −2 38(2/2/6)
TRAPcc.L (no trap) 0 0 6(0/3/0)
TRAPV (trap) 2 −2 38(2/2/6)
TRAPV (no trap) 2 0 4(0/1/0)

Instruction Head Tail Cycles
BERR on instruction 0 −2 <58(2/2/12)
BERR on exception 0 −2 48(2/2/12)
RTE (four-word frame) 1 −2 24(4/2/0)
RTE (six-word frame) 1 −2 26(4/2/0)
RTE (BERR on instruction) 1 −2 50(12/12/Y)
RTE (BERR on four-word frame) 1 −2 66(10/2/4)
RTE (BERR on six-word frame) 1 −2 70(12/2/6)
< = Maximum time is indicated — certain data or mode combinations execute faster.
Y = If a bus error occurred during a write cycle, the cycle is rerun by the RTE.
 MOTOROLA INSTRUCTION EXECUTION TIMING CPU32

8-22 REFERENCE MANUAL

APPENDIX AM68000 FAMILY SUMMARY
Appendix A summarizes the characteristics of the microprocessors in the M68000
Family. The M68000 user’s manual includes more detailed information about the
MC68000 and MC68010 differences.

*Three-word cache for the loop mode

Virtual Memory/Machine

MC68000 None
MC68010 Bus Error Detection, Instruction Continuation
CPU32 Bus Error Detection, Instruction Restart
MC68020 Bus Error Detection, Instruction Continuation

Coprocessor Interface

MC68000 Emulated in Software
MC68010 Emulated in Software
CPU32 Emulated in Software
MC68020 In Microcode

Word/Long-Word Data Alignment

MC68000 Word/Long-Word Data, Instructions, and Stack Must Be Word
Aligned

MC68010 Word/Long-Word Data, Instructions, and Stack Must Be Word
Aligned

CPU32 Word/Long-Word Data, Instructions, and Stack Must Be Word
Aligned

MC68020 Only Instructions Must Be Word Aligned (Data Alignment Im-
proves Performance)

Control Registers

MC68000 None
MC68010 SFC, DFC, VBR
CPU32 SFC, DFC, VBR
MC68020 SFC, DFC, VBR, CACR, CAAR

Stack Pointers

MC68000 MC68010 CPU32 MC68020
Data Bus Size (Bits) 1 6 1 6 8, 16 8, 16, 32
Address Bus Size (Bits) 24 24 24 32
Instruction Cache
(in Words) — 3* 3* 128
CPU32 M68000 FAMILY SUMMARY MOTOROLA

REFERENCE MANUAL A-1

MC68000 USP, SSP
MC68010 USP, SSP
CPU32 USP, SSP
MC68020 USP, SSP (MSP, ISP)

Status Register Bits

MC68000 T, S, I0/I1/I2, X/N/Z/V/C
MC68010 T, S, I0/I1/I2, X/N/Z/V/C
CPU32 T1/T0, S, I0/I1/I2, X/N/Z/V/C
MC68020 T1/T0, S, M, I0/I1/I2, X/N/Z/V/C

Function Code/Address Space

MC68000 FC0 — FC2 = is Interrupt Acknowledge Only
MC68010 FC0 — FC2 = 7 is CPU Space
CPU32 FC0 — FC2 = 7 is CPU Space
MC68020 FC0 — FC2 = 7 is CPU Space

Indivisible Bus Cycles

MC68000 Use AS Signal
MC68010 Use AS Signal
CPU32 Use RMC Signal
MC68020 Use RMC Signal

Stack Frames

MC68000 Supports Original Set
MC68010 Supports Formats $0, $8
CPU32 Supports Formats $0, $2, $C
MC68020 Supports Formats $0, $1, $2, $9, $A, $B
 MOTOROLA M68000 FAMILY SUMMARY CPU32

A-2 REFERENCE MANUAL

Table A-1 M68000 instruction Set Extensions

Mnemonic Description CPU32 M68020
Bcc Supports 32-Bit Displacement ◊ ◊
BFxxxx Bit Field Instructions (BFCHG, BFCLR, BFEXTS,

