

Order this document
 by TPUPN07/D Rev. 1

SEMICONDUCTOR

MOTOROLA

APPLICATION NOTE

Asynchronous Serial Interface TPU Function
(UART)
By Josef Fuchs and Charles Melear

1 Functional Overview
The UART function uses two TPU channels to provide a 3-wire (RxD, TxD and GND) asynchronous
serial interface. All standard baud rates and parity checking can be selected. The CPU interface to
UART consists of a command register, which defines the operation (number of data bits, baud rate, par-
ity); a status register, which gives information about the data register (empty or full) and errors (framing
and parity); and a data register, which holds the data to be transmitted or data that has been received.
These registers are implemented for the UART function using the TPU parameter RAM and host se-
quence bits.

2 Detailed Description
The UART consists of a transmitter, which can transmit serial data via a transmit data (TxD) pin, and a
receiver, which can receive serial data via a receive data (RxD) pin. Both transmitter and receiver con-
tain a single shift register that performs parallel-to-serial and serial-to-parallel conversion. Although a
UART chip normally contains both the transmitter and receiver, implementing a full-duplex UART with
the TPU requires independent receiver and transmitter channels, because each TPU channel controls
only one pin (a channel can be either a transmitter or a receiver, but not both at the same time). While
at least two TPU channels must be used for a fully-functional UART, it is not necessary to use both sub-
functions together, nor to use the same number of receivers and transmitters. For example, the TPU
could handle 13 transmitters and 3 receivers. There is also no restriction on which channels must be
used to receive and transmit — any channel can be used to transmit data and any other channel can
be used to receive data. Since baud rate for each channel is specified independently, a transmitter can
have a different rate than a receiver.

The UART protocol allows selection of a parity bit to detect simple transmission errors. Parity can be
generated and checked in three different ways: odd, even and no parity. All parity-types are supported
with the UART function.

The UART protocol is not fixed to a specific number of bits for one data word. Although 8-bit words are
normally used, some applications use 7-bit or 9-bit words. The UART function can use word lengths
from one to 14 bits. Maximum data size is determined by the structure of the receive data register. The
receive data register also has two error flags built into it (FE and PE, bits 14 and 15) to simplify consis-
tent reads of both data and flags. The number of transmitter stop bits is fixed at one. The receiver can
also handle fractional stop bits correctly, but the transmitter cannot generate fractional stop bits.

The UART function is double buffered. Both transmitter and receiver contain a shift register as well as
a data register. The host CPU can write new data to the transmit data register while data is being trans-
mitted, and can read data from the receive data register while data is being received.

The UART function can do back-to-back transfers. If data is available in time, the transmitter does not
generate an idle line signal, but transmits exactly one stop bit followed by the start bit for the next data.
An idle line condition only occurs if the transmit data register is empty after transferring data. The length
of a transmit idle line condition is always divisible by the MATCH_RATE parameter. The receiver can
handle any length of idle line.
© MOTOROLA INC, 1997

Every data word begins with one start bit, which is always a logic zero. Following the start bit, a specified
number of data bits are transmitted least significant bit first, then a parity bit is generated and transmitted
if parity is enabled. The end of the data word is marked by one stop bit, which is always a logic one. An
idle line consists of successive stop bits, which means that the line is at logic level one while idle. For
example the ASCII character “A” is always transmitted as %0100000101.

This note uses the term “bit time” to refer to the time required to transmit or receive one bit. Bit time is
determined by baud rate, using the formula:

The receiver detects a data word by sensing the falling edge of the start bit. Since the UART function
always treats the first falling edge after the initialization service request as a valid start bit, a receiver
must be enabled only when the line is idle. A received bit is sampled only once, approximately halfway
through the bit time.

3 Function Code Size
Total TPU function code size determines what combination of functions can fit into a given ROM or em-
ulation memory microcode space. UART function code size is:

59 µ instructions + 16 entries (8 long words) = 67 long words

4 Function Parameters
This section provides detailed descriptions of function parameters stored in channel parameter RAM.
Figure 1 shows TPU parameter RAM address mapping. Figure 2 shows the parameter RAM assign-
ment used by the UART function. In the diagrams, Y = M111, where M is the value of the module map-
ping bit (MM) in the system integration module configuration register (Y = $7 or $F).

