

Order this document
 by TPUPN15B/D Rev. 1

SEMICONDUCTOR

MOTOROLA

PROGRAMMING NOTE

Period Measurement With Missing Transition Detection
TPU Function (PMM)
By Sharon Darley

1 Functional Overview
The PMM function detects missing transitions embedded in a series of input pulses by measuring each
pulse period to a 23-bit resolution. It detects a missing transition when the current period is greater than
the previous period multiplied by a programmable ratio. It has two operating modes: count mode and
bank mode. In count mode, the PMM function counts the number of missing transitions and compares
it with a programmable maximum value before resetting the TCR2 counter and starting over with the
next series of pulses. In bank mode, the TCR2 counter resets when a missing transition is detected and
the flag BANK_SIGNAL is set to a non-zero value.

2 Detailed Description
The PMM function is typically used in automotive applications for detecting a reference point on a fly-
wheel with regularly spaced teeth. This reference point is in the form of a missing tooth. A missing tooth
causes a longer interval between teeth, and the PMM function is able to detect this extended interval
by measuring the current period and comparing it with the previous period. The PMM function is usually
used in conjunction with the PSP function. The PSP function generates an output pulse in relation to
the missing tooth detected by the PMM function.

The PMM function measures the period between regularly spaced transitions for a channel that has its
input connected to the same source as the clock input to TCR2. It detects a missing transition when the
current period ≥ PERIOD ∗ RATIO. Thus, it is able to effectively map engine-cycle position into TCR2
counts.

When the PMM function is in count mode and detects a missing transition, it increments the parameter
MISSING_COUNT. It then compares the new MISSING_COUNT to MAX_MISSING. If the new
MISSING_COUNT is greater than or equal to MAX_MISSING, then the PMM function resets TCR2 to
$FFFF, clears MISSING_COUNT, and requests an interrupt.

When the PMM function is in bank mode and detects a missing transition, it reads the value
BANK_SIGNAL. If BANK_SIGNAL is set to a non-zero value, the PMM function resets TCR2 to $FFFF,
clears BANK_SIGNAL, and requests an interrupt. If BANK_SIGNAL is set to zero, the PMM function
requests an interrupt but does not reset TCR2. BANK_SIGNAL can be set by another function. The ITC
function is ideal for this purpose.

ROLLOVER_COUNT is a parameter used to calculate a 23-bit period from the 16-bit TCR count. It in-
crements each time the TCR count equals or exceeds $8000 during a period measurement. At the be-
ginning of service, REF_TIME contains the TCR1 value of the prior input capture, and the capture
register contains the TCR1 value of the latest transition. On each normal transition, the PMM function
places the elapsed time measured into PERIOD_LOW_WORD and PERIOD_HIGH_WORD, measur-
ing a time of up to $7EFFFF TCR1 clocks. On the normal transition following a missing transition, a val-
ue of one half the measured time is stored into these two parameters. (If the period measured is longer
than $7EFFFF, the period time is set to $7FXXXX.)
© MOTOROLA INC, 1997

Some transitions may be incorrect or invalid. In automotive and similar environments, noise in the sys-
tem, malformed teeth on the flywheel, or incorrect adjustment of the transducer can cause the signal
from a valid tooth to be lost. To help detect these missed transitions, the PMM supplies some noise im-
munity by requiring that 1) the total number of transitions does not exceed the value of
TCR2_MAX_VALUE, and 2) the number of normal transitions to be counted between missing transi-
tions is equal to NUM_OF_TEETH. Remember that tooth count begins with zero instead of one, so the
values in these two parameters will be one less than the actual number of teeth. These checks help to
identify the index position. If the numbers do not match, the function assumes that the detected missing
transition was invalid and responds by doing the following:

1. Indicates the error condition by setting TCR2 to the value $80FF and the most significant byte
of TCR2_VALUE to $80 (the value $80FF can never cause a match detection by a channel ex-
ecuting PSP);

2. Interrupts the CPU on each tooth (input transition);
3. Continues to increment the lower byte of TCR2_VALUE;
4. Continues to calculate the period;
5. Stores the time of the last tooth in REF_TIME.

The decision of what to do for this unsynchronized condition is left up to the system programmer. The
programmer may then use the force mode available in the OC or PSP functions to directly control the
output channels.

The system designer must ensure that the missing transition is serviced completely (both scheduled
and served) before the next normal transition occurs. If service is incomplete, errors may pass unde-
tected. To ensure complete service, there are limitations on the parameter RATIO (see description) and
requirements for programming the scheduler. Some basic rules are the following:

• The PMM and PSP channels must have the same priority level.
• The PMM channel must be assigned a lower channel number than the PSP channel in order to

service the PMM channel before the PSP is serviced in the case of simultaneous requests.
• The priority level of the PMM channel should be high enough to ensure service completion before

the next normal transition occurs.

At PMM initialization, TCR2 is initialized to $C0FF since the value of $C0FF cannot cause a match de-
tection by the channel executing PSP. On each transition detected, TCR2_VALUE is incremented,
tracking TCR2, and is readable by the CPU at any time. The PMM channel is synchronized to the input
whenever the missing and normal transitions occur in the expected sequence. With synchronization,
TCR2 is reset to $FFFF. TCR2 values from $0000 to $00FF can cause a match detection by the chan-
nels executing PSP. By setting the host sequence bit 0, the user may choose one of two operating
modes: count mode or bank mode.

2.1 Count Mode

In this mode, TCR2 is set to $FFFF after the number of missing transitions in MAX_MISSING has been
identified and counted.

2.2 Bank Mode

In this mode, TCR2 is set to $FFFF if a missing transition has been identified and BANK_SIGNAL is a
non-zero value. BANK_SIGNAL can be incremented by another function such as the ITC function.

Figure 1 is an example of PMM used with a PSP function. The input to the PMM channel and the TCR2
clock input is a flywheel with teeth spaced every 30 degrees, with one missing tooth as a reference in-
dicator. Detection of the missing tooth causes the function to set TCR2 to $FFFF; the next tooth and
input capture event advances TCR2 to $0000, and each successive tooth advances TCR2. When the
missing tooth is detected, TCR2 and TCR2_VALUE contain $0A; therefore, NUM_OF_TEETH must
also be $0A.
 MOTOROLA TPU Programming Library
2 TPUPN15B/D

The waveforms shown for channels 4 and 5 illustrate two ways of programming a pulse using angle-
angle mode. The waveform for channel 4 illustrates the preferred way since it produces only one wave-
form. Refer to Motorola Programming Note TPUPN14/D, Position-Synchronized Pulse Generator TPU
Function (PSP) for additional information.

Figure 1 PMM and PSP Together

* Missing Tooth – one tooth every 30°, less one tooth results in a total of 11 teeth.

TCR2 =

 PERIOD 0
10 0 1 2 3 4

MISSING TOOTH *

$0001 $0002 $0003 $0004$000A

LATENCY

CHANNEL 4 — PSP
(ANGLE-TIME MODE)

CHANNEL 5 — PSP
(ANGLE-TIME MODE)

PERIOD
A÷2

$FFFF

CHANNEL 0 — PMM
COUNT MODE

(INPUT FROM SENSOR)

CHANNEL 1 — PSP
(ANGLE-ANGLE MODE)

CHANNEL 2 — PSP
(ANGLE-ANGLE MODE)

CHANNEL 3 — PSP
(ANGLE-TIME MODE)

HIGH_TIME

TCR2 IS INCREMENTED
BEFORE THE FALLING EDGE

(PERIOD 9)
• (RATIO)

$0000

(NUM _OF_TEETH = $0A)

 PERIOD 1 PERIOD 2 PERIOD 3 PERIOD 4

(RATIO1)
• (PERIOD 0)

(RATIO2)
• (PERIOD 1)

ANGLE1 = $01
RATIO1 = $30

ANGLE2 = $02
RATIO2 = $50

(RATIO1)
• (PERIOD 1)

(RATIO2)
• (PERIOD 1)

ANGLE2 = $02
RATIO2 = $F0(RATIO1)

• (PERIOD A)

ANGLE1 = $00
RATIO1 = $60

(RATIO1)
• (PERIOD 0)

HIGH_TIME

ANGLE1 = $01
RATIO1 = $B0 SINCE TCR2 CONTINUES TO

MATCH ANGLE1, A
CONTINUOUS STREAM

OF SHORT PULSES
IS GENERATED

ANGLE1 = $02
RATIO1 = $30

HIGH_TIME

(RATIO1)
• (PERIOD 1)

1037A
TPU Programming Library MOTOROLA
TPUPN15B/D 3

3 Function Code Size
Total TPU function code size determines what combination of functions can fit into a given ROM or em-
ulation memory microcode space. PMM function code size is:

80 µ instructions + 6 entries = 86 long words

4 Function Parameters
This section provides detailed descriptions of PMM function parameters stored in channel parameter
RAM. Figure 2 shows TPU parameter RAM address mapping. Figure 3 shows the parameter RAM as-
signment used by the PMM function. In the diagrams, Y = M111, where M is the value of the module
mapping bit (MM) in the system integration module configuration register (Y = $7 or $F).