BFEXTU, BFFO, BFINS, BFSET, BFTST)
◊

BGND Background Operation ◊
BKPT New Instruction Function ◊ ◊
BRA Supports 32-Bit Displacement ◊ ◊
BSR Supports 32-Bit Displacement ◊ ◊
CALLM New Instruction ◊
CAS,CAS2 New Instruction ◊
CHK Supports 32-Bit Operands ◊ ◊
CHK2 New Instruction ◊ ◊
CMP1 Supports Program Counter Relative Addressing ◊ ◊
CMP2 New Instruction ◊ ◊
cp Coprocessor Instructions ◊
DIVS/DIVU Supports 32-Bit and 64-Bit Operations ◊ ◊
EXTB Supports 8-Bit Extend to 32 Bits ◊ ◊
LINK Supports 32-Bit Displacement ◊ ◊
LPSTOP New Instruction ◊
MOVEC Supports New Control Registers ◊ ◊
MULS/MULU Supports 32-Bit Operands and 64-Bit Results ◊ ◊
PACK New Instruction ◊
RTM New Instruction ◊
TBLSN,TBLUN
TBLS,TBLU

New Instruction ◊

TST Supports Program Counter Relative, Immediate, and
An Addressing

◊ ◊

TRAPcc New Instruction ◊ ◊
UNPK New Instruction ◊
CPU32 M68000 FAMILY SUMMARY MOTOROLA

REFERENCE MANUAL A-3

Table A-2 M68000 Addressing Modes

Mode Mnemonic MC68010/
MC68000

CPU32 MC68020

Register Direct Rn ◊ ◊ ◊
Address Register Indirect (An) ◊ ◊ ◊
Address Register Indirect with

Postincrement
(An)+ ◊ ◊ ◊

Address Register Indirect with-(An)
Predecrement

0 0 ◊ ◊ ◊

Address Register Indirect with
Displacement (16, An) ◊ ◊ ◊

Address Register Indirect with Index
(8-Bit Displacement)

(d8, An, Xn) ◊ ◊ ◊

Address Register Indirect with Index
(Base Displacement) (bd, An, Xn * SCALE) ◊ ◊

Memory Indirect with Postincrement ([bd, An], Xn, Od) ◊
Memory Indirect with Predecrement ([bd, An, Xn], Od) ◊
Absolute Short (xxx).W ◊ ◊ ◊
Absolute Long (xxx).L ◊ ◊ ◊
Program Counter Indirect with

Displacement
(d16, PC) ◊ ◊ ◊

Program Counter Indirect with Index
(8-Bit Displacement)

(d8, PC, Xn) ◊ ◊ ◊

Program Counter Indirect with Index
(Base Displacement) (bd, PC, Xn * SCALE) ◊ ◊

Immediate #(data) ◊ ◊ ◊
Program Counter Memory Indirect with

Postincrement ([bd, PC], Xn, od) ◊
Program Counter Memory Indirect with

Predecrement ([bd, PC, Xn], od) ◊
 MOTOROLA M68000 FAMILY SUMMARY CPU32

A-4 REFERENCE MANUAL

INDEX
–A–

Absolute Long Address Mode 3-9
Absolute Short Address Mode 3-8
AC Electrical Specifications,

See appropriate user’s manual
Address bus,

See appropriate user’s manual
Address Error Exception 6-7
Address Register

Direct Addressing Mode 3-3
Indirect Addressing Mode 3-4
Indirect Displacement Mode 3-5
Indirect Index (8-Bit Displacement) Mode 3-5
Indirect Index (Base Displacement) Mode 3-6
Indirect Postincrement Addressing Mode 3-4
Indirect Predecrement Addressing Mode 3-4

Address Registers 2-5
Address Space Types 5-3
Addressing

Capabilities 3-11
Compatibility, M68000 3-14, A-4
Indexed 3-5, 3-6, 3-7
Indirect 3-4
Mode Enhancements 1-4
Mode Summary 3-14