Except for the transmitter TDRE status bit and the receiver PE and FE error flags, parameters have the
same meaning for both the receiver and transmitter sub functions. In general, every TPU parameter
must be accessed as a 16-bit value. Do not access any parameter as a byte value. Refer to the TPU
Reference Manual (TPURM/AD) for more information.

Bit Time 1
Baud Rate
----------------------------=
 MOTOROLA TPU Programming Library
2 TPUPN07/D

— = Not Implemented (reads as $00)

Figure 1 TPU Channel Parameter RAM CPU Address Map

Channel Base Parameter Address

Number Address 0 1 2 3 4 5 6 7

0 $YFFF## 00 02 04 06 08 0A — —

1 $YFFF## 10 12 14 16 18 1A — —

2 $YFFF## 20 22 24 26 28 2A — —

3 $YFFF## 30 32 34 36 38 3A — —

4 $YFFF## 40 42 44 46 48 4A — —

5 $YFFF## 50 52 54 56 58 5A — —

6 $YFFF## 60 62 64 66 68 6A — —

7 $YFFF## 70 72 74 76 78 7A — —

8 $YFFF## 80 82 84 86 88 8A — —

9 $YFFF## 90 92 94 96 98 9A — —

10 $YFFF## A0 A2 A4 A6 A8 AA — —

11 $YFFF## B0 B2 B4 B6 B8 BA — —

12 $YFFF## C0 C2 C4 C6 C8 CA — —

13 $YFFF## D0 D2 D4 D6 D8 DA — —

14 $YFFF## E0 E2 E4 E6 E8 EA EC EE

15 $YFFF## F0 F2 F4 F6 F8 FA FC FE
TPU Programming Library MOTOROLA
TPUPN07/D 3

W = Channel Number

Figure 2 UART Function Parameter RAM Assignment

4.1 RECEIVE_DATA_REG and TRANSMIT_DATA_REG

RECEIVE_DATA_REG holds data that has been received. The parameter word also contains the parity
error (PE) flag and the framing error (FE) flag. Although the parameter RAM address of
RECEIVE_DATA_REG can be read or written by the CPU, RECEIVE_DATA_REG should be treated
as a read-only register. TRANSMIT_DATA_REG holds data that is to be sent. The parameter word also
contains the transmit data register empty (TDRE) status bit.

4.2 TDRE

This bit is set by the TPU to indicate that TRANSMIT_DATA_REG is empty. The function checks TDRE
status every bit time while the transmitter is idle to determine whether there is new data to be transmitted
in the register. TDRE must be cleared during or after each write — it is best to write each new value to
TRANSMIT_DATA_REG with the MSB cleared. The state of the TDRE bit is duplicated in the channel
interrupt status register. Either the TDRE or the interrupt status bit can be used to determine whether
the transmitter is ready for new data. The interrupt status bit is best used in a polling environment, be-
cause using it reduces the likelihood of a RAM collision caused by the TPU and CPU attempting to read
TRANSMIT_DATA_REG at the same time. If the interrupt status bit is used, clear it before each write
to the data register. In any case, make certain that the TDRE is cleared before new data is written.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 PARITY_TEMP

$YFFFW2 MATCH_RATE

$YFFFW4 TDRE TRANSMIT_DATA_REG

$YFFFW6 DATA_SIZE

$YFFFW8 ACTUAL_BIT_COUNT

$YFFFWA SHIFT_REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 PARITY_TEMP

$YFFFW2 MATCH_RATE

$YFFFW4 PE FE RECEIVE_DATA_REG

$YFFFW6 DATA_SIZE

$YFFFW8 ACTUAL_BIT_COUNT

$YFFFWA SHIFT_REGISTER

Parameter Write Access

Written by CPU

Written by TPU

Written by CPU and TPU

Unused parameters
 MOTOROLA TPU Programming Library
4 TPUPN07/D

4.3 PE and FE

These bits are set or cleared by the TPU after each data word is received. Although the parameter RAM
address of the receive data register can be read or written by the CPU, do not change the state of these
bits during operation. When parity checking is enabled, PE is set if a parity error occurs during reception.
It remains cleared otherwise. A framing error occurs when the function determines that a stop bit is low
instead of high. FE is set when a framing error is detected. It remains cleared otherwise. Both the PE
and FE bits are valid only while the erroneous data is in RECEIVE_DATA_REG.

