M68CPU32BUG/D
REV 1

May 1995

M68CPU32BUG DEBUG MONITOR

USER’'SMANUAL

M68CPU32BUG/D

© MOTOROLA, INC., 1991, 1995; All Rights Reserved

Motorola reserves the right to make changes without further notice to any products herein to
improve reliability, function or design. Motorola does not assume any liability arising out of the
application or use of any product or circuit described herein; neither does it convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or
authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of persona injury or death associated with
such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part.

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1 GENERAL INFORMATION

IS A 1 (oo [0 Tox i o] ISPV 1-1
1.2 GENEral DESCITPIIONcviitiieieieeieeeee ettt b et e et st b b b s e enes 1-1
1.3 USINg TRISMENUAoceeeieeeciese ettt et e e sre e e 1-3
1.4 Installation @nd SEArt-Up........ccooeeiieieeie e 1-3
15 SYSIEM RESIAM ..ot 1-4

LT R L OSSPSR 1-4

1.5.2 ADON ettt n e n e n 1-4

153 BIEEK ettt et ae b 1-5
1.6 MemOry REQUITEIMENTScccueieeie e stee st ete sttt ee s ste e et eeeneesse e s e saeesseeneesneenseense e 1-5
1.7 Termina INPUt/OULPUL CONEIOLooviiiiirierieeie e 1-7

CHAPTER 2 DEBUG MONITOR DESCRIPTION

P20 R 11 oo LB o1 o o PP 2-1
2.2 Entering Debugger Command LiNES.........cccviieiieiieiieiecie et see e s e e 2-1
221 SyntaCtiC Variables........ccoiiiiieee e 2-2
2211 EXPression aSaParametercccoovieiieiiieese e 2-3

2.2.1.2 Address as aParameter........c.ccoooieiiiiereeie et 2-4

2.2.1.3 OffSat REJISIEIS...ccueiiiiiiie ettt 2-5

2.2.2 PO NUMDEIS.....c.eoiieeee ettt 2-7
2.3 Entering And Debugging Programs...........cccveeeieeiesieesiesieeieseestesesseesseesessseesseessesneessens 2-7
2.4 Calling System Utilities From USer Programs...........ccccoeoerenenenesieeieeseesese e 2-7
2.5 Preserving Debugger Operating ENVIFONMENT..........ccceiieiieiieeveere e 2-7
251 CPU32Bug Vector Table and WOrkSpace...........ccevereierenineneeieeesesesie e 2-8
2.5.2 CPU32BuUg EXCEPLION VECIOIS.ccuveieeie ettt e et 2-8
2521 Using CPU32Bug Target Vector TabIe..........ccovieriiirieiieeseeseseseseees 2-9
25.2.2 Creating VeCtor TabIES........ccoviieiieie et 2-10
2523 CPU32Bug Generalized Exception Handlercooveeeeieiencieneneneneees 2-11

2.6 FUNCLION COOE SUPPOITcuveieeetieiesieesieeiesteesteeeesseesteeaesreesseseesseesesseesseesesneesseensesneesees 2-12

CHAPTER 3 DEBUG MONITOR COMMANDS

1300 R 1 01 L8 1 o o O PRR 31
3.2 Block Of Memory Compare (BC)coeieririiieeeeesiesiesie s 3-3
3.3 BIlock Of MemMOry Fill (BF).....ccoiieeieee ettt 3-5
3.4 Block Of MemMOry MOVE (BIM)....cuoiiiiiirieiieeeieiesie ettt 3-7
3.5 Breakpoint Insert/Delete (BR/NOBR)........cccuciiiieriiceseesie et eee s ae e ae e e 39
3.6 Block Of Memory SEarch (BS).......ccoviiiiiriiieeeeee s 3-10
3.7 Block Of MemOory VENTY (BV) oottt 3-13

M68CPU32BUG/D REV 1 i

TABLE OF CONTENTS

CHAPTER 3 DEBUG MONITOR COMMANDS (continued)

3.8 DaaConVErSION (DC) ..ottt e 3-15
3.9 DUMP STRECOIAS (DU) vttt e e b nnesreenreenne e 3-16
3.10 GO DIFECE (GD) ...ttt bbbt eaes 3-19
3.11 GO TO NeXt INSIUCION (GN)....cviiieieiesiieeseese e sre e 321
3.12 Go Execute User Program (GO)........coerirereeeeieeesiesie s s 3-23
3.13 Go To Temporary Breakpoint (GT).....ccveueieeeiececeesieeie e re e s 3-26
TN T o I 3-28
3.15 Load S-Records From HOSE (LO)ccveeiiieiecieie et s 3-31
3.16 Macro Define/Display/Delete (MAL/NOMA)ooviiiiiiinieeneeee s 3-34
3.17 MACIO EIt (MAE) ... ittt sttt ens 3-37
3.18 Macro Expansion Listing Enable/Disable (MAL/NOMAL)cocviieieienenene s 3-39
3.19 Memory DiSplay (IMD)ccueieeece ettt st naesreenreenne e 3-40
3.20 MemMOry MOGITY (MIM) ... 3-42
B V= 0 0 VS = (Y) IS 3-44
3.22 Offset Registers Display/Modify (OF)coiiiieiiierereeree s 3-45
3.23 Printer Attach/DetaCh (PA/NOPA).......oiiiireeeeee ettt 3-48
3.24 POrt FOIMEE (PF) ...ttt 3-49

3.24.1 List Current POrt ASSIGNIMENLS........ccveiueieereeeiieseesieeeesee e eee e e sreere e reennesneenns 3-49

3.24.2 POIt CONFIGUIBLION.ccueeieiiiterieste sttt sttt e e sn b e sne e enes 3-49

3.24.3 Port FOrmat ParaMeLErS..........ccooiieiiiiieeiee et 3-50

3.24.4 NeW POIt ASSIONMENL. ...cceiiiiiriiie ittt sr b e e 3-51
3.25 ReQiSter DIiSPlay (RD) ...ccueceeiieieeie ettt e e teea e e nae e sneenneenee e 3-52
3.26 Cold/Warm RESEL (RESET)......couiiiriirieriinierieeee ettt s 3-56
3.27 Register MOAIfY (RM) ...ttt nne e 3-57
R R (= oS 1 g = () 3-58
3.29 SWItCh DIreCLOriES (SD)...veeueeiueeiieieiiesieeie s et ee st ae et ae e reeae s e e aeennesreenseenne e 3-59
T 0 I r=oC = (1 SO UP USSR 3-60
3.31 Trace On Change Of Control FIOW (TC)....ocveiuieieiiesieee et 3-63
3.32 Transparent MOOE (TIM) ..ot 3-65
3.33 Trace To Temporary Breakpoint (TT).....cccoceeieeiecierieeie e 3-66
3.34 Verify S-Records AQainst MemMOry (VE)c.ooiiieiiieiereseneeeee s 3-68

CHAPTER 4 ASSEMBLER/DISASSEMBLER

g R 1 100 (1 o o 1TSS 4-1
4.1.1 M68300 Family Assembly LanQUaJE.........cccevueieeiriieesieerie e sieesie e see e eeeeas 4-1
4111 Machine-Instruction Operation COUESccoererererereeieeiere e 4-1

I I B 1| =0t (=SSP PRSP 4-1

4.1.2 M68300 Family Resident Structured Assembler Comparison...........ccoecereererennene 4-2
4.2 Source Program COOING.........coueiueiieiieiie e seesteseesteeste e sreessessaesseesesseesseensesseesseensesnessees 4-2
421 SOUICELINE FOMMEL.......ciiiiiieieeiesee ettt sre et esnee e 4-3
2 O R © o= = 1o 8 = o S 4-3
4.2.1.2 Operand FIEd........ooiiieeeeee e 4-4

M68CPU32BUG/D REV 1 ii

TABLE OF CONTENTS

CHAPTER 4 ASSEMBL ER/DISASSEMBLER (continued)

4.2.1.3 Disassembled SOUMCE LINEccceieiieieerieeesee e 4-4
4.21.4 MnemoniCS and DElIMITENScoiiiiiririeiese e 4-5
T O 4= = o (= . R 4-6

422 AdAresSiNg MOUES......cc.oiieiieieee ettt e st e et e e aeeaesreesreenneeneenseas 4-6
4.2.3 Define Constant DireCtive (DC.W) ..o 4-9
424 System Call Directive (SYSCALL) .o 4-10
4.3 Entering and Modifying SOUrCE Program............ccecveueriererienesiesesesee e 4-10
4.3.1 Executing the Assembler/Disassemblerccoeoviievieieieeie e 4-11
4.3.2 ENEriNg @SOUMCE LINE......coiiiiiiieiie ittt 4-11
4.3.3 Entering Branch and JUMP AdOreSSES........ccveiieieieerieeie et s neas 4-12
4.3.4 Assembler Output/Program LiSHNGScceeereeerieeieeniesiesiesie s s 4-12

CHAPTER 5SYSTEM CALLS

T80 R g1 0o LB o1 o o PSP 51
5.1.1 Executing System Calls Through TRAP #15........ccooieiieie e 51
512 Input/OULPUL SEHNG FOMMELS.......ceiiiiiiiriesieeeeee e 5-2

5.2 System Call ROULINES........cccveitieieceiecieeieseese ettt e s e e aeenaesneesaeeneesneennens 5-2
521 Caculate BCD Equivalent Specified Binary Number (.BINDEC)............cccceeuennene. 5-4
522 ParseVaue Assignto Variable (CHANGEV).......ccccooieiecieiece e 5-5
5.2.3 Check for Break (.CHKBRK)ooiiiiiriiiinieieeeesie st 5-7
524 Timer Delay FUNCLION ((DELAY)..uooiiiieiece ettt 5-8
525 Unsigned 32 x 32 Bit Divide (.DIVUS32)coooriiiiiiiereeeeeeeeeeesee e 5-9
526 EraseLing ((ERASLN)...ccoiiiee ettt 5-10
5.2.7 Input Character ROUtiNE ((INCHR)cccciiiiiiiiree e 5-11
5.2.8 Input LiNn€ ROULINE (INLN).....eoiiiieiece e 5-12
529 Input Serial POrt StatuS (INSTAT) .oueieeeieeie et 5-13
5.2.10 Unsigned 32 x 32 Bit MUltiply ((MULUS32).......ccccoviiininininieee e 5-14
5.2.11 Output Character Routing ((OUTCHR)........cccoiiiiriiinirieeceeee e 5-15
5.2.12 Output String Using Pointers (OUTLN/OUTSTR)......cccccovevieeieviereceeseesie e 5-16
5.2.13 Print KCR><LEF> ((PCRLF) ...ocuiiiiiiciceceee ettt 5-17
5.2.14 Read Lineto Fixed-Length Buffer (READLN)........cccviieiieieieeceee e 5-18
5.2.15 Read String Into Variable-Length Buffer (READSTR).......cccoveiinenininenereens 5-19
5.2.16 Returnto CPU32BUg ((RETURN)ccciiiiiiiiiiesiesie e 5-20
5.2.17 Send Break (.SNDBRK)......ccciiiiiiicieicesie et 5-21
5.2.18 Compare TWO Strings ((STRCMP)ooeeiiie e 5-22
5219 Timer Initialization (. TM_IND) oo 5-23
5220 Read TIMer ((TM_RD) ...ccciiiiiiiisiesiiriisieee ettt st 5-24
5221 Start Timer a T=0 (.TM_STRO) ..c.cooiriiririerrirerie e 5-25
5.2.22 Output String with Data (WRITD/WRITLN)ooiiiienininieeeee s 5-27
5.2.23 Output String Using Character Count (WRITE/WRITELN)......cccccovievieninneennnns 5-29

M68CPU32BUG/D REV 1 iii

TABLE OF CONTENTS

CHAPTER 6 DIAGNOSTIC FIRMWARE GUIDE

G300 R g1 0o LB o1 o o PSP 6-1
(2 BT T="e 00 1S (o3 1Yo o (o] oS 6-1
6.2.1 MONITOr SEAIT-UP ..ottt n e e 6-1
6.2.2 Command Entry and Dir€CLONES.cceeveiieiieriecieseee et 6-1
I T o = | (= 6-2
I S <) B = (] 1) PSSR 6-2
6.2.5 SWitCh DireCtorieS (SD)coieireerieieriesie e 6-2
6.2.6 LOOP-ON-Error MOAE (LE)......ciiiiiiieeiieie ettt 6-2
6.2.7 StOP-ON-Error MO (SE)ooeeieieiesiesiesieeeeee e 6-3
6.2.8 L0oOp-ContinUE MOE (LC).....coiueeiiiieeiicie ettt 6-3
6.2.9 NON-Verbose MOAE (NV)....coeiiiiieieriesie e 6-3
6.2.10 Display Error Counters (DE).......ccviieiieieiiesieerie e seeie e st e e see e sse e s sse e 6-3
6.2.11 Clear (Zero) Error CoUNLErS (ZE).......cooeiiririeeeeeiesiesie e 6-3
6.2.12 Digplay Pass COUNt (DP)........c.coueiuiiieiieie et esie e ee st sae e s sne e 6-3
6.2.13 ZEer0 PaSS COUNE (ZP)cveiuiiiieieieiesie sttt 6-4
LIRS T U (] 1 (=SOSR 6-4
IR 0 R V1Y 1 (= 0o o USSP PRSPPI 6-4
(G2 = (== o 0o o S 6-5
6.3.3 WITE/REAA LOOPottt 6-5
6.4 CPU TestSFOr TRE MCU (CPU)...ccueiiiiiiiii ettt s 6-6
I N = o 1S = g =S (@, U A TS 6-7
6.4.2 INSruction TESt (CPU B).....cceeiiieieiierieie ettt 6-8
6.4.3 AddressMOode TESE (CPU C).....ooveieiiriiniiniesiieeeeesee ettt 6-9
6.4.4 Exception Processing TeSt (CPU D)oceevieieeceeseee ettt 6-10
6.5 MEMONY TESES (M)t b e et b nn e enes 6-11
6.5.1 Set FUNCLION COUE (MT A) ittt te et ne s 6-13
6.5.2 Set Start AAAreSS (MT B) ...oooueieiieiieiiieeeeeeeeie st 6-14
6.5.3 Set SIOP AdAreSS (MT C) ..uviiiieirieiiisiirieee ettt st 6-15
6.5.4 Set Bus Data Width (MT D)...ccueieeeiiiriirerieecsie e 6-16
6.5.5 March AddresS TESE (MT E)...ccuiviiiiiiiiiiieie ettt 6-17
6.5.6 WaK aBit TESt (MT F) .oeeiieiiceceeieeeeee ettt 6-18
6.5.7 REFESN TESL (MT G) ettt st 6-19
6.5.8 Random Byte TESt (MT H)..oouoiuiriiiieeeeeeeeee e 6-20
6.5.9 Program TESE (MT 1) oo s 6-21
6.5.10 Test and SEt TESE (MT J) cuvveieiieeeieieiesesee et sre s eneas 6-22
6.6 BUSEIMOr TESL (BERR).......cocieitiiieceeie ettt sneene e neenne e nns 6-23

M68CPU32BUG/D REV 1 iv

Al
A.2
A3
A4

B.1

Cl
C.2
C3
C4
C5
C.6
C.7
C.8
C9

TABLE OF CONTENTS

APPENDIX A SSRECORD INFORMATION

(100 (U1 1o R A-1
SR R (S w0 (0 [@011 0| F T A-1
STRECON TYPES.....cieeeeeeete ettt bbb bbbt e e e b e b eneneeene e A-2
R R (S w0 (0 ST O =" 1] 0] o TR A-3

APPENDIX B SELF-TEST ERROR MESSAGES

TN OTUCTION. ..ottt e e e e e e ettt e e e e e e e e eeeeeeeeeeaaennneeeeeeeeeesaannnneeeeneeeaans B-1

(o [o 1 o OSSR C-1
CPUS2BUG CUSIOMIZALION.......cueeiieeiiee et esiee et esieeete e s e eteesreesreesnaeenseesseesbessnseenseesnneenns C-2
(LTS (0] 412 (o] A I o) = T C-5
ComMMUNICATON FOMMELScuveeiiecie ettt ee e e b e sraeenreesnneenee s C-14
BCC REV. A Chip SEleCtion SUMMAIYcccveeieeiiceeseesie e see s esre e e C-15
BCC REV. B Chip SeleCtion SUMMEIY.........cceoueieerierierieniesiesiesesie e C-16
BCC REV. C Chip SEleCtion SUMMAIYccccceeeeiiiirieeeeseesieseeseesieeeeseesse e sneesseeneens C-17
Patform Board (PFB) REV. C CompatiDilitycccooiriiiiiiinieeeeeee e C-18
CPU32BUG QUESLIONS @NA ANSIVENSeveeieecieeeiteecireeeteeseessseesraessteesssesssesssnesssessssesnsenss C-19

M68CPU32BUG/D REV 1 %

LIST OF FIGURES

FIGURES

1-1. CPU32Bug Operation Mode Flow Diagram.............ccccevevueenene.
1-2. BCCMEMOIY M@coieiiieiiiiesieeie et

LIST OF TABLES

TABLES

2-1. Debugger Address Parameter FOrmat...........ccccoeceeveevieceeseennnnne
2-2. CPU32Bug EXCEPLION VECLONS......cceieieieeieieieieseesie e
3-1. Debug Monitor ComMMmMandS..........ccceveerieeieeseeseeieeseeseesseeseeeens
4-1. CPU32Bug Assembler Addressing MOodEs............cocovrenenennnne
5-1. CPU32Bug System Call ROULINES..........ccceveeviieieiiesiecie e
6-1. MCU CPU DiagnOStiC TESES.......ccuerverierieeeeieieieseesie e
6-2. Memory DiagnostiC TESES.......ccvvieerierie et
B-1. Self-Test Error MESSAgES......ccovvevereiiiirierieeeeeeee e
C-1. CPU32Bug Customization AF€a.........cceeuereereesieeseesieseesseeeenns
C-2. MCU SCI Communication FOrmats...........cccevereeneennseesieneenn
C-3. Rev. A Chip Selection SUMMary........ccccccevveveeceeseeseseesieeeen
C-4. Rev. B Chip Selection SUMMAYccceeeeeeeieneneneneseseeenes
C-5. BCC Rev. C Chip Selection SUMmaryccccceeceeveeveceesenennn
C-6. PFB Rev. C Compatibilitycooreriririeieeeese e

M68CPU32BUG/D REV 1

TABLE OF CONTENTS

Vi

GENERAL INFORMATION

CHAPTER 1
GENERAL INFORMATION

1.1 INTRODUCTION

This chapter provides a general description, installation instructions, start-up and system restart
instructions, memory requirements, and a terminal input/output (I/0O) control description for the
M68CPU32BUG Debug Monitor (hereafter referred to as CPU32Bug). Information in this
manual coversthe 1.00 version of the CPU32Bug.

1.2 GENERAL DESCRIPTION

The CPU32Bug package evaluates and debugs systems built around the M6833XBCC Business
Card Computer. System evauation facilities are available for loading and executing user
programs. Various CPU32Bug routines that handle I/O, data conversion, and string functions are
available to user programs through the TRAP #15 handler.

CPU32Bug includes:

e Commands for display and modification of memory,

* Breskpoint capabilities,

* An assembler/disassembler useful for patching programs,

* A power-up self test feature which verifies system integrity,

* A command-driven user-interactive software debugger (the debugger), and

* A user interface which accepts commands from the system console terminal .

There are two modes of operation in the CPU32Bug monitor; the debugger mode and the
diagnostic mode. When the user is in the debugger directory the prompt CPU32Bug> is
displayed, and the user has access to the debugger commands (see Chapter 3). When the user is
in the diagnostic mode the prompt CPU32Diag> is displayed, and the user has access to the
diagnostic commands (see Chapter 6). These modes are also called directories.

CPU32Bug is command-driven. It performs various operations in response to user commands
entered at the keyboard. Figure 1-1 illustrates the flow of control in CPU32Bug. CPU32Bug
executes entered commands and the prompt reappears upon completion. However, if acommand
Is entered which causes execution of user target code (i.e., GO) then control may or may not
return to CPU32Bug. This depends upon the user program function.

CPU32Bug is similar to Motorola's other debugging packages, but there are two noticeable
differences. Many of the commands are more flexible with enhanced functionality. And the
debugger has more detailed error messages and an expanded on-line help facility.

M68CPU32BUG/D REV 1 1-1

POWER-UP/RESET

WARM START?
YES

SET DEBUGGER
DIRECTORY

DISPLAY DEBUGGER
NAME AND VERSION

DISPLAY WARM
START MESSAGE

MAIN
GISPLAY BUG PROMPD

'

CWAIT FOR INPUT)

1

DOES COMMAND YES

GENERAL INFORMATION

CAUSE TARGET CODE
EXECUTION

§ no

CEXECUTE COMMAND

v GO TO MAIN
QNITILIZE BUG VARIBLES)

v

RUN SYSTEM
CONFIDENCE TEST

SET DEBUGGER
DIRECTORY

DISPLAY DEBUGGER NAME & VERSION
DISPLAY RESULTS OF CONFIDENCE

TEST

RESTORE
TARGET STATE

L

TARGET CODE

|
L

EXECPTION

EXCEPTION
HANDLERS

SAVE TARGET
STATE

DISPLAY TARGET
REGISTERS

|

GO TO MAIN

Figure 1-1. CPU32Bug Operation Mode Flow Diagram

M68CPU32BUG/D REV 1

GENERAL INFORMATION

1.3 USING THISMANUAL

Those users unfamiliar with debugging packages should read Chapter 1 before attempting to use
CPU32Bug. This provides information about CPU32Bug structure and capabilities.

Paragraph 1.4 Installation and Start-up describes a step-by-step procedure for powering up the
module and obtaining the CPU32Bug prompt on the terminal screen.

For questions about syntax or operation of a particular CPU32Bug command, turn to the
paragraph which describes that particular command in Chapter 3.

Some debugger commands take advantage of the built-in one-line assembler/disassembler. The
command descriptions in Chapter 3 assume that the user is familiar with the
assembler/disassembler functionality. Chapter 4 includes a description of the assembler/
disassembler.

NOTE

In the examples shown, all user inputs are given in bold text. This should clarify
the examples by distinguishing between character input by the user and character
output by CPU32Bug. The symbol <CR> represents the carriage return key on the
user's terminal keyboard. Whenever this symbol appears it indicates a carriage
return should be entered by the user.

1.4 INSTALLATION AND START-UP
Use the following set-up procedure to enable CPU32Bug to operate with the BCC:
1. Configure the jumpers on the BCC module. Refer to the EVK User's Manual

Motorola publication number M68332EVK/AD1 or M68331EVK/ADI.

2. Connect the DB-9 seriadl communication cable connector to the terminal or host
computer which is to be the CPU32Bug system console. Connect the other end of the
cable to P4 on the BCC.

Set up the terminal as follows:
» Eight bits per character
* One stop bit per character
* Parity disable
* 9600 baud rate

M68CPU32BUG/D REV 1 1-3

GENERAL INFORMATION

NOTE

In order for high-baud rate serial communication between
CPU32Bug and the terminal to function properly, the terminal
must use XON/XOFF handshaking. If messages are garbled and
have missing characters, check the terminal to verify XON/XOFF
handshaking is enabled.

3. Power up the system. CPU32Bug executes a self-test and displays the sign on
message (which includes version number) and the debugger prompt CPU32Bug>.

1.5 SYSTEM RESTART

There are three ways to initialize the system to a known state. Each situation determines the
appropriate system restart technique.

151 Reset

The M68300PFB platform board reset switch returns the system to a known state. When the reset
switch is first pushed the MCU send the default XON character to the terminal to prevent
possible terminal lockup. There are two reset modes. COLD and WARM. COLD reset is the
CPU32Bug default, refer to the RESET command description. During COLD reset a total
system initialization occurs, similar to the BCC power-up sequence. All static variables are
restored to their default states. The serial port is reset to its default state. The breakpoint table is
cleared. The offset registers are cleared. The target registers are invalidated. Input and output
character queues are cleared. On-board devices (timer, seria ports, etc) are reset. During WARM
reset, CPU32Bug variables and tables are preserved, as well as the target state registers and
breakpoints.

Use reset if the processor halts, for example, after a halt monitor fault, or if the CPU32Bug
environment islost (vector table is destroyed, etc).

1.5.2 Abort

The M68300PFB platform board abort switch terminates all in-process instructions. When abort
is executed while running target code, a snapshot of the processor state is captured and stored in
the target registers. For this reason abort is appropriate when terminating a user program that is
being debugged. Use abort to regain control if the program gets caught in a loop, etc. The target
PC, stack pointers, etc. help pinpoint malfunctions.

Abort generates a non-maskable, level-seven interrupt. The target registers reflect the machine
state at the time of an abort and are displayed on the display screen. Any breakpoints installed in
the user code are removed and the breakpoint table remains intact. Control is then returned to the
debugger.

M68CPU32BUG/D REV 1 1-4

GENERAL INFORMATION

1.5.3 Break

The BREAK key on the termina keyboard initiates a break. Break does not generate an
interrupt. The only time break is recognized is when characters are sent or received by the
debugger console. Break removes any breakpoints in the user code and keeps the breakpoint table
intact. Break does not, however, take a snapshot of the machine state nor does it display the
target registers. It is useful for terminating active debugger commands that are outputing large
blocks of data.

NOTE

When using terminal emulation programs such as ProComm or
Kermit, the BREAK key on the keyboard is local to the emulation
program and may not be transmitted to the BCC. Consult your
emulation program’s user manual for the procedure on sending a
BREAK signal to the port connected to the BCC.

1.6 MEMORY REQUIREMENTS

The program portion of CPU32Bug is approximately 64k bytes of code. The EPROM on-board
the BCC contains 128k bytes and is mapped at locations $E0000 to $FFFFF. However, the
CPU32Bug code is position-independent and can execute anywhere in memory. The second half
of the EPROM ($F0000 - $FFFFF) is blank and available for user programs. See Appendix C
CPU32Bug Customization.

CPU32Bug requires a minimum of 12k bytes of random access memory (RAM) to operate. This
memory may be either off-board system memory (i.e., on an external memory board) or BCC on-
board RAM. On-board RAM allows stand-al one operation of the BCC.

The first 12k bytes are used for CPU32Bug stack and static variable space and the rest of
memory is reserved as user space. Whenever the BCC is reset, the target program counter is
initialized to the beginning user space address and the target stack pointers are initialized to
addresses at the end of the user space. The target instruction stack pointer (SSP) is set to the top
of the user space. Register initialization is done solely as a convenience for the user. Consult the
CPU32 Reference Manual for information regarding actual register values during a power-
on/reset.

M68CPU32BUG/D REV 1 1-5

GENERAL INFORMATION

XXXTFF(2)
INTERNAL RAM(1)
XXX000
FFFFFF
MCU
INTERNAL
MODULES
FEF000
OPTIONAL FPCP(3)
PFB(4): U5
FEES00
800000
ALTERNATE MCU
INTERNAL MODULES
LOCATION
(see APPENDIX C)
7EF000
110000 /120000(5)
OPTIONAL RAM/EPROM
PFB: U2 & U4
100000
CPU32BUG EPROM
BCC: U4
OE0000 CPU32BUG
STACK
020000
OPTIONAL RAM CPU32BUG
PFB: Ul & U3 INTERNAL
010000 VARIABLES
EAC%(?E; z/ﬂ\g CPU32BUG VECTOR
' 003000 TABLE
SYSTEM RAM TARGET VECTOR
BCC: U2 & U3 000000 TABLE

(1) Consult the MCU device User’'s Manual.

(2) XXXBase address is user programmable. Internal MCU modules,
such as internal RAM, can be configured on power-up/reset by
using the Initialization Table (INITTBL) covered in Appendix C.

(3) Floating Point Coprocessor - MC68881/MC68882

(4) Platform Board

(5) Depends on the memory device type used.

Figure 1-2. BCC Memory Map

M68CPU32BUG/D REV 1 1-6

GENERAL INFORMATION

1.7 TERMINAL INPUT/OUTPUT CONTROL
When entering a command at the prompt, the following control codes may have a caret, " " ",
preceding the character, this indicates that the Control or CTRL key must be held down while
striking the character key).

X (Cancel line) The cursor is backspaced to the beginning of the line.

"H (backspace) The cursor is moved back one position. The character at the new
cursor position is erased.

 (delete/rubout) Performs the same functionas’'"H’’.
"D (redisplay) The entire command line as entered is redisplayed on the following

line.

When observing output from any CPU32Bug command, the XON and XOFF characters may be
entered to control the output, if the XON/XOFF protocol is enabled (default). These characters
areinitialized to "S” and "Q"” respectively by CPU32Bug, but may be changed by the user using
the PF command. The initialized (default) mode operations are:

AS (wait) Console output is halted.

Q (resume) Console output is resumed.

M68CPU32BUG/D REV 1 1-7

GENERAL INFORMATION

M68CPU32BUG/D REV 1 1-8

DEBUG MONITOR DESCRIPTION

CHAPTER 2
DEBUG MONITOR DESCRIPTION

2.1 INTRODUCTION

CPU32Bug performs various operations in response to user commands entered at the keyboard.
When the debugger prompt CPU32Bug> appears on the terminal screen the debugger is ready to
accept commands.

2.2 ENTERING DEBUGGER COMMAND LINES

Asthe command line is entered it is stored in an internal buffer. Execution begins only after the
carriage return is entered. This alows the user to correct entry errors using the control characters
described in paragraph 1.7.

The debugger executes commands and returns the CPU32Bug> prompt. However, if the entered
command causes execution of user target code, (i.e., GO), then control may or may not return to
the debugger. This depends upon the user program function. For example, if a breakpoint is
specified, then control returns to the debugger when the breakpoint is encountered. The user
program also returns control to the debugger by means of the TRAP #15 function, RETURN
(described in paragraph 5.2.16). Also refer to the paragraphs in Chapter 3 which detail elements
of the GO commands.

In general debugger commands include:
* A command identifier (i.e, MD or md for the memory display command). Both
upper- or lower-case characters are alowed for command identifiers and options.
* At least oneintervening space before the first argument.
e A port number for running with multiple ports.
* Any required arguments, as specified by command.

* Anoption field, set off by a semicolon (;) to specify conditions other than the default
conditions of the command.

* Some commands (MD, GO, T, etc) are repeatable, i.e., entering a carriage return
(<CR>) only causes the last command to be repeated and the address (<KADDR>), if
any, incremented. Thus after an MD command, sequential memory locations will be
displayed by entering a carriage return only. Or after entering a TRACE (T)
command, entering a carriage return (SCR>) only traces the next instruction.

* Multiple debugger commands may be entered on a single command line by separating
the commands with the explanation point (!) character.

M68CPU32BUG/D REV 1 2-1

DEBUG MONITOR DESCRIPTION

The commands use a modified Backus-Naur syntax. The meta-symbols are:

<>

[l

...

{}

The angular brackets enclose a symbol, known as a syntactic variable. The
syntactic variable is replaced in a command line by one of a class of
symbolsit represents.

Square brackets enclose an optional symbol. The enclosed symbol may
occur zero or one time. In some cases, where noted, square brackets are
required characters.

Square brackets followed by periods enclose a symbol that is
optional/repetitive. The symbol within the brackets may appear zero or
more times.

This symbol indicates that a choice is to be made. Select one of severa
symbols separated by a straight line.

Select one or more of the symbols separated by the slash

Brackets enclose optional symbols that may occur zero or more times.

2.2.1 Syntactic Variables

The following syntactic variables are used in the command descriptions which follow. In
addition, other syntactic variables may be used and are defined in the particular command
description in which they occur.

<ADDR>

<COUNT>

<RANGE>

<TEXT>

M68CPU32BUG/D REV 1

Delimiter; either a comma or a space. <EXP> - Expression (described in
detail in paragraph 2.2.1.1).

Address (described in detail in paragraph 2.2.1.2).
Count; the same syntax as < EXP> .

A range of memory addresses which may be specified either by <
ADDR><ADDR> or by <ADDR> :<COUNT>.

An ASCII string of as many as 255 characters, delimited with single quote
marks (' TEXT).

2-2

2.2.1.1 Expression as a Parameter

DEBUG MONITOR DESCRIPTION

An expression is one or more numeric values separated by the arithmetic operators:

+ plus

— minus

* multiplied by
| divided by
& logical AND
<< shift left

>> gshift right

Base identifiers define numeric values as either a hexadecimal, decimal, octal or binary number.

Base Identifier Examples
Hexadecimal $ $FFFFFFFF
Decimal & &1974, &10-&4
Octal @ @456
Binary % %1000110

If no base identifier is specified, then the numeric value is assumed to be hexadecimal.

A numeric value may also be expressed as a string literal of as many as four characters. The
string literal must begin and end with single quote marks (). The numeric value is interpreted as
the concatenation of the ASCII values of the characters. This value is right-justified, as is any

other numeric value.

String Literal

Numeric Value (in hex)

A

41

'ABC’

414243

TEST

54455354

Evaluation of an expression is always from left to right unless parentheses are used to group part
of the expression. There is no operator precedence. Sub-expressions within parentheses are
evaluated first. Nested parenthetical sub-expressions are evaluated from the inside out.

M68CPU32BUG/D REV 1

2-3

DEBUG MONITOR DESCRIPTION

EXAMPLES Valid expressions.
Expression Result (in hex)

FFO011 FFO011

45+99 DE

&45+&99 90
@35+@67+@10 5C
%10011110+%1001 A7

88<<10 00880000
AA&FO A0

The total value of the expression must be between 0 and $FFFFFFFF.

2.2.1.2 Address as a Parameter

Many commands use <ADDR> as a parameter. The syntax accepted by CPU32Bug is similar to
the one accepted by the MC68300 Family one-line assembler. All control addressing modes are
allowed. An addresst+offset register mode is also allowed.

Table 2-1 summarizes the address formats which are acceptable for address parameters in

debugger command lines.

M68CPU32BUG/D REV 1

2-4

DEBUG MONITOR DESCRIPTION

Table 2-1. Debugger Address Parameter Format

Format Example Description
N 140 Absolute address+contents of automatic offset register.
N+Rn 332+R5 Absolute address+contents of the specified offset register (not an

assembler-accepted syntax).

(An) (A1) Address register indirect.