Addressing Modes
Memory 3-4
Programming View 3-11
Register Direct 3-3
Special 3-7

Architectural Comparisons (M68000) A-1
Arithmetic/Logic Instructions 4-7
Assignments, Exception Vector 6-2
Asynchronous Bus Operation,

See appropriate user’s manual

–B–

Background Debug Mode 7-3
Commands

Execution 7-5
Format 7-11
Sequence Diagrams 7-12
Sequence Example 7-13
Set 7-11
Summary 7-14

Enabling 7-4
Entering 7-5
Returning from 7-7

Sources 7-4
Registers 7-6
Serial Interface 7-7

BGND Instruction 7-4
Binary-Coded Decimal Operations 4-10
Bit Manipulation Operations 4-10
Block Diagram 1-6
Branch Instructions 4-10

Condition Tests 4-12
Breakpoint Exception Processing 6-8
Breakpoint Instruction 4-12, 7-4
Breakpoint Signal, External 7-4
Breakpoints

Hardware 6-9, 7-4
On Data Accesses 7-4
On Instructions 7-4
Peripheral 7-5
Software 6-8

Bus Controller Resources 8-2
Bus Error 6-6, 6-22
Bus Error Fault Stack Frame 6-22
Bus Faults, Double 7-5

–C–

Compatibility, M68000 Addressing 3-14
Condition Code

Computations 4-5
Register 2-3, 4-5

Condition Tests 4-12
Control Registers 2-5
Conventions, Notation 3-2
Correcting Faults 6-18
CPU

Serial Logic 7-8
Space 5-3

–D–

Data
BDM Serial Format 7-7
Movement Instructions 4-6
Register Direct Addressing Mode 3-3
Registers 2-4
Structures, Other (Stacks and Queues) 3-15
Types 2-3

Deterministic Opcode Tracking 7-2, 7-25
Development Features, Standard 7-1
Development Support 7-1
Development System Serial Logic 7-10
CPU32 INDEX MOTOROLA

REFERENCE MANUAL I-1

Double Bus Faults 6-5, 7-5
Dynamic Bus Sizing 6-16, 6-23

–E–

Effective Address 3-3
Calculation Timing Table (CEA) 8-13
Encoding Summary 3-9
Fetch Timing Table (FEA) 8-12

Enhanced Addressing Modes 1-4
Enhanced Instruction Set 1-4
Errors, Bus 6-6
Exception

Address Error 6-7
Breakpoint Instruction (BKPT) 6-8
Bus Error 6-6
Definition of Exception Processing 6-1
Format Error 6-9
Illegal Instruction 6-9
Instruction Traps 6-8
Interrupts 6-12
Multiple 6-4
Priority 6-4
Privilege Violation 6-10
Processing Sequence 6-3
Related Instructions and Operations 8-21
Reset 6-5
Return from 6-13
Stack Frame 6-3
Trace 6-11
Types 6-2
Unimplemented Instruction 6-9
Vectors 6-1

Execution Overlap 8-7
Execution Time Calculations 8-5

–F–

Faults
Correcting 6-18

Type I via RTE 6-19
Type I via Software 6-19
Type II via RTE 6-19
Type III via Conversion and Restart 6-20
Type III via RTE 6-21
Type III via Software 6-20
Type IV via Software 6-21

Recovery 6-14
Types of 6-16

Type I, Released Write 6-16
Type II, Prefetch, Operand, RMW, MOVEP 6-17
Type III, MOVEM Operand Transfer 6-17
Type IV, Exception Processing 6-18

Fetch Effective Address, Timing Table 8-12
Format Error 6-9
Four-Word Stack Frame, Normal 6-22
Function Code Registers 2-3, 2-5
Future BDM Commands 7-25

–G–

General Description 1-1

–H–

Halt Operation 5-1

–I–

Illegal or Unimplemented Instruction 6-9
Immediate

Arithmetic/Logic Instruction Timing 8-17
Data Addressing 3-9

Implicit Reference 3-2
Indexed Addressing 3-5, 3-7
Indirect Addressing 3-4
Instruction

