Order this document
by EB281/D

Motorola Semiconductor Engineering Bulletin

EB281

Halting and Re-Starting the Queued Serial Peripheral
Interface on Modular Microcontrollers

By Sharon Darley
Austin, Texas

Introduction

Halting the queued serial peripheral interface (QSPI) on modular
microcontrollers (MCUSs) before the end queue pointer is reached
requires a special sequence to ensure that the current serial transfer
completes and the QSPI halts in a known state on a boundary between
two queue entries. Although the CPU can immediately disable the QSPI
by clearing the SPE bit in the SPCRL1 register, this is not a good practice
since the QSPI could shut off in the middle of the current serial transfer.
A loss of data from the current serial transfer could result, causing
confusion for an external SPI device.

One example in which it would be necessary to halt the QSPI before the
current queue pointer reaches the end queue pointer would be if a noise
pulse caused one of the slave devices to lose synchronization with the
QSPI.

Another example would be if an emergency condition needed to override
the transfer and abort it. If the transfer halts on a known boundary
condition (for instance, the current queue pointer points to the next
gueue entry to be transmitted), the master and slave devices have a

© Motorola, Inc., 1999

@ MOTOROLA
EB281

Engineering Bulletin

much better chance of successfully resynchronizing with each other than
they do if a serial transfer is suddenly aborted.

Disabling the QSPI

The QSPI disables itself when it finishes its entire transmission (for
example when the current queue pointer reaches the end queue pointer)
and wraparound mode is disabled. However, to halt and disable the
QSPI before it reaches the end of the transmission queue requires
action by the CPU.

Safely disabling the QSPI involves three bits in three different registers:

 HALT bit in the SPCR3 register
* HALTA bit in the SPSR register
* SPE bit in the SPCRL1 register

HALT — The HALT bit is located in the SPCRS3 register. When the CPU
sets this bitto a 1, the QSPI finishes executing the current serial transfer
and then halts. While halted, if the command control bit (CONT of the
QSPI RAM) for the last command was asserted, the QSPI continues
driving the peripheral chip select pins with the value designated by the
last command before the halt. If CONT was clear, the QSPI drives the
peripheral chip-select pins to the value in register PORTQS.

If HALT is asserted during the last command in the queue, the QSPI
completes the last command, asserts both HALTA and SPIF, and clears
SPE. If the last queue command has not been executed, asserting HALT
does not set SPIF nor clear SPE. QSPI execution continues when the
CPU clears HALT.

HALTA — The QSPI asserts the HALTA flag in the SPSR register after
it has come to an orderly halt. If HMIE in SPCR3 is set, the QSPI sends
an interrupt request to the CPU when HALTA is asserted. The CPU can
clear HALTA by reading SPSR with HALTA set and then writing a O to
HALTA.

EB281

2 MOTOROLA

Example

EB281

Engineering Bulletin
Disabling the QSPI

SPE — Setting the SPE bit in the SPCRL1 register enables the QSPI,
while clearing the SPE bit disables the QSPI. The CPU can disable the
QSPI at any time by clearing SPE. The QSPI clears SPE when it reaches
the end queue pointer and is not in wraparound mode, thus disabling
itself. When the SPE bit is clear, the QSPI pins are controlled by the
PORTQS and DDRQS registers.

Executing this sequence of events halts and disables the QSPI.

1. Assertthe HALT bit in SPCR3.
2. Poll the HALTA bit in SPSR until the QSPI sets it.

3. Clear the SPE bitin SPCRL (if this bit is not cleared, the QSPI will
still halt, but it will not return control of its pins to the CPU).

To restart the QSPI:

1. Read HALTA in its asserted state and then clear it to a 0.

2. Setthe SPE bit, if it was cleared in the halting sequence.

This example illustrates how to halt and re-start the QSPI. To observe
this example working, connect either the MOSI or SCK pin to an
oscilloscope or logic analyzer. Then, run the program and observe the
bursts of activity and inactivity of the QSPI.