(d,An) (120,A1) Address register indirect with displacement (two formats accepted).
or 120(A1)

d(An)

(d,An,Xn) (&120,A1,D2) Address register indirect with index and displacement (two formats
or &120(A1,D2) accepted).

d(An,Xn)

Symbol Definition

N - Absolute address (any valid expression)

Dn - Data register n

An - Address register n

Xn - Index register n (An or Dn) d Displacement (any valid expression)
bd - Base displacement (any valid expression) n Register number (0 to 7)
Rn - Offset register n

ZXn - Zero suppressed register Xn

2.2.1.3 Offset Registers

Eight pseudo-registers (RO through R7) called offset registers are used to ssimplify the debugging
of re-locatable and position-independent files. These files when listed have a starting address
(normally 0), but when loaded into memory, due to the offset registers, they are loaded into a
different memory location. Implementing offset registers makes it harder to correlate addressesin
the listing with addresses in the loaded program. The offset registers solve this problem by taking
into account this difference and forcing the display of addresses in a relative addresst+offset
format. The range for each offset register is set by two addresses: base and top. Specifying the
base and top addresses for an offset register sets its range. Offset registers have adjustable ranges
which may overlap. In the event that an address falls in two or more offset register ranges, the
one that yields the least offset is chosen.

NOTE

Relative addresses are limited to 1 megabyte (5 digits), regardless
of the range of the closest offset register.

M68CPU32BUG/D REV 1 2-5

DEBUG MONITOR DESCRIPTION

EXAMPLE A portion of the listing file of a re-locatable module assembled with the

MC68300 Family DOS resident assembler is shown below:

1

2 *

3 * MOVE STRI NG SUBROUTI NE

4 *

5 0 00000000 48E78080 MOVESTR MOVEM L DO/ AO, - (A7)

6 0 00000004 4280 CLR L DO

7 0 00000006 1018 MOVE. B (A0) +, DO

8 0 00000008 5340 SUBQ W #1, DO

9 0 0000000A 12D8 LOoP MOVE. B (A0) +, (A1) +

10 0 0000000C 51 C8FFFC MOVS DBRA DO, LOOP

11 0 00000010 4CDF0101 MOVEM L (A7) +, DO/ AD

12 0 00000014 RTS

13

14 END

*x*x%x TOTAL ERRORS O-

*x%x%x TOTAL WARNI NGS 0-

The above program was loaded at address 0000427C. The disassembled codeis:

CPU32Bug>MD 427C, DI <CR>

0000427C 48E78080 MOVEM L DO/ A0, - (A7)
00004280 4280 CLR L DO
00004282 1018 MOVE. B (A0) +, DO
00004284 5340 SUBQ W #1, DO
00004286 12D8 MOVE. B (A0) +, (AL) +
00004288 51C8FFFC DBF DO, $4286
0000428C 4CDF0101 MOVEM L (A7) +, DO/ Ao
00004290 4E75 RTS

By using one of the offset registers, the disassembled code address can be made to match the
listing file address as follows:

CPU32Bug>0OF RO<CR>
RO =00000000 000000007 427C. 16. <CR>
CPU32Bug>MD 0+RO; DI <CR>

00000+R0 48E78080 MOVEM L DO/ AO, - (A7)
00004+R0 4280 CLR L Do

00006+R0 1018 MOVE. B (AQ0) +, DO
00008+R0 5340 SUBQ W #1, DO
0000A+RO 12D8 MOVE. B (A0) +, (A1) +
0000C+RO0 51C8FFFC DBF DO, $A+RO
00010+R0O 4CDF0101 MOVEM L (A7) +, DO/ AO
00014+R0 4E75 RTS

CPU32Bug>

For Additional information about the offset registers, see the OF command description.

M68CPU32BUG/D REV 1 2-6

DEBUG MONITOR DESCRIPTION

2.2.2 Port Numbers

Some CPU32Bug commands allow the user to decide which port is the input or output port.
Valid port numbers are:

0- MCU SCI Port (RS-232C communication port; P4 on the BCC and P9 on the PFB)

Although CPU32Bug supports other ports (see PF command), there is no hardware present on
the BCC to support additional ports. Thus the commands which allow port numbers (DU, LO,
PF, VE) can only use port 0. Those commands requiring a second port (PA, TM) are not
functional without additional hardware.

2.3 ENTERING AND DEBUGGING PROGRAMS

There are various ways to enter a user program into system memory. One isto create the program
using the assembl er/disassembler option and the MM (memory modify) command.

The user enters the program one source line a a time. After each source line is entered, it is
assembled and the object code is loaded into memory. Refer to Chapter 4 for complete details of
the CPU32Bug assembl er/disassembler.

Another way to enter a program is to download an object file from a host system (i.e., a persona
computer). The program must be in S-record format (described in Appendix A) and may be
assembled or compiled on the host system. The file is downloaded from the host into BCC
memory via the debugger LO command. Alternately, the program may be created using the
CPU32Bug MM command as outlined above and stored to the host using the DU (dump)
command. A communication link must exist between the host system and the BCC'’ s seria port.

24 CALLING SYSTEM UTILITIESFROM USER PROGRAMS

A convenient method to input and output characters as well as many other useful operations is
provided by the TRAP #15 instructions. This frees the user from having to write these routines
into the target code. Refer to Chapter 5 for details on various TRAP #15 utilities and how to
execute them from a user program.

2.5 PRESERVING DEBUGGER OPERATING ENVIRONMENT

Avoiding contamination of the debugger operating environment is explained in the following
paragraphs. CPU32Bug uses certain MCU on-board resources and may also use off-board system
memory to store temporary variables, exception vectors, etc. If the user violates CPU32Bug
dependent memory space, then the debugger may not function.

M68CPU32BUG/D REV 1 2-7

DEBUG MONITOR DESCRIPTION

2.5.1 CPU32Bug Vector Table and Workspace

CPU32Bug requires 12k bytes of RAM to operate. On power-up or reset, CPU32Bug allocates
this memory space. The first 1024-bytes are reserved as a user program vector table area and the
second 1024-bytes are reserved as an exception vector table for use by the debugger. Next,
CPU32Bug reserves space for static variables and initializes these variables to predefined default
values. After the static variables, CPU32Bug allocates space for the system stack, then initializes
the system stack pointer to the top of this area.

With the exception of the first 1024-byte vector table area, do not to use the above-mentioned
reserved memory areas. Refer to paragraph 1.6 to define the reserved memory area location. If,
for example, a user program inadvertently wrote over the static variable area containing the serial
communication parameters, these parameters would be lost, resulting in aloss of communication
with the system terminal. If a user program corrupts the system stack, then an incorrect value
may be loaded into the processor’ s counter, causing the system to crash.

2.5.2 CPU32Bug Exception Vectors

The debugger exception vectors are listed below. Do not change these specified vector offsetsin
the target program vector table or the associated debugger facilities (breakpoints, trace mode,
etc.) will not operate.

Table 2-2. CPU32Bug Exception Vectors

Vector Offset Exception CPU32bug Facility
Number
4 $10 lllegal Instruction breakpoints (Used instruction by GO, GN,
GT)
9 $24 Trace T.TC,TT
31 $7C Level 7 interrupt ABORT push-button
47 $BC TRAP #15 System calls (see Chapter 5)
66 $108 User Defined Timer Trap #15 Calls ($4X)

When the debugger handles one of the exceptions listed in Table 2-2, the target stack pointer is
left pointing past the bottom of the exception stack frame; that is, it reflects the system stack
pointer values just before the exception occurred. In this way, the operation of the debugger
facility (through an exception) is transparent to the user, but it does change the locations on the
stack.

M68CPU32BUG/D REV 1 2-8

DEBUG MONITOR DESCRIPTION

EXAMPLE Trace one instruction using debugger.
CPU32Bug>RD<CR>
PC =00003000 SR =2700=TR OFF_S 7_..... VBR =00000000
SFC =5=SD DFC =5=SD USP =00003830 SSP* =00004000
DO =00000000 DL =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000

00003000 203900100000 MOVE. L ($100000). L, DO
CPU32Bug>T<CR>

PC =00003006 SR =2700=TR OFF. S 7_..... VBR =00000000
SFC =5=SD DFC =5=SD USP =00003830 SSP* =00004000
D0 =12345678 DI =00000000 D2 =00000000 D3 =00000000

D4 =00000000 D5 =00000000 D6 00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00003006 D280 ADD. L DO, D1

CPU32Bug>

Notice that the value of the target stack pointer register (A7) has not changed even though a trace
exception has taken place. The user program may use the exception vector table provided by
CPU32Bug or it may create a separate exception vector table of its own.

2.5.2.1 Using CPU32Bug Target Vector Table

CPU32Bug initializes and maintains a vector table area for target programs. A target program is
any user program started by the CPU32Bug with GO or Trace commands. The starting address of
this target-vector table area is the base address of the BCC, described in paragraph 1.6. This
addressisloaded into the target-state-vector base register at power-up or during a cold-start reset.
For verification use the RD command immediately after power-up to display the target-state
registers.

CPU32Bug loads the target-vector table with the debugger vectors (listed in Table 2-2) and the
other vector locations with the address of a generalized exception handler (refer to paragraph
2.5.2.3). The target program allocates as many vectors as required by simply writing its own
exception vectors into the table. If the vector locations listed in Table 2-2 are over-written, then
the accompanying debugger functions will be lost.

CPU32Bug maintains a separate vector table for its own use in a 1k byte space in the reserved
memory space. The debugger vector table is completely transparent to the user and no
modifications should ever be made to it.

M68CPU32BUG/D REV 1 2-9

DEBUG MONITOR DESCRIPTION

2.5.2.2 Creating Vector Tables

A user program may create a separate vector table to store its exception vectors. If this is done,
the user program must change the value of the vector base register to point to the new vector
table. To use the debugger facilities, copy the vectors from the CPU32Bug vector table into the
corresponding user vector table locations (block of memory move (BM) command).

The vector for the CPU32Bug generalized exception handler (described in detail in paragraph
2.5.2.3) may be copied from offset $08 (Bus Error vector) in the target-vector table to all
locations in the user’s vector table where a separate exception handler is not used. This provides
diagnostic support in the event execution of the user program is terminated by an unexpected
exception. The generalized exception handler gives aformatted display of the target registers and
identifies the type of the exception.

The following is an example of a user routine which builds a separate vector table and then sets
the vector base register to point at it.

*

*oxk BU LDX — Build exception vector table ***

*

BUI LDX MOVEC. L VBR, AO Get copy of VBR.
LEA $1 0000, A1 New vectors at $10000.
MOVE. L $8(A0), DO Get generalized exception vector.
MOVE. W $3FC, D1 Load count (al vectors).

LOOP MOVE. L Do, (A1, D1) Store generalized exception vector.
SU BQ W #4, D1
BPL. B LOOP Initialize entire vector table.
MOVE. L $1 O(A0), $1 O(Al) Copy breakpoints vector.
MOVE. L $24(A0), $24(A1) Copy trace vector.
MOVE. L $BC(A0) , $BC(Al) Copy system call vector.
LEA. L TI MER(PC) , A2 Get user exception vector.
MOVE. L A2, $2C(Al) Install as F-Line handler.
MOVEC. L Al , VBR Change VBR to new table.
RTS
END

The user program may use one or more of the exception vectors that are required for debugger
operation if the user’s exception handler can determine when to handle the exception itself and
when to pass the exception to the debugger.

When an exception occurs which requires debugger operation (i.e., ABORT), the user's
exception handler must read the vector offset from the exception-stack-frame format word. This
offset is added to the address of the CPU32Bug target program vector table (which the user
program saves), producing the address of the CPU32Bug exception vector. The user program
then jumps to the address stored at this vector location (i.e., which is the address of the
CPU32Bug exception handler).

The user program must ensure an exception stack frame is in the stack and that it is identical to

one the processor would create for the particular exception. It may then jump to the address of
the exception handler.

M68CPU32BUG/D REV 1 2-10

Save spacein stack for aPC value.

EXAMPLE
*** EXCEPT - Exception handl er ****
*
EXCEPT SUBQ L #4, A7
LI NK A6, #0

MOVEM L AO- A5/ DO- D7, - (A7)

DEBUG MONITOR DESCRIPTION

The user exception handler passes an exception along to the debugger.

Frame pointer for accessing PC space.
Save registers.

: decide here if user code will handle exception, if so, branch...

MOVE.L BUFVBR, AO
MOVE.W 14(A6), Do

AND. W #$0FFF, DO

MOVE. L (A0, DO. W, 4(A6)
UNLK

RTS

Pass exception to debugger; Get VBR.
Get the vector offset from stack frame.
Mask off the format information.
Store address of debugger exception handler.

A6

Put address of exception handler into PC and go.

2.5.2.3 CPU32Bug Generalized Exception Handler

The CPU32Bug generalized exception handler supervises all exceptions not listed in Table 2-2.
For these exceptions, the target stack pointer points to the top of the user exception stack frame.
In thisway, if an unexpected exception occurs during user code segment execution, the exception
stack frame displaysto assist in determining the cause of the exception.

Bus error at address $F00000. It is assumed for this example that an access

of memory location $FO0000 initiates bus error exception processing.

=0000FCO00
00000000
00000000
=00000000
=00000000

VBR
SSP*
D3
D7
A3
A7

($F00000) . L, DO

EXAMPLE

CPU32Bug>RD<CR>

PC =00003000 SR =2700=TR OFF_S 7_....
SFC =5=SD DFC =5=SD UspP
DO =00000000 D1 =00000000 D2
D4 =00000000 D5 =00000000 D6
A0 =00000000 Al =00000000 A2
A4 =00000000 A5 =00000000 A6
00003000 203900F0 0000 MOVE. L
CPU32Bug>T<CR>

Exception: Bus Error

For mat / Vect or =C008

SSW=0065 Fault Addr.=00F00000 Data=FFFF3000 Cur.

=0000FC00
=00000000
=00000000
=00000000
=00000000

=00000000
=00004000
00000000
00000000
=00000000
=00004000

PC=00003000 OCnt.

VBR
SSpP*
D3
D7
A3
A7

($F00000) . L, DO

PC =00003000 SR =A700=TR ALL_ S 7
SFC =5=SD DFC =5=SD USP

DO =00000000 DI =00000000 D2

D4 =00000000 D5 =00000000 D6

A0 =00000000 Al =00000000 A2

A4 =00000000 A5 =00000000 AG
00003000 203900F0 0000 MOVE. L
CPU32Bug>

M68CPU32BUG/D REV 1

2-11

=00000000
=00003FES8
=00000000
=00000000
=00000000
=00003FES8

Reg. =0001

DEBUG MONITOR DESCRIPTION

Before the normal register display information is printed, the exception type information is
displayed. Thisincludes the type of exception with its format/vector word and the following:

Mnemonic Description Offset
SSw Special Status Word +$16
Fault Addr. Faulted Address +$10
Data Data +$0C
Cur. PC Program Counter +$02
Cnt. Reg. Internal Transfer +$14

Count Register

The upper nibble of the count register (Cnt. Reg.) contains the microcode revision number of the
MCU device. Consult the CPU32 Reference Manual, Section 6 Exception Processing for more
details.

Notice that the target stack pointer is different. The target stack pointer now points to the last
value of the stacked exception stack frame. Examine the exception stack frame using the MD
command.

CPU32Bug>MD (A7) : C<CR>

00003FE8 A700 0000 3000 CO08 O0O0OFO0 0000 FFFF 3000 *..0.@ p....0.
00003FF8 0000 3000 0001 0065 .0....e
CPU32Bug>

2.6 FUNCTION CODE SUPPORT

Function codes identify the address space being accessed on any given bus cycle, and are an
extension of the address. The function codes provide additional information required to find the
proper memory location.

For this reason, al debugger commands involving an address field were changed to allow the
specification of function codes:

The caret () symbol following the address field indicates that a function code specification
follows. The function code can be entered by specifying a valid function code mnemonic or by
specifying a number between 0 and 7. The syntax for address and function code specifications
are:

<ADDR>"<FC> Setsthe function code to <FC> vaue.
<ADDR>™ Toggles the displaying of function code values.

<ADDR>"<FC>= Sets the function code to <FC> and the default function code to <FC>.
The default value at power up is SD.

M68CPU32BUG/D REV 1 2-12

The valid function code mnemonics are;

DEBUG MONITOR DESCRIPTION

Function Code Mnemonic Description
0 FO Unassigned, reserved
1 ub User Data
2 uP User Program
3 F3 Unassigned, reserved
4 F4 Unassigned, reserved
5 SD Supervisor Data
6 SP Supervisor Program
7 CS CPU Space Cycle

The BR, GD, GO, and GT commands set the valid function codes to either a user program (UP)
or supervisor program (SP). When execution is started via GO, GN, or GD, the default address
space is determined by bit 13 (the S-hit) of the status register (SR). When set, SP is used; when
cleared, UP is used. By specifying a function code with GO, GT, or GD command, the SR S-bit

Is forced to the correct state before execution begins.

For the GT command, the temporary breakpoint is set using the function code specified, or it
defaults to SP or UP, depending on the state of the S-bit in the SR.

Though function codes are supported, the BCC hardware does not require function codes to

operate.

EXAMPLE To change data at |ocation $5000 in the user data space.

CPU32Bug>m 5000"ud<CR>

00005000"UD 0000
CPU32Bug>

M68CPU32BUG/D REV 1

1234. <CR>

2-13

DEBUG MONITOR DESCRIPTION

M68CPU32BUG/D REV 1 2-14

DEBUG MONITOR COMMANDS

CHAPTER 3
DEBUG MONITOR COMMANDS

3.1 INTRODUCTION

This chapter contains descriptions and examples of the CPU32Bug debugger commands. Table
3-1 summarizes these commands.

Table 3-1. Debug Monitor Commands

Command

Mnemonic Title Paragraph

BC Block of Memory Compare 3.2

BF Block of Memory Fill 3.3

BM Block of Memory Move 3.4

BR/NOBR Breakpoint Insert/Delete 3.5

BS Block of Memory Search 3.6

BV Block of Memory Verify 3.7

DC Data Conversion 3.8

DU Dump S-Records 3.9

GD Go Direct (Ignore Breakpoints) 3.10

GN Go to Next Instruction 3.11

GO Go Execute User Program (alias G) 3.12

GT Go To Temporary Breakpoint 3.13

HE Help 3.14

LO Load S-Records from Host 3.15

MA/NOMA Macro Define/Display/Delete 3.16

MAE Macro Edit 3.17

MAL/NOMAL Macro Expansion Listing Enable/Disable 3.18

MD Memory Display 3.19

MM Memory Modify (alias M) 3.20

MS Memory Set 3.21

M68CPU32BUG/D REV 1 3-1

DEBUG MONITOR COMMANDS

Table 3-1. Debug Monitor Commands (continued)

Command

Mnemonic Title Paragraph

OF Offset Registers Display/Modify 3.22

PA/NOPA Printer Attach/Detach 3.23

PF Port Format 3.24

RD Register Display 3.25

RESET Cold/Warm Reset 3.26

RM Register Modify 3.27

RS Register Set 3.28

SD Switch Directories 3.29

T Trace 3.30

TC Trace On Change of Control Flow 3.31

™ Transparent Mode 3.32

TT Trace To Temporary Breakpoint 3.33

VE Verify S-Records Against Memory 3.34

Each command is described in the following text. Command syntax symbols are explained in
section 2.1. In the examples of the debugger commands all user inputs are in bold type. This
helps clarify examples by distinguishing user input characters from CPU32Bug output characters.
The symbol <CR> represents the carriage return key on the user’s termina keyboard. This
symbol indicates the user should enter a carriage return.

M68CPU32BUG/D REV 1 3-2

DEBUG MONITOR COMMANDS

BC Block of Memory Compare BC

3.2 BLOCK OF MEMORY COMPARE

BC <range><addr>[;B|WI|L]

options:
B — Byte
W — Word
L — Longword

TheBC command compares the contents of the memory addresses defined by <range> to another
place in memory, beginning at <addr>.

The option field is only allowed when <range> is specified using a count. In this case, the B, W,
or L defines the size of data to which the count is referring. For example, a count of four with an
option of L would mean to compare four long words (or 16 bytes) to the <addr> location. If the
range beginning address is greater than the end address, an error results. An error also results if
an option field is specified without a count in the range.

For the following examples, assume the following data is in memory.

CPU32Bug>MD 4000: 20; B<CR>
00004000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST!
00004010 00 00 00 00 00O 00 00 OO 00 OO OO 00 OO 0O 00 00

CPU32Bug>MD 4100: 20; B<CR>
00004100 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THI S IS A TEST!
00004110 00 00 00 00O 00 00 00 OO 00 0O 00O 00 OO0 0O 00O 00

EXAMPLES

CPU32Bug>BC 4000, 401F 4100<CR>

Ef fecti ve address: 00004000

Ef fecti ve address: 0000401F

Ef fecti ve address: 00004100

CPU32Bug> Menory conpares, nothing printed

M68CPU32BUG/D REV 1 3-3

DEBUG MONITOR COMMANDS

BC Block of Memory Compare BC

CPU32Bug>BC 4000: 20 4100; B<CR>
Ef fecti ve address: 00004000

Effective count : &32
Ef fective address: 00004100
CPU32Bug> Menmory conpares, nothing printed

CPU32Bug>MM 410F; B<CR>
0000410F 21? 0.<CrR>
CPU32Bug> Create a mismatch

CPU32Bug>BC 4000: 20 4100; B<CR>

Ef fecti ve address: 00004000

Ef fective count : &32

Ef fecti ve address: 00004100

0000400F: 21 0000410F: 00

CPU32Bug> M snmatch is printed out

M68CPU32BUG/D REV 1 3-4

DEBUG MONITOR COMMANDS

BF Block of Memory Fill BF

3.3 BLOCK OF MEMORY FILL
BF <range><data>[<increment>] [;B|W|L]

where:
<data> and <increment> are both expression parameters

options:
B — Byte
W — Word
L — Longword

The BF command fills the specified range of memory with a data pattern. If an increment is
specified, then <data> is incremented by this value following each write, otherwise <data>
remains a constant value. Enter a negative value in the increment field to create a decrementing
pattern . The data entered by the user is right-justified in either a byte, word, or longword field as
specified by the option selected. The default field length is W (Word).

User-entered data or increment must fit into the data field or leading bits are truncated to size. If
truncation occurs, then a message is printed stating the actual data pattern and/or the actual
increment value.

If the range is specified using a count then the count is assumed to be in terms of the data size.

Truncation always occurs on byte or word sized fields when negative values are entered. For
example, entering "-1" internally becomes $FFFFFFFF which gets truncated to $FF for byte or
$FFFF for word sized fields. There is no difference internally between entering "-1" and entering

$FFFFFFFFF, so truncation occurs for byte or word sized fields.

If the upper address of the range is not on the correct boundary for an integer multiple of the data
to be written, then data is filled to the last boundary before the upper address. Addresses outside
of the specified range are not written under any condition. "Effective address” messages

displayed by the command show the extent of the area written.

EXAMPLES Assume memory from $4000 to $402F is clear.

CPU32Bug>BF 4000, 401F 4E71<CR>

Ef fecti ve address: 00004000

Ef fecti ve address: 0000401F

CPU32Bug>MD 4000 402F<CR>

00004000 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 NgNgNgNgNgNgNgNg
00004010 4E71 4E71 4E71 4E71 A4E71 4E71 4E71 4E71 NgNgNgNgNgNgNgNg
00004020 0000 0000 0000 0000 0000 0000 0000 0000

Since no option was specified, the length of the data field defaulted to word.

M68CPU32BUG/D REV 1 3-5

DEBUG MONITOR COMMANDS

BF Block of Memory Fill BF

CPU32Bug>BF 4000: 10 4E71 ; B<CR>

Ef fecti ve address: 00004000

Ef fective count : &16

Truncated data = $71

CPU32Bug>MD 4000: 30; B<CR>

00004000 71 71 71 71 71 71 7171 7171 717171717171 qg9q9gqqgqqaqqaqqqq
00004010 00 00 00 00 00 00 OO0 OO OO OO OO OO OO OO OO0 OO0 ..o ivi i,
00004020 00 00 00 00 00 OO0 OO0 OO OO OO OO OO OO OO OO0 OO0 ..o i i,
CPU32Bug>

The specified data did not fit into the specified data field size. The data was truncated and the
"Data="" message was output.

CPU32Bug>BF 4000, 4006 12345678 ; L<CR>

Ef fecti ve address: 00004000

Ef fecti ve address: 00004003

CPU32Bug>NMD 4000: 30; B<CR>

00004000 12 34 56 78 00 00 00 OO 00O OO OO OO OO OO OO OO CAVXL
00004010 00 00 00 00 00 00 00 OO OO0 OO0 OO OO0 OO OO 00 OO0 ... iiiiivn..
00004020 00 00 00 00 00 00 00 OO OO OO0 OO0 OO0 OO0 OO0 00 OO0 ... i,
CPU32Bug>

The longword pattern would not fit evenly in the given range. Only one longword was written
and the "Effective address” messages reflect the fact that data was not written al the way up to
the specified address.

CPU32Bug>BF 4000:18 0 1<CR> Default sizeisWord
Ef fecti ve address: 00004000
Ef fective count : &4

CPU32Bug>MD 4000: 18<CR>

00004000 0000 0001 0002 0003 0004 0005 0006 0007
00004010 0008 0009 OOOA 000B 000C 000D OOOE O0OF
00004020 0010 0011 0012 0013 0014 0015 0016 0017

M68CPU32BUG/D REV 1 3-6

DEBUG MONITOR COMMANDS

BM Block of Memory Move BM

34 BLOCK OF MEMORY MOVE

BM <range><addr> [;B|W|L]

options:
B — Byte
W — Word
L — Longword

TheBM command copies the contents of the memory addresses, defined by <range>, to another
place in memory, beginning at <addr>. The option field is only allowed when <range> is
specified using a count. In this case the B, W, or L defines the size of data to which the count is
referring. For example, a count of four with an option of L would mean to move four longwords
(or 16 bytes) to the new location. An error results if an option field is specified without a count in
the range.

EXAMPLES Assume memory from $4000 to $402F is clear.

CPU32Bug>MD 4100: 20; B<CR>
00004100 544B 4953 2049 5320 4120 5445 5354 2121 THS IS A TEST!!
00004110 0000 0000 0000 0000 0000 0000 0000 0000

CPU32Bug>BM 4100 410F 4000<CR>
Ef fective address: 00004100
Ef fective address: 0000410F
Ef fective address: 00004000

CPU32Bug>MD 4000: 20; B<CR>

00004000 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!
00004010 0000 0000 0000 0000 0000 0000 0000 0000

This utility is useful for patching assembly code in memory. Suppose the user had a short
program in memory at address $6000.

CPU32Bug>MD 6000 600A; DI <CR>

00004000 D480 ADD. L DO, D2
00004002 E2A2 ASR L D1, D2
00004004 2602 MOVE. L D2, D3
00004006 4E4F0021 SYSCALL . QUTSTR
0000400A 4E71 NOP

M68CPU32BUG/D REV 1 3-7

DEBUG MONITOR COMMANDS

BM Block of Memory Move BM

Now suppose the user would like to insert an NOP between the ADD.L instruction and the
ASR.L instruction. Block move the object code down two bytes to make room for the NOP.

CPU32Bug>BM 6002 600B 6004<CR>
Ef fective address: 00006002

Ef fective address: 0000600B

Ef fecti ve address: 00006004
CPU32Bug>MD 6000 600C; DI <CR>

00006000 D480 ADD. L DO, D2
00006002 E2A2 ASR L D1, D2
00006004 E2A2 ASR L D1, D2
00006006 2602 MOVE. L D2, D3
00006008 4EAF SYSCALL QUTSTR
0000600C 4E71 NOP

Now the user need simply enter the NOP at address 6002.

CPU32Bug>WM 6002; DI <CR>

00006002 E2A2 ASR. L DL, D2 ? NOP<CR>
00006002 4E71 NOP

00006004 E2A2 ASR. L DL, D2 ? .<CR>
CPU32Bug>

CPU32Bug>MD 6000 600C; DI <CR>

00006000 D480 ADD. L DO, D2
00006002 4E71 NOP

00006004 E2A2 ASR. L D1, D2
00006006 2602 MOVE. L D2, D3
00006008 4E4F TRAP #15
0000600C 4E71 NOP

CPU32Bug>

M68CPU32BUG/D REV 1 3-8

DEBUG MONITOR COMMANDS

BR Breakpoint Insert BR
NOBR Breakpoint Delete NOBR

3.5 BREAKPOINT INSERT/DELETE
BR { <addr>[:<count>]}
NOBR [<addr>]

The BR command allows the user to set atarget code instruction address as a breakpoint address
for debugging purposes. Enter only the BR command to display the current breakpoints in the
breakpoint table, or enter { <addr> [:<count>]} one or more times to set multiple breakpoints. If
during target code execution a breakpoint with O count is found, the target code state is saved in
the target registers and control returned to CPU32Bug. This allows the user to see the actual state
of the processor at selected instructions in the code.

Breakpoints are normally only used in RAM, but they may be used in ROM when operating
under the TRACE commands (see T, TC, and TT commands for details).

As many as eight breakpoints can be defined. Breakpoints are kept in a table which is displayed
each time either BR or NOBR is used. If an address is specified with the BR command, that
address is added to the breakpoint table. The count field specifies how many times the instruction
at the breakpoint address is fetched before a breakpoint is taken. The count field defaults to
hexidecimal input, unless a numeric identifier prefix is used. The count, if greater than zero, is
decremented with each fetch. Every time a breakpoint with zero count is found, a breakpoint
handler routine prints the CPU state on the screen and control is returned to CPU32Bug. The
maximum <count> is a 32-bit value ($FFFFFFFF = 4,294,967,295).

NOBR is used to delete breakpoints from the breakpoint table. To remove a specific address
from the breakpoint table, enter NOBR followed by the address. If NOBR <CR> is entered then
al entries are deleted from the breakpoint table and the empty table is displayed.

EXAMPLE

CPU32Bug>BR 4000, 4200 4700: &12 <CR> Set multiple breakpoints
BREAKPO NTS

00004000 00004200

00004700: C

CPU32Bug>NOBR 4200 <CR> Delete one breakpoint
BREAKPO NTS
00004000 00004700: C

CPU32Bug>NOBR <CR> Delete all breakpoints

BREAKPOI NTS
CPU32Bug>

M68CPU32BUG/D REV 1 3-9

BS

DEBUG MONITOR COMMANDS

Block of Memory Search BS

3.6 BLOCK OF MEMORY SEARCH

BS <range><text> [;B|W|L] or

BS <range><data>[<mask>] [;B|W|L|N|V]

The BS command searches the specified range of memory for a match with a user-entered data
pattern. This command has three modes:

Mode 1

Mode 2

Mode 3

LITERAL STRING SEARCH — executes a search for the ASCIl equivalent of
the literal string entered by the user. Mode 1 is indicated if <RANGE> is followed
by a <text> field. The size as specified in the option field defines whether the
count field in <range> refers to bytes, words, or longwords. The option field is
available only if <range> is specified using a count. If a match is found then the
address of the first byte of the match is output.

DATA SEARCH — a data pattern is entered by the user as part of the command
line. The data field size is entered by the user in the option field; the default is
word (W). The size entered in the option field also dictates whether the count field
in <RANGE> refers to bytes, words, or longwords. The following occurs during a
data search:

1. The user-entered data pattern is right-justified. Leading bits are truncated
or leading zeros are added as necessary to make the data pattern the
specified size.

2. Successive bytes, words, or longwords, within the specified range, are
compared to the user-entered data. Comparison is made only on those bits
at bit positions corresponding to a 1 in the mask. If no mask is specified
then a default mask of all one's is used (all bits are compared). The size of
the mask is the same size as the data.

3. If the "N" (non-aligned) option has been selected then the data is searched
on a byte-by-byte basis, rather than by words or longwords regardless of
the size of <data>. This is useful if a word (or longword) pattern is being
sought, but is not expected to lie on a word (or longword) boundary.

4. If a match is found, the address of the first byte of the match is output
along with the memory contents. If a mask was in use, then the actual data
at the memory location is displayed, rather than the masked data.

DATA VERIFICATION — If the "V" (verify) option is selected and the memory
contents do not match the user-specified pattern, then addresses and data are
displayed. Otherwise this mode is identical to Mode 2.

M68CPU32BUG/D REV 1 3-10

DEBUG MONITOR COMMANDS

BS BS

Block of Memory Search

In al three modes information on matches is output to the screen in a four-column format. Only
24 lines of matches are displayed on the screen at atime. A message prints at the bottom of the
screen indicating there are more lines to display. Press any character key to resume output. Press
the BREAK key to cancel the output and exit the command.

If a match (or a mismatch in the case of Mode 3) is found with a series of bytes of memory
whose beginning is within and end is outside of the range, then that match and a message is
output stating that the last match does not lie entirely within the range. The user may search non-
contiguous memory with this command without causing a Bus Error.

EXAMPLES Assume the following dataisin memory.

...Error Status=
4F/ | Confi gTabl eS

00003000 0000 0045 7272 6F72 2053 7461 7475 733D
00003010 3446 2F2F 436F 6E66 6967 5461 626C 6553
00003020 7461 7274 3A00 0000 0000 0000 0000 0000

CPU32Bug>BS 3000 302F ' Task Status’ <CR>
Ef fecti ve address: 00003000

Ef fective address: 0000302F

-not found-

Mode 1: the string is not found, so a
message is output.

CPU32Bug>BS 3000 302F 'Error Status’ <CR>
Ef fective address: 00003000

Ef fective address: 0000302F

00003003

Mode 1: the string is found, and the
address of itsfirst byte is output.

CPU32Bug>BS 3000 301F ' ConfigTabl eStart’ <CR>
Ef fecti ve address: 00003000
Ef fective address: 0000301F

Mode 1: the string is found, but it ends
outside of the range, so the address of

00003014

-last match extends over range boundary-

CPU32Bug>BS 3000: 30 't’ ; B<CR>

Ef fecti ve address: 00003000

Ef fective count &48

0000300A 0000300C 00003020 00003023

M68CPU32BUG/D REV 1 3-11

its first byte and a message are outpui.

Mode 1, using <RANGE> with count
and size option: count is displayed in
decimal, and address of each occur-
rence of the string is output.