Details 4-13
Execution Overlap 8-4
Execution Time Calculation 8-5
Fetch Signal (IFETCH) 7-25
Format 4-2
Format Summary 4-170
M68000 Family Compatibility 4-1
New 4-1
Pipe 7-25, 8-2
Pipe Signal (IPIPE) 7-25
Summary 4-5
Timing Tables 8-10
Traps 6-8

Instruction Set Extensions A-3
Instruction Stream Timing Examples 8-7
Instructions

Binary-Coded Decimal (BCD) 4-10, 8-18
Bit Manipulation 4-10, 8-20
Conditional Branch 4-10, 8-20
Data Movement 4-6, 8-14
Exception Related 4-11, 8-21
Integer Arithmetic 4-7, 8-15
Logic 4-8, 8-15
Program Control (Branch) 4-10, 8-20
Shift and Rotate 4-9, 8-19
Single Operand 8-18
System Control 4-11, 8-21
Table Lookup and Interpolation 4-188

Interrupts 6-12

–L–

Logic Instructions 4-8
Low-Power Stop (LPSTOP) 4-1, 5-1

–M–

M68000 Family Addressing Capability 3-14
M68000 Family Compatibility 4-1
Memory
MOTOROLA INDEX CPU32

I-2 REFERENCE MANUAL

Addressing Modes 3-4
Indirect Addressing 3-4
Organization 2-6
Virtual 1-2

Microbus Controller 8-3
Microsequencer 8-1
Model, Programming 2-1
Move Instruction Timing 8-14
Move Instruction, Special Purpose, Timing 8-14
Multiple Exceptions 6-4

–N–

Negative Tails 8-6
Organization in Memory 2-6

Normal Processing State 5-1
Notation Conventions, Addressing 3-2
Notation, Instruction Set 4-3

–O–

Opcode Tracking during Loop Mode 7-27
Opcode Tracking in Background Mode 7-2, 7-25
Organization

Memory 2-6
Registers 2-4

Overlap 8-4

–P–

Pipeline Sync with the NOP Instruction 4-194
Prefetch Controller 8-3
Priority

Exception 6-4
Interrupt 6-12

Privilege Levels 5-1
Changing 5-2
Supervisor 5-2
User 5-2

Privilege Violations 6-10
Processing of Specific Exceptions 6-5
Processing States 5-1
Program and Data References 3-1, 5-3
Program Control (Branch) Instructions 4-10
Program Counter Indirect with Displacement Mode 3-7

Index (8-Bit Displacement) 3-7, 3-8
Index (Base Displacement) 3-8

Programming Model 2-1
Programming View of Addressing Modes 3-11

–Q–

Queues 3-17

–R–

References
Data 3-1

Implicit 3-2
Program 3-1

Register Direct Mode 3-3
Registers

Address 2-5
Condition Code 2-3, 4-5
Control 2-5
Data 2-4
Function Code 2-3
Organization 2-2
Status 2-3
Vector Base 2-3, 6-1

Released Writes 6-16, 6-19
Reset 6-5
Resource Scheduling 8-1
Return from Exception 6-13
Rotate Instructions 4-9

–S–

Save and Restore Operation Timing 8-22
Serial Interface (BDM) 7-7
Shift and Rotate Instruction Timing 8-19
Shift and Rotate Instructions 4-9
Single Operand Instruction Timing 8-18
Six-Word Stack Frame, Normal 6-22
Sizing, Dynamic Bus 6-16, 6-23
Software Breakpoints 6-8
Software Fault Recovery 6-19
Space Formats 5-4

Type 0000 - Breakpoint 5-4
Type 0001 - MMU Access 5-4
Type 0010 - Coprocessor Access 5-4
Type 0011 - Internal Register Access 5-4
Type 1111 - Interrupt Acknowledge 5-5

