
Order this document
by EB253/D

Motorola Semiconductor Engineering Bulletin

EB253
How to Use the Table Lookup and Interpolate Instruction
on the CPU32
By Sharon Darley

Austin, Texas

Introduction

The table lookup and interpolate instruction approximates a number that
lies between two consecutive entries in a lookup table. It can be used to
approximate a number that is a function of one variable or a number that
is a function of several variables. This engineering bulletin focuses on
the case where only one variable is involved.

An explanation of how to handle cases with multiple variables is given
on page 4-203 in the CPU32 Reference Manual, Motorola document
order number CPU32RM/AD, Rev. 1. In general, section 4.6 in the
reference manual is devoted to discussion of the table lookup and
interpolation instruction and gives several practical examples, as does
section 7.7 in the textbook The Motorola MC68332 Microcontroller,
Motorola document order number TB325/D. Reading at least one of
these references is strongly recommended.

General Information

The table lookup and interpolate function assumes that the result (point
on the function) falls linearly between the two consecutive entry points in
the table. Thus, for a linear function, few points in the table are needed.
© Motorola, Inc., 1999 EB253



Engineering Bulletin
In fact, for a function that is simply a line, all the instruction really needs
is a start point and an end point. However, more complex functions
require more points in the table, particularly in the most non-linear
regions. An example in this snapshot illustrates how to handle very non-
linear regions.

Formats

The basic syntax of the table lookup and interpolate instruction is:

TBL <S%><R>.<l> <EA>,Dx

Where:

<S> = S (signed) or U (unsigned)

<R> = N (unrounded) or nothing (rounded)

<l> = B (byte), W (word), or L (long word)

<EA> = the starting address of the lookup table in memory

Dx = a data register that holds the independent variable before
execution and the interpolated result after execution.

The table lookup and interpolate instruction has four formats. All four
formats support byte, word, and long-word numbers.

TBLS returns a signed, rounded result with this format:

Table 1. Format of TBLS/TBLU Result

Length 31:24 23:16 15:8 7:0

Byte Unaffected Unaffected Unaffected Result

Word Unaffected Unaffected Result Result

Long Result Result Result Result
EB253

2 MOTOROLA



Engineering Bulletin
How the Table is Stored in Memory
TBLSN returns a signed, unrounded result with this format:

TBLU returns an unsigned, rounded result. The result has the same
format as for the TBLS instruction shown in Table 1 .

TBLUN returns an unsigned, unrounded result with this format:

How the Table is Stored in Memory

The lookup table consists of 257 entries, entry number 0 to entry number
256. Each entry occurs at a multiple of 256 of the independent
variable X.

The table can consist of fewer (or more) entry numbers, but the user
program must scale the independent variable before executing the table
lookup and interpolate instruction to obtain correct results. For simplicity,
the 257 entry table will be discussed first.

Each entry in the table consists of two components: X and Y, where
Y = F(X). Only the values for Y are actually stored in memory; the values
of X are assumed. As an example, take the function where Y is the
square root of X.

Table 2. Format of TBLSN Result

Length 31:24 23:16 15:8 7:0

Byte Sign extended Sign extended Result Fraction

Word Sign extended Result Result Fraction

Long Result Result Result Fraction

Table 3. Format of TBLUN Result

Length 31:24 23:16 15:8 15:8

Byte
Zero

extended
Zero

extended
Result Fraction

Word
Zero

extended
Result Result Fraction

Long Result Result Result Fraction
EB253

MOTOROLA 3



Engineering Bulletin
The lookup table for this function is shown in Table 4 . Note in the table
that the values for Y are approximated to the nearest whole number. The
lookup and interpolate instruction can return a fractional result, but it
cannot read a fractional input.

How the Result
Is Calculated

The number that the user code must write to data register Dx before
instruction execution has this format:

The upper 16 bits of the data register are not used. Bits 15:8 hold the
table entry offset, which is the entry number that corresponds to the X
value that is closest to and less than the number to be interpolated. The
interpolation fraction is the difference between the number to be
interpolated and the value of X that lies at the previous entry number. As
an example, using Table 4 , determine the format for data register Dx for
the independent variable X = 361 (hex $169).

Table 4. F(x) = x (1/2)

Entry
Number

X Value
(Decimal)

Y Value
(Decimal)

X Value
(Hex)

Y Value
 (Hex)

0 0 0 0 0

1 256 16 100 10

2 512 23 200 17

3 768 28 300 1C

4 1024 32 400 20

5 1280 36 500 24

6 1536 39 600 27

7 1792 42 700 2A

8 2048 45 800 2D

: : : : :

253 64768 254 FD00 FE

254 65024 255 FE00 FF

255 65280 255 FF00 FF

256 65536 256 10000 100

Table 5. Format for Data Register Dx

Not used Table entry offset Interpolation fraction
EB253

4 MOTOROLA



Engineering Bulletin
How the Table is Stored in Memory
As shown in Table 4 , the table entry offset that is closest to and less than
361 is 1. The interpolation fraction is $169 – $100 = $69 (decimal 105).

Thus, the value that the user code must write to data register Dx is
$0169. Note that this is the same as the original number to be
interpolated. Thus, for a table that has 256 values of X between each
entry point, the user code does not have to do any calculations to
convert the number to be interpolated to the number that must be written
in data register Dx.

The CPU calculates the interpolated result as:

Y = {(F(n+1) – Fn) x (Dx)[7:0] / 256} + Fn

Continuing with the example above, this would become:

Y = {(23–16) x 105 / 256} + 16 = 18.8

This is very close to the correct answer of 19, and in fact, the CPU will
round the answer of 19 if the TBLU or TBLS instruction is executed.