The example first initializes the QSPI in the wrap-around mode. Then,
the program waits in a short delay loop to make observation on an
oscilloscope easier. Next, the program halts and disables the QSPI as
described above and waits in another delay loop. Finally, the program
re-enables the QSPI as described above. The program continuously
repeats the cycle of halting and then re-enabling the QSPI.

The CPU16 code was assembled with P&E Microcomputer System’s
IASM16 assembler, and the CPU32 code was assembled with P&E
Microcomputer System’s IASM32 assembler.

MOTOROLA

Engineering Bulletin

CPU32 Code
SPCR1 EQU $FFFC1A
PORTQS EQU $FFFC15
PQSPAR EQU $FFFC16
DDRQS EQU $FFFC17
SPSR EQU $FFFC1F
SPCRO EQU $FFFC18
SPCR2 EQU $FFFC1C
SPCR3 EQU $FFFC1E
SYNCR EQU $FFFA04
SYPCR EQU $FFFA21
TXDRAM EQU $FFFD20
CMDRAM EQU $FFFD40
ORG $400 ;begin program at $400
INIT_SIM MOVE.B #$7F,(SYNCR).L ;increase clock speed
CLR.B (SYPCR).L ;disable software watchdog
INIT_QSPI ANDILW #$7F,(SPCR1).L ;Clear the SPE bit to disable QSPI.
ANDI.B #3$00,(SPSR).L ;read and clear flags in SPSR
MOVE.B #3$7B,(PORTQS).L ;define initial states of chip
;selects/SCK
MOVE.B #3$7B,(PQSPAR).L ;Assign all pins to the QSPI.
MOVE.B #$7E,(DDRQS).L ;Signal lines except for MISO are
;outputs.
MOVE.W #$8002,(SPCRO0).L ;Configure the QSPI as master, select
;8 data bits per transfer, set the
;inactive stateof SCKaslow, capture
;data on the leading edge of SCK, baud
;rate is 4.19 MHz
MOVE.W #$4F00,(SPCR2).L ;NEWQP=0, ENDQP=$F, WREN is enabled
MOVE.B #3$00,(SPCR3).L ;Disable loop mode, HALTA and MODF
;interrupts, and HALT.
MOVEA.L #DATA,A0 ;Point AO to the data to be
transmitted.
MOVEA.L #TXDRAM,A1l ;Point Al to the transmit data RAM.
MOVEA.L #CMDRAM,A2 ;Point A2 to the command RAM
MOVE.W #$10,D0 ;Set a counter to count down from 16
;($10), since
;there are 16 queue entries to fill.
CLR.L D1
LOOP
MOVE.B (A0)+,D1 ;Begin a loop to fill the transmit RAM.
MOVE.W D1,(Al)+ ;Store the data right-justified.
MOVE.B #3$00,(A2)+ ;fill command RAM: chip selects active
;low
SUBI.W #$01,D0 ;Subtract one from the counter
BNE LOOP ;Fill next queue entry if not done
MOVE.W #$8000,(SPCR1).L ;Begin operation by setting the SPE
;bit.

EB281

4 MOTOROLA

MAINLP

MOVE.W #$FFFF,DO
WAITLOP

SUBI.W #$01,D0
BNE WAITLOP

MOVE.B #3$01,(SPCR3).L
TEST

MOVE.B (SPSR).L,DO

ANDI.B #$20,D0

BEQ TEST

ANDIL.W #$7F,(SPCR1).L

MOVE.W #$FFFF,DO
WAI2

SUBI.W #$01,D0

BNE WAI2

MOVE.B #3$00,(SPCR3).L

MOVE.W #$8000,(SPCR1).L

ANDI.B #$00,(SPSR).L

BRA MAINLP
DATA DB 16
CPU16 Code
SPCR1 EQU $FC1A
PORTQS EQU $FC15
PQSPAR EQU $FC16
DDRQS EQU $FC17
SPSR EQU $FC1F
SPCRO EQU $FC18
SPCR2 EQU $FC1C
SPCR3 EQU S$FCI1E
SYNCR EQU $FA04
SYPCR EQU $FA21
TXDRAM EQU $FD20
CMDRAM EQU $FD40