Special Addressing Modes 3-7
Special-Purpose MOVE Instruction Timing 8-14
Stack

Frames 6-3, 6-21
Supervisor 2-2, 3-15
System 3-16
User 2-2, 3-15

State Transition 5-1
Status Register 2-3
Subroutine Calls, Nested 4-194
Supervisor Privilege Level 5-2
Surface Interpolation 4-188, 4-194
Synchronization, Pipeline with NOP 4-194
System

Control Instructions 4-11
Stack 3-16

–T–

Table Lookup and Interpolation 4-187
Examples

8-Bit Independent Variable 4-191
Compressed Table 4-190
Maintaining Precision 4-192
CPU32 INDEX MOTOROLA

REFERENCE MANUAL I-3

Standard Usage 4-188
Surface Interpolations 4-194

Instruction, Using the 4-188
Tests, Condition 4-12
Timing Examples

Branch Instructions 8-8
Execution Overlap 8-7
Negative Tails 8-9

Timing Tables 8-10
Arihmetic/Logic Instructions 8-15
Binary-Coded Decimal/Extended Instructions 8-18
Bit Manipulation Instructions 8-20
Calculate Effective Address (CEA) 8-13
Conditional Branch Instructions 8-20
Control Instructions 8-21
Exception-Related Instructions 8-21
Fetch Effective Address (FEA) 8-10
Immediate Arithmetic/Logic Instructions 8-17
MOVE Instruction 8-14
Save and Restore Operations 8-22
Shift/Rotate instructions 8-19
Single Operand instructions 8-18
Special-Purpose MOVE Instruction 8-14

Trace on Instruction Execution 6-11, 7-1

–U–

Unimplemented instruction Emulation 6-9, 7-1
Unimplemented Instructions 4-2, 6-9
User Privilege Level 5-2
User Stacks 3-16

–V–

Vector Base Register 1-3, 2-3, 6-1
Vectors, Exception 6-1
Virtual Memory 1-2

–W–

Write Pending Buffer 8-3
MOTOROLA INDEX CPU32

I-4 REFERENCE MANUAL

	REFERENCE MANUAL
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	SECTION 1 OVERVIEW
	1.1 Features
	1.1.1 Virtual Memory
	1.1.2 Loop Mode Instruction Execution
	Figure 1-1 Loop Mode Instruction Sequence

	1.1.3 Vector Base Register
	1.1.4 Exception Handling
	1.1.5 Enhanced Addressing Modes
	1.1.6 Instruction Set
	1.1.6.1 Table Lookup and Interpolation Instruction...
	Table 1-1 Instruction Set Summary
	1.1.6.2 Low-Power Stop Instruction

	1.1.7 Processing States
	1.1.8 Privilege States

	1.2 Block Diagram
	Figure 1-2 CPU32 Block Diagram

	SECTION 2 ARCHITECTURE SUMMARY
	2.1 Programming Model
	Figure 2-1 User Programming Model
	Figure 2-2 Supervisor Programming Model Supplement...

	2.2 Registers
	Figure 2-3 Status Register

	2.3 Data Types
	2.3.1 Organization in Registers
	2.3.1.1 Data Registers
	Figure 2-4 Data Organization in Data Registers
	2.3.1.2 Address Registers
	Figure 2-5 Address Organization in Address Registe...
	2.3.1.3 Control Registers

	2.3.2 Organization in Memory
	Figure 2-6 Memory Operand Addressing

	SECTION 3 DATA ORGANIZATION AND ADDRESSING CAPABIL...
	Figure 3-1 Single-Effective-Address Instruction Op...
	3.1 Program and Data References
	3.2 Notation Conventions
	3.3 Implicit Reference
	3.4 Effective Address
	3.4.1 Register Direct Mode
	3.4.1.1 Data Register Direct
	3.4.1.2 Address Register Direct

	3.4.2 Memory Addressing Modes
	3.4.2.1 Address Register Indirect
	3.4.2.2 Address Register Indirect With Postincreme...
	3.4.2.3 Address Register Indirect With Predecremen...
	3.4.2.4 Address Register Indirect With Displacemen...
	3.4.2.5 Address Register Indirect With Index (8-Bi...
	3.4.2.6 Address Register Indirect With Index (Base...