Figure 2 TPU Channel Parameter RAM CPU Address Map

Channel Base Parameter Address

Number Address 0 1 2 3 4 5 6 7

0 $YFFF## 00 02 04 06 08 0A — —

1 $YFFF## 10 12 14 16 18 1A — —

2 $YFFF## 20 22 24 26 28 2A — —

3 $YFFF## 30 32 34 36 38 3A — —

4 $YFFF## 40 42 44 46 48 4A — —

5 $YFFF## 50 52 54 56 58 5A — —

6 $YFFF## 60 62 64 66 68 6A — —

7 $YFFF## 70 72 74 76 78 7A — —

8 $YFFF## 80 82 84 86 88 8A — —

9 $YFFF## 90 92 94 96 98 9A — —

10 $YFFF## A0 A2 A4 A6 A8 AA — —

11 $YFFF## B0 B2 B4 B6 B8 BA — —

12 $YFFF## C0 C2 C4 C6 C8 CA — —

13 $YFFF## D0 D2 D4 D6 D8 DA — —

14 $YFFF## E0 E2 E4 E6 E8 EA EC EE

15 $YFFF## F0 F2 F4 F6 F8 FA FC FE

— = Not Implemented (reads as $00)
 MOTOROLA TPU Programming Library
4 TPUPN15B/D

Figure 3 PMM Function Parameter RAM Assignment

4.1 CHANNEL_CONTROL

CHANNEL_CONTROL contains the channel latch controls and configures the PSC, PAC, and TBS
fields. A channel executing this function is configured as input. The CPU must write
CHANNEL_CONTROL before initialization. The PSC field is “don't care” for input channels. The PAC
field specifies which edge to detect. Since the TCR2 external clock input detects rising edges only, the
PAC field should be configured to detect rising edges unless unusual conditions exist. The TBS field
configures a channel pin as input or output and configures the time base for match/capture events. The
PMM function should use TCR1 for both types of events. The following table defines the allowable data
for this parameter.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 REF_TIME CHANNEL_CONTROL

$YFFFW2 MAX_MISSING NUM_OF_TEETH

$YFFFW4 BANK_SIGNAL/MISSING COUNT ROLLOVER_COUNT

$YFFFW6 RATIO TCR2_MAX_VALUE

$YFFFW8 PERIOD_HIGH_WORD

$YFFFWA PERIOD_LOW_WORD

$YFFFFC ERROR TCR2_VALUE

W = Channel number

Parameter Write Access:

Written by CPU

Written by TPU

Written by CPU and TPU

Unused parameters

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOT USED TBS PAC PSC

Table 1 PMM CHANNEL_CONTROL Options

TBS PAC PSC Action

8 7 6 5 4 3 2 1 0 Input Output

0 0 0
0 0 1
0 1 0
0 1 1
1 x x

Do Not Detect Transition
Detect Rising Edge
Detect Falling Edge
Detect Either Edge

Do Not Change PAC

—
—
—
—
—

0 0 x x
0 0 0 0
1 x x x

Input Channel
Capture TCR1, Match TCR1

Do Not Change TBS

—
—
—

TPU Programming Library MOTOROLA
TPUPN15B/D 5

4.2 REF_TIME

REF_TIME is the time of the last transition captured. After CHANNEL_CONTROL information is used
during the Init state, the TPU writes the captured TCR1 value into REF_TIME on each normal transition
detected.

4.3 MAX_MISSING

MAX_MISSING is a byte that contains the number of missing transitions to be counted before TCR2 is
set to $FFFF. This parameter is written by the CPU before initialization and is referenced by the TPU
only in count mode (host sequence bits equal 11). It cannot be set to zero and used to generate a PSP
output waveform for an input pulse train with no missing teeth.

4.4 NUM_OF_TEETH

NUM_OF_TEETH is the number of normal, regularly spaced teeth between missing transitions, includ-
ing tooth number zero. This parameter allows the TPU to differentiate between valid and invalid missing
transitions. For each missing transition detected, the TPU subtracts NUM_OF_TEETH from the current
tooth count in TCR2 and continues executing the function if the result is zero. If the application has mul-
tiple missing teeth separated by different numbers of normal transitions, the host CPU must update
NUM_OF_TEETH so that NUM_OF_TEETH contains the same value as TCR2 at each missing tooth.
In Figure 4, the flywheel is divided into two segments with different numbers of teeth in each segment,
so that the CPU can determine which half of the flywheel has the major reference tooth. At each missing
tooth detected, TCR2 is compared with NUM_OF_TEETH, and an interrupt is sent to the CPU to allow
the software to alternately change NUM_OF_TEETH between $07 and $0D.

Figure 4 PMM NUM_OF_TEETH Example

4.5 BANK_SIGNAL

BANK_SIGNAL is a byte that contains the current value of the bank signal. A non-zero value means
that BANK_SIGNAL is asserted; $00 means that BANK_SIGNAL is negated. This parameter is refer-
enced only in bank mode (host sequence bits equal 10). If BANK_SIGNAL is non-zero when a missing
transition is detected, then TCR2 is set to $FFFF and BANK_SIGNAL is cleared. BANK_SIGNAL is nor-
mally set by another time function, such as the ITC function, but can be set by the CPU when an outside
reference determines that the next missing transition should cause TCR2 to become $FFFF.

1039A

NOTE: Flywheel has teeth each 22.5°, minus teeth at 180° and 337.5°, max missing = 2.

SECOND MISSING TOOTH CAUSES PMM
TO SET TCR2 TO $FFFF; NEXT NORMAL
TRANSITION INCREMENTS TCR2 TO $0000

MISSING TOOTH CAUSES CPU
INTERRUPT; CPU CHANGES

NUM _OF_TEETH TO 7

MISSING TOOTH CAUSES CPU
INTERRUPT; CPU CHANGES

NUM_OF_TEETH TO D

X

0 1
2

3

4

5

6
7

9

A

B

C

8

D

X

 NUM_OF_TEETH = D NUM _OF_TEETH = 7
 MOTOROLA TPU Programming Library
6 TPUPN15B/D

4.6 MISSING_COUNT

In count mode, the byte MISSING_COUNT contains the number of missing transitions detected. At ini-
tialization, this parameter is set to $0000. Then, at each missing tooth, the PMM function compares
MISSING_COUNT with the value in MAX_MISSING. If it is greater than or equal to MAX_MISSING at
any missing tooth, TCR2 is set to $FFFF and MISSING_COUNT is reset to $0000. This parameter is
used only in count mode.

4.7 ROLLOVER_COUNT

ROLLOVER_COUNT is a parameter used as a counter that increments each time the TCR count
equals or exceeds $8000 during a period measurement. This parameter is used to calculate a 23-bit
period from the 16-bit TCR count and to determine if a period error (Figure 5) has occurred. This pa-
rameter is reset at the beginning of each measured period.

4.8 RATIO

RATIO, multiplied by the previous PERIOD, is the lower bound of time in which a normal transition must
occur. This parameter is written by the CPU and used by the TPU.

The RATIO parameter must be bounded on the lower end to ensure that all normal transitions occur
within the interval PERIOD ∗ RATIO. The upper bound is limited by the requirement that 1) a match on
the interval PERIOD ∗ RATIO must occur to detect that a transition was missed, and 2) channel service
must complete for TCR2 to be reset to $FFFF. All actions must complete before the next normal tran-
sition, which causes TCR2 to increment to $0000. The range of RATIO is therefore $80 to $FF (1.010
to 1.9910) for PMM.

4.9 TCR2_MAX_VALUE

TCR2_MAX_VALUE is a byte containing the maximum permissible value of TCR2. This parameter
identifies the case in which a missing transition goes undetected and TCR2, instead of resetting, con-
tinues incrementing. If TCR2 exceeds this value due to a normal transition instead of the expected miss-
ing transition, TCR2 is set to $80FF, and MISSING_COUNT/BANK_SIGNAL is cleared to $0000. This
situation is recovered with re-synchronization.

4.10 PERIOD_HIGH_WORD

PERIOD_HIGH_WORD is the upper 8 bits [23:16] of the last measured period. This parameter, with
PERIOD_LOW_WORD, indicates the TCR1 time duration between the last two input transitions. The
maximum value in this parameter is $007E, unless the measured period exceeds $7EFFFF, in which
case this parameter is set to $007F. If the detected transition is identified as following a missing transi-
tion, one-half the measured period is used as the update value (with a maximum value of $003F).
PERIOD_HIGH_WORD may be read by the CPU at any time and should be read coherently with
PERIOD_LOW_WORD.

4.11 PERIOD_LOW_WORD

PERIOD_LOW_WORD is the lower 16 bits [15:0] of the last measured period. This parameter, with
PERIOD_HIGH_WORD, indicates the TCR1 time duration between the last two input transitions. If the
detected transition is identified as following a missing transition, one-half the measured period is used
as the update value. PERIOD_LOW_WORD may be read by the CPU at any time and should be read
coherently with PERIOD_HIGH_WORD.