ORG $200
INIT_SIM

LDAB #$0F

TBEK

TBYK

TBZK

LDD #$7F00

STD SYNCR

CLR SYPCR
INIT_QSPI

LDD SPCR1

ANDD #$7F
EB281

Engineering Bulletin
Disabling the QSPI

;set a wait loop so that QSPI operation

;can be observed on an oscilloscope
;Set HALT =1
;wait until QSPI sets HALTA flag

;check to see if the QSPI is halted
;clear SPE -- disable QSPI
;wait loop so that break in QSPI

;transmission can be observed
;on an oscilloscope
;clear HALT
;set SPE -- re-enable QSPI
;clear HALTA flag -- re-start QSPI

;memory used to fill transmit RAM

;begin program at $400, immediately
;after the exception table

;increase clock speed
;disable software watchdog

MOTOROLA

Engineering Bulletin

STD SPCR1
LDAB SPSR
ANDB #$00
STAB SPSR
LDAB #$7B
STAB PORTQS

STAB PQSPAR

;Clear the SPE bit to disable QSPI.

;read and clear flags in SPSR

;define initial states of chip
;selects/SCK
;Assign all pins to the QSPI.

LDAB #$7E
STAB DDRQS ;Signal lines except for MISO are
;outputs.
LDD #$8002
STD SPCRO ;Configure the QSPI as master, select
;8 data bits per transfer, set the
;inactive
;state of SCK as low, capture data on
;leading edge of SCK, baud rate is 4.19
;MHz
LDD #$4F00
STD SPCR2 ;NEWQP=0, ENDQP=$F, WREN is enabled
CLRB
TBXK
LDX #DATA ;Point X to the data to be transmitted.
LDY #TXDRAM ;Point Y to the transmit data RAM.
LDZ #CMDRAM ;Point Z to the command RAM
LDE #3$10 ;Set a counter to count down from 16
;($10), since there are 16 queue
;entries to fill.
LOOP LDD 0,X
STD 0,Y ;Begin a loop to fill the transmit RAM.
AlX #$02 ;Store the data right-justified.
AlY #$02
CLRB
STAB 0,Z
INCZ Jfill command RAM: chip selects active
;low
SUBE #%$01 ;Subtract one from the counter
BNE LOOP ;Fill next queue entry if not done
LDD #$8000
STD SPCR1 ;Begin operation by setting the SPE
;bit.
MAINLP
LDE #$FFFF ;set a wait loop so that QSPI operation
;can be observed on an oscilloscope
WAITLOP
SUBE #%$01
BNE WAITLOP
LDAB #$01
STAB SPCR3 ;Set HALT =1
TEST
LDAB SPSR ;wait until QSPI sets HALTA flag
EB281
6 MOTOROLA

Engineering Bulletin
Disabling the QSPI

ANDB #$20

BEQ TEST ;check to see if the QSPI is halted

LDAB SPCR1

ANDB #$7F

STAB SPCR1 ;clear SPE -- disable QSPI

LDE #$FFFF ;wait loop so that break in QSPI
WAI2

SUBE #%$01 ;transmission can be observed on an

;oscilloscope

BNE WAI2

CLRB

STAB SPCR3 ;clear HALT

LDD #$8000

STD SPCR1 ;set SPE -- re-enable QSPI

CLRB

STAB SPSR ;clear HALTA flag -- re-start QSPI

BRA MAINLP
DATA DB 16 ;memory used to fill transmit RAM
EB281
MOTOROLA 7

Engineering Bulletin

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including “Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217.
1-800-441-2447 or 1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Motorola Japan Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-Ku, Tokyo, Japan, 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, New Territories, Hong Kong, 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;
TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

© Motorola, Inc., 1999

EB281/D

@ MOTOROLA

	Introduction
	Disabling the QSPI
	Example

	CPU32 Code
	CPU16 Code