	3.4.3 Special Addressing Modes
	3.4.3.1 Program Counter Indirect With Displacement...
	3.4.3.2 Program Counter Indirect with Index (8-Bit...
	3.4.3.3 Program Counter Indirect with Index (Base ...
	3.4.3.4 Absolute Short Address
	3.4.3.5 Absolute Long Address
	3.4.3.6 Immediate Data

	3.4.4 Effective Address Encoding Summary
	Figure 3-2 Effective Address Specification Formats...

	3.5 Programming View of Addressing Modes
	Table 3-1 Effective Addressing Mode Categories
	3.5.1 Addressing Capabilities
	Figure 3-3 Using SIZE in the Index Selection
	Figure 3-4 Using Absolute Address with Indexes
	Figure 3-5 Addressing Array Items

	3.5.2 General Addressing Mode Summary

	3.6 M68000 Family Addressing Capability
	Figure 3-6 M68000 Family Address Extension Words

	3.7 Other Data Structures
	3.7.1 System Stack
	3.7.2 User Stacks
	3.7.3 Queues

	SECTION 4 INSTRUCTION SET
	4.1 M68000 Family Compatibility
	4.1.1 New Instructions
	4.1.1.1 Low-Power Stop (LPSTOP)
	4.1.1.2 Table Lookup and Interpolation (TBL)

	4.1.2 Unimplemented Instructions

	4.2 Instruction Format
	Figure 4-1 Instruction Word General Format
	4.2.1 Notation

	4.3 Instruction Summary
	4.3.1 Condition Code Register
	Table 4-1 Condition Code Computations (Continued)

	4.3.2 Data Movement Instructions
	Table 4-2 Data Movement Operations

	4.3.3 Integer Arithmetic Operations
	Table 4-3 Integer Arithmetic Operations

	4.3.4 Logic Instructions
	Table 4-4 Logic Operations

	4.3.5 Shift and Rotate Instructions
	Table 4-5 Shift and Rotate Operations �

	4.3.6 Bit Manipulation Instructions
	Table 4-6 Bit Manipulation Operations

	4.3.7 Binary-Coded Decimal (BCD) Instructions
	Table 4-7 Binary-Coded Decimal Operations

	4.3.8 Program Control Instructions
	Table 4-8 Program Control Operations

	4.3.9 System Control Instructions
	Table 4-9 System Control Operations (Continued)

	4.3.10 Condition Tests
	Table 4-10 Condition Tests (Continued)

	4.4 Instruction Details
	Figure 4-2 Instruction Description Format

	4.5 Instruction Format Summary
	Table 4-11 Operation Code Map

	4.6 Table Lookup and Interpolation Instructions
	4.6.1 Table Example 1: Standard Usage
	Figure 4-3 Table Example 1

	4.6.2 Table Example 2: Compressed Table
	Figure 4-4 Table Example 2

	4.6.3 Table Example 3: 8-Bit Independent Variable
	Figure 4-5 Table Example 3

	4.6.4 Table Example 4: Maintaining Precision
	4.6.5 Table Example 5: Surface Interpolations

	4.7 Nested Subroutine Calls
	4.8 Pipeline Synchronization with the NOP Instruct...

	SECTION 5 PROCESSING STATES
	5.1 State Transitions
	5.2 Privilege Levels
	5.2.1 Supervisor Privilege Level
	5.2.2 User Privilege Level
	5.2.3 Changing Privilege Level

	5.3 Types of Address Space
	Table 5-1 Address Spaces
	5.3.1 CPU Space Access
	5.3.1.1 Type 0000 — Breakpoint
	5.3.1.2 Type 0001 — MMU Access
	5.3.1.3 Type 0010 — Coprocessor Access
	5.3.1.4 Type 0011 — Internal Register Access
	5.3.1.5 Type 1111 — Interrupt Acknowledge