BS

CPU32Bug>BS 3000: 18, 2F2F<CR>
Ef fecti ve address: 00003000
Ef fective count : &24
00003012| 2F2F

CPU32Bug>bs 3000, 302F 3d34<CR>
Ef fective address: 00003000

Ef fective address: 0000302F
-not found-

CPU32Bug>bs 3000, 302F 3d34 ; n<CR>
Ef fecti ve address: 00003000

Ef fective address: 0000302F
0000300F| 3D34

CPU32Bug>BS 3000: 30 60, FO ; B<CR>
Ef fective address: 00003000
Ef fective count : &48
00003006| 6F 0000300B| 61
00003017]| 66 00003018| 69
0000301C| 62 0000301D| 6C

00003015] 6F
00003019] 67
0000301E]| 65

CPU32Bug>BS 3000 302F 0 F; V<CR>
Ef fecti ve address: 00003000
Ef fecti ve address: 0000302F

Block of Memory Search

DEBUG MONITOR COMMANDS

BS

Mode 2, using <RANGE> with count:
count is displayedin decimal, and the data
pattern is found and displayed.

Mode 2: the default size isword and the data
pattern is not found, so a message is output.

Mode 2: the default size is word and non-
aligned option is used, so the data pattern is
found and displayed.

00003016| 6E
0000301B| 61
00003021]| 61

Mode 2, using <RANGE> with count, mask
option, and size option: count isdisplayed in
decimal, and the actual unmasked data
patterns found are displayed.

00003002| 0045
0000300A| 7461
00003012| 2F2F
0000301A| 5461
00003022| 7274

00003004]| 7272
0000300C| 7475
00003014| 436F
0000301C] 626C

00003006]| 6F72
0000300E| 733D
00003016| 6E66
0000301E]| 6553

00003008] 2053
00003010] 3446
00003018| 6967
00003020]| 7461

M68CPU32BUG/D REV 1 3-12

Mode 3, mask option, scan for words with
low nibble non-zero: 17 non-matching
locations found.

DEBUG MONITOR COMMANDS

BV Block of Memory Verify BV

3.7 BLOCK OF MEMORY VERIFY
BV <range><data> [<increment>][;B|W|L]
where:

<data> and <increment> are both expression parameters

options:
B — Byte
W — Word
L — Longword

The BV command compares the specified range of memory against a data pattern. If an
increment is specified, then <data> is incremented by this value following each comparison,
otherwise <data> remains a constant value. Enter a negative increment to execute a decrementing
pattern. The data entered by the user is right-justified in either a byte, word, or longword field
length (as specified by the option selected). The default field length is W (word).

User-entered data or increment must fit into the data field or leading bits are truncated to size. If
truncation occurs, then a message is printed stating the actual data pattern and/or the actual
increment value.

If the range is specified using a count then the count is assumed to be in terms of the data size.

Truncation always occurs on byte or word sized fields when negative values are entered. For
example, entering "-1" internally becomes $FFFFFFFF which gets truncated to $FF for byte or
$FFFF for word sized fields. There is no difference internally between entering "-1" and entering

$FFFFFFFFF, so truncation occurs for byte or word sized fields.

If the upper address of the range is not on the correct boundary for an integer multiple of the data
to be verified, then data is verified to the last boundary before the upper address. Addresses
outside of the specified range are not read under any condition. "Effective address” messages
displayed by the command show the extent of the area read.

M68CPU32BUG/D REV 1 3-13

DEBUG MONITOR COMMANDS

BV Block of Memory Verify BV

EXAMPLES Assume memory from $6000 to $602F is as indicated.

CPU32Bug>MD 6000: 30; B <CR>

00006000 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 Ng Ng N NgNgNgNgNg
00006010 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 Ng Ng N NgNgNgNgNg
00006020 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 Ng NgNgNgNgNgNgNg
CPU32Bug>BV 6000 601F 4E71 <CR> Default sizeis Word

Ef fective address: 00006000

Ef fective address: 0000601F

CPU32Bug> Verify successful, nothing printed.

Assume memory from $5000 to $502F is as indicated.

CPU32Bug>MD 5000: 30; B<CR>

00005000 0000 0000 0000 0000 0000 0000 0000 0000
00005010 0000 0000 0000 0000 0000 0000 0000 0000
00005020 0000 0000 0000 0000 0000 4AFB 4AFB 4AFB J.J.J.
CPU32Bug>BV 5000: 30, 0; B<CR>

Ef fective address: 00005000

Ef fective count : &48

0000502A] 4A 0000502B| FB 0000502C 4A 0000502D| FB

0000502E] 4A 0000502F| FB

CPU32Bug> Mismatches are printed ouit.

Assume memory from $7000 to $702F is as indicated.

CPU32Bug>MD 7000: 18 <CR>

00007000 0000 0001 0002 0003 0004 0005 0006 0007
00007010 0008 FFFF OOOA 000B 000C 000D OOOE OOOF
00007020 0010 0011 0012 0013 0014 0015 0016 0017

CPU32Bug>BV 7000: 18,0, 1 <CR> Default sizeis Word.

Ef fective address: 00007000

Ef fective count : &24

00007012| FFFF

CPU32Bug> Mismatches are printed ouit.

M68CPU32BUG/D REV 1 3-14

DEBUG MONITOR COMMANDS

DC Data Conversion DC

3.8 DATA CONVERSION
DC <exp>l<addr>

Use the DC command to simplify an expression into a single numeric value. The equivaent
value is displayed in its hexadecimal and decimal representation. If the numeric value is
interpreted as a signed negative number (i.e., if the most significant bit of the 32-bit internal
representation of the number is set) then both the signed and unsigned interpretations are

displayed.
Use DC to obtain the equivalent effective address of an MCU device addressing mode.
EXAMPLES

CPU32Bug>DC 10<CR>
00000010 = $10 = &16

CPU32Bug>DC &10- &20<CR>
SIGNED : FFFFFFF6 = -3$A = -&10
UNSI GNED: FFFFFFF6 = $FFFFFFF6 = &4294967286

CPU32Bug>DC 123+&345+@7+%1100001<CR>
00000314 = $314 = &788

CPU32Bug>DC (2*3*8)/ 4<CR>
0000000C = $C = &12

CPU32Bug>DC 55&F<CR>
00000005 = $5 = &5

CPU32Bug>DC 55>>1<CR>
0000002A = $2A = &42

The subsequent examples assume A0=00003000 and the following data resides in memory:
00003000 11111111 22222222 33333333 44444444""""3333DDDD

CPU32Bug>DC (A0) <CR>
00003000 = $3000 = &12288

CPU32Bug>DC ([A0]) <CR>
11111111 = $11111111 = &286331153

CPU32Bug>DC (4, A0) <CR>
00003004 = $3004 = &12292

CPU32Bug>DC ([4, A0]) <CR>
22222222 = $22222222 = &572662306

M68CPU32BUG/D REV 1 3-15

DEBUG MONITOR COMMANDS

DU Dump S-Records DU

3.9 DUMP SSRECORDS
DU [<port>]<range>[<text>][<addr>][<offset>] [;B|W|L]

The DU command outputs data from memory in the form of Motorola S-records to a port
specified by the user. If <port> is not specified then the S-records are sent to the 1/0 port (port 0).
For S-record information see Appendix A.

The option field is only allowed when <range> is specified using a count. In this case the B, W,
or L defines the size of data to which the count is referring. For example, a count of four with an
option of L would mean to move four longwords (or 16 bytes) to the new location. An error
resultsif an option field is specified without a count in the range.

Use the optional <text> field for incorporating text into the SO header record of the block of
records that is to be dumped.

To use the optional <addr> field, enter an entry address for code contained in the block of
records. This addressis incorporated into the address field of the block’s termination record. If no
entry address is entered then the address field of the termination record will contain the
beginning <range> address. The termination record is an S7, S8, or S9 record and depends upon
the entered address.

An optional offset may also be specified by the user in the <offset> field. The offset vaue is
added to the addresses of the memory locations being dumped. This generates the address which
is written to the address field of the S-records, creating an S-record file which is loaded back into
memory at a different location than that from which it was dumped. The default offset is zero.

NOTE

If an offset is specified but no entry address is specified then two
commas (indicating a missing field) must precede the offset to
keep it from being interpreted as an entry address.

EXAMPLES Dump memory from $8000 to $802F to port 1.

CPU32Bug>DU 1 8000 802F<CR>
Ef fecti ve address: 00008000
Ef fective address: 0000802F
CPU32Bug>

M68CPU32BUG/D REV 1 3-16

DEBUG MONITOR COMMANDS

DU Dump S-Records DU

Dump 10 bytes of memory beginning at $3000 to terminal screen (port 0).

CPU32Bug>DU 3000: &10; B<CR>
Ef fecti ve address: 00003000

Ef fective count : &10
S0003000FC
S10D3000000000040008000C00109A
S9030000FC

CPU32Bug>

Dump memory from $4000 to $402F to host (port 1). Specify a file name of "TEST” in the SO
header record and specify an entry point of $400A.

CPU32Bug>DU 1 4000 402F ' TEST' 400A<CR>
Ef fecti ve address: 00004000

Ef fective address: 0000402F

CPU32Bug>

The following example illustrates the procedure for uploading S-records to a host computer, in
this case an IBM-PC or compatible running MS-DOS with the ProComm terminal emulation
utility. Assume memory from $4000 to $4007 isinitialized as follows:

CPU32Bug>MD 4000: 4; DI <CR>

00004000 7001 MOVEQ. L #$1, DO
00004002 D089 ADD. L Al, DO
00004004 4A00 TST. B DO
00004006 4ET75 RTS

CPU32Bug>

Enter the following command to dump S-records from memory locations $4000-$4007 with a
start address of $4000, a title of ' TEST.MX’, and an offset of $65000000. Before entering the
<CR> to send the DU command to CPU32Bug, enter the ProComm command <AL T-F1> keys
to open a log file. Enter the filename as TEST.MX. Then enter the carriage return, <CR> to
complete the DU command entry. The DU command output is sent to the screen and ProComm
copiesitinto thefile TEST.MX.

CPU32Bug>DU 4000 4007 ' TEST. MX' 4000 65000000<ALT- F1><CR>
Ef fective address: 00004000

Ef fective address: 00004007

S00A0000544553542E4D58E2

S30D650040007001D089A004E7576

S7056500400055

CPU32Bug>

M68CPU32BUG/D REV 1 3-17

DEBUG MONITOR COMMANDS

DU Dump S-Records DU

Enter ALT-F1 again to close the log file TEST.MX. The log file contains the extra lines of
"Effective address’ and "CPU32Bug", but they will not affect subsequent CPU32Bug load (LO)
commands, as it keys on the "S" character. The file could be edited to remove the extra lines, if

S0 desired.

M68CPU32BUG/D REV 1 3-18

DEBUG MONITOR COMMANDS

GD Go Direct (Ignore Breakpoints) GD

3.10 GO DIRECT (IGNORE BREAKPOINTYS)

GD [<addr>]
Use the GD command to start target code execution. If an address is specified, it is placed in the
target PC. Execution starts at the target PC address. Under the GD command no breakpoints are
inserted.
Once execution of target code begins, control is returned to CPU32Bug by various conditions:

* Pressthe ABORT switch or RESET switch of the M68300PFB Platform Board

* Executethe .RETURN TRAP #15 function

» Generation of an unexpected exception

EXAMPLE The following program resides at $4000.

CPU32Bug>MD 4000; DI <CR>

00004000 2200 MOVE. L DO, D1
00004002 4282 CLR L D2
00004004 D401 ADD. B D1, D2
00004006 E289 LSR L #$1, D1
00004008 66FA BNE. B $4004
0000400A E20A LSR B #$1, D2
0000400C 55C2 SCS. B D2
0000400E 60FE BRA. B $400E

CPU32Bug>RM DO<CR>

Initialize DO and start target program:
DO =00000000 ? 52A9C. <CR>

CPU32Bug>GD 4000<CR>
Ef fecti ve address: 00004000

M68CPU32BUG/D REV 1 3-19

DEBUG MONITOR COMMANDS

GD Go Direct (Ignore Breakpoints) GD

To exit target code, press ABORT pushbutton.

Exception: Abort

PC =0000400E SR =2711=TR OFF. S 7 X...C VBR =00000000
SFC =0=F0 DFC =0=F0 USP =0000FC00 SSP* =0000FF50
DO =00052A9C DL =00000000 D2 =000000FF D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00005000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000400 A6 =00000000 A7 =0000FF50
0000400E 6OFE BRA. B $400E

CPU32Bug>

Set PC to start of program and restart target code:

CPU32Bug>RM PC<CR>

PC =0000400E ? 4000. <CR>
CPU32Bug>GD<CR>

Ef fective address: 00004000

M68CPU32BUG/D REV 1 3-20

DEBUG MONITOR COMMANDS

GN Go To Next Instruction GN

3.11 GO TO NEXT INSTRUCTION
GN

Use the GN command to set a temporary breakpoint at the next instruction’s address, that is, the
one following the current instruction. GN then starts target code execution. After setting the
temporary breakpoint, the sequence of events is similar to that of the GO command. If there is
already a breakpoint at the tempory breakpoint location, the breakpoint must have a count less
than or equal to one or an error occurs.

GN is helpful when debugging modular code, because it allows the user to trace through a
subroutine call asif it were asingle instruction.

EXAMPLE The following section of code resides at $6000.

CPU32Bug>MD 6000: 4; DI <CR>

00006000 7003 MOVE. L #$3, DO
00006002 7201 MOVEQ. L #$1, DL
00006004 61000FFA BSR W $7000
00006008 2600 MOVE. L DO, D3
CPU32Bug>

The following simple subroutine resides at address $7000.

CPU32Bug>MD 7000: 2; DI <CR>

00007000 D081 ADD. L D1, DO
00007002 4E75 RTS
CPU32Bug>

Execute up to the BSR instruction.

CPU32Bug>RM PC<CR>
PC =00003000 ? 6000. <CR>
CPU32Bug>GTI' 6004<CR>

Ef fective address: 00006004 Tempory breakpoint at $6004.

Ef fecti ve address: 00006000 Current PC at $6000.

At Br eakpoi nt

PC =00006004 SR =2700=TR OFF_S_7 VBR =00000000

SFC =0=FO0 DFC =0=F0 USP =00003830 SSP* =00010000
DO =00000003 D1 =00000001 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00010000
00006004 61000FFA BSR. W $7000

CPU32Bug>

M68CPU32BUG/D REV 1 3-21

DEBUG MONITOR COMMANDS

GN Go To Next Instruction GN
Use the GN command to trace through the subroutine call and display the results.
CPU32Bug>G\<CR>

Ef fective address: 00006008 Tempory breakpoint at $6004.

Ef fective address: 00006004 Current PC at $6000.

At Br eakpoi nt

PC =00006008 SR =2700=TR OFF_ S 7_..... VBR =00000000
SFC =0=F0 DFC =0=F0 usp =00003830 SSP* =00010000
DO =00000004 D1 =00000001 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00010000
00006008 2600 MOVE. L DO, D3

CPU32Bug>

M68CPU32BUG/D REV 1 3-22

GO

DEBUG MONITOR COMMANDS

Go Execute User Program GO

3.12 GO EXECUTE USER PROGRAM

GO [<addr>]

Use the GO command (alias G) to initiate target code execution. All previously set breakpoints
are enabled. If an address is specified, it is placed in the target PC. Execution starts at the target
PC address.

The sequence of eventsis:

1. Anaddressis specified and loaded into the target PC

If abreakpoint is set at the target PC address, the instruction is traced at the target PC
(executed in trace mode)

All breakpoints are inserted in the target code

4. Target code execution resumes at the target PC address

There are several methods for returning control to CPU32Bug:

Execute the .RETURN TRAP #15 function

Pressthe ABORT switch or RESET switch of the M68300PFB Platform Board
Encountering a breakpoint with O count

Generation of an unexpected exception

EXAMPLE The following program resides at $4000.

CPU32Bug>MD 4000; DI <CR>

00004000
00004002
00004004
00004006
00004008
0000400A
0000400C
0000400E

2200 MOVE. L Do, D1
4282 CLR L D2

D401 ADD. B D1, D2
E289 LSR L #$1, D1
66FA BNE. B $4004
E20A LSR. B #$1, D2
55C2 SCS. B D2

60FE BRA. B $400E

CPU32Bug>RM DO<CR>

M68CPU32BUG/D REV 1 3-23

DEBUG MONITOR COMMANDS

GO Go Execute User Program GO
Initialize DO, set breakpoints, and start target program:

DO =00000000 ? 52A9C. <CR>

CPU32Bug>BR 4000, 400E<CR>

BREAKPO NTS

00004000 0000400E

CPU32Bug>G0O 4000<CR>

Ef fective address: 00004000

At Breakpoi nt

PC =0000400E SR =2711=TR OFF_S_7_X...C VBR =00000000
SFC =5=SD DFC =5=SD usp =0000FC00 SSP* =00010000
DO =00052A9C D1 =00000000 D2 =000000FF D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00010000
0000400E 60FE BRA. B $400E

Note that in this case breakpoints are inserted after tracing the first instruction, therefore the first
breakpoint is not taken.

Continue target program execution.

CPU32Bug>G<CR>
Ef fecti ve address:
At Breakpoi nt

0000400E

PC =0000400E SR =2711=TR OFF_S 7_X...C VBR =00000000
SFC =5=8D DFC =5=SD uspP =0000FC00 SSpP* =00010000
DO =00052A9C D1 =00000000 D2 =000000FF D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00010000
0000400E 60FE BRA. B $400E

Remove breakpoints and restart target code.

CPU32Bug>NOBR<CR>

BREAKPO NTS

CPU32Bug>G0O 4000<CR>

Ef fective address: 00004000

M68CPU32BUG/D REV 1 3-24

DEBUG MONITOR COMMANDS

GO Go Execute User Program GO
Pressthe ABORT pushbutton on the platform board to exit target code.

Exception: ABORT

PC =0000400E SR =2711=TR OFF_S_7_X.C VBR =00000000

SFC =5=SD DFC =5=SD USP =0000FC00 SSP* =00010000

DO =00052A9C D1 =00000000 D2 =000000FF D3 =00000000

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000

A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00010000
0000400E 60FE BRA. B $400E

M68CPU32BUG/D REV 1 3-25

DEBUG MONITOR COMMANDS

GT Go To Temporary Breakpoint GT

3.13 GO TO TEMPORARY BREAKPOINT
GT <addr>[:<count>]

Usethe GT command to set atemporary breakpoint and start target code execution. A count may
be specified with the temporary breakpoint. Control is given at the target PC address. All
previously set breakpoints are enabled. The temporary breakpoint is removed when any
breakpoint with O count is encountered.

After setting the temporary breakpoint, the sequence of events is similar to that of the GO
command. At this point control is returned to CPU32Bug by:

» Executing the .RETURN SYSCALL (TRAP #15) function
* Pressthe ABORT switch or RESET switch of the M68300PFB Platform Board
» Encountering a breakpoint with O count

» Generation of an unexpected exception

EXAMPLE The following program resides at $4000.

CPU32Bug>MD 4000; DI <CR>

00004000 2200 MOVE. L DO, D1
00004002 4282 CLR L D2

00004004 D401 ADD. B D1, D2
00004006 E289 LSR L #$1, D1
00004008 66FA BNE. B $4004
0000400A E20A LSR B #$1, D2
0000400C 55C2 SCS D2

0000400E 60FE BRA. B $400E

CPU32Bug>RM DO<CR>

Initialize DO and set a breakpoint:

DO =00000000 ? 52A9C. <CR>
CPU32Bug>BR 400E<CR>
BREAKFO NTS

0000400E

CPU32Bug>

Set PC to beginning of program, set temporary breakpoint, and start target code:
CPU32Bug>RM PC<CR>

PC =0000400E ? 4000. <CR>
CPU32Bug>

M68CPU32BUG/D REV 1 3-26

DEBUG MONITOR COMMANDS

GT Go To Temporary Breakpoint GT
CPU32Bug>GT 4006<CR>

Ef fective address: 00004006 Tempory breakpoint at $4006.

Ef fective address: 00004000 Current PC at $4000.

At Breakpoi nt

PC =00004006 SR =2711=TR OFF_ S 7 X...C VBR =00000000
SFC =0=F0 DFC =0=F0 usP =00003830 SSP* =00010000
D0 =00052A9C D1 =00000029 D2 =00000009 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00010000
00004006 E289 LSR. L #1, D1

CPU32Bug>

Set another temporary breakpoint at $4002 and continue target program execution.
CPU32Bug>GTI 4002<CR>

Ef fective address: 00004002 Tempory breakpoint at $4002.

Ef fecti ve address: 00004006 Current PC at $4006.

At Br eakpoi nt

PC =0000400E SR =2711=TR OFF_ S 7. X...C VBR =00000000
SFC =0=F0 DFC =0=F0 usp =00003830 SSP* =00010000
D0 =00052A9C D1 =00000000 D2 =000000FF D3 =00000000
04 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00010000
0000400E 60FE BRA. B $400E

Note that a breakpoint from the breakpoint table was encountered before the temproary
breakpoint.

M68CPU32BUG/D REV 1 3-27

DEBUG MONITOR COMMANDS

HE Help HE

3.14 HELP
HE [<command>]

HE is the CPU32Bug help facility. HE <CR> displays all available commands and their title
plus any macro commands that have been defined (see macro define/display (MA) command).
All CPU32Bug commands are in alphabetical order except for NOxx and the "aias’ commands.
Macro commands are displayed first, in the inverse order in which they were defined. When the
HE command output fills the terminal screen, a message is printed asking the user to press
"RETURN" to continue. Entering he <command> displays the specified command name and
title.

EXAMPLES

CPU32Bug>HE<CR>

BC Bl ock Conpare

BF Bl ock Fill

BM Bl ock Mve

BR Br eakpoi nt | nsert

NOBR Br eakpoi nt Del ete

BS Bl ock Search

BV Bl ock Verify

DC Dat a Conversi on and Expression Eval uation
DU Dunp S-Records

(€D) Go Direct (no breakpoints)

N Go and Stop after Next Instruction
GO CGo to Target Code

G "Alias" for previous conmand
Gr Go and I nsert Tenporary Breakpoint
HE Hel p Facility

LO Load S-Records

VA Macr o Define/ Di spl ay

NOVA Macro Del ete

MAE Macro Edit

VAL Enabl e Macro Expansion Listing
NOVAL Di sabl e Macro Expansion Listing
VD Menory Di spl ay

MM Menory Modi fy

M "Alias" for previous conmand
M5 Menory Set

OF O fset Registers

PA Printer Attach

NOPA Printer Detach

PF Port For mat

RD Regi ster Displ ay

RESET War m Col d Reset

RM Regi ster Modify

RS Regi ster Set

M68CPU32BUG/D REV 1 3-28

DEBUG MONITOR COMMANDS

HE Help HE
SD Switch Directory

T Trace Instruction

TC Trace on Change of Fl ow

™ Transpar ent Mde

TT Trace to Tenporary Breakpoint

VE Verify S-Records

CPU32Bug>

To display the available commands in the diagnostic directory use the switch directory (SD)
command and at the CPU32Diag> prompt enter HE.

CPU32Bug>sd<CR>

CPU32Di ag>he<CR>

DE Di splay Errors

DP Di spl ay Pass Count
LC Loop- Conti nue Mode
LE Loop-on-Error Mde
NV NOn- Ver bose Mode

Mr Menory Tests (Dir)
RL Read Loop (Dir)

SE St op-on-Error Mode
SM Modi fy Sel f-Test Mask
ST Sel f Test Sequence
WL Wite Loop (Dr)

VR Wite/ Read Loop (Dir)
ZE Cl ear Error Counters
P Zero Pass Count

BC Bl ock Conpare

BF Bl ock Fill

BM Bl ock Mve

BR Breakpoi nt | nsert
NOBR Br eakpoi nt Del ete

Bl ock Search

Bl ock Verify

Dat a Conversion and Expression Eval uation
Dunp S-Records

Go Direct (no breakpoints)

Go and Stop after Next Instruction
CGo to Target Code

"Alias" for previous conmand

Go and Insert Tenporary Breakpoi nt
Help Facility

Load S-Records

Macro Define/ Di spl ay

Macro Del ete

Macro Edit

Enabl e Macro Expansion Listing

55856572°8282827

M68CPU32BUG/D REV 1 3-29

VE

CPU32Bug>

Di sabl e Macro Expansion Listing

Mermory Di spl ay
Menmory Modi fy

Help

"Alias" for previous comand

Menory Set

O fset Registers
Printer Attach
Printer Detach
Port For mat

Regi ster Di spl ay
Warm Col d Reset
Regi ster Modify
Regi ster Set
Switch Directory
Trace Instruction
Trace on Change of Fl ow
Transpar ent Mode

Trace to Tenporary Breakpoint

Verify S-Records

To display the command TC, enter:

CPU32Bug>HE TC<CR>

TC

Trace on Change of Fl ow
CPU32Bug>

M68CPU32BUG/D REV 1

3-30

DEBUG MONITOR COMMANDS

HE

DEBUG MONITOR COMMANDS

LO Load S-Records From Host LO

3.15 LOAD SRECORDSFROM HOST
LO [<port>][<addr>][;<X/-C/T>][=<text>]

Use the LO command to download a Motorola S-records format data file from a host computer
to the BCC. The LO command accepts serial data from the host and loads it into on-board
memory.

The optional port number allows the user to specify the download port. If this number is omitted,
the default is port O.

The BCC default hardware configuration consists of one I/O port; P4 on the BCC or P9 on the
PFB. Thislimits the user to one host computer running a terminal emulation program. To send S-
records, the user must escape out of the terminal emulation program because the host computer
can not perform terminal emulation and send S-records at the same time. When the host is not in
terminal emulation mode, all status messages from CPU32Bug would be lost. Thus the user must
press <CR> twice after re-entering the terminal emulation program to signa CPU32Bug that
status messages can now be sent.

The optional <addr> field allows the user to enter an offset address. This offset address is added
to the address contained in the address field of each record which causes the records to be stored
in memory at a different location. The contents of the automatic offset register are not added to
the S-record addresses (see OF command). If the address is in the range $0 to $1F and the port
number is omitted, enter a comma before the address to distinguish it from a port number. Only
absolute addresses (i.e., "1000") should be entered, as other addressing modes cause
unpredictable results. An address is alowed here rather than an offset (expression) to permit
support for function codes (see paragraph 2.5).

The optional text field, entered after the equal sign (=), is sent to the host before CPU32Bug
begins looking for S-records at the host port. This allows the user to send a download command
to the host device. This text should NOT be delimited by quote marks. The text string begins
immediately following the equal sign and terminates with the carriage return. If the host is
operating full duplex, the string is echoed back to the host port by the host and appears on the
user’sterminal screen.

In order to accommodate host systems that echo all received characters, the above-mentioned text
string is transmitted to and received from the host one character at a time. After the entire
command is sent to the host, L O looks for aline feed (L F) character from the host, signifying the
end of the echoed command. No data records are processed until this LF is received. If the host
system does not echo characters, L O continues looking for an LF character before data records
are processed. In situations where the host system does not echo characters, it is required that the
first record transferred by the host system be a header record. The header record is not used, but
the L F after the header record serves to break L O out of the loop so data records are processed.

M68CPU32BUG/D REV 1 3-31

DEBUG MONITOR COMMANDS

LO Load S-Records From Host LO

Other options:

-C Ignore checksum. A checksum for the data contained within an S-record is
calculated as the S-record is read in through the port. Normally this calculated
checksum is compared to the checksum contained within the S-record. If the
compare fails, an error message is sent to the screen on completion of the
download. If this option is selected, then the comparison is not made.

X Echo. As the Srecords are read in at the host port, they are echoed to the user’s
terminal. Do not use this option when port 0 is specified.

T TRAP#15 code. Thisoption causes L O to set the target register D4 ='LOx, with
X = $0C ($4C4F200C). The ASCII string 'LO’ indicates that this is the LO
command; the code $0C indicates TRAP #15 support with stack parameter/result
passing and TRAP #15 disk support. This code is used by the downloaded
program to select the appropriate calling convention when executing debugger
functions. Since some Motorola debuggers use conventions different from
CPU32Bug, they set adifferent code in D4.

The S-record format (refer to Appendix A) alows a specified entry point in the address field of
the S-record-block termination record. The contents of the termination-record address field (plus
any offset address) is put into the target PC. Thus after a download the user need only enter G or
GO instead of G <addr> or GO <addr> to execute the downloaded code.

If anon-hex character is encountered within the data field of a data record, then that part of the
record, preceeding the non-hex character, is displayed. This causes the CPU32Bug error handler
to point at the faulty character.

An error condition exists if the embedded-record checksum does not agree with the checksum
calculated by CPU32Bug. An output message displays the address of the record (as obtained
from the address field of the record), the calculated checksum, and the checksum read with the
record. A copy of the record is also output. A checksum error is a fatal error and causes the
command to abort.

When aload is in progress, each data byte is written to memory and then the contents of this
memory location are compared to the data to determine if the data is stored properly. If for some
reason the compare fails, then an output message displays the address where the data was to be
stored, the data written, and the data read back during the compare. This is also a fatal error and
causes the command to abort.

S-records are processed character-by-character. So if the command aborts due to an error, al data
stored previous to the error is still in memory .

M68CPU32BUG/D REV 1 3-32

DEBUG MONITOR COMMANDS

LO Load S-Records From Host LO

EXAMPLES Suppose a host computer was used to create a program that looks like this:

1 * Test Program

2 *

3 65004000 ORG $65004000
4

5 65004000 7001 MOVEQ. L #1, DO

6 65004002 D088 ADD. L A0, DO

7 65004004 4A00 TST. B DO

8 65004006 4E75 RTS

9 END

#xxxxx TOTAL ERRORS O--
#x%x%x TOTAL WARNINGS O- -

Then this program was converted into an S-record file named TEST.MX asfollows:

SO00F00005445535453335337202001015E
S30D650040007001D0884A004E7577
57056500400055

Load thisfileinto BCC memory for execution at address $4000 as follows:

CPU32Bug>LO - 65000000<CR>
Blank line as the BCC waits for an S-record.

Enter the terminal emulator’s escape key to return to the host computer’s operating system (ALT-
F4 for ProComm). A host command is then entered to send the S-record file to the port where the
BCC is connected (for MS-DOS based host computer this would be "type test.mx >coml", where
the BCC was connected to the com1 port).

After the file has been sent, the user then restarts the terminal emulation program (for MS-DOS
based host computers, enter EXIT at the prompt).

Since the port number equals the current terminal, two <CR>'s are required to signal CPU32Bug
that the download is complete and the terminal emulation program is ready to receive any error

Messages.

<CR><CR> Signal download completion.
CPU32Bug> No error messages.

M68CPU32BUG/D REV 1 3-33

DEBUG MONITOR COMMANDS

MA Macro Define/Display MA
NOMA Macro Delete NOMA

3.16 MACRO DEFINE/DISPLAY/DELETE

MA [<name>]
NOMA [<name>]

The <name> can be any combination of 1-8 alphanumeric characters.

The MA command allows the user to define a complex command consisting of any number of
CPU32Bug primitive commands with optional parameter specifications. By ssmply entering the
new <name> plus any arguments on the command line, the stored CPU32Bug commands are
executed. This allows the user to design new commands to simplify the debug process. The
NOMA command is used to delete either a single macro or all macros.

Entering MA without specifying a macro name causes CPU32Bug to list all currently defined
macros and their definitions.

When MA is executed with the name of a currently defined macro, that macro definition is
displayed.

Line numbers are shown when displaying macro definitions to facilitate editing via the macro
edit (MAE) command. If MA is executed with a valid name that does not currently have a
definition, then the CPU32Bug enters the macro definition mode. In response to each macro
definition prompt "M=", enter a CPU32Bug command and a carriage return. Commands entered
are not checked for syntax until the macro is executed. To exit the macro definition mode, enter
only a carriage return (null line) in response to the prompt. If the macro contains errors, it can
either be deleted and redefined or it can be edited with the MAE command. A macro containing
no primitive CPU32Bug commands (i.e., no definition) is not accepted.

Macro definitions are stored in a string pool of fixed size. If the string pool becomes full whilein
the definition mode, the offending string is discarded, a message STRING POOL FULL, LAST
LINE DISCARDED is printed and the user is returned to the CPU32Bug command prompt. This
also happens if the string entered would cause the string pool to overflow. The string pool has a
capacity of 511 characters. The only way to add or expand macros when the string pool is full is
to either edit or delete macros.

CPU32Bug commands contained in macros may reference arguments supplied at invocation
time. Arguments are denoted in macro definitions by embedding a back slash (\) followed by a
numerial. As many as ten arguments are permitted. A definition containing a back slash followed
by a zero would cause the first argument to that macro to be inserted in place of the "\0"
characters.

M68CPU32BUG/D REV 1 3-34

DEBUG MONITOR COMMANDS

MA Macro Define/Display MA
NOMA Macro Delete NOMA

The second argument is used whenever the sequence "\1" occurs. Entering ARGUE 3000 1 ;B on
the debugger command line would execute the macro named ARGUE with the text strings 3000,
1, and ;B replacing "\0", "\1", and "\2", respectively, within the body of the macro.

To delete a macro, execute NOMA followed by the name of the macro. Executing NOMA
without specifying a macro name deletes al macros. If NOMA is executed with a valid macro
name that does not have a definition, an error message is printed.

EXAMPLES

CPU32Bug>MA ABC<CR> Define macro ABC.
MEMD 3000

MEGO \ 0

ME<CR>

CPU32Bug>

CPU32Bug>MA DASMKCR> Define macro DASM.
MEMD \ O: 5; DI

Me<CR>

CPU32Bug>

CPU32Bug>MA<CR> List macro definitions.
MACRO ABC

010 MD 3000

020 GO\ 0

MACRO DI S

010 MD \ 0: 5; DI

CPU32Bug>

CPU32Bug>DASM 427C<CR> Execute DASM macro.
0000427C 48E78080 MOVEM L DO/ A0, - (A7)
00004280 4280 CLR L DO

00004282 1018 MOVE. B (A0) +, DO
00004284 5340 SUBQ W #$1, DO
00004286 1208 MOVE. B (A0) +, (A1) +
CPU32Bug>

CPU32Bug>MA ABC<CR> List definitions macro ABC.
MACRO ABC

010 MD 3000

020 GO\ 0

CPU32Bug>

CPU32Bug>NOVA DASM<CR> Delete macro DASM.
CPU32Bug>

M68CPU32BUG/D REV 1 3-35

MA
NOMA

CPU32Bug>MA ASMKCR>

MMM \ O; DI
M=<CR>
CPU32Bug>

CPU32Bug>MA<CR>
MACRO ABC

010 MD 3000

020 GO\ 0
MACRO ASM

010 MD \O; DI
CPU32Bug>

CPU32Bug>NOVA<CR>
CPU32Bug>

CPU32Bug>MA<CR>

NO MACROS DEFI NED
CPU32Bug>

M68CPU32BUG/D REV 1

DEBUG MONITOR COMMANDS

Macro Define/Display MA
Macro Delete NOMA

Define macro ASM.