4.12 TCR2_VALUE

TCR2_VALUE is incremented on each transition to track the current value of TCR2. In normal operation
(i.e., when no error condition exists), the high byte of this parameter is $00, and the low byte contains
the current value of the low byte of TCR2. This low byte is therefore the current TEETH_COUNT. When
an error condition is detected, the high byte contains an error code and the low byte continues incre-
menting at each transition detected. The error code parameter is cleared when the error condition dis-
appears. The error codes are shown in Figure 5.
TPU Programming Library MOTOROLA
TPUPN15B/D 7

Figure 5 Error Codes

5 Host Interface to Function
This section provides information concerning the TPU host interface to the PMM function. Figure 6 is
a TPU address map. Detailed TPU register diagrams follow the figure. In the diagrams, Y = M111,
where M is the value of the module mapping bit (MM) in the system integration module configuration
register (Y = $7 or $F).

Figure 6 TPU Address Map

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ERR TEETH–COUNT

ERR — Error Code

$00 No error

$80 TEETH_COUNT does not match NUM_OF_TEETH on a missing transition de-
tection, or TCR2 exceeds TCR2_MAX_VALUE.

$C0 (Normal period) or (missing tooth period ÷ 2) exceeds $FFFF or (PERIOD ∗ RA-
TIO) exceeds $7FFF (missing tooth interval).

Address 15 8 7 0

$YFFE00 TPU Module Configuration Register (TPUMCR)

$YFFE02 Test Configuration Register (TCR)

$YFFE04 Development Support Control Register (DSCR)

$YFFE06 Development Support Status Register (DSSR)

$YFFE08 TPU Interrupt Configuration Register (TICR)

$YFFE0A Channel Interrupt Enable Register (CIER)

$YFFE0C Channel Function Selection Register 0 (CFSR0)

$YFFE0E Channel Function Selection Register 1 (CFSR1)

$YFFE10 Channel Function Selection Register 2 (CFSR2)

$YFFE12 Channel Function Selection Register 3 (CFSR3)

$YFFE14 Host Sequence Register 0 (HSQR0)

$YFFE16 Host Sequence Register 1 (HSQR1)

$YFFE18 Host Service Request Register 0 (HSRR0)

$YFFE1A Host Service Request Register 1 (HSRR1)

$YFFE1C Channel Priority Register 0 (CPR0)

$YFFE1E Channel Priority Register 1 (CPR1)

$YFFE20 Channel Interrupt Status Register (CISR)

$YFFE22 Link Register (LR)

$YFFE24 Service Grant Latch Register (SGLR)

$YFFE26 Decoded Channel Number Register (DCNR)
 MOTOROLA TPU Programming Library
8 TPUPN15B/D

CFS[4:0] — Function Number (Assigned during microcode assembly)

CIER — Channel Interrupt Enable Register $YFFE0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Enable

0 Channel interrupts disabled

1 Channel interrupts enabled

CFSR[0:3] — Channel Function Select Registers $YFFE0C – $YFFE12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFS (CH 15, 11, 7, 3) CFS (CH 14, 10, 6, 2) CFS (CH 13, 9, 5, 1) CFS (CH 12, 8, 4, 0)

HSQR[0:1] — Host Sequence Registers $YFFE14 – $YFFE16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Action Taken

00 PMA Bank Mode

01 PMA Count Mode

10 (PMM Bank Mode)

11 (PMM Count Mode)

HSRR[0:1] — Host Service Request Registers $YFFE18 – $YFFE1A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Initialization

00 No Host Service Request

01 Initialization (Init)

10 Undefined

11 Undefined

CPR[1:0] — Channel Priority Registers $YFFE1C – $YFFE1E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Channel Priority

00 Disabled

01 Low

10 Middle

11 High
TPU Programming Library MOTOROLA
TPUPN15B/D 9

6 Function Configuration
The CPU initializes this time function by the following:

1. Writing CHANNEL_CONTROL:
a) The pin should be configured as input, rising-edge detect, and
b) TCR1 should be used for compare and capture;

2. Writing parameters MAX_MISSING, TCR2_MAX_VALUE, NUM_OF_TEETH, and RATIO to
parameter RAM;

3. Writing host sequence bits 10 or 11 according to the bank or count mode desired;
4. Issuing an HSR %01 for initialization; and
5. Enabling channel servicing by assigning a high, middle, or low priority.

The TPU then executes initialization. The CPU should monitor the HSR register until the TPU clears the
service request to 00 before changing any parameters or before issuing a new service request to this
channel. If PMM is used with channels executing PSP, the PMM channel should be initialized and en-
abled at the same time as or before the PSP channels.

7 Performance and Use of Function

7.1 Performance

Like all TPU functions, PMM function performance in an application is to some extent dependent upon
the service time (latency) of other active TPU channels. This is due to the operational nature of the
scheduler. The more TPU channels are active, the more performance decreases. Worst-case latency
in any TPU application can be closely estimated. To analyze the performance of an application that ap-
pears to approach the limits of the TPU, use the guidelines given in the TPU reference manual and the
information in the following table.

CISR — Channel Interrupt Status Register $YFFE20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Status

0 Channel interrupt not asserted

1 Channel interrupt asserted

Table 2 PMM State Timing

State Name Clock Cycles RAM Accesses

S1 Init 16 3

S2 Measure_Period
No error
Error

58
80

7
10

S3 Missing_Trans
Normal transitions only
Missing transitions only — bank mode
Missing transitions only — count mode
Missing tooth and transitions detected
 (error condition)

94
38
42
32

8
4
5
5

 MOTOROLA TPU Programming Library
10 TPUPN15B/D

7.2 Changing Mode

The host sequence bits are used to select PMM function operating mode. Change host sequence bit
values only when the function is stopped or disabled (channel priority bits = %00). Disabling the channel
before changing mode avoids conditions that cause indeterminate operation.

8 Function Examples

8.1 Example A

8.1.1 Description

This program is a demonstration of how to use the ITC, PMM, and PSP functions together to generate
an output pulse in relation to a “missing tooth”. The program could be part of an angle-based automotive
engine control system. A typical system is shown in Figure 8.

As shown in Figure 8, in a typical automotive engine the camshaft works together with the flywheel to
determine the timing for the ignition firing points and fuel-injection pulses. Both the camshaft and the
flywheel have reference points in the form of missing or additional teeth. The PMM/PMA functions de-
tect these reference points; the PMM function detects missing teeth, and the PMA function detects ad-
ditional teeth. This example uses the PMM function to detect missing teeth.

The PMM function has two modes: count mode and bank mode. In count mode, timer TCR2 is reset to
$FFFF after the number of missing transitions in MAX_MISSING has been counted. In bank mode, tim-
er TCR2 is reset to $FFFF after a missing transition has been counted only if BANK_SIGNAL is a non-
zero value. This example uses bank mode.

In order to use the bank mode, either the CPU or another time function must increment the parameter
BANK_SIGNAL. This example uses the ITC function on another channel to increment BANK_SIGNAL.

In this example, the PMM function is also used in conjunction with the PSP function. The PMM function
determines when the missing tooth occurs, and the PSP function waits a programmable amount of time
before it generates an output pulse. The PSP function has two operating modes: angle-angle and angle-
time. The function generates the output pulse based on the following parameters: RATIO1, RATIO2,
ANGLE1, ANGLE2, and HIGH_TIME. RATIO1 and RATIO2 are 8-bit numbers that represent a decimal
multiplier of the period that can range from 0 to 1.99. ANGLE1 and ANGLE2 represent reference an-
gles. A reference angle is simply a tooth number. The teeth are numbered starting with 0 after the last
missing transition. HIGH_TIME specifies the time duration of the output pulse in angle-time mode. This
example uses the angle-time mode, illustrated in Figure 7.

Figure 7 Angle-Time Mode

1042A

PIN STATE

TCR2 = ANGLE1

HIGH_TIMEPERIOD • RATIO1
TPU Programming Library MOTOROLA
TPUPN15B/D 11

Figure 8 Engine Control Example A

C

C

D

D

D

D

D

B

B

B

B

A

ENGINE CYCLE
AND POSITION
TIMING

ELECTRONIC
FUEL
INJECTION

CHANNEL 15

CAMSHAFT

CRANKSHAFT

PRESSURIZED
FUEL LINE

FUEL
INJECTOR

OPTICAL OR
MAGNETIC SENSOR0°

TDC OPTICAL OR
MAGNETIC SENSOR

A – AUTO SPARK COIL
B – FUEL VALVE
C – SIGNAL CONDITIONING AND BUFFERING ELECTRONICS
D – HIGH-CURRENT DRIVER ELECTRONICS

DA

ELECTRONIC
SPARK TIMING

TO
SPARK
PLUGS

(PSP) ANGLE_TIME

CHANNEL 14
(PSP) ANGLE_TIME

CHANNEL 13
(PSP) ANGLE_TIME

CHANNEL 12
(PSP) ANGLE_TIME

CHANNEL 11
(PSP) ANGLE_ANGLE

CHANNEL 10
(PSP) ANGLE_ANGLE

CHANNEL 1
(PMA/PMM)

CHANNEL 0
(ITC)

1008A

TPU
 MOTOROLA TPU Programming Library
12 TPUPN15B/D

8.1.2 Hardware Setup

This example requires two input pulse trains. The input to the TCR2 clock pin and the TPU channel ex-
ecuting the PMM function is a series of pulses with missing transitions. This pulse train is from a flywheel
in an automobile engine. In this example, the flywheel has 35 teeth and one missing tooth (36 evenly-
spaced tooth-positions total). The flywheel rotates twice for every one rotation of the camshaft. When
the flywheel rotates to top dead center and reaches a missing tooth, the engine compresses and fires
the spark plugs. After the flywheel makes a second revolution and the camshaft finishes making its first
full rotation, the missing tooth is reached again. This time, the engine releases exhaust. The cycle re-
peats. Thus, the 35 tooth flywheel with one missing tooth behaves the same as a 70 tooth flywheel with
two missing teeth. The reference points on the camshaft keep track of which half of the cycle is currently
taking place.