	SECTION 6 EXCEPTION PROCESSING
	6.1 Definition of Exception Processing
	6.1.1 Exception Vectors
	Table 6-1 Exception Vector Assignments

	6.1.2 Types of Exceptions
	6.1.3 Exception Processing Sequence
	6.1.4 Exception Stack Frame
	Figure 6-1 Exception Stack Frame

	6.1.5 Multiple Exceptions
	Table 6-2 Exception Priority Groups

	6.2 Processing of Specific Exceptions
	6.2.1 Reset
	Figure 6-2 Reset Operation Flowchart

	6.2.2 Bus Error
	6.2.3 Address Error
	6.2.4 Instruction Traps
	6.2.5 Software Breakpoints
	6.2.6 Hardware Breakpoints
	6.2.7 Format Error
	6.2.8 Illegal or Unimplemented Instructions
	6.2.9 Privilege Violations
	6.2.10 Tracing
	Table 6-3 Tracing Control

	6.2.11 Interrupts
	6.2.12 Return from Exception

	6.3 Fault Recovery
	6.3.1 Types of Faults
	6.3.1.1 Type I: Released Write Faults
	6.3.1.2 Type II: Prefetch, Operand, RMW, and MOVEP...
	6.3.1.3 Type III: Faults During MOVEM Operand Tran...
	6.3.1.4 Type IV: Faults During Exception Processin...

	6.3.2 Correcting a Fault
	6.3.2.1 (Type I) Completing Released Writes via So...
	6.3.2.2 (Type I) Completing Released Writes via RT...
	6.3.2.3 (Type II) Correcting Faults via RTE
	6.3.2.4 (Type III) Correcting Faults via Software
	6.3.2.5 (Type III) Correcting Faults By Conversion...
	6.3.2.6 (Type III) Correcting Faults via RTE
	6.3.2.7 (Type IV) Correcting Faults via Software

	6.4 CPU32 Stack Frames
	6.4.1 Normal Four-Word Stack Frame
	Figure 6-3 Format $0 — Four-Word Stack Frame

	6.4.2 Normal Six-Word Stack Frame
	Figure 6-4 Format $2 — Six-Word Stack Frame

	6.4.3 BERR Stack Frame
	Figure 6-5 Internal Transfer Count Register
	Figure 6-6 Format $C — BERR Stack for Prefetches a...
	Figure 6-7 Format $C — BERR Stack on MOVEM Operand...
	Figure 6-8 Format $C — Four- and Six-Word BERR Sta...

	SECTION 7 DEVELOPMENT SUPPORT
	7.1 CPU32 Integrated Development Support
	7.1.1 Background Debug Mode (BDM) Overview
	Figure 7-1 In-Circuit Emulator Configuration
	Figure 7-2 Bus State Analyzer Configuration

	7.1.2 Deterministic Opcode Tracking Overview
	7.1.3 On-Chip Hardware Breakpoint Overview

	7.2 Background Debug Mode (BDM)
	Figure 7-3 BDM Block Diagram
	7.2.1 Enabling BDM
	7.2.2 BDM Sources
	Table 7-1 BDM Source Summary
	7.2.2.1 External BKPT Signal
	7.2.2.2 BGND Instruction
	7.2.2.3 Double Bus Fault
	7.2.2.4 Peripheral Breakpoints

	7.2.3 Entering BDM
	Table 7-2 Polling the BDM Entry Source

	7.2.4 Command Execution
	7.2.5 Background Mode Registers
	7.2.5.1 Fault Address Register (FAR)
	7.2.5.2 Return Program Counter (RPC)
	Figure 7-4 BDM Command Execution Flowchart
	7.2.5.3 Current Instruction Program Counter (PCC)