List all macros.

Delete all macros.

List all macros.

3-36

DEBUG MONITOR COMMANDS

MAE Macro Edit MAE

3.17 MACRO EDIT
MAE <name><line#>[<string>]
Where:

<name> any combination of 1-8 alphanumeric characters
<line#> line number in range 1-999
<string> replacement line to be inserted

The MAE command permits modification of the macro named on the command line. MAE is
line oriented and supports the following actions: insertion, deletion, and replacement.

To insert aline, specify aline number between the numbers of the lines that the new lineisto be
inserted between. The text of the new line to be inserted must also be specified on the command
line following the line number.

To replace a line, specify its line number and enter the replacement text after the line number on
the command line.

A lineisdeleted if itsline number is specified and the replacement line is omitted.

Attempting to delete a nonexistent line results in an error message being printed. MAE does not
permit deletion of alineif the macro consists of only that line. NOMA must be used to remove a
macro. To define new macros, use MA; the MAE command operates only on previously defined
macros.

Line numbers serve one purpose: specifying the location within a macro definition to perform the
editing function. After the editing is complete, the macro definition is displayed with anew set of
line numbers.

M68CPU32BUG/D REV 1 3-37

MAE

EXAMPLES

CPU32Bug>MA<CR>
MACRO ABC

010 MD 3000

020 GO\ 0
CPU32Bug>

CPU32Bug>MAE ABC 15 RD<CR>
MACRO ABC

010 MD 3000

020 RD

030 GO\ 0

CPU32Bug>

CPU32Bug>MAE ABC 10 MD 10+RO<CR>
MACRO ABC

010 MD 10+R0O

020 RD

030 GO\ 0

CPU32Bug>

CPU32Bug>MAE ABC 30<CR>
MACRO ABC

010 MD 10+RO

020 RD

CPU32Bug>

M68CPU32BUG/D REV 1

DEBUG MONITOR COMMANDS

Macro Edit MAE

3-38

List definitions of macro ABC.

Add aline to macro ABC.

This line was inserted.

Replace line 10.

This line was overwritten.

Delete line 30.

DEBUG MONITOR COMMANDS

MAL Macro Expansion Listing Enable MAL
NOMAL Macro Expansion Listing Disable NOMAL

3.18 MACRO EXPANSION LISTING ENABLE/DISABLE

MAL
NOMAL

The MAL command allows the user to view expanded macro lines as they are executed. Thisis
especially useful when errors result, as the line with the error appears on the display.

The NOMAL command is used to suppress the listing of macro lines during execution.

The use of MAL and NOMAL is a convenience for the user and in no way interacts with the
function of the macros.

M68CPU32BUG/D REV 1 3-39

DEBUG MONITOR COMMANDS

MD Memory Display MD

3.19 MEMORY DISPLAY
MD[S] <addr>[:<count>|<addr>][; [B|WI|L|DI]]

Use the MD command to display the contents of multiple memory locations. MD accepts the
following data types:

Integer Data Type

B — Byte
W — Word
L — Longword

The default data type is word (W). Integer data types are always displayed in both hex and
ASCII. The DI option enables the resident MCU disassembler. No other option is allowed if Dl is
selected.

The optional count argument in tiD command specifies the number of data items to be
displayed, or the number of disassembled instructions to display if the disassembly option is
selected. The default is 8 if no value for <count> is entered. The default count is changed to 128
if the S (sector) modifier is used. After the command has completed, &fRer a the prompt

to re-execute the command and display the same number of lines of data beginning at the next
address.

EXAMPLES

CPU32Bug>nd CO00<CR>
0000C000 2800 1942 2900 1942 2800 1842 2900 2846 (..B)..B(..B).(F

CPU32Bug><CR>
0000C010 FC20 0050 EDO7 9F61 FFOO OOOA E860 FO60 1..Pm.a....h'p

Assume the following processor state: A2=00003500, D5=00000127.
CPU32Bug>nd (a2, d5): &19; b<CR>
00003627 4F82 00C5 9B10 337A DFO1 6C3D 4B50 OFOF 0..E..3z_.|=KP..

00003637 31AB 80 1+.
CPU32Bug>

M68CPU32BUG/D REV 1 3-40

MD

CPU32Bug>nd 5008; di <CR>

00005008
0000500C
00005012
00005016
0000501A
0000501C
0000501E
00005020
CPU32Bug>

46FC2700
61FFO000023E
4E7AD801
41ED7FFC
5888

2EA8

2CA8
13C7FFFBO03A

Memory Display

MOVE. W
BSR. L
MOVEC. L
LEA. L
ADDQ L
MOVE. L
MOVE. L
MOVE. B

NOTE

DEBUG MONITOR COMMANDS

MD

#$2700, SR
#$524C

VBR, A5

$7FFC(A5) , AO

#$4, A

A0, A7

A0, A6

D7, ($FFFBO03A) . L

If the address location requested is not displayed, the automatic
offset register is non-zero and has been added to the address. See
the offset (OF) command.

M68CPU32BUG/D REV 1

3-41

DEBUG MONITOR COMMANDS

MM Memory Modify MM

3.20 MEMORY MODIFY
MM <addr>[;[[BIWI|L][A][N]]|[D1]]

Use the MM command (alias M) to examine and change memory locations. MM accepts the
following data types:

Integer Data Type

B — Byte
W — Word
L — Longword

The default data type is word. TMM command (aliad1) reads and displays the contents of
memory at the specified address and prompts the user with a question mark (?). The user may
enter new data for the memory location, followed IBRs, or may simply enter GR>, which

leaves the contents unaltered. That memory location is closed and the next memory location is
opened.

The user may also enter one of several step control characters, either at the prompt or after
writing new data. Enter one of the following step control characters to modify the command
execution:

Vorv The next successive memory location is opened. This is the default. It
initializes wheneveM M is executed and remains initialized until changed
by entering one of the other special characters.

N MM backs up and opens the previous memory location.

= MM re-opens the same memory location. This is useful for examining /O
registers or memory locations that are changing over time).

TerminatesVyM command. Control returns to CPU32Bug.

The N option of thaMM command disables the read portion of the command. The A option
forces alternate location accesses only, i.e. skip a byte/word/longword access per the data type in
use.

NOTE

If the address location requested is not displayed, the automatic
offset register is non-zero and has been added to the address. See
the offset OF) command.

M68CPU32BUG/D REV 1 3-42

MM

EXAMPLES

CPU32Bug>WMM 3100<CR>
00003100 1234?7<CR>
00003102 5678? 4321<CR>
00003104 9ABC? 8765"<CR>
00003102 4321?7<CR>
00003100 12347 abcd. <CR>

CPU32Bug>MM 3001, LA<CR>
00003001 CD4321877?<CR>
00003009 000680107 68010+10=<CR>

DEBUG MONITOR COMMANDS

Memory Modify MM

Access location 3100.

Modify memory.

Modify memory and backup.
No change, backup still utilized.
Modify memory and exit.

Longword access to location 3001.
Alternate location accesses.
Modify and re-open location.

00003009 00068020?<CR> No change, re-open still utilized.
00003009 000680207 .<CR> Exit MM.

CPU32Bug>MM 4000<CR>
00004000 00007 ' A <CR>
00004002 00007 ' B <CR>
00004004 0000? ' CD <CR>
00004006 0000? ' EFG <CR>

Modify WORDs starting at $4000.

Enter ASCII "A’, right justified.

Enter ASCII 'B’, right justified.

Enter ASCII 'CD’, right justified.

Enter ASCII 'FG’, right justified. Note the 'E’ is
truncated due to right justified WORD size!

00004008 0000? .<CR> Exit MM.

CPU32Bug>NMD 4000<CR>

00004008 0041 0042 4344 4647 0000 0000 0000 0000 A BCDFG
CPU32Bug>

The DI option activates the one-line assembler/disassembler. All other options areinvalid if Dl is
selected. The contents of the specified memory location is disassembled and displayed and the
user prompted for an input with a question mark (?). At this point the user has three options:

* Enter <CR> — This closes the present location and continues with disassembly of the
next instruction. The instruction is unchanged.

* Enter a new source instruction followed by <CR> — This actuates the assembler to
assemble the new instruction and generate a disassembly of the object code generated.

* Enter <CR> — This closes the present location and exits the MM command.

If a new source line is entered (second option above), the present line is erased and replaced by
the new source line.

If an error is found during assembly, the caret symbol (*) appears below the suspect field
followed by an error message. The accessed location is redisplayed.

Refer to Chapter 4 for additional information about the assembler.

M68CPU32BUG/D REV 1 3-43

DEBUG MONITOR COMMANDS

MS Memory Set MS

3.21 MEMORY SET
MS <addr>{ hexadecimal number}/{’string’}

Use the M'S command to write data to memory starting at a specified address. Hex numbers are
not size specific, so they can contain any number of digits (as alowed by command line buffer
size). If an odd number of digitsis entered, the least significant nibble of the last byte accessed is
unchanged.

ASCII strings are entered by enclosing them in single quotes (’string’). To include a quote as part
of the string, enter two consecutive quotes.

EXAMPLE Memory isinitialy cleared:

CPU32Bug>ns 25000 0123456789abcDEF ' This is '’ CPU32Bug’ '’ 23456<CR>
CPU32Bug>nd 25000: 10; w<CR>

00025000 0123 4567 89AB CDEF 5468 6973 2069 7320 . #Eg. +MoThis i s
00025010 2733 3332 4275 6727 2345 6000 0000 0000 " CPU32Bug’ #E'
CPU32Bug>

NOTE

If the address location requested is not displayed, the automatic
offset register is non-zero and has been added to the address. See
the offset (OF) command.

The M'S command stores all data on a byte-by byte basis and thus
should not be used on any locations that require word accessing
only, such as the MC68332 TPU registers. For those locations
requiring word accessing, use the memory modify (MM) command
with the ;W or ;L option.

M68CPU32BUG/D REV 1 3-44

DEBUG MONITOR COMMANDS

OF Offset Registers Display/Modify OF

3.22 OFFSET REGISTERSDISPLAY/MODIFY
OF [Rn[;A]]

The OF command allows the user to access and change pseudo-registers called offset registers.
These registers are used to simplify the debugging of relocatable and position independent
modules (refer to offset registersin paragraph 2.1.1.3).

There are 8 offset registers (RO through R7), but only RO through R6 can be changed. Both the
base and top addresses of R7 is always set to 0. This disables the automatic register function by
selecting R7 as the automatic register.

Each offset register has two values: base and top. The base is the absolute least address used for
the range declared by the offset register. The top address is the absolute greatest address used.
When entering the base and top, the user may use either an address/address format or an
address/count format. When specifying a count the value of count isin bytes. If the top addressis
omitted from the range, then a top address of $FFFFFFFF is the default. The top address must
equal or exceed the base address. Wrap-around is not permitted.

Command usage:

OF Display al offset registers. An asterisk indicates which register is the
automatic register.

OF Rn Display/modify Rn. Scroll through the registers using the same method as
the MM command.

OF Rnm;A Display/modify Rn and set it as the automatic register. The automatic
register is added to the absolute address argument of every command
except if an offset register is explicitly added. in the display an asterisk
indicates which register is the automatic register.

Range entry:

Ranges are entered in three formats; base address alone, base and top as a pair of
addresses, and base address followed by byte count. Step control characters as
described inthe MM (memory modify) command are supported.

Range syntax:

[<base address> [<top address>] | [MV[=].]
or
[<base address> [: <byte count>] | [MVI=].]

M68CPU32BUG/D REV 1 3-45

OF

DEBUG MONITOR COMMANDS

Offset Registers Display/Modify OF

Offset register rules:

At power-up and cold-start reset, R7 is the automatic register, and all offset registers
have both base and top addresses preset to 0. This disables the offset registers.

R7 always has both base and top addresses set to O; it cannot be changed.
Any offset register can be set as the automatic register.

The automatic register is always added to every absolute address argument of every
CPU32Bug command where an offset register is not explicitly defined (this includes
the OF command itself). To enter an absolute address, aways add R7 to the address,
i.e. +R7.

The register commands (RD, RM) do not use the automatic register, i.e. the program
counter is aways displayed/entered absolutely. However, the RS (register set)
command does use the automatic register.

There is always an automatic register. To disable the effect of the automatic register
set R7 as the automatic register. Thisisthe default condition.

EXAMPLES Display offset registers. Shows base and top values for each register.

CPU32Bug>0OF<CR>

RO = 00000000 00000000 R1 = 00000000 00000000
R2 = 00000000 00000000 R3 = 00000000 00000000
R4 = 00000000 00000000 R5 = 00000000 00000000
R6 = 00000000 00000000 R7*= 00000000 00000000
Modify offset registers.

CPU32Bug>OF RO<CR>

§8ARE

00000000 000000007 5000 50FF<CR>
00000000 00000000? 5100: 200" <CR> Modify and backup
00020000 000200FF? <CR>
00000000 000000007 . <CR>

No change, backup still utilized
Exit. Notice wrap around to R6.

Display location $5000. Shows base and top values for each register.

CPU32Bug>M 5000; DI <CR>

00000+R0O 41F95445 5354 LEA. L ($54455354).L, A0 .<CR>
CPU32Bug>M RO; DI <CR>

00000+R0O 41F95445 5354 LEA. L ($54455354).L, A0 .<CR>
CPU32Bug>

M68CPU32BUG/D REV 1 3-46

DEBUG MONITOR COMMANDS

OF Offset Registers Display/Modify OF

Set RO as the automatic register.

CPU32Bug>0OF RO; A<CR>
RO*=00005000 000O050FF? . <CR>

Display location O relative to the default offset register, (R0), i.e. absolute location $5000.
CPU32Bug>M 0; DI <CR>

00000+R0 41F95445 5354 LEA. L ($54455354).L, A0 . <CR>
CPU32Bug>

Display absolute location O, override the automatic offset.
CPU32Bug>M 0+R7; DI <CR>

00000000 FFF8 DC.W $FFF8 . <CR>
CPU32Bug>

M68CPU32BUG/D REV 1 3-47

DEBUG MONITOR COMMANDS

PA Printer Attached PA
NOPA Printer Detached NOPA

3.23 PRINTER ATTACH/DETACH

PA [<port>]
NOPA [<port>]

PA attach a printer to a specified port. NOPA detaches a printer from a specified port. When the
printer is attached, everything appearing on the computer terminal is echoed to the attached
printer. If no port is specified when executing PA, the default is port 1. NOPA detaches all
attached printers. The port number must be in the range 0 to $1F.

If the port number specified is not currently assigned, PA displays an error message. If NOPA is
attempted on a printer that is not currently attached, an error message is displayed. Use the PF
(port format) command to configure the port before attaching a printer to it.

RECOVERING FROM A "HUNG'PRINTER: attached ports are not detached by exceptions
(bus errors, abort, etc). If PA is executed using incorrect parameters, or a fault such as a paper
jam occurs, press the RESET switch on the M68300PFB Platform Board to recover control of the
printer.

EXAMPLES

CONSOLE DISPLAY: PRINTER OUTPUT:
CPU32Bug>PA <CR>

(attaching port 1 by default) (printer now attached)
CPU32Bug>HE NOPA <CR> CPU32Bug>HE NOPA

NOPA Printer detach NOPA Printer detach
CPU32Bug>NOPA <CR> CPU32Bug>NOPA

(detach all attached printers) (printer now detached)
CPU32Bug>

M68CPU32BUG/D REV 1 3-48

DEBUG MONITOR COMMANDS

PF Port Format PF

3.24 PORT FORMAT
PF [<port>]

Use the PF command to display and change the seria input/output environment. Use PF to
display alist of the current port assignments, configure a port that is already assigned, or assign
and configure a new port. The configuration process is interactive, much like modifying registers
or memory (RM and MM commands). An interlock is provided prior to configuring the
hardware, the user must explicitly direct PF to proceed.

Only eight ports are assigned at any given time. The port number must be within the range O to
$1F.

3.24.1 List Current Port Assignments
Executing PF without specifying a port number lists the board and port names.
EXAMPLE

CPU32Bug>PF <CR>

Current port assignments: (Port #: Board name, Port nane)
00: BCC, "sC*"

CPU32Bug>

3.24.2 Port Configuration

Use PF to primarily change baud rates, stop bits, etc. Execute the PF command with the desired
port number to assign and configure port parameters. Refer to paragraph 3.20.4 New Port
Assignment.

When PF is executed with the number of a previously assigned port, the interactive mode is
entered immediately. To exit from the interactive mode, enter a period by itself or following a
new value/setting. While in the interactive mode, step control characters as described in the MM
(memory modify) command are supported.

EXAMPLE Change number of stop bits on port number 0.

CPU32Bug>PF 0 <CR>

Baud rate [110, 300, 600, 1200, 2400, 4800, 9600, 19200] = 9600? <CR>
Even, Odd, or No Parity [E,O N = N? <CR>

Char Wdth [5,6,7,8] = 8? <CR>

Stop bits [1,2] = 1? 2<CR> New value entered.

M68CPU32BUG/D REV 1 3-49

DEBUG MONITOR COMMANDS

PF Port Format PF

(the next response demonstrates reversing the prompting order)

XON/ XOFF protocol [Y,N = Y? A <CR> Backup

Stop Bits [1,2] = 2? .<CR> Vaue acceptable, exit interactive
mode.

K to proceed (y/n)? Y Note: Carriage return not required.

CPU32Bug>

3.24.3 Port Format Parameters
The port format parameters are:

* Port base address — When assigning a port, there is a set base address option. This
allows the user to adjust the base address for different hardware configurations.
Entering no value selects the default address.

* Baud rate — Select the baud rate: 110, 300, 600, 1200, 2400, 4800, 9600, 19200.
» Parity type — Set parity: even (E), odd (0), or disabled (N).

* Character width — Select 5-, 6-, 7-, or 8-bit characters.

* Number of stop bits — Only 1 and 2 stop bits are supported.

* Automatic software handshake — Current drivers have the capability of responding to
XON/XOFF characters sent to the debugger ports. Receiving a XOFF causes a driver
to cease transmission until a XON character is received. None of the current drivers
utilize FIFO buffering, therefore, none initiate an XOFF condition.

» Software handshake character values — The values used by a port for XON and XOFF
may be defined as any 8-bit value. ASCII control characters or hexadecimal values are
accepted.

NOTE

Not all combinations of parity type, character width, and stop bits
are supported for the BCC "SCI" port, 00. See Appendix C for
details.

M68CPU32BUG/D REV 1 3-50

DEBUG MONITOR COMMANDS

PF Port Format PF

3.24.4 New Port Assignment

PF supports a set of drivers for a number of different boards and ports. To assign one of these to
a previously unassigned port number, execute the command with that port number. A message is
then printed to indicate that the port is unassigned and a prompt issued to request the type of
serial communication device. Pressing RETURN at this point lists the currently supported boards
and ports. Once the name of the board is entered, the port name is requested at the prompt. After
the port name is entered, PF prompts the user through the port configuration process.

Once a valid port is specified, default parameters are supplied. The base address of this new port
is one of these default parameters. Before entering the interactive configuration mode, the user is
allowed to change the port base address. PressRETURN to retain the present base address.

If the configuration of the new port is not fixed, then the system enters the interactive
configuration mode. Refer to paragraph 3.20.2 regarding configuring assigned ports. If the new
port has afixed configuration, then PF issuesthe '’ OK to proceed (Y/N)?’ prompt.

The user must enter the letter "Y” at the "OK to proceed (Y/N)?” prompt before PF initializes the
hardware. Pressing BREAK any time prior to this step or responding with the letter "N” at the
prompt leaves the port unassigned. Thisis only true of ports not previously assigned.

EXAMPLE Assigning port 1.

CPU32Bug>PF 1<CR>
Logi cal unit $01 unassigned

Nane of board?<CR> Cause PF to list supported boards, ports.
Boards and ports supported:

BCC. SC

MC68681: A, B

Nane of board? nt68681<CR> Note: Upper or lowercase accepted.

Nane of port? a<CR>
Port base address = $FFFFE000?<CR>
Baud rate [110, 300, 600, 1200, 2400, 4800, 9600, 19200] = 9600? .<CRrR>

K to proceed (Y/N? n Note: Aborted, no hardware!
CPU32Bug>

M68CPU32BUG/D REV 1 3-51

DEBUG MONITOR COMMANDS

RD Register Display RD

3.25 REGISTER DISPLAY
RD {[+[-|F][<dname>][/]}{ [+]-|=][<reg1>[-<reg2>]][/]}

Use the RD command to display the target state, that is, the register state associated with the
target program (refer to the GO command). The target PC points to the instruction to be
disassembled and displayed. Internally, a register mask specifies which registers are displayed
when RD <CR> is executed. At reset time, this mask is set to display the MPU registers only.
Change this register mask with the RD command. Optional arguments allow the user the
capability to enable or disable the display of any register or group or registers. Thisis useful for
showing only the registers of interest, minimizing unnecessary data on the screen.

The arguments are:
+ Addadevice or register range

- Remove adevice or register range, except when used between two register
names. In which case it indicates a register range.

= Setadevice or register range.

| Usethisdelimiter between device names and register ranges.
<regl> Indicatesthefirst register in arange of registers.
<reg2> Indicatesthe last register in arange of registers.

<dname> Indicates a device name. Use <DNAME> to enable or disable all device
registersfor:

MPU Microprocessor Unit

M68CPU32BUG/D REV 1 3-52

DEBUG MONITOR COMMANDS

RD Register Display RD

Observe the following when specifying any arguments in the command line:

» Thequalfier is applied to the next register range only.
* If noqualifier is specified, a+ qualifier isassumed.
» All device names should precede register names.

* The command line arguments are parsed from left to right, with each field being
processed after parsing, thus, the sequence in which qualifiers and registers are
organized has an impact on the resultant register mask.

* When specifying a register range, <REG1> and <REG2> do not have to be of the
sameclass, i.e. DO - A7.

* The register mask used by RD is also used by all the exception handler routines,
including the trace and breakpoint exception handlers.

The MPU registersin ordering sequence are:

Number of

registers
10 System Registers (PC,SR,USP,SSP,VBR,SFC,DFC)
8 Data Registers (DO-D7)
8 Address Registers (AO-A7)

M68CPU32BUG/D REV 1 3-53

DEBUG MONITOR COMMANDS

RD Register Display RD
EXAMPLES
CPU32Bug>r d<CR>
PC =00003000 SR =2700=TR OFF_S_7_..... VBR =00000000
SFC =0=F0 DFC =0=F0 USP =0000F830 SSP* =00004000
DO =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00003000 424F DC. W $424F
CPU32Bug>
NOTES

An asterisk following a stack pointer name indicates an active

stack pointer. To facilitate reading the status register it includes a

mnemonic portion. These mnemonics are:

TraceBits The trace bits (TO, T1) control the trace feature of the MCU and are
displayed by the mnemonic as shown in the following table. The user
should not modify these bits when executing user programs.

Tl TO Mnemonic Description
0 0 TR:OFF Trace off
0 1 TR:CHG Trace on change of flow
1 0 TR:ALL Trace al states
1 1 TRIINV Invalid mode
SBits The bit name (S) appears if the supervisor/user state bit is set, otherwise a
period (.) indicatesit is cleared.
Interrupt Mask A number from 0 to 7 indicates the current processor priority level.

The bit name (X, N, Z, V, C) appears if the respective bit is set, otherwise
aperiod (.) indicatesit is cleared.

Condition Codes

M68CPU32BUG/D REV 1 3-54

DEBUG MONITOR COMMANDS

RD RD

Register Display

The source and destination function code registers (SFC, DFC) include a two character
mnemonic:

Function Code Mnemonic Description
0 FO Undefined
1 ubD User Data
2 UP User Program
3 F3 Undefined
4 F4 Undefined
5 SD Supervisor Data
6 SP Supervisor Program
7 CS CPU Space

To set the display to D6 and A3 only.
CPU32Bug>RD =D6/ A3<CR>
D6 =00000000 A3 =00000000

00003000 4AFC | LLEGAL
CPU32Bug>

Note that the above sequence sets the display to D6 only and then adds register A3 to the display.

To restore al the MPU registers.

CPU32Bug>rd +nmpu<CR>

PC =00003000 SR =2700=TR OFF_S_7_..... VBR =00000000
SFC =0=F0 DFC =0=FO0 USP =00003830 SSP* =00004000
DO =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00003000 4AFC | LLEGAL

CPU32Bug>

Note that an equivalent command is’’RD +PC-A7"’ or "’RD =PC-A7"".

M68CPU32BUG/D REV 1

3-55

DEBUG MONITOR COMMANDS

RESET Cold/Warm Reset RESET

3.26 COLD/WARM RESET
RESET

Use the RESET command to specify the reset operation level when a RESET exception is
detected by the processor. Press the RESET switch on the M68300PFB platform board to
generate a reset exception.

Two RESET levels are available:

COLD Thisis the standard mode of operation, and is the default at power-up. In
this mode al the static variables are initialized every time a reset is
executed.

WARM In this mode all the static variables are preserved when a reset exception
occurs. This is convenient for keeping breakpoints, offset register values,
the target register state, and any other static variablesin the system.

EXAMPLE

CPU32Bug>RESET<CR>
Col d/ Warm Start = C (C/W? WCR> Set to warm start.
CPU32Bug>
Press the RESET pushbutton.
CPU32Bug Debugger/ Di agnostics - Version 1.00
(C Copyright 1991 by Mtorola Inc.
Warm St art

CPU32Bug>

M68CPU32BUG/D REV 1 3-56

DEBUG MONITOR COMMANDS

RM Register Modify RM

3.27 REGISTER MODIFY
RM <reg>

Use the RM command to display and change the target registers. The RM command functionsin
essentially the same way as the MM command, and the same step control characters are used to
control the display/change session. Refer to theMM command.

EXAMPLES

CPU32Bug>RM D4<CR>

D5 =12345678? ABCDEF"<CR> Modify register and backup.
D4 =00000000? 3000. <CR> Modify register and exit.
CPU32Bug>

CPU32Bug>r m sf c<CR>

SFC =7=CS ? 1=<CR> Modify register and re-open.
SFC =1=UD ? .<CR> Exit
CPU32Bug>

M68CPU32BUG/D REV 1 3-57

DEBUG MONITOR COMMANDS

RS Register Set RS

3.28 REGISTER SET
RS <reg>[<exp>][;A]

Use the RS command to display or change a single target register. The default offset register
value is always added to <exp> unless overridden by specifically including an offset register. See
the OF (offset register) command.

The ;A option is only valid when <reg> is an offset register, i.e. RO - R7. Use the ;A option to set
<reg> as the automatic register. If R7 is specified, no <exp> is allowed (R7 cannot be changed).
See the OF (offset register) command.

EXAMPLES
CPU32Bug>RS PC 40* 1000+4<CR>

PC =00040004
CPU32Bug>

CPU32Bug>0OF R4; A<CR>

R4* 00000000 00000000? 4000 4FFF<CR> Set up automatic offset register R4.

CPU32Bug>RS PC 124<CR>

PC =00004124 Set PC=$124+R4.

CPU32Bug>RS A4 32A<CR>

A4 =0000432A Set A4=$32A+RA4.

CPU32Bug>RS A5 400+R7<CR>

A5 =00000400 Set A5 equal to absolute location $400
($400+R7).

CPU32Bug>

M68CPU32BUG/D REV 1 3-58

DEBUG MONITOR COMMANDS

SD Switch Directories SD

3.29 SWITCH DIRECTORIES

SD
Use the SD command to toggle between the debugger directory and the diagnostic directory.
Usethe HE (Help) command to list the current directory commands.

Directory structure allows access to the debugger commands from either directory but the
diagnostic commands are only available from the diagnostic directory.

EXAMPLES

CPU32Bug>SD<CR>

CPU32Di ag> The user has changed from the debugger
directory to the diagnostic directory, as can
be seen by the’’ CPU32Diag>"" prompt

CPU32Di ag>SD<CR>
CPU32Bug> The user is now back in the debugger
directory.

M68CPU32BUG/D REV 1 3-59

DEBUG MONITOR COMMANDS

T Trace T

3.30 TRACE
T [<count>]

Use the T command to execute one instruction at a time and display the target state after
execution. T starts tracing at the address in the target PC. The optional count field specifies the
number of instructions to be traced before returning control to CPU32Bug. The count field
default is 1. Aseach instruction is traced, aregister display printout is generated.

During tracing, breakpoints in ROM or write protected memory are monitored (but not inserted)
for all trace commands which allow the use of breakpoints in ROM or write protected memory.
Control isreturned to CPU32Bug if a breakpoint with O count is encountered.

Trace functions are implemented with the trace bits (TO, T1) in the MCU device status register.
Do not modify trace bits (TO, T1) while using the trace commands. Because the trace functions
are implemented using the hardware trace bits in the MCU, code in ROM can be traced. During
trace mode, breakpoints are monitored and their counts decremented when the corresponding
instruction with breakpoint is traced. This allows breakpoints to work in ROM, but only in the
trace mode.

EXAMPLE The following program resides at location $7000.

CPU32Bug>MD 7000; DI <CR>

00007000 2200 MOVE. L DO, D1
00007002 4282 CLR L D2
00007004 D401 ADD. B D1, D2
00007006 E289 LSR L #$1, DL
00007008 66FA BNE. B $7004
0000700A E20A LSR. B #$1, D2
0000700C 55C2 SCS. B D2
0000700E 60FE BRA. B $700E
CPU32Bug>

Initialize PC and DO:

CPU32Bug>RM PC<CR>
PC =00008000 ? 7000.<CR>

CPU32Bug>RM DO <CR>
DO =00000000 ? 8F4lC. <CR>

M68CPU32BUG/D REV 1 3-60

Trace

Display target registers and trace one instruction:

CPU32Bug>RD<CR>
PC =00007000
SFC =0=F0

D0 =0008F41C
D4 =00000000
A0 =00000000
A4 =00000000

00007000 2200

CPU32Bug>T<CR>
PC =00007002
SFC =0=F0

DO =0008F41C
D4 =00000000
A0 =00000000
A4 =00000000
00007002 4282

CPU32Bug>

Trace next instruction:

CPU32Bug><CR>
PC =00007004
SFC =0=F0

DO =0008F41C
D4 =00000000
A0 =00000000
A4 =00000000
00007004 D401
CPU32Bug>

M68CPU32BUG/D REV 1

SR
DFC
D1
D5
Al
A5

SR
DFC
D1

Al
A5

SR
DFC
D1

Al
A5

=2700=TR OFF_ S 7_....

=0=F0 uspP
=00000000 D2
=00000000 D6
=00000000 A2
=00000000 A6

MOVE. L DO, D1

=2700=TR. OFF_ S 7_....

=0=F0 USsP

=0008F41C D2

=00000000 D6

=00000000 A2

=00000000 A6
CLR L D2

=0000382C
=002003A2
=00000000
=00000000
=00000000

=0000382C
=002003A2
=00000000
=00000000
=00000000

=2704=TR OFF. S 7_..Z..

=0=F0 USP
=0008F41C D2
=00000000 D6
=00000000 A2
=00000000 A6
ADD.B D1, D2
3-61

=0000382C
=00000000
=00000000
=00000000
=00000000

DEBUG MONITOR COMMANDS

VBR
SSP*

D7
A3
A7

VBR
SSP*

D7
A3
A7

VBR
SSP*
D3
D7
A3
A7

T

=00000000
=00004000
=00000000
=00000000
=00000000
=00004000

=00000000
=00004000
=00000000
=00000000
=00000000
=00004000

=00000000
=00004000
=00000000
=00000000
=00000000
=00004000

Trace the next two instructions:

CPU32Bug>T 2<CR>
PC =00007006
SFC =0=F0

DO =0008F41C
D4 =00000000
A0 =00000000
A4 =00000000
00007006 E289
PC =00007008
SFC =0=F0

DO =0008F41C
D4 =00000000
A0 =00000000
A4 =00000000
00007008 66FA
CPU32Bug>

M68CPU32BUG/D REV 1

SR
DFC
D1

Al
A5

SR
DFC
D1

Al
A5

=2700=TR OFF_S_7_

=0=F0
=0008F41C
=00000000
=00000000
=00000000
LSR L

=2700=TR OFF_S_7_

=0=F0
=00047A0E
=00000000
=00000000
=00000000
BNE. B

Trace

ER8E8G
U

#$1, D1

S8R G
U

$7004

3-62

=0000382C
=0000001C
=00000000
=00000000
=00000000

=0000382C
=0000001C
=00000000
=00000000
=00000000

DEBUG MONITOR COMMANDS

VBR
SSP*

D3
D7
A3
A7

VBR
SSP*

D3
D7
A3
A7

T

=00000000
=00004000
=00000000
=00000000
=00000000
=00004000

=00000000
=00004000
=00000000
=00000000
=00000000
=00004000

DEBUG MONITOR COMMANDS

TC Trace On Change Of Control Flow TC

3.31 TRACE ON CHANGE OF CONTROL FLOW
TC [<count>]

Use the TC command to start execution at the address in the target PC. Tracing begins at
detection of an instruction that causes a change of control flow, such as Bcc, JSR, BSR, RTS,
etc. Execution is in real time until a change of flow instruction is encountered. The optional
count field specifies the number of change of flow instructions to be traced before returning
control to CPU32Bug. The optional count field default is 1. Register display printout only occurs
when a change of control flow occurs.

During tracing, breakpoints in ROM or write protected memory are monitored (but not inserted)
for all trace commands which alow the use of breakpoints. Note that the TC command
recognizes a breakpoint only if it is at a change of flow instruction. Control is returned to
CPU32Bug if a breakpoint with O count is encountered. See the trace (T) command for more
details.

The trace functions are implemented with the trace bits (TO, T1) in the MCU device status
register. Do not modify the trace bits (TO, T1) while using the trace commands. Because the trace
functions are implemented using the hardware trace bits in the MCU, code in ROM can be
traced. During trace mode, breakpoints are monitored and their counts decremented when the
corresponding instruction with breakpoint is traced. This allows breakpoints to work in ROM,
but only in the trace mode.