The input pulse train to the channel executing the ITC function consists of high and low transitions from
the camshaft. During one missing tooth, this pulse is low, and during the next missing tooth, the pulse
is high. This pulse causes BANK_SIGNAL to increment from zero to one during every other missing
tooth.

See Figure 9 for an illustration of the two input waveforms.

Figure 9 Input Waveforms for Example A

The TPU is set up with the functions needed to generate the PSP output pulse: the ITC function on
channel 3, the PMM function on channel 4, and the PSP function on channel 5. The ITC function on
channel 3 is connected to the camshaft. It is set up so that each time it detects a rising transition, it in-
crements the PMM parameter BANK_SIGNAL, thus forcing it to a non-zero value to allow timer TCR2
to reset to $FFFF. The PMM function on channel 4 is connected to the flywheel to detect missing teeth.
The PSP function is not physically connected to any of the other channels, but its parameter
PERIOD_ADDRESS points to the PMM parameter PERIOD_LOW_WORD. In addition, the TCR2 clock
input is connected to the flywheel. See Figure 10 for an illustration of the hardware setup.

• • • • • • • •

TPU PMM EXA TIM

FLYWHEEL INPUT TO PMM CHANNEL AND T2CLK

CAMSHAFT INPUT TO ITC CHANNEL

0 1 34 0 1 34 0
TPU Programming Library MOTOROLA
TPUPN15B/D 13

Figure 10 Hardware Setup for Example A

8.1.3 Software Initialization

This program is a demonstration of how to use the PMM and PSP functions together to generate an
output pulse in relation to a “missing tooth.” In this case, the input pulse train to the PMM channel and
T2CLK is a series of 35 pulses followed by a 36th missing transition. The input pulse to the ITC channel
is high during every other missing tooth. The ITC channel forces the parameter BANK_SIGNAL to a
non-zero value during every second rotation of the fly wheel. The PSP function uses the angle-time
mode.

Set up channel 3 as ITC counting rising edges from the camshaft. Set up channel 4 as PMM detecting
missing teeth. Set up channel 5 in PSP angle-time mode. The pulse generated will look similar to the
illustration of channel 4 in Figure 1.

For the ITC channel, the host sequence field bits are%01, continual mode with no links. The parameter
MAX_COUNT is set to one. On every rising edge, the parameter TRANS_COUNT will count one edge.
When this happens, the TPU will reset TRANS_COUNT to zero and increment the high byte of the RAM
location pointed to by BANK_ADDRESS. In this case, that RAM location is BANK_SIGNAL for the PMM
function.

The host sequence field bits for the PMM channel using missing tooth bank mode are%10. When the
PMM function operates in bank mode, TCR2 will not reset to $FFFF when a missing tooth is reached
unless the parameter BANK_SIGNAL is set to a non-zero value.

8.2 Program Code for CPU32-Based Microcontrollers

This program was assembled using the IASM32 assembler available from P&E Microcomputer Sys-
tems with the M68332 In-Circuit Debugger. It was run on an M68332EVS and BCC.

TPUMCR equ $fffe00
TICR equ $fffe08
CIER equ $fffe0a
CFSR0 equ $fffe0c
CFSR1 equ $fffe0e
CFSR2 equ $fffe10
CFSR3 equ $fffe12
HSQR0 equ $fffe14
HSQR1 equ $fffe16
HSRR0 equ $fffe18
HSRR1 equ $fffe1a

PSP CHANNEL 5

TPU PMM EXA CONN

FLYWHEEL INPUT TO PMM CHANNEL AND T2CLK

CAMSHAFT INPUT TO ITC CHANNEL

0 1 34 0
• • • • • •

1 34 0

TC2CLK

PMM CHANNEL 4

ITC CHANNEL 3

OUTPUT
PULSE

TPU
 MOTOROLA TPU Programming Library
14 TPUPN15B/D

CPR0 equ $fffe1c
CPR1 equ $fffe1e
CISR equ $fffe20
ERROR equ $fffffc
PRAM3_0 equ $ffff30
PRAM3_1 equ $ffff32
PRAM3_2 equ $ffff34
PRAM3_3 equ $ffff36
PRAM3_4 equ $ffff38
PRAM3_5 equ $ffff3a
PRAM4_0 equ $ffff40
PRAM4_1 equ $ffff42
PRAM4_2 equ $ffff44
PRAM4_3 equ $ffff46
PRAM4_4 equ $ffff48
PRAM4_5 equ $ffff4a
PRAM5_0 equ $ffff50
PRAM5_1 equ $ffff52
PRAM5_2 equ $ffff54
PRAM5_3 equ $ffff56
PRAM5_4 equ $ffff58
PRAM5_5 equ $ffff5a

org $4000 ;begin program at location $4000
move.w #$0000,d5 ;d5 initialized to zero
move.w #$a000,(CFSR3).l ;Function select field: ITC channel 3, PMM channel 4, PSP
move.w #$00cb,(CFSR2).l ;channel 5 (NOTE: function numbers may vary for

;different mask sets)
move.w #$0640,(HSQR1).l ;Host Sequence field
move.w #$fc0,(CPR1).l ;Channel priority field: high priority to all channels

8.2.1 ITC Initialization for Channel 3
move.w #$0007,(PRAM3_0).l ;Channel control, detect rising edge, use TCR1
move.w #$44,(PRAM3_1).l ;BANK_ADDRESS points to PMM BANK_SIGNAL
move.w #$01,(PRAM3_2).l ;MAX_COUNT = 1

8.2.2 PMM Initialization for Channel 4

MAX_MISSING is a don't care value since the program uses bank mode.

NUM_OF_TEETH is the number that is compared to the current TCR2 count in TCR2_VALUE when a
missing tooth is detected. These numbers must match or an error code will appear in ERROR. The
program changes NUM_OF_TEETH each time a tooth is detected. Since the TPU begins counting with
zero instead of one, NUM_OF_TEETH is first set to 34 instead of 35. NUM_OF_TEETH thus alternates
between 34 and 69 at each missing tooth.

RATIO is multiplied by the previous period to form the lower bound of time in which a normal transition
must occur. The upper bound is limited by the requirement that 1) a match on the interval PERIOD ∗
RATIO must occur to detect that a transition was missed, and 2) channel service must complete for
TCR2 to be reset to $FFFF. All actions must complete before the next normal transition, which causes
TCR2 to increment to $0000. Therefore, the range of RATIO is $80 to $FF (1.010 to 1.9910). In this
case, $A0 is used.

TCR2_MAX_VALUE contains the maximum permissible value of TCR2. If a missing transition goes un-
detected and TCR2 continues incrementing past TCR2_MAX_VALUE then the error code $80 is set in
ERROR, and BANK_SIGNAL is cleared to zero. Since the maximum number of teeth to be counted be-
fore TCR2 is reset is 70, and the TPU begins numbering with zero, set TCR2_MAX_VALUE to 69.

On the first revolution of the flywheel, 34 teeth are counted. The next tooth is missing, causing an inter-
rupt. The tooth count is compared to NUM_OF_TEETH. If the two are equal and BANK_SIGNAL = 0,
counting continues. NUM_OF_TEETH is written to 69, which is the number of teeth that would occur in
two revolutions. After the second revolution of the flywheel, when the second missing tooth is encoun-
tered, the tooth count is compared to NUM_OF_TEETH. If the two are equal and BANK_SIGNAL = 1,
then TOOTH_COUNT is set to $FF, and the CPU writes NUM_OF_TEETH to 34.
TPU Programming Library MOTOROLA
TPUPN15B/D 15

Since the NUM_OF_TEETH parameter alternates between 34 and 69, interrupt the program each time
a missing transition is detected. Start the interrupt routine at the label INT by storing the address of INT
in the appropriate vector address location. For this example, the base vector number $80 is chosen.
This number is stored in the TICR register. The actual interrupt vector number is calculated by concat-
enating the channel number with the base vector number. Thus, the interrupt vector number is $84,
since channel 4 is used. The vector address (where the starting address of the interrupt routine is
stored) is calculated as 4 times the vector number plus the value in the vector base register. In this case,
since this program was developed on the M68332 BCC, the vector base register is initialized to $400
by CPU32Bug. Therefore, the vector address is 4 ∗ $84 + $400, which equals $610.