However, now take the example of X = 64 ($40). The CPU calculates the
interpolated result as:

Y = {16 – 0) x 64 / 256} + 0 = 4

This answer is clearly wrong (the correct answer should be 8). The
square root function is non-linear in the region (X,Y) = (64,8). The
function does not become relatively linear until the region around the
point (X,Y) = (256,16). Thus, the table lookup and interpolate instruction
will only return an accurate result (particularly if the result is rounded)
after that point. The area of the curve below that point can be handled
by making a separate lookup table for that area, where the entry points
are closer together. An example of such a table is shown in example 2.

Example 1 This example uses Table 4 to estimate values of Y, where Y is equal to
the square root of X. Note that there are 256 interpolation values
between every two entry points in Table 4 . The results of this example
will be very accurate for values of X greater than 256 ($100) and very
inaccurate for values of X less than 256.
EB253

MOTOROLA 5



Engineering Bulletin
ORG $400
MOVE.W #$1000,A0 ;address of beginning of table
MOVE.W #$02A4,D0 ;This is the number to be interpolated.

;Experiment with this value to obtain
;different results.
;In this case, X = 676 decimal.

INTERP TBLU.W (A0),D0 ;Do word-long, unsigned, rounded
;interpolation.
;The result (26 = $1A) is returned in D0.

DONE BRA DONE

ORG $1000 ;Beginning of the Lookup Table. The
;values of Y only are stored

DW $0000 ;Y = $0, for X = $0 for X = $100
DW $0017 ;Y = $17 for X = $200
DW $001C ;Y = $1C for X = $300
DW $0020 ;Y = $20 for X = $400
DW $0024 ;Y = $24 for X = $500
DW $0027 ;Y = $27 for X = $600
DW $002A ;Y = $2A for X = $700
DW $002D ;Y = $2D for X = $800

       :
       :

*** Continue the lookup table until X = $10000 ***

Example 2 This example is the same as the previous one, except that it uses two
lookup tables: one for the more linear region above X = 256 and one for
the very non-linear region below 256. The spacing for the table that
includes values where X is greater than or equal to 256 is the same as
for the first example (Table 4 ). However, the spacing for the table that
includes values where X is less than 256 is such that there are only 16
($10) interpolation values between every two entry points. This table is
shown in Table 6 . To use Table 6 , the user code must scale the X value
before executing the interpolation instruction by shifting it left by four.

As a side note, this example will not return accurate results for values of
X < 16. To increase the accuracy within the number range 0 < X < 16, a
third table could be added to handle these values.
EB253

6 MOTOROLA



Engineering Bulletin
How the Table is Stored in Memory
ORG $400
MOVE.W #$1000,A0 ;address of beginning of table for

;X>=256 ($100).
MOVE.W #$2000,A1 ;address of beginning of table for

;X<256 ($100).
MOVE.W #$0019,D0 ;This is the number to be

;interpolated.Experiment
;with this value to obtain different
;results.

CMPI.W #$100,D0 ;test X to see which table to use
BLT  LOW_NUM ;if X < $100, then use scaled table
TBLU.W (A0),D0 ;Interpolate if X >=256 (in this case,

it is not).
BRA DONE

LOW_NUM LSL.W #$4,D0 ;To use scaled table, must scale value
;of X first.

TBLU.W (A1),D0 ;Y is returned in D0.In this case,Y=5.
DONE BRA DONE

ORG $1000 ;start of table that will be used when
;X>=256.

DW $0000 ;Y = $0, for X = $0
DW $0010 ;Y = $10 for X = $100
DW $0017 ;Y = $17 for X = $200
DW $001C ;Y = $1C for X = $300
DW $0020 ;Y = $20 for X = $400

Table 6. F(x) = x (1/2), x <$100

Entry
Number

X Value
(Decimal)

Y Value
(Decimal)

X Value
(Hex)

Y Value
(Hex)

0 0 0 0 0

1 16 4 10 4

2 32 6 20 6

3 48 7 30 7

4 64 8 40 8

5 80 9 50 9

6 96 10 60 A

7 112 11 70 B

8 128 11 80 B

9 144 12 90 C

: : : : :

15 240 15 F0 F

16 256 16 100 10
EB253

MOTOROLA 7



 
N

O
N

-
D

I
S

C
L

O
S

U
R

E
 

A
G

R
E

E
M

E
N

T
 

R
E

Q
U

I
R

E
D

Engineering Bulletin
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed:  Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447

or 1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN:  Motorola Japan Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan, 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, New Territories, Hong Kong, 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE:  http://motorola.com/sps/

DW $0024 ;Y = $24 for X = $500
DW $0027 ;Y = $27 for X = $600
DW $002A ;Y = $2A for X = $700
DW $002D ;Y = $2D for X = $800

                :
                :
                :

*** Continue the lookup table until X = $10000 ***

ORG $2000 ;start of table that will be used when
;X<256.

DW $0000 ;Y = 0 for X = 0.
DW $0004 ;Y = $4 for X = $10
DW $0006 ;Y = $6 for X = $20
DW $0007 ;Y = $7 for X = $30
DW $0008 ;Y = $8 for X = $40
DW $0009 ;Y = $9 for X = $50
DW $000A ;Y = $A for X = $60
$000B ;Y = $B for X = $70
DW $000B ;Y = $B for X = $80
DW $000C ;Y = $C for X = $90

:
:
:

*** Continue the lookup table until X = $100 ***
EB253/D

© Motorola, Inc., 1999

Mfax is a trademark of Motorola, Inc.


	Introduction
	General Information
	Formats
	How the Table is Stored in Memory
	How the Result Is Calculated
	Example 1
	Example 2