EXAMPLE The following program resides at location $7000.

CPU32Bug>MD 7000; DI <CR>

00007000 2200 MOVE. L DO, D1
00007002 4282 CLR L D2
00007004 D401 ADD. B D1, D2
00007006 E289 LSR L #$1, DL
00007008 66FA BNE. B $7004
0000700A E20A LSR B #$1, D2
0000700C 55C2 SCS. B D2
0000700E 60FE BRA. B $700E
CPU32Bug>

Initialize PC and DO:

CPU32Bug>RM PC <CR>
PC =00008000 ? 7000. <CR>

CPU32Bug>RM DO <CR>
DO =00000000 ? 8F41C. <Cr>

M68CPU32BUG/D REV 1 3-63

DEBUG MONITOR COMMANDS

TC Trace On Change Of Control Flow TC
Trace on change of flow:

CPU32Bug>TC<CR>

00007008 66FA BNE. B $7004

PC =00007004 SR =2700=TR OFF_S_7_..... VBR =00000000
SFC =0=F0 DFC =0=F0 USP =0000382C SSP* =00004000
D0 =0008F41C DL =00047A0E D2 =0000001C D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00007004 D401 ADD.B D1, D2

CPU32Bug>

Note that the above display also shows the change of flow instruction.

M68CPU32BUG/D REV 1 3-64

DEBUG MONITOR COMMANDS

™ Transparent Mode ™

3.32 TRANSPARENT MODE
TM [<port>][<escape>]

The TM command connects the console serial port and the host port together, allowing the user
to communicate with a host computer. A message displayed by TM shows the current escape
character, i.e., the character used to exit the transparent mode. The two ports remain connected
until the escape character is received by the console port. The escape character is not transmitted
to the host and at power up or reset isinitialized to $01="A.

The optional port number alows the user to specify which port is the host port. If the port
number is omitted the default is port 1. The port number must be within the range 0 to $1F.

Ports do not have to have the same baud rate, but for reliable operation the termina port baud
rate should be equal to or greater than the host port baud rate. Use the PF command to change
baud rates.

The optiona escape argument allows the user to specify the exit character. Use one of three
formats:

asciicode : $03 Set escape character to *C
ascii character 'C Set escape character to ¢
control character : ~C Set escape character to *C

If the port number is omitted and the escape argument is entered as a numeric value, precede the
escape argument with a commato distinguish it from a port number.

EXAMPLES

CPU32Bug>TMCR> Enter TM.

Escape character: $01=" A Exit code is aways displayed.
<NA> Exit transparent mode.
CPU32Bug>TM ~g<CR> Enter TM and set escape character
Escape character: $07=" G to"G.

NG Exit transparent mode.
CPU32Bug>

M68CPU32BUG/D REV 1 3-65

DEBUG MONITOR COMMANDS

TT Trace To Temporary Breakpoint TT

3.33 TRACE TO TEMPORARY BREAKPOINT
TT <addr>

Use the TT command to set a temporary breakpoint at a specified address and trace until
encountering a 0 count breakpoint. The temporary breakpoint is then removed (TT is analogous
to the GT command) and control is returned to CPU32Bug. Tracing starts at the target PC
address. As each instruction is traced, aregister display printout is generated.

During tracing, breakpoints in ROM or write protected memory are monitored (but not inserted)
for al trace commands which allow the use of breakpoints. Control is returned to CPU32Bug if a
breakpoint with O count is encountered. See the trace (T) command for more details.

The trace functions are implemented with the trace bits (TO, T1) in the MCU status register. Do
not modify trace bits (TO, T1) while using the trace commands. Because the trace functions are
implemented using the hardware trace bits in the MCU, code in ROM can be traced. During trace
mode, breakpoints are monitored and their counts decremented when the corresponding
instruction with breakpoint is traced. This allows breakpoints to work in ROM, but only in the
trace mode.

EXAMPLE The following program resides at location $7000.

CPU32Bug>MD 7000; DI <CR>

00007000 2200 MOVE. L DO, D1
00007002 4282 CLR L D2
00007004 D401 ADD. B D1, D2
00007006 E289 LSR L #$1, DL
00007008 66FA BNE. B $7004
0000700A E20A LSR. B #$1, D2
0000700C 55C2 SCS. B D2
0000700E 60FE BRA. B $700E
CPU32Bug>

Initialize PC and DO:

CPU32Bug>RM PC<CR>
PC =00008000 ? 7000. <CR>

CPU32Bug>RM DO<CR>
DO =00000000 ? 8F41C. <Cr>

M68CPU32BUG/D REV 1 3-66

Trace To Temporary Breakpoint

=2700=TR OFF_S_7_

TT

Trace to temporary breakpoint:
CPU32Bug>TT 7006<CR>
PC =00007002 SR
SFC =0=F0 DFC
DO =0008F41C D1
D4 =00000000 D5
A0 =00000000 Al
A4 =00000000 A5
00007002 4282

PC =00007004 SR
SFC =0=F0 DFC
DO =0008F41C D1
D4 =00000000 D5
A0 =00000000 Al
A4 =00000000 A5
00007004 D401

At Breakpoi nt

PC =00007006 SR
SFC =0=F0 DFC
DO =0008F41C D1
D4 =00000000 D5
A0 =00000000 Al
A4 =00000000 A5

00007006 E289
CPU32Bug>

M68CPU32BUG/D REV 1

=0=F0 USP =0000382C
=0008F41C D2 =00100200
=00000000 D6 =00000000
=00000000 A2 =00000000
=00000000 A6 =00000000

CLRL D2
=2704=TR OFF S 7_..Z..
=0=F0 USP =0000382C
=0008F41C D2 =00000000
=00000000 D6 =00000000
=00000000 A2 =00000000
=00000000 A6 =00000000

ADD.B D1, D2
=2700=TR OFF S 7_.....
=0=F0 USP =0000382C
=0008F41C D2 =0000001C
=00000000 D6 =00000000
=00000000 A2 =00000000
=00000000 A6 =00000000

LSR L #$1,D1

3-67

VBR
SSP*
D3
D7
A3
A7

VBR
SSP*
D3
D7
A3
A7

VBR
SSP*
D3
D7
A3
A7

DEBUG MONITOR COMMANDS

TT

=00000000
=00004000
=00000000
=00000000
=00000000
=00004000

=00000000
=00004000
=00000000
=00000000
=00000000
=00004000

=00000000
=00004000
=00000000
=00000000
=00000000
=00004000

DEBUG MONITOR COMMANDS

VE Verify S-Records Against Memory VE

3.34 VERIFY SRECORDSAGAINST MEMORY
VE [<port>][<addr>][;<X/-C>][=<text>]

VE isidentical to the LO command with the exception that data is not stored to memory but
merely compared to the contents of memory.

The VE command accepts serial datafrom a host system in the form of a Motorola S-records file
and compares it to data already in memory. If the data does not compare, then the user is alerted
viainformation sent to the terminal screen.

The optiona port number allows the user to specify which is the download port. If the port
number is omitted the default is port 0. The port number must be within the range 0 to $1F.

The BCC default hardware configuration consists of one I/O port; P4 on the BCC or P9 on the
PFB. Thislimits the user to one host computer running a terminal emulation program. To send S-
records, the user must escape out of the terminal emulation program because the host computer
can not perform terminal emulation and send S-records at the same time. When the host is not in
terminal emulation mode, all status messages from CPU32Bug would be lost. Thus the user must
press <CR> twice after re-entering the terminal emulation program to signa CPU32Bug that
status messages can now be sent.

The optional <addr> field allows the user to enter an offset address which is added to the address
contained in the record address field. This causes the records to be compared to memory at
different locations than would normally occur. The contents of the automatic offset register are
not added to the S-record addresses. If the address is in the range $0 to $1F and the port number
is omitted, precede the address with a commato distinguish it from a port number. Only absolute
addresses (i.e., "1000") should be entered, as other addressing modes cause unpredictable results.
An addressis allowed here rather than an offset (expression) to permit support for function codes
(see paragraph 2.5).

The optional text field, entered after the equals sign (=), is sent to the host before CPU32Bug
begins to look for S-records at the host port. This allows the user to send a command to the host
device to initiate the download. Do not delimited text with quote marks. The text follows the
equals sign and terminates with a carriage return. If the host is operating full duplex, the string
echoes back to the host port and appears on the user’ s terminal screen.

Some host systems echo all received characters so the text string is sent to and received from the
host one character at a time. After the entire command is sent to the host, VE looks for an LF
character from the host signifying the end of the echoed command. No data records are processed
until LF is received. If the host system does not echo characters, VE till looks for an LF
character before data records are processed. For this reason it is required in situations where the

M68CPU32BUG/D REV 1 3-68

DEBUG MONITOR COMMANDS

VE Verify S-Records Against Memory VE

host system does not echo characters that the first record transferred by the host system be a
header record. The header record is not used, but the LF after the header record serves to break
VE out of the loop so that data records are processed.

Other VE options are:

-Coption Ignore checksum. A checksum for the data contained within an S-Record
is calculated as the S-record isread in at the port. Normally, this calcul ated
checksum is compared to the checksum contained within the S-Record and
if the compare fails, an error message is sent to the screen. If this option is
selected, the comparison is not made.

X option Echo. This option echoes the S-records to the user’s terminal as they are
read in at the host port. Do not use this option when port O is specified.

During a verify operation S-record data is compared to memory. Verification begins with the
address contained in the S-record address field (plus the offset address). If the verification fails,
then the non-comparing record is set aside until the verify is complete and then it is displayed on
the screen. If three non-comparing records are encountered in the course of a verify operation,
then the command is aborted.

If a non-hex character is encountered within the data field, then the received portion of the record
is printed to the screen and CPU32Bug’ s error handler points to the faulty character.

An error condition exists if the embedded checksum of a record does not agree with the
checksum calculated by CPU32Bug. A message is displayed showing the address of the record
(as obtained from the address field of the record), the calculated checksum, and the checksum
read with the record. A copy of the record is also output. This is a fatal error and causes the
command to abort.

EXAMPLES

This short program was developed on a host system.

1 * Test Program
2 *
3 65004000 ORG $65004000
4
5 65004000 7001 MOVEQ. L #1, DO
6 65004002 D088 ADD. L A0, DO
7 65004004 4A00 TST. B DO
8 65004006 4E75 RTS
9 END
***xxx% TOTAL ERRORS 0- -

Fxxxxx TOTAL WARNI NGS 0--

M68CPU32BUG/D REV 1 3-69

DEBUG MONITOR COMMANDS

VE Verify S-Records Against Memory VE

Then converted into an S-Record file named TEST.M X as follows;
S00A0000544553542E4D58E2

S30D650040007001D0884A004E7577
S7056500400055

This file was downloaded into memory using "LO -65000000" at address $4000. The program
may be examined in memory using theM D (memory display) command.

CPU32Bug>MD 4000: 4; DI <CR>

00004000 7001 MOVEQ. L #$1, DO
00004002 D088 ADD. L A0, DO
00004004 4A00 TST. B DO
00004006 4E75 RTS

CPU32Bug>

To ensure the program has not been destroyed in memory, use the VE command to perform a
verification.

CPU32Bug>VE - 65000000<CR>
Blank line as the BCC waits for an S-record.

Enter the terminal emulator’s escape key to return to the host computer’s operating system (ALT-
F4 for ProComm). A host command is then entered to send the S-record file to the port where the
BCC is connected (for MS-DOS based host computer this would be "type test.mx >com1", where
the BCC was connected to the com1 port).

After the file has been sent, the user then restarts the terminal emulation program (for MS-DOS
based host computers, enter EXIT at the prompt).

Since the port number equals the current terminal, two <CR>'s are required to signal CPU32Bug
that verification is complete and the terminal emulation program is ready to receive the status

message.
<CR><CR> Signal verfication complete.

Verify passes.
CPU32Bug>

The verification passes. The program stored in memory was the same as that in the downloaded
S-record file.

M68CPU32BUG/D REV 1 3-70

DEBUG MONITOR COMMANDS

VE Verify S-Records Against Memory VE

Now change the program in memory and perform the verification again.

CPU32Bug>M 4002<CR>
00004002 D088 ? D089. <CR>

CPU32Bug>VE - 65000000<CR>
Blank line as the BCC waits for an S-record.

Enter the terminal emulator’s escape key to return to the host computer’s operating system (ALT-
F4 for ProComm). A host command is then entered to send the S-record file to the port where the
BCC is connected (for MS-DOS based host computer this would be "type test.mx >com1", where
the BCC was connected to the com1 port).

After the file has been sent, the user then restarts the terminal emulation program (for MS-DOS
based host computers, enter EXIT at the prompt).

Since the port number equals the current terminal, two <CR>'s are required to signal CPU32Bug
that verification is complete and the terminal emulation program is ready to receive the status

message.

<CR><CR> Signal verification completion.
S30D65004000- - - - - - 88-------- 77 Record did not verify.
CPU32Bug>

The byte which was changed in memory does not compare with the corresponding byte in the S-
record.

M68CPU32BUG/D REV 1 3-71

DEBUG MONITOR COMMANDS

M68CPU32BUG/D REV 1 3-72

ASSEMBLER/DISASSEMBLER

CHAPTER 4
ASSEMBLER/DISASSEMBLER

4.1 INTRODUCTION

Included as part of the CPU32Bug firmware is a one-line assembler/disassembler function. The
assembler is an interactive assembler/editor in which the source program is not saved. Each
source line is trandated into M68300 Family machine language code and is stored line-by-line
into memory asit is entered. In order to display an instruction, the machine code is disassembled
and the instruction mnemonic and operands are displayed. All valid M68300 Family instructions
are translated.

The CPU32Bug assembler is effectively a subset of the M68300 Family resident structured
assembler. It has some limitations as compared with the resident assembler, such as not alowing
line numbers and labels, however, it is a powerful tool for creating, modifying, and debugging
code of the M68300 Family.

411 M68300 Family Assembly Language

M68300 Family assembly language is the symbolic language used to code source programs for
processing by the assembler. Thislanguage is a collection of mnemonics representing:

e Operations
- M68300 Family machine-instruction operation code
— Directives (pseudo-ops)

e Operators

* Specia symbols

4.1.1.1 Machine-Instruction Operation Codes

The part of the assembly language that provides the mnemonic machine-instruction operation
codes for the M68300 Family machine instructions are described in the CPU32 Reference
Manual. Refer to that manual for any questions concerning operation codes.

4.1.1.2 Directives

Normally, assembly language can contain mnemonic directives which specify assembler
auxiliary action. The CPU32Bug assembler recognizes only two directives: DC.W (define
constant) and SYSCALL. These two directives define data within the program and make
CPU32Bug utility calls (refer to paragraphs 4.2.3 and 4.2.4, respectively).

M68CPU32BUG/D 4-1

ASSEMBLER/DISASSEMBLER

4.1.2 M 68300 Family Resident Structured Assembler Comparison

There are several major differences between the CPU32Bug assembler and the M68300 Family
resident structured assembler. The resident assembler is a two-pass assembler that processes an
entire program as a unit, while the CPU32Bug assembler processes each line of a program as an
individual unit. Due mainly to this basic functional difference, the CPU32Bug assembler
capabilities are more restricted:

* Labe and line numbers are not used. Labels are used to reference other lines and
locations in a program. The one-line assembler has no knowledge of other lines and,
therefore, cannot make the required association between a label and the label
definition located on a separate line.

» Source lines are not saved. In order to read back a program after it is entered, the
machine code is disassembled and then displayed as mnemonics and operands.

e Only two directives (DC.W and SY SCALL) are accepted.
* No macro operation capability isincluded.

* No conditional assembly is used.

* No structured assembly is used.

» Several symbols recognized by the resident assembler are not included in the
CPU32Bug assembler character set. These symbols include ">" and "<”. Three other
symbols have multiple meaning to the resident assembler, depending on the context.
These are:

Asterisk (*) - Multiply or current PC
Slash (/) - Divide or delimiter in aregister list
Ampersand (&) - And or decimal number prefix

Although functional differences exist between the two assemblers, the one-line assembler is a
true subset of the resident assembler. The CPU32Bug assembler format and syntax are acceptable
to the resident assembler except as described above.

4.2 SOURCE PROGRAM CODING

A source program is a sequence of source statements arranged in a logical manner to perform
predetermined tasks. Each source statement occupies a line and must be either an executable
instruction, a DC.W directive, or a SYSCALL assembler directive. Each source statement
follows a consistent source line format.

M68CPU32BUG/D 4-2

ASSEMBLER/DISASSEMBLER

421 SourcelineFormat

Each source statement is a combination of operation and, as required, operand fields. Line
numbers, labels and comments are not used.

4.2.1.1 Operation Field

Since there is no label field, the operation field may begin in the first available column. It may
also follow one or more spaces. Entries can consist of one of three categories:

* Operation codes which correspond to the M68300 Family instruction set.
» Define constant directive (DC.W) defines a constant in aword location.
» System call directive (SYSCALL) cals CPU32Bug system utilities.

The size of the data field affected by an instruction is determined by the data size codes. Some
instructions and directives can operate on more than one data size. For these operations, the data
size code must be specified or a default size applicable to the instruction is used. The size code
need not be specified if only one data size is permitted by an operation. The operation field is
followed by aperiod (.) and the data size code. The data size codes are:

B =Byte (8-hit data)
W = Word (16-bit data; the usual default size)
L =Longword (32-bit data)

When the instruction or directive does not have a data size attribute, the data size code is not
permitted.

EXAMPLES Lega
LEA (A0), A1 Load the effective address of the first operand into Al. The longword
size is the default (.B, .W not allowed) for this instruction.
ADD. B (A0), DO Add the byte pointed to in AO to the lowest order byte in DO.
ADD D1, D2 Add the low order word of D1 to the low order word of D2. W is the
default size code for ADD.
ADD. L A3, D3 Add the entire 32-bit (longword) contents of A3 to D3.
EXAMPLE [llegal
SUBA. B #5, Al lllegal size specification (.B not allowed in instruction SUBA). This

instruction would have subtracted the value 5 from the low order byte
of Al; byte operations on address registers are not allowed.

M68CPU32BUG/D 4-3

ASSEMBLER/DISASSEMBLER

4.21.2 Operand Field

If present, the operand field follows the operation field and is separated from the operation field
by at least one space. When two or more operand subfields appear within a statement, separate
them with a comma. In an instruction like '"ADD D1,D2, the first subfield (D1) is called the
source effective address (<EA>) field, and the second subfield (D2) is called the destination
<EA> field. Thus, the contents on D1 are added to the contents of D2 and the result saved in
register D2. In the instruction ' MOVE D1,D2, the first subfield (D1) is the source field and the
second subfield (D2) is the destination field. In other words, for most two-operand instructions,
the format ' <opcode> <source>,<destination>" applies.

4.2.1.3 Disassembled SourcelLine

The disassembled source line may not ook identical to the source line entered. The disassembler
decides how to interpret the numbers used. If the number is an offset of an address register, it is
treated as a signed hexadecima offset. Otherwise, it is trested as a straight unsigned
hexadecimal.

EXAMPLE

MOVE.L #1234,5678
MOVE.L FFFFFFFC(A0),5678

disassembles to

00003000 21FC0000 12345678 MOVE.L #$1234,($5678).W
00003008 21E8FFFC 5678 MOVE.L -$4(A0),($5678).W

Also, for some instructions, there are two valid mnemonics for the same opcode, or there is more
than one assembly language equivalent. When the opcode is disassembled some instructions may
appear different from the originally entered code. As examples:

BT isdissembled as BRA
DBRA isdissembled as DBF

NOTE

The assembler recognizes two forms of mnemonics for two branch
instructions. The BT form (branch conditionally true) has the same
opcode as the BRA instruction. Also, DBRA (decrement and
branch always) and DBF (never true, decrement, and branch)
mnemonics are different forms for the same instruction. In each
case, the assembler accepts both forms.

M68CPU32BUG/D 4-4

ASSEMBLER/DISASSEMBLER

4.2.1.4 Mnemonicsand Delimiters

The assembler recognizes all M68300 Family instruction mnemonics. Numbers are recognized as
binary, octal, decimal, and hexadecimal, with hexadecimal as the default case.

* Decimal values are preceded by an ampersand (&). Examples are:
&12334
-& 987654321

* Hexadecimal values are preceded by adollar sign ($). An exampleis:
$AFES

One or more ASCII characters enclosed by single quote marks (’) constitute an ASCII string.
ASCII strings are right-justified and zero filled (if necessary), whether stored or used as
immediate operands.

00003000 21FCO0000 12345678 MOVE.L #$1234,($5678).W
005000 0053 DC.W 'S

005002 223C41424344 MOVE.L # ABCD’,D1
005008 3536 DC.W '56'

The following register mnemonics are recognized/referenced by the assembler/disassembler:

Pseudo Registers

RO-R7 | User Offset Registers.

Main Processor Registers

PC Program Counter - Used only in forcing program counter-rel ative addressing.
SR Status Register

CCR Condition Codes Register (Lower eight bits of SR)

UsP User Stack Pointer

SSP System Stack Pointer

VBR Vector Base Register

SFC Source Function Code Register

DFC Destination Function Code Register

DO-D7 | DataRegisters

AO-A7 | Address Registers - Address register A7 represents the active system stack
pointer, that is, either USP or SSP, as specified by the S bit of the status
register

M68CPU32BUG/D 4-5

ASSEMBLER/DISASSEMBLER

4215 Character Set

The character set recognized by the CPU32Bug assembler is a subset of ASCII and listed below:

* Theletters A through Z (uppercase and lowercase)
* Theintegers 0 through 9
* Arithmetic operators. +, -, *,/,<<,>> 1, &
* Parentheses ()
e Characters used as specia prefixes:
(pound sign) specifies the immediate form of addressing.
$ (dollar sign) specifies a hexadecimal number.
& (ampersand) specifies a decimal number.
@ (commercia at sign) specifies an octal number.
% (percent sign) specifies a binary number.
" (apostrophe) specifiesan ASCII literal character string.
» Five separating characters:
Space
. (period)
/ (slash)
- (dash)
The asterisk (*) character indicates current location.

4.2.2 Addressing Modes
Effective address modes, combined with operation codes, define the particular function

performed by a given instruction. Effective addressing and data organization are described in
detail in the CPU32 Reference Manual.

M68CPU32BUG/D 4-6

ASSEMBLER/DISASSEMBLER

Table 4-1 summarizes the CPU32Bug one-line assembl er addressing modes.

Table4-1. CPU32Bug Assembler Addressing Modes

Format Description
Dn Data register direct
An Address register direct
(An) Address register indirect
(An)+ Address register indirect with post-increment
-(An) Address register indirect with pre-decrement
d(An) Address register indirect with displacement
d(An,Xi) Address register indirect with index, 8-bit displacement
(bd,An,Xi) Address register indirect with index, base displacement
ADDR(PC) Program counter indirect with displacement
ADDR(PC,Xi) Program counter indirect with index, 8-bit displacement
(ADDR,PC,Xi) Program counter indirect with index, base displacement
(xxxx).W Absolute word address
(xxxx).L Absolute long address
HXXXX Immediate data

The user may use an expression in any numeric field of these addressing modes. The assembler
has a built in expression evaluator that supports the following operand types and operators:

Binary numbers (%10)

Octal numbers (@76543210)

Decimal numbers (&9876543210)
Hexadecimal numbers ($FEDCBA9876543210)
String literals (CHAR")

Offset registers (RO-R7)

Program counter *

M68CPU32BUG/D 4-7

ASSEMBLER/DISASSEMBLER

Allowed operators are:

Addition +
Subtraction -
Multiply *
Divide /
Shift left <<
Shift right >>
Bitwise or !
Bitwise and &

The order of evaluation is strictly left to right with no precedence granted to some operators over
others. The only exception is when the user forces the order of precedence via the use of
parentheses.

Possible points of confusion:

» Differentiate numbers and registers to avoid confusion. For example:
CLR DO meansCLR.W register DO. On the other hand,

CLR $DO
CLR 0DO
CLR +DO
CLR DO0O+0 all mean CLR.W memory location $DO.

* With the use of asterisk (*) to represent both multiply and program counter,
how does the assembler know when to use which definition?

For parsing algebraic expressions, the order of parsing is
<OPERAND> <OPERATOR> <OPERAND> <OPERATOR>
with apossible |eft or right parenthesis.

Given the above order, the assembler can distinguish by placement which
definition to use. For example:

*kk Means PC * PC

*4x Means PC + PC

2** Means 2 * PC
*&&16 Means PC AND & 16

M68CPU32BUG/D 4-8

ASSEMBLER/DISASSEMBLER

When specifying operands, the user may skip or omit entries with the following addressing
modes.

* Addressregister indirect with index, base displacement.

* Program counter indirect with index, base displacement.
For the above modes, the rules for omission/skipping are as follows:

* The user may terminate the operand by specifying’’)"’.
EXAMPLE

CLR ()or
CLR (,,) isequivaent to
CLR (0.N,ZA0,ZDO.W*1)

* Theuser may skip afield by stepping past it with acomma.
EXAMPLE

CLR (D7) isequivaent to

CLR ($D7,ZA0,ZD0O.W*1)
but

CLR (,,D7)isequivaentto

CLR (0.N,ZAO,D7.W*1)

» If the user does not specify the base register, the default is "ZA0”. When Z precedes
the register number, it indicates that register is suppressed.

» |f the user does not specify the index register, the default is’’ZDO.W*1'".
* Any unspecified displacements are defaulted to "’ 0"’

4.2.3 Define Constant Directive (DC.W)
The format for the DC.W directiveis:
DC.W <operand >

This directive defines a constant in memory. The DC.W directive has only one operand (16-bit
value) which can contain the actual value (decimal, hexadecimal, or ASCII). Alternatively, the
operand can be an expression which is assigned a numeric value by the assembler. The constant
isaligned on aword boundary if word (.\W) sizeis specified. An ASCII string is recognized when
characters are enclosed inside single quotes marks (. . . *). Each character (7 bits) is assigned to a
byte of memory with the eighth bit (MSB) always equal to zero. If only one byte is entered, the

byte is right justified. A maximum of two ASCII characters may be entered for each DC.W
directive.

M68CPU32BUG/D 4-9

ASSEMBLER/DISASSEMBLER

EXAMPLES DESCRIPTION
00010022 04D2 DC.W 1234 Decimal number
00010024 AAFE DC.W &AAFE Hexadecimal number
00010026 4142 DC.W 'AB’ ASCII String
00010028 5443 DC.W 'TB’+1 Expression
0001002A 0043 DC.W 'C ASCII character isright justified

424 System Call Directive (SYSCALL)

This directive aids the user in making the TRAP #15 calls to the system functions. The format for
thisdirectiveis:

SYSCALL <function name>
For example, the following two pieces of code produce identical results.

TRAP HEF
DC.W 0

or
SYSCALL .INCHR

The CPU32Bug input default is hexadecimal, while other assemblers default to decimal. When
programming a CPU32Bug assembler TRAP function it is best to use the SYSCALL directive
and let CPU32Bug make the conversion. Refer to Chapter 5 (SYSTEM CALLS), for a complete
listing of al the functions provided.

4.3 ENTERING AND MODIFYING SOURCE PROGRAM

User programs are entered into memory using the one-line assembl er/disassembler. The program
Is entered in assembly language statements on a line-by-line basis. The source code is not saved
asit is converted immediately upon entry into machine code. Thisimposes several restrictions on
the type of source line that can be entered.

Symbols and labels, other than the defined instruction mnemonics, are not allowed. The
assembler has no means of storing the associated values of the symbols and labels in look-up
tables. This forces the programmer to use memory addresses and to enter data directly rather than
use |abels.

Also, editing is accomplished by retyping an entirely new source line. Add or delete lines by

moving a block of memory data to free up or delete the appropriate number of locations (refer to
the BM command).

M68CPU32BUG/D 4-10

ASSEMBLER/DISASSEMBLER

431 Executing the Assembler/Disassembler

The assembler/disassembler is actuated using the ;DI option of the MM (Memory Modify) and
MD (Memory Display) commands:

MM <ADDR >;DI
where
<CR> sequences to next instruction
<CR> exits command
and
MDI[S] <ADDR>[:<count>I<ADDR>];DI

Use the MM (;DI option) to enter and modify the program. When this command is used, the
memory contents at the specified location are disassembled and displayed. A new or modified
line can be entered if desired.

The disassembled line is either an M68300 Family instruction, a SYSCALL, or a DC.W
directive. If the disassembler recognizes avalid form of an instruction, the instruction is returned.
If the disassembler does not recognizes a valid form of an instruction, random data occurs, the
DCW $XXXX (always hex) is returned. Because the disassembler gives precedence to
instructions, aword of data interpreted as avalid instruction is returned as the instruction.

4.3.2 EnteringaSourcelLine

Enter a new source line immediately following the disassembled line. Use the format discussed
in paragraph 4.2.1.

CPU32Bug>WM 6000; DI <CR>
00006000 2600 MOVE. L DO, D3 ? ADDQ L #1, A3 <CR>

When aline is terminated with a carriage return, the old source line is erased from the terminal
screen, the new line is assembled and displayed, and the next instruction in memory is
disassembled and displayed:

CPU32Bug>MV 6000; DI <CR>

00006000 528B ADDQ L #1, A3
00006002 4282 CLR L D2 ?

Another program line can now be entered. Program entry continues in like manner until all lines
have been entered. A period (.) is used to exit the MM command. If an error occurs during line
assembly, the assembler displays the line unassembled with an error message. The location being
accessed is redisplayed:

CPU32Bug>MM 6000; di <CR>

00006000 528B ADDQ L #$1, A3? LEA. L 5(A0, D8), A4<CR>

LEA L 5(A0, D8), A4

BAD COMBI NATI ON OF COMVAND, OPERANDS
00006000 528B ADDQ L #$1, A3?

M68CPU32BUG/D 4-11

ASSEMBLER/DISASSEMBLER

4.3.3 Entering Branch and Jump Addresses

When entering a source line containing a branch instruction (BRA, BGT, BEQ, etc) do not enter
the offset to the branch’s destination in the instruction operand field. The offset is calculated by
the assembler. The user must append the appropriate size extension to the branch instruction.

To reference a current location in an operand expression use the asterisk (*) character.

EXAMPLES
0000D000 6000BF68 BRA *-4096
0000D000 60FE BRA. B *
0000D000 4EF90000 DOO0OO JMP *
0000D000 4EF00130 0000DO00 JMP (*, AO, DO)

In the case of forward branches or jumps, the absolute address of the destination may be
unknown as the program is being entered. The user may enter an asterisk (*) for branch to self in
order to reserve space. After the actual address is discovered, the line containing the branch
instruction can be re-entered using the correct value. Enter branch sizes "B” or "W”, as opposed to
S and’L".

4.3.4 Assembler Output/Program Listings

Use the MD (Memory Display) command with the ;DI option to obtain alisting of the program.
The MD command requires the starting address and a line count or ending address to be entered
in the command line. When the ;DI option is executed with a line count, the number of
instructions disassembled and displayed is equal to the line count.

Note again, that the listing may not correspond exactly to the program as entered. As discussed in
paragraph 4.2.1.3, the disassembler displays in signed hexadecimal any number it interprets as an
offset of an address register; all other numbers are displayed in unsigned hexadecimal.

M68CPU32BUG/D 4-12

SYSTEM CALLS

CHAPTER 5
SYSTEM CALLS

5.1 INTRODUCTION

This chapter describes the CPU32Bug TRAP #15 handler, which allows system calls from user
programs. System calls access selected functional routines contained within CPU32Bug,
including input and output routines. TRAP #15 aso transfers control back to CPU32Bug at the
end of a user program (refer to the .RETURN function, paragraph 5.2.16).

In the descriptions of some input and output functions, reference is made to the default input port
or the default output port. After power-up or reset, the default input and output port is port O (the
BCC terminal port).

511 Executing System Calls Through TRAP #15

To execute a system call from a user program simply insert a TRAP #15 instruction into the
source program. The code corresponding to the particular system routine is specified in the word
following the TRAP opcode, as shown in the following example.

Format in user program:

TRAP #15 System call to CPU32Bug
DC.W $xxxx Routine being requested (xxxx = code)

In some of the examples shown in the following descriptions, a SYSCALL macro is used with
the Motorola Macro Assembler (M6BMASM) for MS-DOS/PC-DOS machines. This macro
automatically assembles the TRAP #15 call followed by the define constant for the function
code. The SYSCALL macrois:

SYSCALL MACRO

TRAP #15
DC.W \1
ENDM

The CPU32Bug input default is hexadecimal, while other assemblers default to decimal. When
programming a CPU32Bug assembler TRAP function it is best to use the SYSCALL macro to
make the conversion.

Using the SY SCALL macro, the system call appears in the user program as:
SYSCALL <routine name>

M68CPU32BUG/D REV 1 5-1

SYSTEM CALLS

It is necessary to create an equate file with the routine names equated to their respective codes, or
download the archive file C32SCALL.ARC from the Motorola FREEWARE Bulletin Board
(BBS). For more information on the FREEWARE BBS, reference customer letter
MB8XXXEVX/L2.

When using the CPU32Bug one-line assembler/disassembler, the SYSCALL macro and the
equates are pre-defined. Input: SYSCALL, space, function, carriage return.

EXAMPLE
CPU32Bug>M 3000; DI <CR>
0000 3000 00000000 ORI . B #$0, D0? SYSCALL . OUTLN <CR>
0000 3000 4E3F0022 SYSCALL . OUTLN
0000 3004 00000000 OR . B #$0, D0? . <CR>
CPU32Bug>

5.1.2 Input/Output String For mats
Within the context of the TRAP #15 handler are three string formats:

Pointer/Pointer Format The string is defined by a pointer to the first character and a
pointer to the last character + 1.

Pointer/Count Format The string is defined by a pointer to a count byte which
contains the count of the characters in the string followed by
the string itself.

LineFormat A lineis defined as a string followed by a carriage return and a
line feed.

5.2 SYSTEM CALL ROUTINES

Table 5-1 summarizes the TRAP #15 functions. Refer to the appropriate paragraph for a
description of the available system calls.