The interrupt level must be set to a non-zero value in the TICR. The interrupt level chosen determines
the priority given to this interrupt by the CPU. Level 7 is the highest priority, and level 1 is the lowest.
This example uses level 6. Once an interrupt level has been chosen, bits [10:8] in the CPU status reg-
ister must be modified to allow recognition of that level interrupt. These bits must be set to a number
that is lower than the interrupt level number. Interrupts at the same level or lower than the number in
the CPU status register will be masked out and will not be recognized by the CPU. In addition, the in-
terrupt arbitration (IARB) field in the TPUMCR must be set to a non-zero value between $0 and $F. Oth-
erwise, a spurious interrupt may occur. If two or more interrupts on the same level request an interrupt
at the same time, the IARB value determines which interrupt will be recognized first.

move.w #$0004,(PRAM4_0).l ;Channel control, detect rising edge
move.w #$0022,(PRAM4_1).l ;NUM_OF_TEETH=34
move.w #$a045,(PRAM4_3).l ;RATIO=a0, TCR2_MAX_VALUE
move.w (CISR).l,d0 ;clear all TPU interrupt requests
move.w #$0000,(CISR).l
move.l #INT,($0610).l ;start interrupt routine at INT
ori.w #$0005,(TPUMCR).l ;set IARB field
move.w #$0680,(TICR).l ;interrupt level 6, base vector=$80
andi.w #$f5ff,SR ;allow interrupts on level 6 and above

;assuming reset values in SR

8.2.3 PSP Initialization for Channel 5 in Angle-Time Mode

Since the PSP is initialized in angle-time mode, the parameters that form the output pulse are deter-
mined as follows:

1. The hightime is specified in HIGH_TIME. For this example, it is $100.
2. The rising edge is determined by three parameters: ANGLE1, RATIO1, and

PERIOD_ADDRESS. ANGLE1 is a TCR2 tooth number. Remember that teeth are numbered
starting with zero after the missing transition. PERIOD_ADDRESS points to the PMM parame-
ter PERIOD_LOW_WORD, which contains the period of the input to TCR2. RATIO1 is an 8-bit
multiplier that ranges from $00 to $FF (0 to 1.99). The rising edge of the output waveform is
offset from TCR2 = ANGLE1 by PERIOD ∗ RATIO1.

3. The falling edge occurs at the end of HIGH_TIME.
move.w #$4a01,(PRAM5_0).l ;period address points to period

;low word of PMM, Channel control
;is a don't care value

move.w #$b001,(PRAM5_4).l ;RATIO1 = $b0, ANGLE1 = 01
move.w #$100,(PRAM5_5).l ;HIGH_TIME = $100

start move.w #$940,(HSRR1).l ;Host service request for ch 3, 4, and 5
move.w #$0010,(CIER).l ;enable interrupt for channel 4

finish bra finish

8.2.4 Interrupt Handling Routine for PMM

The processor will be interrupted each time a missing tooth is detected. The interrupt routine alternates
NUM_OF_TEETH between 34 and 69. Because the processor does not know at which tooth it starts
counting, it takes a few interrupts (typically about four) to achieve synchronization. Until synchronization
is achieved, an error code will appear in ERROR at each interrupt. Thus, until ERROR clears for the
first time, keep NUM_OF_TEETH at 34. Then, each time an interrupt is received thereafter, alternate
NUM_OF_TEETH between 34 and 69.
 MOTOROLA TPU Programming Library
16 TPUPN15B/D

INT andi.w #$ffef,(CIER).l ;disable interrupt in CIER
move.w (CISR).l,d6 ;read interrupt
andi.w #$ffef,(CISR).l ;clear interrupt
cmpi.w #$01,d5 ;see if synchronization has been achieved
beq sync ;if so, change NUM_OF_TEETH
move.w (ERROR).l,d1 ;check to see if the error bits are clear
cmpi.w #$0022,d1
beq sync ;if they are clear, alternate NUM_OF_TEETH
move.w #$00ff,(ERROR).l ;if not, clear error bits
move.w #$0010,(CIER).l ;enable interrupt and return
RTE

sync move.w (PRAM4_1).l,d6 ;if error bits clear, check value
;of NUM_OF_TEETH

cmpi.w #$0022,d6 ;if NUM_OF_TEETH is 34, change to 69
bne not34 ;if NUM_OF_TEETH is 69, jump to not34
move.w #$0045,(PRAM4_1).l
bra dnch

not34 move.w #$0022,(PRAM4_1).l ;if NUM_OF_TEETH is 69, change to 34
dnch move.w #$0010,(CIER).l ;enable interrupt and return flag that

move.w #$01,d5 ;synchronization has been reached
RTE

8.3 Program Code for CPU16-Based Microcontrollers

This program was assembled on the IASM16 Assembler available with the ICD16 In-Circuit Debugger
from P&E Microcomputer Systems and was run on an MC68HC16Y1EVB.

TPUMCR equ $fe00
TICR equ $fe08
CIER equ $fe0a
CFSR0 equ $fe0c
CFSR1 equ $fe0e
CFSR2 equ $fe10
CFSR3 equ $fe12
HSQR0 equ $fe14
HSQR1 equ $fe16
HSRR0 equ $fe18
HSRR1 equ $fe1a
CPR0 equ $fe1c
CPR1 equ $fe1e
CISR equ $fe20
ERROR equ $fffc
PRAM3_0 equ $ff30
PRAM3_1 equ $ff32
PRAM3_2 equ $ff34
PRAM3_3 equ $ff36
PRAM3_4 equ $ff38
PRAM3_5 equ $ff3a
PRAM4_0 equ $ff40
PRAM4_1 equ $ff42
PRAM4_2 equ $ff44
PRAM4_3 equ $ff46
PRAM4_4 equ $ff48
PRAM4_5 equ $ff4a
PRAM5_0 equ $ff50
PRAM5_1 equ $ff52
PRAM5_2 equ $ff54
PRAM5_3 equ $fff6
PRAM5_4 equ $ff58
PRAM5_5 equ $ff5a

8.3.1 Initialization

The following code is included to set up the reset vector ($00000 – $00006). It may be changed for dif-
ferent systems.
TPU Programming Library MOTOROLA
TPUPN15B/D 17

ORG $0000 ;put the following reset vector information
;at address $00000 of the memory map

DW $0000 ;zk=0, sk=0, pk=0
DW $0200 ;pc=200 -- initial program counter
DW $3000 ;sp=3000 -- initial stack pointer
DW $0000 ;iz=0 -- direct page pointer
org $0400 ;begin program at memory location $0400

The following code initializes and configures the system; including the software watchdog and system
clock. It was written to be used with an EVB.

INITSYS: ;give initial values for extension registers
;and initialize system clock and COP

LDAB #$0F
TBEK ;point EK to bank F for register access
LDAB #$00
TBXK ;point XK to bank 0
TBYK ;point YK to bank 0
TBZK ;point ZK to bank 0
TBSK
LDD #$0003 ;at reset, the CSBOOT block size is 512K.
STD CSBARBT ;this line sets the block size to 64K since that is what

;physically comes with the EVB16
LDAA #$7F ;w=0, x=1, y=111111
STAA SYNCR ;set system clock to 16.78 MHz
CLR SYPCR ;turn software watchdog off, since it is on after reset
lds #$f000

**** MAIN PROGRAM ****
ldab #$0f
tbek ;parameter RAM use bank $f
clrb
tbzk
ldz #$0000 ;use IZ for indexed offset
clre ;Accumulator E initialized to zero
ldd #$a000
std CFSR3 ;Function select field: ITC channel 3,
ldd #$00cb ;PMM channel 4, PSP channel 5 (NOTE: function numbers
std CFSR2 ;may vary for different mask sets)
ldd #$0640
std HSQR1 ;Host Sequence field
ldd #$fc0
std CPR1 ;Channel priority field: high priority to all channels

8.3.2 ITC Initialization for Channel 3
ldd #$0007
std PRAM3_0 ;Channel control, detect rising edge and use TCR1
ldd #$44
std PRAM3_1 ;BANK_ADDRESS points to BANK_SIGNAL
ldd #$01
std PRAM3_2 ;MAX_COUNT = 1

8.3.3 PMM Initialization for Channel 4

MAX_MISSING is a don't care value since the program uses bank mode.

NUM_OF_TEETH is the number that is compared to the current TCR2 count in TCR2_VALUE when a
missing tooth is detected. These numbers must match or else an error code will appear in ERROR. The
program will change NUM_OF_TEETH at each missing tooth. Since the TPU begins counting with zero
instead of one, NUM_OF_TEETH is first set to 34 instead of 35.

RATIO is multiplied by the previous period to form the lower bound of time in which a normal transition
must occur. The upper bound is limited by the requirement that 1) a match on the interval PERIOD ∗
RATIO must occur to detect that a transition was missed, and 2) channel service must complete for
TCR2 to be reset to $FFFF. All actions must complete before the next normal transition, which causes
TCR2 to increment to $0000. Therefore, the range of RATIO is $80 to $FF (1.010 to 1.9910).
 MOTOROLA TPU Programming Library
18 TPUPN15B/D

TCR2_MAX_VALUE contains the maximum permissible value of TCR2. If a missing transition goes un-
detected and TCR2 continues incrementing past TCR2_MAX_VALUE then the error code $80 is set in
ERROR, and BANK_SIGNAL is cleared to zero. Since the maximum number of teeth to be counted be-
fore TCR2 is reset is 70 and the TPU begins numbering with zero, set TCR2_MAX_VALUE to 69.