	7.2.6 Returning from BDM
	7.2.7 Serial Interface
	Table 7-3 CPU Generated Message Encoding
	7.2.7.1 CPU Serial Logic
	Figure 7-5 Debug Serial I/O Block Diagram
	Figure 7-6 Serial Interface Timing Diagram
	7.2.7.2 Development System Serial Logic
	Figure 7-7 BKPT Timing for Single Bus Cycle
	Figure 7-8 BKPT Timing for Forcing BDM
	Figure 7-9 BKPT/DSCLK Logic Diagram

	7.2.8 Command Set
	7.2.8.1 Command Format
	7.2.8.2 Command Sequence Diagram
	Figure 7-10 Command-Sequence-Diagram Example
	7.2.8.3 Command Set Summary
	Table 7-4 BDM Command Summary
	7.2.8.4 Read A/D Register (RAREG/RDREG)
	7.2.8.5 Write A/D Register (WAREG/WDREG)
	7.2.8.6 Read System Register (RSREG)
	7.2.8.7 Write System Register (WSREG)
	7.2.8.8 Read Memory Location (READ)
	7.2.8.9 Write Memory Location (WRITE)
	7.2.8.10 Dump Memory Block (DUMP)
	7.2.8.11 Fill Memory Block (FILL)
	7.2.8.12 Resume Execution (GO)
	7.2.8.13 Call User Code (CALL)
	7.2.8.14 Reset Peripherals (RST)
	7.2.8.15 No Operation (NOP)
	7.2.8.16 Future Commands

	7.3 Deterministic Opcode Tracking
	7.3.1 Instruction Fetch (IFETCH)
	7.3.2 Instruction Pipe (IPIPE)
	Figure 7-11 Functional Model of Instruction Pipeli...
	Figure 7-12 Instruction Pipeline Timing Diagram

	7.3.3 Opcode Tracking during Loop Mode

	SECTION 8 INSTRUCTION EXECUTION TIMING
	8.1 Resource Scheduling
	8.1.1 Microsequencer
	Figure 8–1 Block Diagram of Independent Resources

	8.1.2 Instruction Pipeline
	8.1.3 Bus Controller Resources
	8.1.3.1 Prefetch Controller
	8.1.3.2 Write-Pending Buffer
	8.1.3.3 Microbus Controller

	8.1.4 Instruction Execution Overlap
	Figure 8-2 Simultaneous Instruction Execution
	Figure 8–3 Attributed Instruction Times

	8.1.5 Effects of Wait States
	8.1.6 Instruction Execution Time Calculation
	8.1.7 Effects of Negative Tails

	8.2 Instruction Stream Timing Examples
	8.2.1 Timing Example 1: Execution Overlap
	Figure 8-4 Example 1 — Instruction Stream

	8.2.2 Timing Example 2: Branch Instructions
	Figure 8-5 Example 2 — Branch Taken
	Figure 8-6 Example 2 — Branch Not Taken

	8.2.3 Timing Example 3: Negative Tails
	Figure 8-7 Example 3 — Branch Negative Tail

	8.3 Instruction Timing Tables
	8.3.1 Fetch Effective Address
	8.3.2 Calculate Effective Address
	8.3.3 MOVE Instruction
	8.3.4 Special-Purpose MOVE Instruction
	8.3.5 Arithmetic/Logic Instructions
	8.3.6 Immediate Arithmetic/Logic Instructions
	8.3.7 Binary-Coded Decimal and Extended Instructio...
	8.3.8 Single Operand Instructions
	8.3.9 Shift/Rotate Instructions
	8.3.10 Bit Manipulation Instructions
	8.3.11 Conditional Branch Instructions
	8.3.12 Control Instructions
	8.3.13 Exception-Related Instructions and Operatio...
	8.3.14 Save and Restore Operations

	APPENDIX A M68000 FAMILY SUMMARY
	Table A-1 M68000 instruction Set Extensions
	Table A-2 M68000 Addressing Modes

	 –A–
	–B–
	–C–
	–D–
	–E–
	–F–
	–G–
	–H–
	–I–
	–L–
	–M–
	–N–
	–O–
	–P–
	–Q–
	–R–
	–S–
	–T–
	–U–
	–V–
	–W–

	INDEX