M68CPU32BUG/D REV 1 5-2

Table 5-1. CPU32Bug System Call Routines

SYSTEM CALLS

Function Trap Code Description
.BINDEC $0064 Convert binary to Binary Coded Decimal (BCD)
.CHANGEV $0067 Parse value
.CHKBRK $0005 Check for break
.DELAY $0043 Timer delay function
.DIVU32 $006A Divide two 32-bit unsigned integers
.ERASLN $0027 Erase line
.INCHR $0000 Input character
.INLN $0002 Input line (pointer/pointer format)

INSTAT $0001 Input serial port status

.MULU32 $0069 Multiply two 32-bit unsigned integers
.OUTCHR $0020 Output character

.OUTLN $0022 Output line (pointer/pointer format)
.OUTSTR $0021 Output string (pointer/pointer format)
.PCRLF $0026 Output carriage return and line feed
.READLN $0004 Input line (pointer/count format)
.READSTR $0003 Input string (pointer/count format)
.RETURN $0063 Return to CPU32Bug

.SNDBRK $0029 Send break

.STRCMP $0068 Compare two strings (pointer/count format)
.TM_INI $0040 Timer initialization

.TM_RD $0042 Read timer

.TM_STRO $0041 Start timer at T=0

\WRITD $0028 Output string with data (pointer/count format)
\WRITDLN $0025 Output line with data (pointer/count format)
WRITE $0023 Output string (pointer/count format)
WRITELN $0024 Output line (pointer/count format)

M68CPU32BUG/D REV 1

5-3

.BINDEC

Calculate BCD Equivalent Specified Binary Number

5.2.1 Calculate BCD Equivalent Specified Binary Number

SYSCALL

.BINDEC

TRAP CODE: $0064

SYSTEM CALLS

.BINDEC

This function takes a 32-bit unsigned binary number and changes it to its equivalent BCD
(Binary Coded Decimal Numbe).

Entry Conditions:
SP==> Argument: Hex number <long>
Space for result <2long>
Exit Conditions:
SP ==> Decimal number (2 Most Significant Digits)
(8 Most Significant Digits)
EXAMPLE
SUBQ L #8, A7 Allocate space for result
MOVE. L DO, - (A7) L oad hex number
SYSCALL . BI NDEC Cdl .BINDEC
MOVEM L (A7) +, D1/ D2 Load result into D1/D2

M68CPU32BUG/D REV 1

5-4

<long>
<long>

.CHANGEV

SYSTEM CALLS

Parse Value, Assign to Variable .CHANGEV

522 ParseValue, Assign to Variable

SYSCALL .CHANGEV
TRAP CODE: $0067

Parse a value in the user specified buffer. If the user specified buffer is empty, the user is
prompted for a new value, otherwise update the integer offset into the buffer to skip the value.
The new value is displayed and assigned to the variable unless the user’ sinput is an empty string.

Entry Conditions:

SP==>

Exit Conditions;

SP==>

EXAMPLE

PROVPT DC. B
GETCOUNT PEA
PEA
PEA
PEA
SYSCALL
RTS

M68CPU32BUG/D REV 1

Address of 32-bit offset into user’s buffer

Address of user’s buffer (pointer/count format string)
Address of 32-hit integer variable to change

Address of string to use in prompting and displaying value

Top of stack

$14,’ COUNT = | 10, 8|

PROVPT(PC) Point to prompt string
COUNT Point to variable to change
BUFFER Point to buffer

PO NT Point to offset into buffer

. CHANGEV Make the system call

COUNT changed, return

5-5

SYSTEM CALLS

.CHANGEV Parse Value, Assign to Variable .CHANGEV

If the above code was called with a syscall routine and BUFFER contained "1 3” in pointer/count
format and POINT contained 2 (longwords), then COUNT would be assigned the value 3, and
POINT would contain 4 (pointing to first character past 3). Note that POINT is the offset of the
buffer start address (not the address of the first character in the buffer) to the next character to
process. In this case, avalue of 2 in POINT indicates that the space between 1 and 3 is the next
character to be processed. After calling .CHANGEV, the screen displays:

COUNT = 3

If the above code was called again, nothing could be parsed from BUFFER, so a prompt would
be issued. For example, if the string 5 is entered in response to the prompt.

COUNT

3? 5<CR>
COUNT

5

If in the previous example nothing had been entered at the prompt, COUNT would retain its prior
value.

COUNT = 3?7 <CR>

M68CPU32BUG/D REV 1 5-6

SYSTEM CALLS

.CHKBRK Check for Break .CHKBRK

5.2.3 Check for Break

SYSCALL .CHKBRK
TRAP CODE: $0005

Returns zero (0) status in condition code register if break status is detected at the default input
port.
Entry Conditions:

No arguments or stack allocation required

Exit Conditions;

Z flag set in CCR if bresk detected

EXAMPLE
SYSCALL . CHKBRK
BEQ BREAK

M68CPU32BUG/D REV 1 5-7

SYSTEM CALLS
.DELAY Timer Delay Function .DELAY

5.24 Timer Delay Function

SYSCALL .DELAY
TRAP CODE: $0043

The .DELAY function generates timing delays based on the processor clock. This function uses
the MCU periodic interrupt timer for operation. The user specifies the desired delay count
(number of interrupt pulses generated). .DELAY returns system control to the user after the
specified delay is completed. Initialize (TM_INI) and start (.TM_STRO) the timer before using
the . TM_RD function.

Entry Conditions:

SP ==> Delay time (number of interrupt pulses) <long>

Exit Conditions Different From Entry:

SP==> The timer keeps running after the delay and parameters are
removed from the stack.
EXAMPLE

SYSCALL .TM I NI Initialize timer

SYSCALL . TM_STRO Start timer

PEA. L &1500 Load a 1500 interrupt pulse delay

SYSCALL . DELAY

*

*

*

PEA. L &50000 Load a 50000 interrupt pulse delay

SYSCALL . DELAY

M68CPU32BUG/D REV 1 5-8

SYSTEM CALLS
.DIVU32 Unsigned 32 x 32 Bit Divide .DIVU32

5.25 Unsigned 32 x 32 Bit Divide

SYSCALL .DIVU32
TRAP CODE: $006A

Divide two 32-bit unsigned integers and return the quotient on the stack as a 32-bit unsigned

integer. The case of division by zero is handled by returning the maximum unsigned value
SFFFFFFFF.

Entry Conditions:

SP ==> 32-bit divisor (vaue to divide by)
32-bit dividend (value to divide)
32-bit space for result

Exit Conditions:
SP ==> 32-bit quotient (result from division)
EXAMPLE

Divide DO by D1, load result into D2.

SUBQ L #4, A7 Allocate space for result
MOVE. L Do, - (A7) Push dividend

MOVE. L D1, - (A7) Push divisor

SYSCALL . DI VU32 Divide DO by D1
MOVE. L (A7) +, D2 Get quotient

M68CPU32BUG/D REV 1 5-9

.ERASLN Erase Line

526 EraselLine

SYSCALL .ERASLN
TRAP CODE: $0027

Use .ERASLN to erase the line at the present cursor position.

Entry Conditions:

No arguments required.

Exit Conditions:

The cursor is positioned at the beginning of a blank line.

EXAMPLE

SYSCALL . ERASLN

M68CPU32BUG/D REV 1 5-10

SYSTEM CALLS

.ERASLN

SYSTEM CALLS
INCHR Input Character Routine INCHR

5.2.7 Input Character Routine

SYSCALL INCHR
TRAP CODE: $0000

Reads a character from the default input port. The character remains in the stack.

Entry Conditions:
SP ==> Space for character <byte>
Word fill <byte>
Exit Conditions:
SP ==> Character <byte>
Word fill <byte>
EXAMPLE
SUBQ. L #2, A7 Allocate space for result
SYSCALL . I NCHR Cal .INCHR
MOVE. B (A7) +, DO Load character in DO

M68CPU32BUG/D REV 1 5-11

SYSTEM CALLS
JANLN Input Line Routine JANLN

5.2.8 Input Line Routine

SYSCALL INLN
TRAP CODE: $0002

Reads a line from the default input port. The minimum buffer size is 256 bytes.

Entry Conditions:
SP==> Address of string buffer <long>
Exit Conditions:
SP ==> Address of last character in the string+1 <long>
EXAMPLE

If AO contains the string destination address:

SUBQ L #4, A7 Allocate space for result

PEA (A0) Push pointer to destination

TRAP #15 (May asoinvoke by SYSCALL

DC. W 2 macro ("’SYSCALL .INLN'")

MOVE. L (A7) +, Al Retrieve address of last character+1
NOTE

A line is a string of characters terminated by a carriage return
(<CR>). The maximum alowed size is 254 characters. The
terminating <CR> is not included in the string. See Terminal

Input/Output Control character processing as described in Chapter
1.

M68CPU32BUG/D REV 1 5-12

SYSTEM CALLS
ANSTAT Input Serial Port Status ANSTAT

5.2.9 Input Serial Port Status

SYSCALL ANSTAT
TRAP CODE: $0001

Checks the default input port buffer for characters. The condition codes are set to indicate the
result of the operation.

Entry Conditions:

No arguments or stack allocation required

Exit Conditions;

Z (zero) = 1if the receiver buffer is empty

EXAMPLE

LOOP SYSCALL . | NSTAT Any characters?
BEQ S EMPTY If no, branch
SUBQ L #2, A7 If yes, then read them in buffer
SYSCALL . I NCHR
MOVE. B (A7) +, (A0) +
BRA. S LOCP Check for more

EMPTY

M68CPU32BUG/D REV 1 5-13

SYSTEM CALLS
.MULU32 Unsigned 32 x 32 Bit Multiply .MULU32

5.2.10 Unsigned 32 x 32 Bit Multiply

SYSCALL .MULU32
TRAP CODE: $0069

Multiply two 32-bit unsigned integers and return the product on the stack as a 32-bit unsigned
integer. No overflow checking is performed.

Entry Conditions:
SP ==> 32-bit multiplier
32-bit multiplicand
32-bit space for result
Exit Conditions:
SP==> 32-bit product (result from multiplication)
EXAMPLE

Multiply DO by D1, load result into D2.

SUBQ L #4, A7 Allocate space for result
MOVE. L DO, - (A7) Push multiplicand
MOVE. L D1, - (A7) Push multiplier
SYSCALL . MULU32 Multiply DO by D1
MOVE. L (A7) +, D2 Get product

M68CPU32BUG/D REV 1 5-14

SYSTEM CALLS
.OUTCHR Output Character Routine .OUTCHR

5.2.11 Output Character Routine

SYSCALL .OUTCHR
TRAP CODE: $0020

Outputs a character to the default output port.

Entry Conditions:
SP ==> Character <byte>
Word fill <byte> (Placed automatically by the MCU)
Exit Conditions:
SP==> Top of stack
Character is sent to the default 1/0 port.
EXAMPLE
MOVE. B DO, - (A7) Send character in DO
SYSCALL . OQUTCHR To default output port

M68CPU32BUG/D REV 1 5-15

SYSTEM CALLS

.OUTLN Output String Using Pointers .OUTLN
OUTSTR .OUTSTR

5.2.12 Output String Using Pointers

SYSCALL .OUTLN
TRAP CODE: $0022

SYSCALL .OUTSTR
TRAP CODE: $0021

.OUTSTR outputs a string of characters to the default output port. .OUTLN outputs a string of
characters followed by a <CR><L F> sequence.

Entry Conditions:

SP==> Address of first character <long>
+4 Addressof last character + 1 <long>

Exit Conditions;

SP ==> Top of stack

EXAMPLE

If AO = start of string and A1 = end of string+1

MOVEM L A0/ AL, - (A7) Load pointersto string and print it
SYSCALL . QUTSTR

M68CPU32BUG/D REV 1 5-16

SYSTEM CALLS
.PCRLF Print Carriage Return and Line Feed .PCRLF

5.2.13 Print Carriage Return and Line Feed

SYSCALL .PCRLF
TRAP CODE: $0026

.PCRLF sends a carriage return and a line feed to the default output port.

Entry Conditions:

No arguments or stack allocation required.

Exit Conditions:

None

EXAMPLE

SYSCALL . PCRLF Qutput a carriage return and line feed

M68CPU32BUG/D REV 1 5-17

SYSTEM CALLS
.READLN Read Line to Fixed-Length Buffer .READLN

5.2.14 Read Lineto Fixed-Length Buffer

SYSCALL .READLN
TRAP CODE: $0004

Reads a string of characters from the default input port. Characters echo to the default output
port. A string consists of a count byte followed by the characters read from the input. The count
byte indicates the number of characters read from the input as well as the number of charactersin
the input string, excluding carriage return <CR> and line feed <L F>. A string may be as many as
254 characters.

Entry Conditions:
SP==> Address of input buffer <long>
Exit Conditions:
SP ==> Top of stack
Thefirst byte in the buffer indicates the string length.
EXAMPLE

If AO pointsto a 256 byte buffer;

PEA (A0) Long buffer address
SYSCALL . READLN And read aline from the default input port
NOTE

The caller must allocate 256 bytes for a buffer. Input are limited to
254 characters. <CR> and <LF> are sent to default output
following echo of the input. See Terminal Input/Output Control
character processing as described in Chapter 1.

M68CPU32BUG/D REV 1 5-18

SYSTEM CALLS
.READSTR Read String Into Variable-Length Buffer .READSTR

5.2.15 Read String Into Variable-L ength Buffer
SYSCALL .READSTR
TRAP CODE: $0003

Reads a string of characters from the default input port into a buffer. The first byte in the buffer
defines the maximum number of characters that can be written to the buffer. The buffer’s size
should be no less than the first byte + 2. The maximum number of characters written to a buffer
is 254 characters, making the maximum buffer size 256. On exit, the count byte defines the
number of characters in the buffer. Enter a carriage return (<CR>) and line feed (<LF>) to
terminate the input. The characters echo to the default output port. <CR> is not echoed.

Entry Conditions:
SP==> Address of input buffer <long>
Exit Conditions:
SP ==> Top of stack
The count byte containing the number of bytesin the buffer.
EXAMPLE

If AO contains the string buffer address;

PEA (A0) Push buffer address

TRAP #15 (May aso invoke by SYSCALL

DC. W 3 macro (' SYSCALL .READSTR)
NOTE

This routine alows the caller to define the maximum character
input length (254 characters). If more than 254 characters are
entered, then the buffer input is truncated. See Terminal
Input/Output Control character processing as described in Chapter
1.

M68CPU32BUG/D REV 1 5-19

SYSTEM CALLS
.RETURN Return to CPU32Bug .RETURN

5.2.16 Returnto CPU32Bug

SYSCALL .RETURN
TRAP CODE: $0063

.RETURN restores control to CPU32Bug from the target program. First, any breakpoints
inserted in target code are removed. Then the target state is saved in the register image area.
Finally, the routine returns to CPU32Bug.

Entry Conditions:

No arguments required.

Exit Conditions:

Control isreturned to CPU32Bug.

EXAMPLE

SYSCALL . RETURN Return to CPU32Bug

M68CPU32BUG/D REV 1 5-20

.SNDBRK Send Break

5.2.17 Send Break

SYSCALL .SNDBRK
TRAP CODE: $0029

Use .SNDBRK to send a break to the default output port.

Entry Conditions:

No arguments or stack allocation required

Exit Conditions:

The default port is sent * break’”.

EXAMPLE

SYSCALL . SNDBRK

M68CPU32BUG/D REV 1 5-21

SYSTEM CALLS

.SNDBRK

SYSTEM CALLS
STRCMP Compare Two Strings STRCMP

5.2.18 Compare Two Strings
SYSCALL STRCMP

TRAP CODE: $0068

An equality comparison is made and a boolean flag is returned to the caller. If the strings are not
identical the flag is $00, otherwise it is $FF.

Entry Conditions:
SP ==> Address of string#1
Address of string#2
Three bytes (unused)
Byte to receive string comparison result
Exit Conditions:
SP ==> Three bytes (unused)
Byte that received string comparison result
EXAMPLE

If A1 and A2 contain the addresses of the two strings.

SUBQ L #4, A7 Allocate longword to receive result
PEA (AL Push address of one string

PEA (A2) Push address of the other string
SYSCALL . STRCWP Compare the strings

MOVE. L (A7) +, DO Pop boolean flag into data register
TST. B DO Check boolean flag

BNE ARE SAVE Branch if strings are identical

M68CPU32BUG/D REV 1 5-22

SYSTEM CALLS
.TM_| NI Timer Initialization .TM_| NI

5.2.19 Timer Initialization

SYSCALL .TM_INI
TRAP CODE: $0040

Use . TM_INI toinitialize the MCU periodic interrupt timer. .TM_INI stops the timer and then
initializesit. . TM_INI does not restart the timer; use . TM_STRO to restart the timer. Timing is
accomplished by counting the number of interrupt pulses generated. The default interrupt pulse
frequency is 125 milliseconds. Use this routine the first time the timer functions are used.

Entry Conditions:

No arguments required.

Exit Conditions Different From Entry:

Periodic interrupt timer is stopped (no interrupts) and initialized for future
operation.

EXAMPLE

SYSCALL . TM_I'NI Initialize timer

M68CPU32BUG/D REV 1 5-23

SYSTEM CALLS
.TM_RD Read Timer .TM_RD

5.2.20 Read Timer

SYSCALL .TM_RD
TRAP CODE: $0042

Use this routine to read the timer value (the timer value is the number of interrupt pulses
generated). Initialize (TM_INI) and start (.TM_STRO) the timer before using the .TM_RD
function.

Entry Conditions:

SP ==> Space for result <long>

Exit Conditions Different From Entry:.

SP==> Time (number of interrupt pulses) <long>. The timer keeps
running after the read.
EXAMPLE
SUBQ L #4, A7 Allocate space for result
SYSCALL . TM_RD Read timer
MOVE. L (A7) +, DO Load interrupt pulse count

M68CPU32BUG/D REV 1 5-24

SYSTEM CALLS
.TM_STRO Start Timer at T=0 .TM_STRO

5221 Start Timer at T=0

SYSCALL .TM_STRO
TRAP CODE: $0041

Use this routine to reset the timer to O and start it. The user can select values for the MCU
periodic interrupt timer (periodic interrupt timing register (PICR) and periodic interrupt control
register (PITR)), or use the default values. The default values set the interrupt frequency to 125
milliseconds and use level 6, vector 66. See Appendix C of this manual and the MC68332 User’s
Manual, MC68332UM/AD, concerning the Periodic Interrupt Timer for more details.

Entry Conditions:

SP ==> Timer control value (for PICR) <word>
Timer period value (for PITR) <word>

Exit Conditions Different From Entry:

Parameters are removed from the stack, the timer is started, and the interrupt pulse
counter is cleared. If the user’s interrupt level, as defined in the status register
(SR), disables the timer interrupts, the SR interrupt mask bits are changed to allow
timer interrupts.

If the value of PICR is not equal to the power-up default value, $000F, the old
vector number is restored to the default CPU32Bug value.

EXAMPLES
SYSCALL . TM_STRO
MOVE. L #0, - (A7) Reset the timer to zero and start it with the default values.
SYSCALL . TM_STRO

M68CPU32BUG/D REV 1 5-25

SYSTEM CALLS

.TM_STRO Start Timer at T=0 .TM_STRO
MOVE. L #$00000002, - (A7) Reset the timer to zero and start it with the default control
SYSCALL . TM_STRO value (PICR) and a period value (PITR) of $0002 (=244

usec/interrupt).
MOVE. L #$054400A0, - (A7) Reset the timer to zero and start it with the control value
SYSCALL . TM STRO (PICR) of $0544 (level 5, vector 68 = $44) and a period

vaue (PITR) of $00A0 (=19.5 msec/interrupt).

M68CPU32BUG/D REV 1 5-26

SYSTEM CALLS

WRITD Output String with Data WRITD
WRITDLN WRITDLN

5.2.22 Output String with Data

SYSCALL WRITD — Output string with data
TRAP CODE: $0028

SYSCALL WRITDLN - Output string with data and <CR><LF>
TRAP CODE: $0025

These trap functions use the monitor I/O routine which outputs a user string containing
embedded variable fields. .WRITD outputs a string of characters with data and .WRITDLN
outputs a string of characters with data followed by a carriage return and line feed. The user
passes the starting address of the string and the data stack address containing the data which is
inserted into the string. The output goes to the default output port.

Entry Conditions:
Eight bytes of parameter positioned in the stack as follow:

SP ==> Address of string <long>
Data list pointer <long>

A separate data stack or data list arranged as follows:

Data list pointer => Data for 1st variable in string <long>
Data for next variable <long>
Data for next variable <long>

Exit Conditions:

SP ==> Top of stack (parameter bytes removed)

M68CPU32BUG/D REV 1 5-27

SYSTEM CALLS

WRITD Output String with Data WRITD
WRITDLN WRITDLN
EXAMPLE

The following section of code......

ERRVESSG DC. B $15," ERROR CODE = ', '] 10, 8Z|"’
MOVE. L #3, - (AD) Push error code on data stack
PEA (A5) Push data stack location
PEA ERRVESSE PC) Push address of string
SYSCALL . V\RI TDLN Invoke function
TST. L (A5) + De-allocate data from data stack

..... prints this message:

ERRCR CCDE = 3

NOTE

The string must be formatted such that the first byte (the byte
pointed to by the passed address) contains the byte count of the
string, including the data field specifiers (pointer/count format —
see 5.1.2).

Format data fields within the string as follows:
'|<radix>,<fieldwidth>[Z]|' where <radix> is the data's numerical
base (in hexadecimal, i.e., "A" is base 10, "10" is base 16, etc.) and
<fieldwidth> is the number of data characters to output. The data is
right-justified and left-most characters are truncated to size.
Include "Z" to suppress leading zeros in the output.

All data is placed in the stack as longwords. Each time a data field
IS encountered in the user string, a longword is displayed from the
data stack.

The data stack is not destroyed by this routine. Use the call routine

(see example above) to de-allocate space in the data stack. If it is
necessary for the space in the data stack to be de-allocated, it must
be done using the call routine, as shown in the above example.

M68CPU32BUG/D REV 1 5-28

SYSTEM CALLS

WRITE Output String Using Character Count WRITE
WRITELN WRITELN

5.2.23 Output String Using Character Count

SYSCALL WRITE — Output string
TRAP CODE: $0023

SYSCALL WRITELN — Output string and <CR><LF>
TRAP CODE: $0024

WRITE and .WRITELN format character strings with a count byte and output the string to the
default output port. After formatting, the count byte is the first byte in the string. The user passes
the starting address of the string. .WRITELN appends a <CR><LF> to the end of the string.

Entry Conditions:
Four bytes of parameters are positioned in the stack as follows:

SP ==> Address of string.<long>

Exit Conditions:

SP ==> Top of stack (parameter bytes removed)
EXAMPLE
MESSAGEL DC. B 9, "MOTOROLA "
MESSAGE2 DC. B 8, "QUALITY!"
PEA MVESSAGEL(PC) Push address of string
SYSCALL .WRI TE Use TRAP #15 macro
PEA MVESSAGE2(PC) Push address of other string
SYSCALL .VWRI TE Invoke function again

M68CPU32BUG/D REV 1 5-29

SYSTEM CALLS

WRITE Output String Using Character Count WRITE
WRITELN WRITELN
..... prints this message:

MOTOROLA QUALI TY!

Using .WRITELN instead of .WRITE outputsthis message:

MOTOROLA
QUALI TY!

NOTE

The string must be formatted such that the first byte (the byte
pointed to by the passed address) contains the byte count of the
string (pointer/count format — see 5.1.2).

M68CPU32BUG/D REV 1 5-30

DIAGNOSTIC FIRMWARE GUIDE

CHAPTERG
DIAGNOSTIC FIRMWARE GUIDE

6.1 INTRODUCTION

This diagnostic guide contains operation information for the CPU32Bug Diagnostic Firmware
Package, hereafter referred to as CPU32Diag. Paragraph 6.3 describes utilities available to the
user. Paragraphs 6.4 through 6.6 are guides to using each test.

6.2 DIAGNOSTIC MONITOR

The tests described herein are called via a common diagnostic monitor, hereafter called monitor.
This monitor is command-line driven and provides input/output facilities, command parsing,
error reporting, interrupt handling, and a multi-level directory.

6.21 Monitor Start-Up

At the CPU32Bug> prompt, enter SD to switch to the diagnostics directory. The Switch
Directories (SD) command is described elsewhere in this chapter. The prompt should now read
CPU32Diag>.

6.2.2 Command Entry and Directories

Enter commands at the CPU32Diag> prompt. The command name is entered before pressing the
carriage return <CR>. Multiple commands may be entered. If a command expects parameters
and another command is to follow it, separate the two with an exclamation point (!). For
Instance, to execute the MT B command after the MT A command, the command line would read
MT A ! MT B. Spaces are not required but are shown here for legibility. Severa commands may
be combined on one line.

Commands are listed in the diagnostic directory. Some commands have sub-commands which
arelisted in the directory for that particular command (see example below).

CPU A

—— SUB-COMMAND

COMMAND

M68CPU32BUG/D REV 1 6-1

DIAGNOSTIC FIRMWARE GUIDE

To execute a particular test, for example CPU, enter CPU X (X = the desired sub-command).
This command causes the monitor to find the CPU subdirectory, and then execute the specified
command from that subdirectory.

EXAMPLES
Single-Level Commands HE Help
DE Display Error Counters
Two-Level Commands CPU CPU Testsfor the BCC MCU
A Register Test

6.2.3 Hep (HE)

On-line documentation is provided in the form of a Help command (syntax: HE [command
name]). This command displays a menu of the top level directory if no parameters are entered, or
amenu of each subdirectory if the name of that subdirectory is entered. For example, to bring up
amenu of al the memory tests, enter HE MT. When a menu is too long to fit on the screen, it
pauses until the operator presses the carriage return (<CR>) before displaying the next screen.

6.2.4 Self Test (ST)

The monitor provides an automated test mechanism called self test. Entering ST + command
causes the monitor to run only the tests included in that command. Entering ST - command runs
al the testsincluded in an internal self-test directory except the command listed. ST without any
parameters runs the entire directory, which contains most of the diagnostics.

Each test for each particular command is listed in the paragraph pertaining to the command.

6.2.5 Switch Directories (SD)

To exit the diagnostic directory (and disable the diagnostic tests), enter SD. This terminates the
diagnostic commands and initializes the CPU32Bug commands. When in the CPU32Bug
directory, the prompt is CPU32Bug>. To return to the diagnostic directory, enter the SD
command. When in the diagnostic directory, the prompt is CPU32Diag>. This feature allows the
user to access CPU32Bug without the diagnostics being visible.

6.2.6 Loop-On-Error Mode (LE)
Use the Loop-on-error mode (LE) to endlessly repeat a test at the point where an error is

detected. This is useful when using a logic analyzer to trouble-shoot test failures. Enter LE and
the test name to loop on errors encountered during the test.

M68CPU32BUG/D REV 1 6-2

DIAGNOSTIC FIRMWARE GUIDE

6.2.7 Stop-On-Error Mode (SE)

Use the stop-on-error mode (SE) to halt atest at the point where an error is detected. Enter SE
then the test mnemonic to stop on errors encountered during the test.

6.2.8 Loop-Continue Mode (LC)

Use loop-continue mode (L C) to endlessly repeat a test or series of tests. This command repeats
testing of everything on the command line. To terminate the loop, press the BREAK key on the
diagnostic video display terminal. Certain tests disable the BREAK key interrupt, so pressing the
ABORT or RESET switches of the M68300PFB platform board may become necessary.

EXAMPLE

CPU32Di ag>LC ST<CR> Repeats self test (ST) command to continuously test the
system.

6.2.9 Non-Verbose Mode (NV)

The diagnostics display a substantial number of error messages when an error is detected. Non-
verbose mode (NV) suppresses all messages except PASSED or FAILED. At the prompt enter
NV, the test name, and <CR>. NV ST MT causes the monitor to run the MT self-test, but show
only the names of the sub-tests and the results (pass/fail).

6.2.10 Display Error Counters(DE)

Each test in the diagnostic monitor has a dedicated error counter. As errors are encountered in a
particular test, its error counter is incremented. If one were to run a self-test or a series of tests,
the test results could be determined by examining the error counters. Entering DE, the test name,
and a<CR> displays the results of a particular test. Only nonzero values are displayed.

6.2.11 Clear (Zero) Error Counters(ZE)

The error counters, at start-up, initialize to a value of zero, but it may be necessary to reset them
to zero after errors have accumulated. The ZE command resets all error counters to zero. The
error counters can be individualy reset by entering the specific test name following the
command. Example: ZE CPU A clears the error counter associated with CPU A.

6.2.12 Display Pass Count (DP)
A count of the number of passes in loop-continue mode is kept by the monitor. This count is

displayed with other information at the conclusion of each pass. To display this information
without using L C, enter DP.

M68CPU32BUG/D REV 1 6-3

DIAGNOSTIC FIRMWARE GUIDE

6.2.13 Zero Pass Count (ZP)

Executing this command resets the pass counter DP to zero. This is frequently desirable before
entering a command that executes the loop-continue mode. Entering this command on the same
line as L C resultsin the pass counter being reset every pass.

6.3 UTILITIES

The monitor is supplemented by several utilities that are separate and distinct from the monitor
itself and the diagnostics.

6.3.1 Write Loop
WL.<SIZE> [<ADDR> [<DATA>]]

The WL command executes a streamlined write of specified size to a specified memory location.
This command is intended as a debugging aid once specific fault areas are identified. The write
loop is very short in execution so measuring devices such as oscilloscopes may be utilized in
tracking failures. Pressing the BREAK key does not terminate this command, but pressing the
ABORT switch or RESET switch does.

Command size must be specified as B for byte, W for word, or L for longword.

The command requires two parameters. target address and data to be written. The address and
data are both hexadecimal values and must not be preceded by a $. To write $00 out to address
$10000, enter WL.B 10000 00. The system prompts the user if either or both parameters are
omitted.

EXAMPLES

CPU32Bug>SD<CR> Switch to diagnostic directory

CPU32Di ag>V\R. WCR> Prompts for address and data to which to
write word value.

CPU32Di ag>VW\R. B 40FC E6<CR> Writes $E6 to $40FC

CPU32Di ag>WR. W 800C 43F6<CR> Writes $43F6 to $800C

CPU32Di ag>WR. L 54F0 F8432191<CR> Writes $F8432191 to $54F0

M68CPU32BUG/D REV 1 6-4

DIAGNOSTIC FIRMWARE GUIDE

6.3.2 Read L oop
RL.<SIZE> [<ADDR> [<DATA>]]

The RL command executes a streamlined read of specified size from a specified memory
location. This command is intended as a debugging aid once specific fault areas are identified.
The read loop is very short in execution so measuring devices such as oscilloscopes may be
utilized in tracking failures. Pressing the BREAK key does not terminate this command, but
pressing the ABORT switch or RESET switch does.

Command size must be specified as B for byte, W for word, or L for longword.

The command requires one parameter: target address. The address is a hexadecimal vaue. To
read from address $10000, enter RL.B 10000. The system prompts the user if the parameter is
omitted.

EXAMPLES
CPU32Di ag>RL. B<CR> Prompts for address from which to read byte value
CPU32Di ag>RL. W AO00<CR> Read longword at $A000

6.3.3 Write/Read L oop
WR.<SIZE> [<ADDR> [<DATA>]]

The WR command executes a streamlined write and read of specified size to a specified memory
location. This command is intended as a debugging aid once specific fault areas are identified.
The write/read loop is very short in execution so measuring devices such as oscilloscopes may be
utilized in tracking failures. Pressing the BREAK key does not terminate this command, but
pressing the ABORT switch or RESET switch does.

Command size must be specified as B for byte, W for word, or L for longword.

The command requires two parameters. target address and data to be written. The address and
data are both hexadecimal values and must not be preceded by a $. To write $00 out to address
$10000 and read back, enter WR.B 10000 00. The system prompts the user if either or both
parameters are omitted.

EXAMPLE

CPU32Di ag>WR. W 8000 FFFFFFFF<CR> Writes longword $FFFFFFFF to location $8000 and
reads it back

M68CPU32BUG/D REV 1 6-5

DIAGNOSTIC FIRMWARE GUIDE

CPU CPU Tests For The MCU CPU

6.4 CPUTESTSFOR THE MCU

CPU tests are a series of diagnostics used to test the CPU portion of the BCC MCU, as listed
below (Table 6-1).

Table6-1. MCU CPU Diagnostic Tests

Monitor Command Title
CPUA Register Test
CPUB Instruction Test
CPUC Address Mode Test
CPUD Exception Processing Test

The normal procedure for correcting a CPU error is to replace the MCU micro-controller unit.

M68CPU32BUG/D REV 1 6-6

DIAGNOSTIC FIRMWARE GUIDE

CPU A Register Test CPU A

6.4.1 Register Test
CPU32Diag>CPU A

CPU A executes a thorough test of all the registers in the MCU device, including checking for
bits stuck high or low.

EXAMPLE
After the command has been issued, the following line is printed:
A CPU Register test.................. Running ---------- >
If any part of the test fails, then the display appears as follows.

A CPU Register test.................. Running ---------- > ... FAI LED
(error message)

Here, (error message) is one of the following:

Fai |l ed DO D7 regi ster check

Fail ed SR regi ster check

Fai | ed USP/ VBR/ CAAR regi ster check
Fai | ed CACR regi ster check

Fail ed AO- A4 register check

Fai |l ed A5- A7 register check

If all parts of the test are completed correctly, then the test passes.

A CPU Register test.................. Running ---------- > PASSED

M68CPU32BUG/D REV 1 6-7

CPUB

DIAGNOSTIC FIRMWARE GUIDE

Instruction Test CPUB

6.4.2 Instruction Test

CPU32Diag>CPU B

CPU B tests various data movement, integer arithmetic, logical, shift and rotate, and bit
manipulation instructions of the MCU device.

EXAMPLE

After the command has been issued, the following line is printed:

B CPU Instruction Test Running ---------- >

If any part of the test fails, then the display appears as follows.

B CPU Instruction Test............... Running ---------- > ... FAI LED
(error message)

Here, (error message) is one of the following:

Fail ed
Fai | ed
Fai | ed
Fai | ed
Fai | ed
Fai | ed
Fai | ed

AND/ OR/ NOT/ EOR i nstruction check
DBF i nstruction check

ADD or SUB instruction check
MJLU or DI VU instruction check
BSET or BCLR instruction check
LSR i nstruction check

LSL i nstruction check

If all parts of the test are completed correctly, then the test passes.