On the first revolution of the flywheel, 34 teeth are counted. The next tooth is missing, causing an inter-
rupt. The tooth count is compared to NUM_OF_TEETH. If the two are equal and BANK_SIGNAL = 0,
counting continues. NUM_OF_TEETH is written to 69, which is the number of teeth that would occur in
two revolutions. After the second revolution, when the second missing tooth is encountered, the tooth
count is compared to NUM_OF_TEETH. If the two are equal and BANK_SIGNAL = 1, then
TOOTH_COUNT is set to $FF, and the CPU writes NUM_OF_TEETH to 34.

Since the NUM_OF_TEETH parameter alternates between 34 and 69, interrupt the program each time
a missing transition is detected. Start the interrupt routine at the label INT by storing the address of INT
in the appropriate vector address location. For this example, the base vector number $80 is chosen.
This number is stored in the TICR register. The actual interrupt vector number is calculated by concat-
enating the channel number with the base vector number. Thus, the interrupt vector number is $84,
since channel 4 is being used. The vector address (where the starting address of the interrupt routine
is stored) is calculated as two times the vector number, so the vector address is 2 ∗ $84, which is equal
to $108.

The interrupt level must be set to a non-zero value in the TICR. The interrupt level chosen determines
the priority given to this interrupt. Level 7 is the highest priority, and level 1 is the lowest. This example
uses level 6. Once an interrupt level has been chosen, bits [7:5] in the CPU status register must be mod-
ified to allow recognition of that level interrupt. These bits must be set to a number that is lower than the
interrupt level number. Interrupts at the same level or lower than the number in the CPU status register
will be masked out and will not be recognized by the CPU. In addition, the interrupt arbitration (IARB)
field in the TPUMCR must be set to a non-zero value between $0 and $F. Otherwise, a spurious inter-
rupt may occur. If two or more interrupts on the same level request an interrupt at the same time, the
IARB value determines which interrupt will be recognized first.

ldd #$0004
std PRAM4_0 ;Channel control, detect rising edge
ldd #$0022
std PRAM4_1 ;NUM_OF_TEETH=34
ldd #$a045
std PRAM4_3 ;RATIO=a0, TCR2_MAX_VALUE
ldd CISR ;clear all TPU interrupt requests
clrd
std CISR
ldd #INT
std $0108,z ;start interrupt routine at INT
ldd TPUMCR
ord #$0005 ;set IARB field
std TPUMCR
ldd #$0680
std TICR ;interrupt level 6, base vector=$80
andp #$ffaf ;allow interrupts on level 6 and above

;assuming reset values in CCR

8.3.4 PSP Initialization for Channel 5 in Angle-Time Mode
Since the PSP is initialized in angle-time mode, the parameters that form the output pulse are deter-
mined as follows:

1. The hightime is specified in HIGH_TIME. For this example, it is $100.
2. The rising edge is determined by the parameters ANGLE1, RATIO1, and PERIOD_ADDRESS.

ANGLE1 is a TCR2 tooth number. Remember that teeth are numbered starting with zero after
the missing transition. PERIOD_ADDRESS points to parameter PERIOD_LOW_WORD, which
is a PMM parameter containing the period of the input to TCR2. RATIO1 is an 8-bit multiplier
that ranges from $00 to $FF (010 to 1.9910). The rising edge of the output waveform is offset
from TCR2 = ANGLE1 by PERIOD ∗ RATIO1.
TPU Programming Library MOTOROLA
TPUPN15B/D 19

3. The falling edge occurs at the end of HIGH_TIME.
ldd #$4a01
std PRAM5_0 ;period address points to period low word

;of PMM, Channel control is a don't care value
ldd #$b001
std PRAM5_4 ;RATIO1 = $b0, ANGLE1 = 01
ldd #$100
std PRAM5_5 ;HIGH_TIME = $100

start ldd #$940
std HSRR1 ;Host service request for ch 3, 4, and 5
ldd #$0010
std CIER ;enable interrupt for channel 4

finish bra finish

8.3.5 Interrupt Handling Routine for PMM

The processor will be interrupted each time a missing tooth is detected. The interrupt routine alternates
NUM_OF_TEETH between 34 and 69. Because the processor does not know at which tooth it starts
counting, it takes a few interrupts (typically about four) to achieve synchronization. Until synchronization
is achieved, an error code will appear in ERROR at each interrupt. Thus, until ERROR clears for the
first time and 34 teeth have been counted, keep NUM_OF_TEETH at 34. Then, each time an interrupt
is received thereafter, alternate NUM_OF_TEETH between 34 and 69.

INT ldd CIER
andd #$ffef
std CIER ;disable interrupt in CIER
ldd CISR ;read interrupt
andd #$ffef
std CISR ;clear interrupt
tste ;see if synchronization has been achieved
bne sync ;if so, change NUM_OF_TEETH
ldd ERROR ;check to see if the error bits are clear
cpd #$0022 ;and 34 teeth have been counted
beq sync ;if synchronization has been achieved, alternate
ldd #$00ff ;NUM_OF_TEETH
std ERROR ;if not, clear error bits
ldd #$0010
std CIER ;enable interrupt and return
RTI

sync ldd PRAM4_1 ;if error bits clear, check value of NUM_OF_TEETH
cpd #$0022 ;if NUM_OF_TEETH is 34, change to 69
bne not34 ;if NUM_OF_TEETH is 69, jump to not34
ldd #$0045
std PRAM4_1
bra dnch

not34 ldd #$0022
std PRAM4_1 ;if NUM_OF_TEETH is 69, change to 34

dnch ldd #$0010
std CIER ;enable interrupt and return
lde #$01 ;flag that synchronization has been reached
RTI

8.4 Example B

8.4.1 Description

This example uses the PMM function in count mode. It produces an output pulse on the PSP channel
after every missing tooth. To wait for two or more teeth to pass before producing an output pulse,
NUM_OF_TEETH must be changed in an interrupt routine such as was done in Example A.

In count mode, the input DIO channel is not needed, nor is the ITC channel that changes
BANK_ADDRESS between one and zero. TCR2 will automatically reset to $FFFF at each missing tooth
and generate an output pulse because MISSING_COUNT will match MAX_MISSING.
 MOTOROLA TPU Programming Library
20 TPUPN15B/D

8.4.2 Hardware Setup

This example requires one input pulse train. The input to the TCR2 clock pin and the TPU channel ex-
ecuting the PMM function is a series of pulses with missing transitions. This pulse train is from a flywheel
in an automobile engine. In this example, the flywheel has 35 teeth and one missing tooth (36 evenly-
spaced tooth-positions total).

See the first waveform in Figure 9 for an illustration of this one input waveform.

The TPU is set up with the functions needed to generate the PSP output pulse: the PMM function on
channel 4 and the PSP function on channel 5. Channel 4 is connected to the flywheel to detect missing
teeth. The TCR2 clock input is also connected to the flywheel. Channel 5 is not physically connected to
any of the other channels, but its parameter PERIOD_ADDRESS points to the PMM parameter
PERIOD_LOW_WORD. See Figure 11 for an illustration of the hardware setup.

Figure 11 Example B Hardware Setup

8.4.3 Software Initialization

Set up channel 4 as PMM, detecting missing teeth. Set up channel 5 in PSP angle-angle mode. The
pulse generated will look like that shown on channel one in Figure 1.

The host sequence field bits for PMM missing tooth count mode are %11. When the PMM function op-
erates in count mode and MISSING_COUNT equals one, TCR2 resets to $FFFF at each missing tooth.
The interrupt routine from Example A is not needed since a PSP output pulse is generated after every
missing tooth, and the NUM_OF_TEETH remains constant.

8.5 Program Code for CPU32-Based Microcontrollers

This program was assembled using the IASM32 assembler available from P&E Microcomputer Sys-
tems with the M68332 In-Circuit Debugger. It was run on an M68332EVS and BCC.

For this example, use the same EQU statements as in Example A.

Set up channel 4 in PMM count mode, counting missing teeth.