B CPU Instruction Test............... Running ---------- > PASSED

M68CPU32BUG/D REV 1 6-8

DIAGNOSTIC FIRMWARE GUIDE

CPUC Address Mode Test CPUC

6.4.3 Address Mode Test
CPU32Diag>CPU C

CPU C tests the various addressing modes of the MCU device. These include absolute address,
addressindirect, address indirect with post-increment, and address indirect with index modes.

EXAMPLE
After the command has been issued, the following lineis printed:.
c CPU Address Mbde test.............. Running ---------- >
If any part of the test fails, then the display appears as follows.

C CPU Address Mode test.............. Running ---------- > ... FAI LED
(error message)

(error message) is one of the following:

Fai | ed Absol ute Addressing check

Fail ed I ndirect Addressing check

Fai | ed Post increnment check

Fail ed Pre decrenent check

Failed Indirect Addressing with Index check
Unexpected Bus Error at $XXXXXXXX

If all parts of the test are completed correctly, then the test passes.

C CPU Address Mode test.............. Running ---------- > PASSED

M68CPU32BUG/D REV 1 6-9

DIAGNOSTIC FIRMWARE GUIDE

CPUD Exception Processing Test CPUD

6.4.4 Exception Processing Test
CPU32Diag>CPU D

CPU D tests many of the exception processing routines of the MCU, but not the interrupt auto
vectors or any of the floating point co-processor vectors.

EXAMPLE
After the command has been issued, the following line is printed:
D CPU Exception Processing Test...... Running ---------- >
If any part of the test fails, then the display appears as follows.

D CPU Exception Processing Test...... Running ---------- > ... FAI LED
Test Failed Vector # XXX

XXX is the hexadecimal exception vector offset, as explained in the CPU32 Reference

Manual.

However, if the failure involves taking an exception different from that being tested, the
display is:

D CPU Exception Processing Test...... Running ---------- > ... FAI LED

Unexpect ed exception taken to Vector # XXX
If all parts of the test are completed correctly, then the test passes.

D CPU Exception Processing Test...... Running ---------- > PASSED

M68CPU32BUG/D REV 1 6-10

DIAGNOSTIC FIRMWARE GUIDE

MT Memory Tests MT

6.5 MEMORY TESTS(MT)

The memory tests are a series of diagnostics which verify random access memory (read/write)
that may or may not reside on the M68300EV S eval uation system. Default is the BCC on-board
RAM. To test off-board RAM, change Start and Stop Addresses per MT B and MT C as
described in the following paragraphs. Memory tests are listed in Table 6-2.

NOTE

If one or more memory tests are attempted at an address where there is no
memory, abus error message appears, giving the details of the problem.

Table 6-2. Memory Diagnostic Tests

MONITOR COMMAND TITLE
MT A Set Function Code
MT B Set Start Address
MT C Set Stop Address
MT D Set Bus Data Width
MT E March Address Test
MT F Walk a Bit Test
MT G Refresh Test
MT H Random Byte Test
MT | Program Test
MT J TAS Test

The following hardware is required to perform these tests.
* M68300EVK - Module being tested

* Video display terminal or host computer

M68CPU32BUG/D REV 1 6-11

DIAGNOSTIC FIRMWARE GUIDE

The following describes the memory error display format for memory tests E through J. The error
reporting code is designed to conform to two rules:

1. The first time an error occurs, headings are printed out prior to the printing of the
values.

2. Upon 20 memory errors, the printing of error messages ceases for the remainder of the
test.

The memory error display format is:

FC TEST ADDR 10987654321098765432109876543210 EXPECTED READ
5 00010000 == === -memmea e Xemmmmm 00000100 00000000
5 00010004 == --=--cemmeamaaos p S X- - - - FFFFEFFF FFFFFFEF

Each line displayed consists of five items. function code, test address, graphic bit report,
expected data, and read data. The test address, expected data, and read data are displayed in
hexadecimal. The graphic bit report shows a letter X at each errant bit position and a dash (-) at
each good bit position.

The heading used for the graphic bit report is intended to make the bit position easy to determine.
Each numera in the heading is the one's digit of the bit position. For example, the leftmost bad
bit at test address $10004 has the numeral 2 over it. Because this is the second 2 from the right,
the bit position isread 12 in decimal (base 10).

M68CPU32BUG/D REV 1 6-12

DIAGNOSTIC FIRMWARE GUIDE

MT A Set Function Code MT A

6.5.1 Set Function Code
CPU32Diag>MT A [new valug]

MT A allows the user to select the function code in most of the memory tests. The exceptions to
thisare Program Test and TAS Test.

EXAMPLE

If the user supplied the optional new value, then the display appears as follows:

CPU32Di ag>MI' A [new val ue] <CR>
Function Code=<new val ue>
CPU32Di ag>

If a new value was not specified by the user, then the old value is displayed al and the
user is alowed to enter anew value.

NOTE
The default is Function Code=5, which isfor on-board RAM.

CPU32Di ag>MI' A<CR>

Functi on Code=<current val ue> ?[new val ue] <CR>
Functi on Code=<new val ue>

CPU32Di ag>

This command may be used to display the current value without changing it by pressing a
carriage return <CR> without entering the new value.

CPU32Di ag>MI' A<CR>

Functi on Code=<current val ue> ?<CR>
Functi on Code=<current val ue>
CPU32Di ag>

M68CPU32BUG/D REV 1 6-13

DIAGNOSTIC FIRMWARE GUIDE

MT B Set Start Address MT B

6.5.2 Set Start Address
CPU32Diag>MT B [new value]

MT B alows the user to select the start address used by al of the memory tests. For the
MVME332, it is suggested that address $00003000 be used. Other addresses may be used, but
extreme caution should be used when attempting to test memory below this address.

EXAMPLE

If the user supplied the optional new value, then the display appears as follows:

CPU32Di ag>MTI' B [new val ue] <CR>
Start Addr.=<new val ue>
CPU32Di ag>

If a new value was not specified by the user, then the old value is displayed and the user
is alowed to enter anew value.

NOTE
The default is Start Addr.=00003000, which isfor on-board RAM.

CPU32Di ag>MI' B<CR>

Start Addr.=<current val ue> ?[new val ue] <CR>
Start Addr.=<new val ue>

CPU32Di ag>

This command may be used to display the current value without changing it by pressing a
carriage return <CR> without entering the new value.

CPU32Di ag>MI' B<CR>

Start Addr.=<current val ue> ?<CR>
Start Addr.=<current val ue>
CPU32Di ag>

NOTE

If a new value is specified, it is truncated to a longword boundary
and, if greater than the value of the stop address, replaces the stop
address. The start address is never alowed higher in memory than
the stop address. These changes occur before another command is
processed by the monitor.

M68CPU32BUG/D REV 1 6-14

DIAGNOSTIC FIRMWARE GUIDE

MT C Set Stop Address MT C

6.5.3 Set Stop Address
CPU32Diag>MT C [new value]

MT C alowsthe user to select the stop address used by all of the memory tests. The stop address
IS the address where testing terminates, so the stop address must be set to the last address +1.

EXAMPLE

If the user supplied the optional new value, then the display appears as follows:

CPU32Di ag>MI' C [new val ue] <CR>
St op Addr.=<new val ue>
CPU32Di ag>

If a new value was not specified by the user, then the old value is displayed and the user
Is allowed to enter a new value.

NOTE

The default is Stop Addr.=00010000, which is the end of on-board
RAM.

CPU32Di ag>MI' C

Stop Addr.=<current val ue> ?[new val ue] <CR>
St op Addr. =<new val ue>

CPU32Di ag>

This command may be used to display the current value without changing it by pressing a
carriage return <CR> without entering the new value.

CPU32Di ag>MI' C

Start Addr.=<current val ue> ?<CR>
Start Addr.=<current val ue>
CPU32Di ag>

NOTE

If a new value is specified, it is truncated to a longword boundary
and, if less than the value of the start address, is replaced by the
start address. The stop address is never allowed to be lower in
memory than the start address. These changes occur before another
command is processed by the monitor.

M68CPU32BUG/D REV 1 6-15

DIAGNOSTIC FIRMWARE GUIDE

MT D Set Bus Data Width MT D

6.5.4 Set BusData Width
CPU32Diag>MT D [new value: O for 16, 1 for 32]

MT D selects either 16-bit or 32-bit bus data accesses during the M68CPU32Bug MT memory
tests. The width is selected by entering zero for 16 bits or one for 32 bits.

EXAMPLE

If the user supplied the optional new value, then the display appears as follows:

CPU32Di ag>MI' D [new val ue] <CR>
Bus Wdth (32=1/16=0) =<new val ue>
CPU32Di ag>

If a new value was not specified by the user, then the old value is displayed and the user
Is allowed to enter a new value.

NOTE
The default value is Bus Width (32=1/16=0) =1.

CPU32Di ag>MI' D<CR>

Bus Wdth (32=1/16=0) =<current val ue> ?[new val ue] <CR>
Bus Wdth (32=1/16=0) =<new val ue>

CPU32Di ag>

This command may be used to display the current value without changing it by pressing a
carriage return <CR> without entering the new value.

CPU32Di ag>MI' D<CR>

Bus Wdth (32=1/16=0) =<current val ue> ?<CR>
Bus Wdth (32=1/16=0) =<current val ue>
CPU32Di ag>

M68CPU32BUG/D REV 1 6-16

DIAGNOSTIC FIRMWARE GUIDE

MT E March Address Test MT E

6.5.5 March Address Test
CPU32Diag>MT E

MT E performs a march address test from Start Address to Stop Address. The march address test
has been implemented in this manner:

1. All memory locations from Start Address up to Stop Address are cleared to 0.

2. Beginning at Stop Address and proceeding downward to Start Address, each memory
location is checked for bits that did not clear and then the contents are changed to all
F's (all the bits are set). This process reveals address lines that are stuck high.

3. Beginning at Start Address and proceeding upward to Stop Address, each memory
location is checked for bits that did not set and then the memory location is again
cleared to 0. This process reveals address lines that are stuck low.

EXAMPLE
After the command is entered, the display should appear as follows:
E MI March Addr. Test................ Running ---------- >

If an error is encountered, then the memory location and other related information are
displayed.

E MI March Addr. Test................ Running ---------- > ... FAI LED
(error-related information)

If no errors are encountered, then the display appears as follows:

E MI March Addr. Test................ Running ---------- > PASSED

M68CPU32BUG/D REV 1 6-17

DIAGNOSTIC FIRMWARE GUIDE

MT F Walk a Bit Test MT F

6.5.6 Walk aBit Test
CPU32Diag>MT F

MT F performs awalking bit test from start address to stop address. The walking bit test for each
memory location isimplemented in the following manner:

* Write out a 32-bit value with only the lower bit set.

* Read it back and verify that the value written equals the one read. Report any errors.
» Shift the 32-bit value to move the bit up one position.

* Repeat the procedure (write, read, and verify) for al 32-bit positions.

EXAMPLE
After the command is entered, the display should appear as follows:
F MI Walk a bit Test Running ---------- >

If an error is encountered, then the memory location and other related information are
displayed.

F M Walk a bit Test Running ---------- > ... FAI LED
(error-related information)

If no errors are encountered, then the display appears as follows:

F MI Walk a bit Test Running ---------- > PASSED

M68CPU32BUG/D REV 1 6-18

DIAGNOSTIC FIRMWARE GUIDE

MT G Refresh Test MT G

6.5.7 Refresh Test
CPU32Diag>MT G

MT G performs a refresh test from Start Address to Stop Address. The refresh test has been
implemented in this manner:

1. For each memory location:
» Write out value $FC84B730.
* Verify that the location contains $FC84B730.
* Proceed to next memory location.

2. Delay for 500 milliseconds (1/2 second).

3. For each memory location:
» Verify that the location contains $FC84B730.
* Write out the complement of $FC84B730 ($037B48CF).
« Veify that the location contains $037B48CF.
* Proceed to next memory location.

4. Delay for 500 milliseconds.

5. For each memory location:
» Veify that the location contains $037B48CF.
» Write out value $FC84B730.
» Verify that the location contains $FC84B730.
* Proceed to next memory location.

EXAMPLE

After the command is entered the display should appear as follows:

G MI Refresh Test.................... Running ---------- >

If an error is encountered, then the memory location and other related information are
displayed.

G MI Refresh Test.................... Running ---------- > ... FAI LED

(error-related information)

If no errors are encountered, then the display appears as follows:

G MI Refresh Test.................... Running ---------- > PASSED

M68CPU32BUG/D REV 1 6-19

DIAGNOSTIC FIRMWARE GUIDE

MT H Random Byte Test MT H

6.5.8 Random Byte Test
CPU32Diag>MT H

MT H performs a random byte test from Start Address to Stop Address. The random byte test
has been implemented in this manner:

1. A register isloaded with the value $ECA 86420.

2. For each memory location:
» Copy the contents of the register to the memory location, one byte at atime.
» Add $02468ACE to the contents of the register.
* Proceed to next memory location.

3. Reload $ECA86420 into the register.

4. For each memory location:

» Compare the contents of the memory to the register to verify that the
contents are good, one byte at atime.

* Add $02468ACE to the contents of the register.
* Proceed to next memory location.

EXAMPLE
After the command is entered, the display should appear as follows:
H MI' Random Byte Test................ Running ---------- >
If an error occurs, then the memory location and other related information are displayed.

H MI' Random Byte Test................ Running ---------- > ... FAI LED
(error-related information)

If no errors occur, then the display appears as follows:

H MI' Random Byte Test................ Running ---------- > PASSED

M68CPU32BUG/D REV 1 6-20

DIAGNOSTIC FIRMWARE GUIDE

MT | Program Test MT |

6.5.9 Program Test
CPU32Diag>MT |
MT | moves a program segment into RAM and executes it. The implementation of thisis:

1. The program is moved into the RAM, repeating it as many times as necessary to fill
the available RAM (i.e.,, from Start Address to Stop Address-8). Only complete
segments of the program are moved. The space remaining from the last program
segment copied into the RAM to Stop Address-8 is filled with NOP instructions.
Attempting to run this test without sufficient memory (around 400 bytes) for at least
one complete program segment to be copied causes an error message to be printed
out: INSUFFICIENT MEMORY .

2. Thelast location, Stop Address, receives an RTS instruction.
3. Finally, thetest performs a JSR to location Start Address.

4. The program itself performs a wide variety of operations, with the results frequently
checked and a count of the errors maintained. locations are reported in the same
fashion as any memory test failure (refer to paragraph 6.8.13).

EXAMPLE
After the command is entered, the display should appear as follows:
I MI ProgramTest.................... Running ---------- >

If the operator has not allowed enough memory for at least one program segment to be
copied into the target RAM, then the following error message is printed. To avoid this,
make sure that the Stop Address is at least 388 bytes ($00000184) greater than the Start
Address.

I MI Program Test.................... Running ---------- >
I nsufficient Menory
PASSED

If the program (in RAM) detects any errors, then the location of the error and other
information is displayed.

I MI Program Test.................... Running ---------- > ... FAI LED
(error-related information)

If no errors occur, then the display appears as follows:

I MI ProgramTest.................... Running ---------- > PASSED

M68CPU32BUG/D REV 1 6-21

DIAGNOSTIC FIRMWARE GUIDE

MT J Test and Set Test MT J

6.5.10 Test and Set Test
CPU32Diag>MT J

MT J performs a Test and Set (TAS) test from Start Address to Stop Address. The test for each
memory location isimplemented as follows:

* Clear the memory location to 0.
* Test And Set the location (should set upper bit only).
» Verify that the location now contains $80.
* Proceed to next location (next byte).
EXAMPLE
After the command is entered, the display should appear as follows:
J M TAS Test. ... Running ---------- >
If an error occurs, then the memory location and other related information are displayed.

J MITAS Test. ... e Running ---------- > ... FAI LED
(error-related information)

If no errors occur, then the display appears as follows:

J M TAS Test. ... i Running ---------- > PASSED

M68CPU32BUG/D REV 1 6-22

DIAGNOSTIC FIRMWARE GUIDE

BERR Bus Error Test BERR

6.6 BUSERROR TEST
CPU32Diag>BERR

BERR tests for local bus time-out and global bus time-out bus error conditions, including the
following:

* No buserror by reading from ROM
* Local bustime-out by reading from an undefined FC location
* Local bustime-out by writing to an undefined FC location

EXAMPLE
After the command has been issued, the following line is printed:
BERR Bus Error Test..................... Running ---------- >

If abus error occurs in the first part of the test, then the test fails and the display appears
asfollows.

BERR Bus Error Test..................... Running ---------- > .. FAI LED
Got Bus Error when reading from ROM

If no bus error occurs in one of the other parts of the test, then the test fails and the
appropriate error message appears as one of the following:

No Bus Error when readi ng from BAD address space
No Bus Error when witing to BAD address space

If al three parts of the test are completed correctly, then the test passes.

BERR Bus Error Test..................... Running ---------- > PASSED

M68CPU32BUG/D REV 1 6-23

DIAGNOSTIC FIRMWARE GUIDE

M68CPU32BUG/D REV 1 6-24

S-RECORD INFORMATION

APPENDIX A
S-RECORD INFORMATION

A.1 INTRODUCTION

The S-record format for output modules was devised for the purpose of encoding programs or
data files in a printable format for transportation between computer systems. The transportation
process can thus be visually monitored and the S-records can be more easily edited.

A.2 SRECORD CONTENT

When viewed by the user, S-records are essentially character strings made of several fields which
identify the record type, record length, memory address, code/data and checksum. Each byte of
binary data is encoded as a 2-character hexadecimal number; the first character representing the
high-order 4 bits, and the second the low-order 4 bits of the byte.

The five fields which comprise an S-record are shown below:

TYPE RECORD LENGTH ADDRESS CODE/DATA CHECKSUM

Where the fields are composed as follows:

Printable
Field Characters Contents

type 2 S-records type -- SO, S1, etc.

record length 2 The count of the character pairs in the record, excluding type and record
length.

address 4,6,0r8 The 2-, 3-, or 4-byte address at which the data field is to be loaded into
memory.

code/data 0-n From 0 to n bytes of executable code, memory-loadable data, or
descriptive information. For compatibility with teletypewriters, some
programs may limit the number of bytes to as few as 28 (56 printable
characters in the S-record).

checksum 2 The least significant byte of the one’s complement of the sum of the
values represented by the pairs of characters making up the records
length, address, and the code/data fields.

M68CPU32BUG REV 1 A-1

S-RECORD INFORMATION

Each record may be terminated with a CR/LF/NULL. Additionally, an S-record may have an
initial field to accommodate other data such as line numbers generated by some time-sharing
systems. An S-record fileisanormal ASCII text file in the operating system in which it resides.

Accuracy of transmission is ensured by the record length (byte count) and checksum fields.
A.3 SRECORD TYPES

Eight types of S-records have been defined to accommodate the several needs of the encoding,
transportation and decoding functions. The various Motorola upload, download and other records
transportation control programs, as well as cross assemblers, linkers and other file-creating or
debugging programs, utilize only those S-records which serve the purpose of the program. For
specific information on which S-records are supported by a particular program, the user’s manual
for the program must be consulted. CPU32Bug supports SO, S1, S2, S3, S7, S8, and S9 records.

An S-record format module may contain S-records of the following types:

SO0 | The header record for each block of S-records, The code/data.field may contain any descriptive
information identifying the following block of S-records. The address field is normally zeros.

S1 | Arecord containing code/data and the 2-byte address at which the code/data is to reside.

S2 | Arecord containing code/data and the 3-byte address at which the code/data is to reside.

S3 | Arecord containing code/data and the 4-byte address at which the code/data is to reside.

S5 | Arecord containing the number of S1, S2, and S3 records transmitted in a particular block. This
count appears in the address field. There is no code/data field.

S7 | Atermination record for a block of S3 records, The address field may optionally contain the 4-
byte address of the instruction to which control is passed. There is no code/data field.

S8 | A termination record for a block of S2 records. The address field may optionally contain the 3-
byte address of the instruction to which control is passed. There is no code/data field.

S9 | A termination record for a block of S1 records. The address field may optionally contain the 2-
byte address of the instruction to which control is passed. If not specified, the first entry point
specification encountered in the object module input will be used. There is ho code/data field.

Only one termination record is used for each block of S-records. S7 and S8 records are usualy
used only when control is to be passed to a 3 or 4 byte address. Normally, only one header record
Isused, although it is possible for multiple header records to occur.

M68CPU32BUG REV 1 A-2

S-RECORD INFORMATION

A.4 SRECORDSCREATION

S-record format files may be produced by dump utilities, debuggers, linkage editors, cross
assemblers or cross linkers. Severa programs are available for downloading a file in S-record
format from a host system to a microprocessor-based system.

EXAMPLE

Shown below isatypical S-record format module, as printed or displayed:

S00600004844521B
S1130000285F245F2212226A000424290008237C2A
$11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S$113003000144ED492

S9030000FC

The module consists of one SO record, four S1 records, and an S9 record.

The SO record is comprised of the following character pairs:

SO0 | Srecord type SO, indicating that it is a header record.

06 | Hexadecimal 06 (decimal 6), indicating that six character pairs (or ASCII bytes) follow.
00 | Four-character, 2-byte, address field; zeros in this example.

00

48

44 |ASCIl H,DandR-"HDR".

52

1B | The checksum.

Thefirst S1 record is explained as follows:

S1 | Srecord type S1, indicating that it is a code/data record to be loaded/verified at a 2-byte
address.

13 | Hexadecimal 13 (decimal 19), indicating that 19 character pairs, representing 19 bytes
of binary data, follow.

00 | Four-character, 2-byte, address field; hexadecimal address 0000, where the data which

00 |followsisto beloaded.

M68CPU32BUG REV 1 A-3

S-RECORD INFORMATION

The next 16 character pairs of the first S1 record are the ASCII bytes of the actua program
code/data. In this assembly language example, the hexadecimal opcodes of the program are

written

in sequence in the code/data fields of the S1 records:

OPCODE INSTRUCTION

285F MOVE. L (A7) +, Ad
245F MOVE. L (A7) +, A2
2212 MOVE. L (A2), DL
226A0004 MOVE. L 4(A2), AL
24290008 MOVE. L FUNCTI ON(AL)
237C MOVE. L

D2

#FORCEFUNC, FUNCTI ON(AL)

(The balance of this code is continued in the code/data fields of the remaining S1

records and stored in memory.)

2A The checksum of the first S1 record.

The second and third S1 records also each contain $13 (19) character pairs and are ended with
checksums 13 and 52 respectively. The fourth S1 record contains 07 character pairs and has a
checksum of 92.

The S9 record is explained as follows:

SO

S-record type S9, indicating that it is a termination record.

03

Hexadecimal 03, indicating that three character pairs (3 bytes) follow.

00
00

The address field, zeros.

FC

The checksum of the S9 record.

Each printable character in an S-record is encoded in a hexadecimal (ASCII in this example)
representation of the binary bits which are actually transmitted. For example, the first S1 record
aboveissent as:

TYPE LENGTH ADDRESS CODE/DATA

CHECKSUM

1 1 3 0 0 0 0 2 8

5

2

A

5 3

3 113 113 3 3 03 03 03 0 3 23 8

3 5

3

2

4 1

0101} 0011

0011]0001| 00114 0001 0011 0011 0011 0000 0011{0000] 0011 0000| 0011 0000} 0011} 0010{0011] 1000

0011} 0101

0100

0110] oe

0011

0010

0100 0001}

M68CPU32BUG REV 1 A-4

SELF-TEST ERROR MESSAGES

APPENDIX B
SELF-TEST ERROR MESSAGES

B.1 INTRODUCTION

On power-up or reset, CPU32Bug executes a system self-test (confidence test) to verify system
integrity before issuing the sign-on message (SIGNON) and monitor prompt (CPU32Bug>). If an
error is detected, testing is aborted and an error message is printed after the sign on message and
monitor prompt. Error messages are summarized in Table B-1. The error address is displayed as
"000EXXXXXX" because the actual error address is only significant to qualified repair
personnel. Additional error values, such as address and data information, may also be printed.

TableB-1. Self-Test Error Messages

Test Type and Error Message Failure Description
CPU Register Test:
ERROR $01 @ $000EXXXX, CONFIDENCE TEST FAILED Dn test #1
ERROR $02 @ $000EXXXX, CONFIDENCE TEST FAILED Dn test #2
ERROR $03 @ $000EXXXX, CONFIDENCE TEST FAILED Dn test #3
ERROR $04 @ $000EXXXX, CONFIDENCE TEST FAILED SR
ERROR $05 @ $000EXXXX, CONFIDENCE TEST FAILED VBR, USP
ERROR $06 @ $000EXXXX, CONFIDENCE TEST FAILED An
ERROR $07 @ $000EXXXX, CONFIDENCE TEST FAILED Exchange

CPU Instruction Test:

ERROR $10 @ $000EXXXX, CONFIDENCE TEST FAILED AND, OR, NOT, EOR
ERROR $11 @ $000EXXXX, CONFIDENCE TEST FAILED ADD, SUB

ERROR $12 @ $000EXXXX, CONFIDENCE TEST FAILED MUL, DIV

ERROR $13 @ $000EXXXX, CONFIDENCE TEST FAILED BSET, BCLR
ERROR $14 @ $000EXXXX, CONFIDENCE TEST FAILED LSR

ERROR $15 @ $000EXXXX, CONFIDENCE TEST FAILED LSL

ERROR $16 @ $000EXXXX, CONFIDENCE TEST FAILED DBF

M68CPU32BUG REV 1 B-1

SELF-TEST ERROR MESSAGES

Table B-1. Self-Test Error M essages (continued)

Test Type and Error Message Failure Description
ROM Test:
ERROR $20 @ $000EXXXX, CONFIDENCE TEST FAILED Odd CODESIZE
ERROR $21 @ $000EXXXX, CONFIDENCE TEST FAILED Checksum error
RAM Test:
ERROR $30 @ $000EXXXX, CONFIDENCE TEST FAILED RAM error

CPU Addressing Test:

ERROR $40 @ $000EXXXX, CONFIDENCE TEST FAILED Absolute, immediate

ERROR $41 @ $000EXXXX, CONFIDENCE TEST FAILED Address indirect

ERROR $42 @ $000EXXXX, CONFIDENCE TEST FAILED Postincrement, pre-
decrement

ERROR $43 @ $000EXXXX, CONFIDENCE TEST FAILED Address indirect with
index

M68CPU32BUG REV 1 B-2

USER CUSTOMIZATION

APPENDIX C
USER CUSTOMIZATION

C.1 INTRODUCTION

Within the CPU32Bug certain operating parameters may be customized for the user’s particular
situation. This appendix details the customization features of CPU32Bug. An IBM-PC or
compatible host computer with the Motorola program BCC EPROM tility (PROGBCC) is
required to reprogram the EPROM on the BCC. This appendix assumes the user is using the
ProComm terminal emulation program on the host computer to communicate with CPU32Bug
and is familiar with the following; CPU32Bug, ProComm, MS-DOS, and PROGBCC.

NOTE

In the back of this appendix is a list of questions and answers. It
may be helpful to refer to the Q & A section before customizing
CPU32Bug.

CAUTION

Failure to incorporate changes as specified in this appendix may
cause malfunctions in the CPU32Bug. Novices should not attempt
to customize CPU32Bug.

The user customization area (parameter area) is the first 512 bytes of CPU32Bug ($E0000-
$EOLFF), see Table C-1. For brevity’s sake, al entries have been shown as an offset value from
the $E0000 base address of CPU32Bug. The source code equivaent of the customization area,
initialization table, and chip select initialization module are available on the Motorola
FREEWARE Bulletin Board Service (BBS) under the archive filename C32SRC.ARC. Future
updates for CPU32Bug will also be available on the FREEWARE BBS under the archive
filename C32xxx.ARC. For more information on the FREEWARE BBS, reference customer
letter M68332EV S/L 2.

Because there are two versions of the M68332BCC, there are two sets of chip select tables; one
set for Rev. A and one set for Rev. B. Upon power-up, CPU32Bug initializes the common
CSBOQT chip select and CS0/CSL1 (see Rev. A table values). CPU32Bug then tests for RAM to
determine if the hardware is Rev. A or Rev. B. Chip select initialization then proceeds using the
values from the proper table. The only changes required by the user are to the WAIT CYCLES or
BASE ADDRESS fields for their platform board (PFB) sockets, or to use an unused chip select.

M68CPU32BUG REV 1 C-1

USER CUSTOMIZATION

C.2 CPU32BUG CUSTOMIZATION

The general procedure for customizing CPU32Bug is as follows:

1. Copy the parameter area from the CPU32Bug EPROM to RAM by entering the
following command:

CPU32Bug>BM EO000 EO1FF 4000<CR>

2. Modify the parameters in RAM using the offsets shown in Table C-1. For example,
the CHECKSUM value would begin at location $4000 plus offset $OE, or $400E.
Thus the word at $400E must be changed to $FFFF so a new checksum value for the
customized CPU32Bug can be calculated. Enter the following command to change
the CHECKSUM value.

CPU32Bug>M5 400E FFFF<CR>

Change the SIGNON message to indicate customization has been performed. Change
the spaces after "Version 1.01" to read ".XX <title>", where "XX" is your
customized version number starting with O1 and <title> is the name of your company
or school/lab. Use the M S command with text input (" string’).

3. Create an S-record file of the changes on the host computer by entering the ALT-F1
key on the host computer termina (for ProComm emulator program) to open a log
file. Enter the file name C32B1.MX and then complete the CPU32Bug DU
command by pressing <CR>. The offset of DC00O is required to create the S-records
with the proper starting address of $E0000.

CPU32Bug>DU 4000 41FF ' C32B1. MX' ,, DCOOO<ALT- F1><CR>
CPU32Bug><ALT-F1><CR> Closelog file

4. Create an S-record file of the rest of CPU32Bug on the host computer by entering the
ALT-F1 key on the host computer terminal (for ProComm emulator program) to
open alog file. Enter the file name C32B23.M X and then complete the CPU32Bug
DU command by pressing <CR>.

CPU32Bug>DU E0200 FFFFF ' C32B23. MX' <ALT- F1><CR>
CPU32Bug><ALT- F1><CR> Closelog file

5. If desired, the two S-record files can be edited on the host computer to remove the
"Effective address’ lines at the beginning of the file and the CPU32Bug> prompt at
the end, but it is not required. If the two S-record files are concatenated into one file,
edit the first file to remove the S8 termination record at the end of thefile.

M68CPU32BUG REV 1 C-2

USER CUSTOMIZATION

6. Veify the customized S-record file, C32B1.M X, by entering the command shown
below. The -DCO000 offset is required to relocate the verification from the $E0000
base address of the S-records to the RAM change area at $4000.

CPU32Bug>VE - DCO00<CR>

Enter the terminal emulator’'s escape key to return to the host computer’s operating
system (ALT-F4 for ProComm). Then enter the host command to send the S-record
file to the port where the BCC is connected (type c32b.mx >com1, when the BCC is
connected to the com1 port).

After thefile has been sent, restart the terminal emulation program by entering EXIT
on the host computer. Then enter two <CR>'s to signa the CPU32Bug that
verification is complete and the terminal emulator program is ready to receive the
status message.

<CR><CR>
Verify passes.
CPU32Bug>

7. Veify the main S-record file, C32B23.M X, by entering the command shown below.
No offset is required.

CPU32Bug>VE<CR>

Enter the terminal emulator’'s escape key to return to the host computer’s operating
system (ALT-F4 for ProComm). Then enter the host computer command to send the
S-record file to the BCC (type c32b23.mx >com1, when the BCC is connected to the
coml port).

After the file has been sent, restart the terminal emulation by entering EXIT on the
host computer. Then enter two <CR>'s to signal the CPU32Bug that verification is
complete and the terminal emulator program is ready to receive the status message.

<CR><CR>
Verify passes.
CPU32Bug>

8. Follow the PROGBCC utility (available on FREEWARE) directions for
reprogramming the BCC EPROM using the two S-record files, C32B1.MX and
C32B23.M X.

M68CPU32BUG REV 1 C-3

USER CUSTOMIZATION

9. Power up the newly programmed BCC and note the checksum value indicated.
Repeat steps 1 through 8 above, to set the checksum to this value but with the
changes noted below. The CODESIZE parameter at offset $08 can be altered to make
the checksum valid only over the CPU32Bug half of the EPROM so user code in the
second half can be freely changed. Since a checksum error is ssimply reported on the
display terminal and code execution continues, it is not mandatory to set the

checksum.

STEP1:

STEP 2:

STEP 3:

STEP 4:
STEP5:
STEPG:
STEP7:

STEPS:

No change.

Change checksum to the value noted on power-up per the command
below where "XXXX" is the value noted.

CPU32Bug>M5 400E XXXX<CR>

Change the filename to C32B1C.M X. To speed up reprogramming, a
temporary file consisting of only the checksum word could be used by
entering DU 400E 400F 'TMP.MX' ,DCOO0O<ALT-F1><CR> after
creating the C32B1C.MX file.

Skip this step.

No change.

Change the filename to C32B1C.M X.
This step is optional.

Only the checksum value needs to be programmed using the indicated
value. Since the checksum was set to the unprogrammed state of the
EPROM ($FFFF), programming can start immediately. DO NOT
ERASE THE BCC EPROM!