Set up channel 5 in PSP angle-angle mode.

org $4000 ;begin program at location $4000
move.w #$00cb,(CFSR2).l ;function select field (NOTE: function numbers may vary

;for different mask sets)
move.w #$0300,(HSQR1).l ;PSP in angle-angle mode
move.w #$f00,(CPR1).l ;high priority to both channels

TPU PMM EXB CONN

PSP CHANNEL 5

FLYWHEEL INPUT TO PMM CHANNEL AND T2CLK

0 1 34 0
• • • • • •

1 34 0

T2CLK

PMM CHANNEL 4

TPU

OUTPUT
PULSE
TPU Programming Library MOTOROLA
TPUPN15B/D 21

8.5.1 PMM Initialization for Channel 4
move.w #$0004,(PRAM4_0).l ;Channel Control, detect rising edge
move.w #$0122,(PRAM4_1).l ;MAX_MISSING = 1, NUM_OF_TEETH = 34
move.w #$a022,(PRAM4_3).l ;RATIO = $a0, MAX_VALUE = 34

8.5.2 PSP Initialization for Channel 5
move.w #$4a01,(PRAM5_0).l ;PERIOD_ADDRESS points to PERIOD_LOW_WORD of PMM,

;Channel Control is a don't care value
move.w #$3001,(PRAM5_4).l ;RATIO1 = $30, ANGLE1 = $01
move.w #$5002,(PRAM5_5).l ;RATIO2 = $50, ANGLE2 = $02

start move.w #$900,(HSRR1).l ;host service request for channels 4 and 5
finish bra finish

8.6 Program Code for CPU16-Based Microcontrollers

This program was assembled on the IASM16 Assembler available with the ICD16 In-Circuit Debugger
from P&E Microcomputer Systems and was run on an MC68HC16Y1EVB.

Set up channel 4 in PMM count mode, counting missing teeth.

Set up channel 5 in PSP angle-angle mode

8.6.1 Initialization

The following code is included to set up the reset vector ($00000 – $00006). It may be changed for dif-
ferent systems.

ORG $0000 ;put the following reset vector information
;at address $00000 of the memory map

DW $0000 ;zk=0, sk=0, pk=0
DW $0200 ;pc=200 -- initial program counter
DW $3000 ;sp=3000 -- initial stack pointer
DW $0000 ;iz=0 -- direct page pointer
org $0400 ;begin program at memory location $0400

The following code initializes and configures the system; including the software watchdog and system
clock. It was written to be used with an EVB.

INITSYS: ;give initial values for extension registers
;and initialize system clock and COP

LDAB #$0F
TBEK ;point EK to bank F for register access
LDAB #$00
TBXK ;point XK to bank 0
TBYK ;point YK to bank 0
TBZK ;point ZK to bank 0
TBSK
LDD #$0003 ;at reset, the CSBOOT block size is 512K.
STD CSBARBT ;this line sets the block size to 64K since that is what

;physically comes with the EVB16
LDAA #$7F ;w=0, x=1, y=111111
STAA SYNCR ;set system clock to 16.78 MHz
CLR SYPCR ;turn software watchdog off, since it is on after reset
lds #$f000

**** MAIN PROGRAM ****
ldab #$0f
tbek ;point to bank $0f for parameter RAM
ldd #$00cb
std CFSR2 ;function select field (NOTE: function numbers may vary
ldd #$0300 ;for different mask sets)
std HSQR1 ;PSP in angle-angle mode
ldd #$f00
std CPR1 ;high priority to both channels
 MOTOROLA TPU Programming Library
22 TPUPN15B/D

8.6.2 PMM Initialization for Channel 4
ldd #$0004
std PRAM4_0 ;Channel Control, detect rising edge
ldd #$0122
std PRAM4_1 ;MAX_MISSING = 1, NUM_OF_TEETH = 34
ldd #$a022
std PRAM4_3 ;RATIO = $a0, MAX_VALUE = 34

8.6.3 PSP Initialization for Channel 5
ldd #$4a01
std PRAM5_0 ;PERIOD_ADDRESS points to

;PERIOD_LOW_WORD of PMM,
;Channel Control is a don't care value

ldd #$3001
std PRAM5_4 ;RATIO1 = $30, ANGLE1 = $01
ldd #$5002
std PRAM5_5 ;RATIO2 = $50, ANGLE2 = $02

start ldd #$900
std HSRR1 ;host service request for channels 4 and 5

finish bra finish

9 Function Algorithm
The PMM function consists of three states, which are described in the following paragraphs. The follow-
ing description is provided as a guide only, to aid understanding of the function. The exact sequence of
operations in microcode may be different from that shown, in order to optimize speed and code size.
TPU microcode source listings for all functions in the TPU function library can be downloaded from the
Motorola Freeware bulletin board. Refer to Using the TPU Function Library and TPU Emulation Mode
(TPUPN00/D) for detailed instructions on downloading and compiling microcode.

9.1 State 1: Init

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 01xxxx.

Match Enable: Don't Care

Summary:
This state is entered as a result of HSR %01. The channel is configured to detect a specified tran-
sition at the pin and the particular time base to be used for match and input capture events. (In gen-
eral, TCR1 should be used for both types of events.)

TCR2 and TCR2_VALUE are both set to $C0FF (a previous period longer than $FFFF is assumed).
ROLLOVER_COUNT is set to $80 (a long previous period is assumed).

Algorithm:
Configure channel latches via CHANNEL_CONTROL
Negate flag0; Negate flag1
ROLLOVER_COUNT = $80

/* a longer then $FFFF previous period is set */
TCR2 = $C0FF
TCR2_VALUE = $C0FF
MISSING_COUNT = 0

9.2 State 2: Measure_Period

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001xx0.

Match Enable: Don't Care
TPU Programming Library MOTOROLA
TPUPN15B/D 23

Summary:
This state is entered as a result of a match or a normal transition detection, when flag0 equals zero.
If a match occurred, ROLLOVER_COUNT is incremented. If a transition occurred, PERIOD is up-
dated and TCR2_VALUE low byte (TEETH_COUNT) is incremented.

If the current value of TCR2 exceeds TCR2_MAX_VALUE, indicating an error condition, then TCR2
is set to $80FF, and the high byte of TCR2_VALUE is set to $80. A search for the missing transition
is initiated if the measured period is less than or equal to $FFFF TCR1 counts; if the period is great-
er, TCR2 is set to $C0FF and the high byte of TCR2_VALUE is set to $C0. In either error condition,
an interrupt is asserted to the CPU.

Algorithm:

If MRL = 1 then {
INCR_ROLLOVER: /* address label */

If ROLLOVER_COUNT ≠ $FF then {
ROLLOVER_COUNT = ROLLOVER_COUNT + 1

}
If (TDL = 0) then {

If ((flag1 = 1) & (ROLLOVER_COUNT > 3)) OR ((flag1 = 0) & (ROLLOVER_COUNT > 1)) then {
If (TCR2_VALUE(15) = 0) then {

/* issue period error */
TCR2 = $C0FF
TCR2_VALUE(high) = $C0
Assert interrupt request
Generate a match on ERT + $8000
Negate MRL /* this match has been handled */
Negate channel flag0, flag1
If host sequence bit 0 = 0 then { /* bank mode */

BANK_SIGNAL = $00
}
Else { /* count mode */

MISSING_COUNT = $00
}

}
Else {

Generate a match on ERT + $8000
Negate MRL /* this match has been handled */

}
}

}
If TDL = 1 then {
NEW_PER: /* address label */

/* see Figure 12 Period Time Calculation. */
PERIOD_TIME (14:0) = ERT – REF_TIME
PERIOD_TIME (22:15) = ROLLOVER_COUNT
If (channel flag1 = 1) then PERIOD_TIME = PERIOD_TIME/2

/* update period parameters */
PERIOD_LOW_WORD = PERIOD_TIME [15:0]
PERIOD_HIGH_WORD = PERIOD_TIME [22:16] /* upper bits zero */
REF_TIME = ERT
ROLLOVER_COUNT = 0
Negate TDL
TCR2_VALUE (low) = TCR2_VALUE (low) + 1
If TCR2 (low) > TCR2_MAX_VALUE then {

TCR2 = $80FF
 MOTOROLA TPU Programming Library
24 TPUPN15B/D

TCR2_VALUE (high) = $80
Generate a match on ERT + $8000
Assert interrupt request
Negate MRL /* this match has been handled */
Negate channel flag0, flag1
If host sequence bit 0 = 0 then { /* bank mode */

BANK_SIGNAL = $00
}
Else { /* count mode */

MISSING_COUNT = $00
}

}
Else {

If (PERIOD_TIME ≥ $10000) then {
/* Period error*/

If (TCR2_VALUE(15) = 0) then {
/* issue period error */

TCR2 = $C0FF
TCR2_VALUE(high) = $C0
Assert interrupt request
Generate a match on ERT + $8000
Negate MRL /* this match has been handled */
Negate channel flag0, flag1
If host sequence bit 0 = 0 then { /* bank mode */

BANK_SIGNAL = $00
}
Else { /* count mode */

MISSING_COUNT = $00
}

}
}
Else { /* PERIOD_TIME < $10000 */

MISSING_TR_TIME = PERIOD_TIME ∗ RATIO

If (< $8000) then {
/* initiate search for missing transition */

Prepare a match on ERT + MISSING_TR_TIME
Assert flag0

}
Else { /* MISSING_TR_TIME ≥ $8000 */

/* Period error*/
If (TCR2_VALUE(15) = 0) then {

/* issue period error */
TCR2 = $C0FF
TCR2_VALUE(high) = $C0
Assert interrupt request
Generate a match on ERT + $8000
Negate MRL

Negate channel flag0, flag1
If host sequence bit 0 = 0 then {

BANK_SIGNAL = $00
}
Else { /* count mode */

MISSING_COUNT = $00
}

}

TPU Programming Library MOTOROLA
TPUPN15B/D 25

}
}

}
}

Figure 12 Period Time Calculation

9.3 State 3: Missing_Transition

Condition: HSR1, HSR0, M/TSR, LSR, Pin, Flag0 = 001xx1.

Match Enable: Don't Care

Summary:
This state is entered as a result of a transition or a match event, when flag0 equals one. The TPU
determines if there is a missing transition. When a missing transition is detected, the following steps
are taken, and an interrupt request is asserted:
1. In count mode (host sequence bit 0 equals one):

— If (TCR2 ≠ NUM_OF_TEETH), indicating an error condition, then TCR2 is set to $80FF, the
TCR2_VALUE high byte is set to $80, the low byte is incremented, and MISSING_COUNT is
set to $0000; or else,

— If (TCR2 = NUM_OF_TEETH), MISSING_COUNT is incremented, and if (MISSING_COUNT
≥ MAX_MISSING), then TCR2 is set to $FFFF, TCR2_VALUE is set to $00FF, and
MISSING_COUNT is cleared.

2. In bank mode (host sequence bit 0 equals zero):
— If (TCR2 ≠ NUM_OF_TEETH), indicating an error condition, then TCR2 is set to $80FF, the

TCR2_VALUE high byte is set to $80, the low byte is incremented, and BANK_SIGNAL is set
to $00; or else,

— If (TCR2 = NUM_OF_TEETH) and if (BANK_SIGNAL ≠ $00) (reference has been passed),
then TCR2 is set to $FFFF, TCR2_VALUE is set to $00FF, and BANK_SIGNAL is set to $00.

Algorithm:

Negate channel flag0
If (TDL = 0) and (MRL = 1) then { /* additional transition detected */

If TCR2 (low) ≠ NUM_OF_TEETH then {
TCR2 = $80FF
TCR2_VALUE (high) = $80
Generate a match on ERT + $8000
Assert interrupt request
Negate MRL /* this match has been handled */
Negate channel flag0, flag1
If host sequence bit 0 = 0 then { /* bank mode */

15 8 7 1 0

15 7 06

15 8 7 1 0

ROLLOVER COUNT ERT–REF TIME

15 7 0

PERIOD LOW WORD
0 0 0 0 0 0 0 0 0

6

PERIOD HIGH WORD

PERIOD TIME

1071A

14

14
 MOTOROLA TPU Programming Library
26 TPUPN15B/D

BANK_SIGNAL = $00
}
Else { /* count mode */

MISSING_COUNT = $00
}

}
Else {

Assert channel flag1
If (host sequence bit 0 = 0) and (BANK_SIGNAL ≠ $00) then {

TCR2 = $FFFF
TCR2_VALUE = $00FF
BANK_SIGNAL = $00
Assert interrupt request

}
If (host sequence bit 0 = 1) then {

MISSING_COUNT = MISSING_COUNT + 1
If (MISSING_COUNT ≥ MAX_MISSING) then {

TCR2 = $FFFF
TCR2_VALUE = $00FF
MISSING_COUNT = $00
Assert interrupt request

}
}

}
Prepare a match on REF_TIME + $8000
Negate MRL /* this match has been handled */

}
Else If (TDL = 1) then { /* Also MRL = 0 */

If (ERT – REF_TIME ≥ $8000) then {
Goto INCR_ROLLOVER /* calculate new period */

}
Goto NEW_PER /* calculate new period */

}
Else If ((MRL = 1) and (TDL = 1)) then { /* TCR error */

Negate TDL
TCR2_VALUE (low) = TCR2_VALUE (low) + 1
REF_TIME = ERT
TCR2 = $80FF
TCR2_VALUE (high) = $80
Generate a match on ERT + $8000
Assert interrupt request
Negate MRL /* this match has been handled */
Negate channel flag0, flag1
If host sequence bit 0 = 0 then { /* bank mode */

BANK_SIGNAL = $00
}
Else { /* count mode */

MISSING_COUNT = $00
}

}

The table below shows the PMM state transitions listing the service request sources and channel con-
ditions from current state to next state. Figure 13 illustrates the flow of PMM states, including the ini-
tialization and immediate update states.
TPU Programming Library MOTOROLA
TPUPN15B/D 27

NOTES:
1. Conditions not specified are “don't care.”
2. HSR = Host service request

LSR = Link service request
M/TSR = Either a match or transition (input capture) service request occurred (M/TSR = 1) or neither occurred
(M/TSR = 0).

Figure 13 PMM State Flowchart

Table 3 PMM State Transition Table

Current State HSR M/TSR LSR Pin Flag0 Next State

All States 01 — — — — S1 Init

S1 Init 00 1 — — 0 S2 Measure_Period

S2 Measure_Period 00
00

1
1

—
—

—
—

0
1

S2 Measure_Period
S3 Missing_Trans

S3 Missing_Trans 00
00

1
1

—
—

—
—

0
1

S2 Measure_Period
S3 Missing_Trans

Unimplemented
Conditions

11
10
00

—
—
0

—
—
1

—
—
—

—
—
—

—
—
—

1040A

HSR = 0 1

NORMAL
TRANSITION

TIME-OUT (MISSING

KEY:

HSR M/TSR LSR PIN FLAG0 FLAG1
XX X X X X X

S1
INIT

S2
MEASURE_

PERIOD

S3
MISSING_TRANS

ROLLOVER (MATCH) OR
NORMAL TRANSITION

TRANSITION) OR
NORMAL TRANSITION

ROLLOVER
(MATCH)

NORMAL
TRANSITION

01XXXX

001XX0

001XX1
 MOTOROLA TPU Programming Library
28 TPUPN15B/D

NOTES
TPU Programming Library MOTOROLA
TPUPN15B/D 29

NOTES
 MOTOROLA TPU Programming Library
30 TPUPN15B/D

NOTES
TPU Programming Library MOTOROLA
TPUPN15B/D 31

Motorola uitability
of its pro any and
all liabilit can and
do vary i ola does
not conv intended
for surgi create a
situation demnify
and hold ney fees
arising o rola was
negligen ity/Affir-
mative A
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
 P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140
Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax is a trademark of Motorola, Inc.

 reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the s
ducts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
y, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications
n different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motor
ey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
cal implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
 where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall in
 Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attor
ut of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Moto
t regarding the design or manufacture of the part. M O T O R O L A and ! are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportun
ction Employer.

	1 Functional Overview
	2 Detailed Description
	2.1 Count Mode
	2.2 Bank Mode
	Figure 1 PMM and PSP Together

	3 Function Code Size
	4 Function Parameters
	Figure 2 TPU Channel Parameter RAM CPU Address Map...
	Figure 3 PMM Function Parameter RAM Assignment
	4.1 CHANNEL_CONTROL
	Table 1 PMM CHANNEL_CONTROL Options

	4.2 REF_TIME
	4.3 MAX_MISSING
	4.4 NUM_OF_TEETH
	Figure 4 PMM NUM_OF_TEETH Example

	4.5 BANK_SIGNAL
	4.6 MISSING_COUNT
	4.7 ROLLOVER_COUNT
	4.8 RATIO
	4.9 TCR2_MAX_VALUE
	4.10 PERIOD_HIGH_WORD
	4.11 PERIOD_LOW_WORD
	4.12 TCR2_VALUE
	Figure 5 Error Codes

	5 Host Interface to Function
	Figure 6 TPU Address Map

	6 Function Configuration
	7 Performance and Use of Function
	7.1 Performance
	Table 2 PMM State Timing

	7.2 Changing Mode

	8 Function Examples
	8.1 Example A
	8.1.1 Description
	Figure 7 Angle-Time Mode
	Figure 8 Engine Control Example A

	8.1.2 Hardware Setup
	Figure 9 Input Waveforms for Example A
	Figure 10 Hardware Setup for Example A

	8.1.3 Software Initialization

	8.2 Program Code for CPU32-Based Microcontrollers
	8.2.1 ITC Initialization for Channel 3
	8.2.2 PMM Initialization for Channel 4
	8.2.3 PSP Initialization for Channel 5 in Angle-Ti...
	8.2.4 Interrupt Handling Routine for PMM

	8.3 Program Code for CPU16-Based Microcontrollers
	8.3.1 Initialization
	8.3.2 ITC Initialization for Channel 3
	8.3.3 PMM Initialization for Channel 4
	8.3.4 PSP Initialization for Channel 5 in Angle-Ti...
	8.3.5 Interrupt Handling Routine for PMM

	8.4 Example B
	8.4.1 Description
	8.4.2 Hardware Setup
	Figure 11 Example B Hardware Setup

	8.4.3 Software Initialization

	8.5 Program Code for CPU32-Based Microcontrollers
	8.5.1 PMM Initialization for Channel 4
	8.5.2 PSP Initialization for Channel 5

	8.6 Program Code for CPU16-Based Microcontrollers
	8.6.1 Initialization
	8.6.2 PMM Initialization for Channel 4
	8.6.3 PSP Initialization for Channel 5

	9 Function Algorithm
	9.1 State 1: Init
	9.2 State 2: Measure_Period
	Figure 12 Period Time Calculation

	9.3 State 3: Missing_Transition
	Table 3 PMM State Transition Table
	Figure 13 PMM State Flowchart