10. Power-up the BCC once again. The checksum message should not appear.

11. On the host computer, enter the following commands to update the two CPU32Bug S
record files so they may be properly archived to afloppy disk for safe keeping:

CDEL TMP. MX<CR>

CDEL C32B1. MX<CR>

C>RENAME C32B1C. MX C32B1. MX<CR>
CCOPY C32B*. MX A: <CR>

12. The customization procedure is now complete.

M68CPU32BUG REV 1

c-4

C.3 CUSTOMIZATION TABLE

Table C-1. CPU32Bug Customization Area

USER CUSTOMIZATION

Offset Default Value Mnemonic Description
$00-03 $00002FFC PWR_SSP Power on/reset stack pointer
$04-07 $000E0090 PWR_PC Power on/reset program counter
$08-0B $00020000 CODESIZE Size of CPU32Bug ROM in bytes:
Number of bytes for checksum calculation. Must be
an even number of bytes.
$0C $20 SRECMAX Maximum number of data bytes for S-record created by
DU command
Legal values = 1-255 ($01-$FF).
$0D $FF CHECKALT | Checksum alternate:
Change this if CHECKSUM should ever be
calculated as $FFFF.
$OE-OF | $3033 CHECKSUM | Checksum value:
$FFFF = calculate new checksum value, else
checksum has been set. In either case CPU32Bug
simply reports any error and continues toward the
ready prompt.
Old Chip Select Table (Rev. A BCC + Rev. A PFB)
$10-11 $0003 .CSBARO CS0 base address register value and
$12-13 $5830 .CSORO) option register value
$14-15 $0003 .CSBAR1 Cs1 base address register value and
$16-17 $3830 .CSOR1) option register value
$18-19 $0103 .CSBAR2 CS2 base address register value and
$1A-1B | $6870 .CSOR2) option register value
$1C-1D | $0103 .CSBAR3 CS3 base address register value and
$1E-1F | $3030 .CSOR3) option register value
$20-21 $1004 .CSBAR4 CS4 base address register value and
$22-23 $5870 .CSOR4) option register value
$24-25 $1004 .CSBAR5 CS5 base address register value and
$26-27 $3870 .CSOR5) option register value
$28-29 $FFES8 .CSBAR6 CS6 base address register value and
$2A-2B | $783F .CSOR6) option register value
$2C-2D | $0000 .CSBARY CSs7 base address register value and
$2E-2F | $0000 .CSORY) option register value
$30-31 $FFF8 .CSBARS8 CS8 base address register value and
$32-33 $680F .CSOR8) option register value
$34-35 $0000 .CSBAR9 CS9 base address register value and
$36-37 $0000 .CSOR9 . option register value
$38-39 $0103 .CSBAR10 CS10 base address register value and
$3A-3B | $5030 .CSOR10 option register value
M68CPU32BUG REV 1 C-5

USER CUSTOMIZATION

Table C-1. CPU32Bug Customization Area (continued)

Offset Default Value Mnemonic Description
Common Chip Select Table: (Rev. A BCC + Rev. A PFB) &
(Rev. B BCC + Rev. B PFB)
$3C-3D | $0E04 .CSBARBT CSBOOT base address register value and
$3E-3F | $68B0O .CSORBT . option register value
New Chip Select Table: (Rev. B BCC + Rev. B PFB)

$40-41 $0003 .CSBARO CS0 base address register value and

$42-43 $503E .CSORO) option register value

$44-45 $0003 .CSBAR1 Cs1 base address register value and

$46-47 | $303E .CSOR1 : option register value

$48-49 $0003 .CSBAR2 CS2 base address register value and

$4A-4B | $683E .CSOR2) option register value

$4C-4D | $0000 .CSBAR3 CS3 base address register value and

$4E-4F | $0000 .CSOR3) option register value

$50-51 $FFF8 .CSBAR4 CS4 base address register value and

$52-53 | $680F .CSOR4) option register value

$54-55 $FFES8 .CSBAR5 CS5 base address register value and

$56-57 $783F .CSOR5 . option register value

$58-59 $1004 .CSBAR6 CS6 base address register value and

$5A-5B | $38F0 .CSOR6) option register value

$5C-5D | $1004 .CSBARY CSs7 base address register value and

$5E-5F | $58F0 .CSORY7) option register value

$60-61 $0103 .CSBARS8 CS8 base address register value and

$62-63 $6870 .CSORS8 . option register value

$64-65 $0103 .CSBAR9 CS9 base address register value and

$66-67 $3030 .CSOR9 . option register value

$68-69 $0103 .CSBAR10 CS10 base address register value and

$6A-6B | $5030 .CSOR10) option register value

$6C-6D | $020F MCR_OR Value ORed with contents of MCR register at power-
on/reset.

$6E-6F | $DFFF MCR_AND Value ANDed with result value after MCR_OR and
stored back into MCR. If bit 6 (MM bit)of MCR_AND =
0, then module register block is placed at $7FF000.
Otherwise it is placed at $FFF000 (default).

M68CPU32BUG REV 1 C-6

USER CUSTOMIZATION

Table C-1. CPU32Bug Customization Area (continued)

Offset Default Value Mnemonic Description
$70 $06 SYPCR_OR | Value ORed with contents of SYPCR register at power-
up/reset.
$71 $FF SYPCR_AND | Value ANDed with result value after SYPCR_OR and

stored back into SYPCR. This allows user control of the
write-once bits in the SYPCR, i.e., software watchdog,
halt monitor, and bus monitor.

NOTE

Enabling the software watchdog with a short timeout period may cause
CPU32Bug itself to fail when the watchdog is not serviced soon enough. The
failure is constant RESETing before the CPU32Bug> prompt appears, or
RESETing during execution of particular commands.

Disabling the bus monitor timeout period causes CPU32Bug to lock-up on
any unterminated bus cycle, i.e., accessing non-existant memory.

Changing the bus monitor timeout period to too small of a value can cause
problems with slow memory or if the 8-bit bus mode is enabled upon booting.

$72-73 $8000 FCRYSTAL Crystal frequency in Hz (8000 = 32,768). SCI baud
rates are calculated using this value.
$74-77 $FFFFFFFF FEXTAL External clock frequency (in hertz). Only used when

MODCK is held low during RESET to enable the
EXTAL pin. SCI baud rates are calculated using this
value.

M68CPU32BUG REV 1 C-7

USER CUSTOMIZATION

Table C-1. CPU32Bug Customization Area (continued)

Offset

Default Value

Mnemonic

Description

ROM AUTO BOOT VECTORS

$78-7B

$FFFFFFFF

RB_SP

ROM auto boot stack pointer value

$7C-7F

$FFFFFFFF

RB_PC

ROM auto boot program counter value:

= 1 disables auto boot (odd address)

= 0 enables auto boot (even address).
Enabling is equivalent to changing the stack
pointer (SP) and program counter (PC) and
entering the GO command. If any error was
detected during self-test (PWR_TST) the auto

Bit 0

boot is disabled.

CONSOLE DEFAULT TABLE FOR SCI (CONSCI)

$80-83

$00001COF

.PARMS

Parameter definition for below:
Do not change this value.

$84-85

$2580

.BAUD

Baud rate (in decimal):

19200 =
9600
4800
2400
1200
600

300

$4B00
$2580

= $12C0
= $0960
= $04B0
= $0258

$012C

$86

$00

.PARITY

Parity selection (see Table C-2):

None =
Even =
Odd =

$00
$45 = E
$4F = O

$87

$08

.DATA

Data bits (see Table C-2):

8-bits
7-bits

$08
$07

M68CPU32BUG REV 1

C-8

USER CUSTOMIZATION

Table C-1. CPU32Bug Customization Area (continued)

Offset Default Value Mnemonic Description

Console Default Tablefor SCI (CONSCI) (continued)

$88 $01 .STOP Stop bits (see Table C-2):
1-bit = $01
2-bit = $02

$89 $FF .XON_ENB XON/XOFF enable:
enable = $FF
disable = $00

$8A $11 .XON XON character (7-bit ASCII):
Q = $11

$8B $13 XOFF XOFF character (7-bit ASCII):
S = $13

Periodic Interrupt Timer

$8C-8D | $0642 .PICR Periodic interrupt control register value:
Default value is set for level 6, vect. 66.
$8E-8F | $0102 PITR Periodic interrupt timing register value:

Controls the "tick" time for the SYSCALL timing
functions ($4X). Default value is set for 125
milliseconds.

M68CPU32BUG REV 1 C-9

USER CUSTOMIZATION

Table C-1. CPU32Bug Customization Area (continued)

Offset Default Value Mnemonic Description

Power On Branch Vectors (PWR_XXX)

$90-95 $60FFO000EO56 | PWR_TBL1 BRA.L to Initialization Table #1 routine. See INITTBL
below.

$96-9B | $60FFO000DEES | PWR_INI BRA.L to MCU (chip selects) initialization routine:
Exit: D7.L = power up status flags (bits 31-8)
Returns to PWR_TTL (no stack usage!).

$9C-Al | $60FFO000EQ70 |PWR_TBL2 BRA.L to Initialization Table #2 routine. See INITTBL
below.

Exit: D7.L = preserved

$A2-A7 | $60FFO0000004 |PWR_TTL BRA.L to title printing routine:

Returns to PWR_TST (no stack usage!).

Exit: D7.L = preserved

$AB-AD | $60FFO000D8AA | PWR_TST BRA.L to self-test routine:

Exit: D7.B = error code

D7:31-8 = power up status flags

Returns to PWR_GO (no stack usage!).

$AE-B3 | $60FF0000D4B4 | PWR_GO BRA.L to CPU32Bug start up routine:

Entry: D7.B = 0 for no self-test errors, else it equals
the error code number (see Appendix B).

D7:31-8 = power up status flags

Never returns.

$B4-B9 | all $FF's BRA.L <reserved>
$BA-BF |all $FF's BRA.L <reserved>
$CO-CF | all $FF's <reserved>

M68CPU32BUG REV 1 C-10

USER CUSTOMIZATION

Table C-1. CPU32Bug Customization Area (continued)

Offset Default Value Mnemonic Description

Initialization Tables

$D0-16F | all $FF’s | INITTBL | Initialization Tables #1 and #2.

The Initialization Table is organized as a series of entries each of which has the
following format:
<ADDR> <CNT/SZ> <FILL> <DATA>
4 1 0|1 n <--- # bytes

Where:

<ADDR> isthe destination address for the <DATA>. It is 4 bytes long and must
start on a even address (word) boundary. A value equal to the FILL_L
value ($FFFFFFFF) terminates the routine.

<CNT/SZ> isthe count/size code for the <DATA> and is encoded as "$ns' where:

n isthe upper nibble and contains the count value minus one for
number of <DATA> elements of size"s" that are to be stored in
successive addresses, starting with <ADDR>.

s isthe lower nibble and contains the size code for the <DATA>
and the storage operation itself. Valid size codes are as follows:
1=BYTE data
2 =WORD data
4 = LONG WORD data

An invalid size code terminates the routine.

<FILL> is a dummy placeholder/filler that is only present for WORD and
LONG WORD sized <DATA> so they will be aligned on an even
address (word) boundary. Thus the fill byte is not present for BY TE
data, otherwiseit is one byte long.

<DATA> isthe byte, word, or long word data as specified by <CNT/SZ> that is
to be stored starting at <ADDR>. This field contains exactly s*(n+1)
data bytes. If the datasizeis BY TE (s=1) and there are an even number
of <DATA> elements (n+1 is odd), then one filler byte is added so the
next Table entry will start on an even address (word) boundary.

M68CPU32BUG REV 1 C-11

Table C-1. CPU32Bug Customization Area (continued)

USER CUSTOMIZATION

Initialization Tables (continued)

Label

Opcode

DC.L
DC.B

DC.B

DC.L
DC.B

DC.B

DC.L
DC.B

DC.W

DC.L
DC.B

DC.L

DC.L
DC.B

DC.L

DC.L

Rel.
Addr Contents
0000 OOFFFFAZ21
0004 01
DATA
0005 04
0006 OOFFFFA21
000A 31
DATA
000B 042247 FE
Skips$1F-> 0010 OOFFFFA22
0014 02
DATA
Skips$15-> 0016 0544
0018 OOFFFFA74
001C 04
DATA
Skips$1D-> 001E 12345678
0022 OOFFFFAT74
0026 04
DATA
Skips $27-> 0028 12345678
002C 0002307F
0030 FFFFFFFF
Terminate
termination entry whose <ADDR> equalsFILL L.

Operand
$FFFFA21

1

$04

$FFFFA21
$31

$04, $22, $47, $FE

$FFFFA22
2

$0544

$FFFFAT74
4

$12345678

$FFFFAT74
$14

This entry format aligns with the normal assembler output, as DC.W and DC.L are
automatically aligned on an an even address (word) boundary, as seen in the examples below.
Thus the <FILL> byteis handled automatically by the assembler.

Comment
<ADDR>
1BYTE

<DATA>

<ADDR>
4BYTE

<ADDR>
1 WORD

<DATA>

<ADDR>
1LONG

<DATA>

<ADDR>
2LONG

$12345678, $2307F

$FFFFFFFF

The routine will aso terminate before any attempt is made to read table information past the
end of the table. Thus the user can completely fill the table without having to have a

M68CPU32BUG REV 1

C-12

USER CUSTOMIZATION

Table C-1. CPU32Bug Customization Area (continued)

Offset Default Value Mnemonic Description
Sign On Text Message
$170- SIGNON Text string in SYSCALL .WRITE format.
1FF

Default values shown in MASM assembly language format below except """ has been
substituted for each space character (" ") to show exact spacing. The Motorola copyright must

be preserved.

SIGNON DC.B SIGN$2-SIGN$1 Char. count = $8F

SIGN$1 DC.B $0D,$0A ,$0A CR,LF,LF
DC.B 'CPU32Bug"Debugger/Diagnostics™-"Version™1.00" =45 chars
DCB.B 34,$20 Pad to end of line; 79-45= 34.
DC.B $0D,$0A CR,LF
DC.B "NC)"Copyright,"1991"by~Motorola*nc.’
DCB.B 23,%$20 Reserve rest of space.

SIGN$2 EQU *

M68CPU32BUG REV 1 c-13

USER CUSTOMIZATION

C.4 COMMUNICATION FORMATS

Not all combinations of data bits, parity, and stop bits are valid for the MCU SCI. Table C-2
details the legal combinations that can be used when customizing CPU32Bug.

Table C-2. MCU SCI Communication Formats

Character Width Parity Stop bit Description
7 None 1 Invalid port setting
7 None 2
7 Even 1
7 Even 2
7 Odd 1
7 Odd 2
8 None 1
8 None 2
8 Even 1
8 Even 2 Invalid port setting
8 Odd 1
8 Odd 2 Invalid port setting

M68CPU32BUG REV 1 C-14

C.5 BCCREV.A CHIP SELECTION SUMMARY

USER CUSTOMIZATION

Table C-3 covers Rev. A of the M68332BCC Business Card Computer and M 68332PFB
Platform Board.

Table C-3. Rev. A Chip Selection Summary

Signal Board/Chip Description Memory Type
CSBOOT BCC U4 CPU32Bug EPROM
CSO BCC U3 read/write enable for MSB=UPPER=EVEN RAM
Cs1 BCC U2 read/write enable for LSB=LOWER=0DD RAM
CS2 PFB U1/U3 read enable for MSB/LSB=BOTH RAMS
CS3 PFB Ul write enable for LSB=LOWER=0DD RAM
CS4 PFB U4 read enable for MSB=UPPER=EVEN RAM/EPROM
CS5 PFB U2 read enable for LSB=LOWER=0DD RAM/EPROM
CS6 PFB U5 chip enable for MC68881/882
CS7 <unused>
CS8 PFB ABORT pushbutton autovector
CS9 <unused>
CS10 PFB U3 write enable for MSB=UPPER=EVEN RAM.
cut/jump U3-27 from CS4 to CS10 required.
NOTE
U1/U3 = 120 nsec RAM with fast termination.
U2/U4 = ROM laid-out wrong, can only be configured as 120 nsec RAM.

M68CPU32BUG REV 1 C-15

USER CUSTOMIZATION

C.6 BCCREV.B CHIP SELECTION SUMMARY

Table C-4 covers Rev. B of the M68332BCC Business Card Computer and M68332PFB
Platform Board.

Table C-4. Rev. B Chip Selection Summary

Signal Board/Chip Description Memory Type
CSBOOT BCC U4 CPU32Bug EPROM
CSO BCC U3 write enable for MSB=UPPER=EVEN RAM
CS1 BCC U2 write enable for LSB=LOWER=0DD RAM
CS2 BCC U2/U3 read enable for MSB/LSB=BOTH RAMS
CS3 <unused>
CS4 PFB ABORT pushbutton autovector
CS5 PFB U5 chip enable for MC68881/882. cut/-jump U5-J3 from
CS2 to CS5 required.
CS6 PFB U2 read enable for LSB=LOWER=0DD RAM/EPROM
CS7 PFB U4 read enable for MSB=UPPER=EVEN RAM/EPROM
CS8 PFB U1/U3 read enable for MSB/LSB=BOTH RAMS
CS9 PFB Ul write enable for LSB=LOWER=0DD RAM
CS10 PFB U3 write enable for MSB=UPPER=EVEN RAM
NOTE
U1/U3 = 120 nsec RAM with fast termination.
U2/U4 = 250 nsec EPROM (or jumper selectable as RAM).

M68CPU32BUG REV 1

C-16

USER CUSTOMIZATION

C.7 BCCREV.C CHIP SELECTION SUMMARY

The table below covers Rev. C of the M68332BCC Business Card Computer and M68332PFB
Platform Board.

Table C-5. BCC Rev. C Chip Selection Summary

Signal Board/Chip Description Memory Type
CSBOOT BCC U3 CPU32Bug EPROM for MSB=UPPER=EVEN
CSBOOT BCC U4 CPU32Bug EPROM for LSB=LOWER=0DD
CSO BCC U1 write enable for MSB=UPPER=EVEN RAM
CS1 BCC U2 write enable for LSB=LOWER=0DD RAM
CS2 BCC U3/U1 read enable for MSB/LSB=BOTH RAM
CS3 <unused>
CS4 PFB ABORT push-button autovector
CS5 PFB U5 chip enable for MC68881/882. cut/-jump U5-J3 from

CS2 to CS5 required.

CS6 PFB U2 read enable for LSB=LOWER=0DD RAM/EPROM
CS7 PFB U4 read enable for MSB=UPPER=EVEN RAM/EPROM
CS8 PFB U1/U3 read enable for MSB/LSB=BOTH RAM
CS9 PFB Ul write enable for LSB=LOWER=0DD RAM
CS10 PFB U3 write enable for MSB=UPPER=EVEN RAM

M68CPU32BUG REV 1 C-17

USER CUSTOMIZATION

C.8 PLATFORM BOARD (PFB) REV.C COMPATIBILITY
PFB Rev. C boards have jumpers (J8 - J13) which when installed, make Rev. C PFB’s

compatible with Rev. A, Rev. B or Rev. C BCC boards . When switching jumpers from Rev. A
to Rev. B or C compatibility on aRev. C PFB, al jumpers must be set to the same selection.

Table C-6. PFB Rev. C Compatibility

PFB Rev. C
Jumper block Jumpers Jumpers
BCC PFB PFB not installed installed for installed for

BOARD REVISION Rev.A | Rev.B @) Rev. A Rev. B
BCC Rev. A YES NO NO YES NO
BCC Rev. B NO YES YES NO YES
BCC Rev. C NO YES YES NO YES

(1) The default when no jumper block is installed is Rev. B.

M68CPU32BUG REV 1 C-18

USER CUSTOMIZATION

C.9 CPU32BUG QUESTIONS AND ANSWERS

Q: How can | change the chip selections to fit my application?

A: Usethe Chip Select Table parametersto customize for your application. Note that there are
two tables; an Old one for Rev. A BCC units and a New one for Rev. B (and later) units. The
selection is based upon whether good RAM is obtained when chip select 0 and 1 are
programmed using the Old Table values. Consult Tables C-3 and C-4 for chip select
assignments. The chip selects designated for the BCC must not be altered, but the PFB chip
selects can be used if the corresponding resource is not used. Place your new valuesin the
correct table, or place them in both tablesif you're not sure.

Q: How can | change CPU32Bug to automatically configure on-board MCU resources, such as
Standby RAM Module on the MC68332, upon power up?

A: Usethelnitialization Table (INITTBL) to set up the address and data values to be written that
will initialize the desired resource. The following example shows how Initialization Table #2
can be used to initialize the 2K Standby RAM Module on the MC68332 to appear at address
$80000 in unrestricted space and assumes the register module base address is at $00FFF000
(MM hit in MCR register equals one). Remember. Initialization Table #1 is invoked before
the normal chip select initialization (viaPWR_INI), while Initialization Table #2 isinvoked
after the normal chip select initialization.

Offset Value Comment
$D0 $FFFFFFFF | Table#1 termination value.
$D4 $00FFFBOO RAMMCR address.
$D8 $02 Word sized write.
$D9 $FF Filler value to align word value.
$DA $0000 Word value to be written to RAMMCR.
$DC $00FFFB0O4 RAMBAR address.
$EO $02 Word sized write.
$E1 $FF Filler value to align word value.
$E2 $0800 Word value to be written to RAMBAR.
$E4 $FFFFFFFF | Table#2 termination value.

Q: How can | change CPU32Bug so | don’'t have to reprogram CPU32Bug’ s checksum every
time | change my user program in the second half of the BCC EPROM?

A: Change the CODESI ZE parameter to $10000 so only thefirst half of the BCC EPROM is
used in calculating the checksum. Or, disable the checksum by setting it to the
unprogrammed state of al $FF's, i.e., set theCHECK SUM parameter to $FFFF.

M68CPU32BUG REV 1 C-19

USER CUSTOMIZATION

Q: How can | change the Periodic Interrupt Timer (PIT) "tick" time for the SY SCALL timing
functions?

A: Change the Periodic Interrupt Timer .PITR parameter to alter the "tick” count. This
parameter’ svalue is placed into the PITR register by thePWR_INI routine.

Q: How can | change the default RS-232 communications parameters, such as baud rate, parity,
number of data bits, stop bits, and XON/XOFF flow control ?

A: Usethe Console Default Table for SCI (BAUD, .PARITY, .DATA, .STOP, .XON_ENB,
XON, and .XOFF) to change these parameters.

Q: How can | change the crystal frequency? Can | use an external clock?

A: Changethe FCRY STAL parameter to ater the crystal frequency for the on-board Voltage
Controlled Oscillator (VCO). To use an external clock, the FEXTAL parameter must be set
to the external clock frequency and the MODCLK* line must be held low during reset.
CPU32Bug monitors the MODCLK* signal after reset to determine which parameter to use
when calculating SCI baud rates.

Q: Why do certain baud rates fail to work after | change the crystal frequency or use an external
clock?

A: Thereisan integral relationship between the system clock rate (Fsystem) and QSCI baud
rates, as per Section 5.6.3.1 SCI CONTROL REGISTER 0 (SCCRO0), inthe MC68332 User’s
Manual, MC68332UM/AD (or in the previous MC68332 System Integration Module User’s
Manual, SIM32UM/AD), as defined by the following equation:

SCI baud = System Clock/(32 x SCBR)

where SCBR equals{1, 2, 3, ..., 8191} . For a specific baud rate to function, the difference
between the Nominal Baud Rate and the Actual Baud Rate as typified by Table 5-13, should
be kept within 3% for reliable operation. Reliable communication also depends greatly upon
the ability of the communications hardware at the other end, i.e., amodern VLS| UART
device, such asfound in the IBM-PC, might tollerate baud rate error differences up to 5%.

In summary, all baud rates may not be available depending upon the system clock rate used.

M68CPU32BUG REV 1 C-20

USER CUSTOMIZATION

Q: After | made the parameter change for an external clock (FEXTAL) and tied MODCK low
on header P2 by jumping pin 28 to 64, nothing happens when | power up the BCC, i.e., no
signon message appears. Why doesn’t it work?

A: Thetrace between pins 2 and 3 of jumper J1 on the BCC must be cut and the jumper placed
over pins 1-2 of J1 before the external clock signal can reach the MCU EXTAL pin.

Q: How can | change the number of data bytesin the the S-records produced by the dump (DU)
command?

A: Changethe SRECMAX parameter to alter the data count. Larger counts produce more
efficient data S-records, but some loaders cannot accomodate them and they are harder to
view/edit as text files. Thus the default is set to 32 ($20) data bytes per record.

Q: How can | move the register module base to $007FFF00 when it is controlled by awrite-once
MM bit in the Module Control Register (MCR)?

A: Changethe MCR_AND parameter so the MM bit position (bit 6) is zero. The PWR_INI
routine initializes the MCR register by first reading the register, OR’ing in theM CR_OR
parameter value and then AND’ing the result with theM CR_AND parameter value before
storing the resulting value back into the MCR register.

Q: How can | enable the Software Watchdog or change the Bus Monitor Timing when they are
controlled by the write-once System Protection Control Register (SY PCR)?

A: Changethe SYPCR_OR and SYPCR_AND parameters to achieve the desired value to be
placed into the SY PCR register. The PWR_INI routine initializes the SY PCR register by
first reading the register, OR’ing in theSY PCR_OR parameter value and then AND’ing the
result with the SYPCR_AND parameter value before storing the resulting value back into the
SYPCR register. As the Software Watchdog timeout period is set to smaller and smaller
values, some CPU32Bug commands may fail to complete their tasks before the watchdog can
be serviced, which causes a system reset. If the value istoo small, the CPU32Bug signon
message will never appear, as the MCU will bein a state of chronic reset.

M68CPU32BUG REV 1 Cc-21

USER CUSTOMIZATION

Q: How can | get CPU32Bug to automatically execute my user program upon power up?

A: Usethe ROM Auto Boot Vectors (RB_SP and RB_PC) to implement a turn-key system
whereby CPU32Bug initializes itself and then loads the stack pointer (SSP) and program
counter (PC), thus starting execution of the user’s program.

M68CPU32BUG REV 1 C-22

	COVER
	TABLE OF CONTENTS
	CHAPTER 1 GENERAL INFORMATION
	CHAPTER 2 DEBUG MONITOR DESCRIPTION
	CHAPTER 3 DEBUG MONITOR COMMANDS
	CHAPTER 4 ASSEMBLER/DISASSEMBLER
	CHAPTER 5 SYSTEM CALLS
	CHAPTER 6 DIAGNOSTIC FIRMWARE GUIDE
	APPENDIX A S-RECORD INFORMATION
	APPENDIX B SELF-TEST ERROR MESSAGES
	APPENDIX C USER CUSTOMIZATION
	LIST OF FIGURES
	Figure 1-1. CPU32Bug Operation Mode Flow Diagram
	Figure 1-2. BCC Memory Map

	LIST OF TABLES
	Table 2-1. Debugger Address Parameter Format
	Table 2-2. CPU32Bug Exception Vectors
	Table 3-1. Debug Monitor Commands
	Table 4-1. CPU32Bug Assembler Addressing Modes
	Table 5-1. CPU32Bug System Call Routines
	Table 6-1. MCU CPU Diagnostic Tests
	Table 6-2. Memory Diagnostic Tests
	Table B-1. Self-Test Error Messages
	Table C-1. CPU32Bug Customization Area
	Table C-2. MCU SCI Communication Formats
	Table C-3. Rev. A Chip Selection Summary
	Table C-4. Rev. B Chip Selection Summary
	Table C-5. BCC Rev. C Chip Selection Summary
	Table C-6. PFB Rev. C Compatibility

	CHAPTER 1 GENERAL INFORMATION
	1.1 INTRODUCTION
	1.2 GENERAL DESCRIPTION
	1.3 USING THIS MANUAL
	1.4 INSTALLATION AND START-UP
	1.5 SYSTEM RESTART
	1.5.1 Reset
	1.5.2 Abort
	1.5.3 Break

	1.6 MEMORY REQUIREMENTS
	1.7 TERMINAL INPUT/OUTPUT CONTROL

	CHAPTER 2 DEBUG MONITOR DESCRIPTION
	2.1 INTRODUCTION
	2.2 ENTERING DEBUGGER COMMAND LINES
	2.2.1 Syntactic Variables
	2.2.1.1 Expression as a Parameter
	2.2.1.2 Address as a Parameter
	2.2.1.3 Offset Registers

	2.2.2 Port Numbers

	2.3 ENTERING AND DEBUGGING PROGRAMS
	2.4 CALLING SYSTEM UTILITIES FROM USER PROGRAMS
	2.5 PRESERVING DEBUGGER OPERATING ENVIRONMENT
	2.5.1 CPU32Bug Vector Table and Workspace
	2.5.2 CPU32Bug Exception Vectors
	2.5.2.1 Using CPU32Bug Target Vector Table
	2.5.2.2 Creating Vector Tables
	2.5.2.3 CPU32Bug Generalized Exception Handler

	2.6 FUNCTION CODE SUPPORT

	CHAPTER 3 DEBUG MONITOR COMMANDS
	3.1 INTRODUCTION
	3.2 BLOCK OF MEMORY COMPARE
	3.3 BLOCK OF MEMORY FILL
	3.4 BLOCK OF MEMORY MOVE
	3.5 BREAKPOINT INSERT/DELETE
	3.6 BLOCK OF MEMORY SEARCH
	3.7 BLOCK OF MEMORY VERIFY
	3.8 DATA CONVERSION
	3.9 DUMP S-RECORDS
	3.10 GO DIRECT (IGNORE BREAKPOINTS)
	3.11 GO TO NEXT INSTRUCTION
	3.12 GO EXECUTE USER PROGRAM
	3.13 GO TO TEMPORARY BREAKPOINT
	3.14 HELP
	3.15 LOAD S-RECORDS FROM HOST
	3.16 MACRO DEFINE/DISPLAY/DELETE
	3.17 MACRO EDIT
	3.18 MACRO EXPANSION LISTING ENABLE/DISABLE
	3.19 MEMORY DISPLAY
	3.20 MEMORY MODIFY
	3.21 MEMORY SET
	3.22 OFFSET REGISTERS DISPLAY/MODIFY
	3.23 PRINTER ATTACH/DETACH
	3.24 PORT FORMAT
	3.24.1 List Current Port Assignments
	3.24.2 Port Configuration
	3.24.3 Port Format Parameters
	3.24.4 New Port Assignment

	3.25 REGISTER DISPLAY
	3.26 COLD/WARM RESET
	3.27 REGISTER MODIFY
	3.28 REGISTER SET
	3.29 SWITCH DIRECTORIES
	3.30 TRACE
	3.31 TRACE ON CHANGE OF CONTROL FLOW
	3.32 TRANSPARENT MODE
	3.33 TRACE TO TEMPORARY BREAKPOINT
	3.34 VERIFY S-RECORDS AGAINST MEMORY

	CHAPTER 4 ASSEMBLER/DISASSEMBLER
	4.1 INTRODUCTION
	4.1.1 M68300 Family Assembly Language
	4.1.1.1 Machine-Instruction Operation Codes
	4.1.1.2 Directives

	4.1.2 M68300 Family Resident Structured Assembler Comparison

	4.2 SOURCE PROGRAM CODING
	4.2.1 Source Line Format
	4.2.1.1 Operation Field
	4.2.1.2 Operand Field
	4.2.1.3 Disassembled Source Line
	4.2.1.4 Mnemonics and Delimiters
	4.2.1.5 Character Set

	4.2.2 Addressing Modes
	4.2.3 Define Constant Directive (DC.W)
	4.2.4 System Call Directive (SYSCALL)

	4.3 ENTERING AND MODIFYING SOURCE PROGRAM
	4.3.1 Executing the Assembler/Disassembler
	4.3.2 Entering a Source Line
	4.3.3 Entering Branch and Jump Addresses
	4.3.4 Assembler Output/Program Listings

	CHAPTER 5 SYSTEM CALLS
	5.1 INTRODUCTION
	5.1.1 Executing System Calls Through TRAP #15
	5.1.2 Input/Output String Formats

	5.2 SYSTEM CALL ROUTINES
	5.2.1 Calculate BCD Equivalent Specified Binary Number
	5.2.2 Parse Value, Assign to Variable
	5.2.3 Check for Break
	5.2.4 Timer Delay Function
	5.2.5 Unsigned 32 x 32 Bit Divide
	5.2.6 Erase Line
	5.2.7 Input Character Routine
	5.2.8 Input Line Routine
	5.2.9 Input Serial Port Status
	5.2.10 Unsigned 32 x 32 Bit Multiply
	5.2.11 Output Character Routine
	5.2.12 Output String Using Pointers
	5.2.13 Print Carriage Return and Line Feed
	5.2.14 Read Line to Fixed-Length Buffer
	5.2.15 Read String Into Variable-Length Buffer
	5.2.16 Return to CPU32Bug
	5.2.17 Send Break
	5.2.18 Compare Two Strings
	5.2.19 Timer Initialization
	5.2.20 Read Timer
	5.2.21 Start Timer at T=0
	5.2.22 Output String with Data
	5.2.23 Output String Using Character Count

	CHAPTER 6 DIAGNOSTIC FIRMWARE GUIDE
	6.1 INTRODUCTION
	6.2 DIAGNOSTIC MONITOR
	6.2.1 Monitor Start-Up
	6.2.2 Command Entry and Directories
	6.2.3 Help (HE)
	6.2.4 Self Test (ST)
	6.2.5 Switch Directories (SD)
	6.2.6 Loop-On-Error Mode (LE)
	6.2.7 Stop-On-Error Mode (SE)
	6.2.8 Loop-Continue Mode (LC)
	6.2.9 Non-Verbose Mode (NV)
	6.2.10 Display Error Counters (DE)
	6.2.11 Clear (Zero) Error Counters (ZE)
	6.2.12 Display Pass Count (DP)
	6.2.13 Zero Pass Count (ZP)

	6.3 UTILITIES
	6.3.1 Write Loop
	6.3.2 Read Loop
	6.3.3 Write/Read Loop

	6.4 CPU TESTS FOR THE MCU
	6.4.1 Register Test
	6.4.2 Instruction Test
	6.4.3 Address Mode Test
	6.4.4 Exception Processing Test

	6.5 MEMORY TESTS (MT)
	6.5.1 Set Function Code
	6.5.2 Set Start Address
	6.5.3 Set Stop Address
	6.5.4 Set Bus Data Width
	6.5.5 March Address Test
	6.5.6 Walk a Bit Test
	6.5.7 Refresh Test
	6.5.8 Random Byte Test
	6.5.9 Program Test
	6.5.10 Test and Set Test

	6.6 BUS ERROR TEST

	APPENDIX A S-RECORD INFORMATION
	A.1 INTRODUCTION
	A.2 S-RECORD CONTENT
	A.3 S-RECORD TYPES
	A.4 S-RECORDS CREATION

	APPENDIX B SELF-TEST ERROR MESSAGES
	B.1 INTRODUCTION

	APPENDIX C USER CUSTOMIZATION
	C.1 INTRODUCTION
	C.2 CPU32BUG CUSTOMIZATION
	C.3 CUSTOMIZATION TABLE
	C.4 COMMUNICATION FORMATS
	C.5 BCC REV. A CHIP SELECTION SUMMARY
	C.6 BCC REV. B CHIP SELECTION SUMMARY
	C.7 BCC REV. C CHIP SELECTION SUMMARY
	C.8 PLATFORM BOARD (PFB) REV. C COMPATIBILITY
	C.9 CPU32BUG QUESTIONS AND ANSWERS