4.4 Receive Data Indicator

The TPU sets the interrupt status bit in the interrupt status register after writing a data word into the
RECEIVE_DATA_REG. The interrupt status bit must be cleared by the CPU immediately before or after
reading the data register. In order to assure proper operation of the receiver, the entire parameter word,
including RECEIVE_DATA_REG, PE, and FE state should be read at the same time.

4.5 MATCH_RATE

This parameter specifies serial transmission baud rate. MATCH_RATE is defined as TCR1 increments
per bit time. MATCH_RATE must be written before the function is started by the INIT host service re-
quest. It can be calculated using the formula:

This is the same as system clock frequency + TCR1 prescaler rate ÷ baud rate. MATCH_RATE must
not be changed after function initialization.

4.6 DATA_SIZE

This parameter specifies the number of bits to be sent out or received in one data word. The parameter
commonly has a value of eight, because most serial protocols use 8-bit words.

4.7 PARITY_TEMP

This parameter is written by a counter that counts the high bits in a word. The least significant bit of the
parameter is used to generate parity. The parameter is used only by the UART function — the CPU
must not change this parameter value while the function is running.

4.8 ACTUAL_BIT_COUNT

This parameter is written by a counter that counts bits shifted out of SHIFT_REGISTER. The parameter
is used only by the UART function — the CPU must not change this parameter value while the function
is running.

4.9 SHIFT_REGISTER

This parameter is used to shift data in or out. For a transmitter, data stored in TRANSMIT_DATA_REG
is copied into SHIFT_REGISTER when the TDRE bit is set, then shifted out onto the serial line. For a
receiver, data is shifted into SHIFT_REGISTER from the serial line until a word is complete, then copied
into RECEIVE_DATA_REG.

MATCH_RATE TCR1_Clock
Baud Rate

----------------------------------=
TPU Programming Library MOTOROLA
TPUPN07/D 5

5 Host Interface to Function
This section provides information concerning the TPU host interface to the function. Figure 3 is a TPU
address map. TPU register diagrams follow the figure. In the diagrams, Y = M111, where M is the value
of the module mapping bit (MM) in the system integration module configuration register (Y = $7 or $F).

Figure 3 TPU Address Map

CFS[4:0] — Function Number (Assigned during microcode assembly)

Address 15 8 7 0

$YFFE00 TPU MODULE CONFIGURATION REGISTER (TPUMCR)

$YFFE02 TEST CONFIGURATION REGISTER (TCR)

$YFFE04 DEVELOPMENT SUPPORT CONTROL REGISTER (DSCR)

$YFFE06 DEVELOPMENT SUPPORT STATUS REGISTER (DSSR)

$YFFE08 TPU INTERRUPT CONFIGURATION REGISTER (TICR)

$YFFE0A CHANNEL INTERRUPT ENABLE REGISTER (CIER)

$YFFE0C CHANNEL FUNCTION SELECTION REGISTER 0 (CFSR0)

$YFFE0E CHANNEL FUNCTION SELECTION REGISTER 1 (CFSR1)

$YFFE10 CHANNEL FUNCTION SELECTION REGISTER 2 (CFSR2)

$YFFE12 CHANNEL FUNCTION SELECTION REGISTER 3 (CFSR3)

$YFFE14 HOST SEQUENCE REGISTER 0 (HSQR0)

$YFFE16 HOST SEQUENCE REGISTER 1 (HSQR1)

$YFFE18 HOST SERVICE REQUEST REGISTER 0 (HSRR0)

$YFFE1A HOST SERVICE REQUEST REGISTER 1 (HSRR1)

$YFFE1C CHANNEL PRIORITY REGISTER 0 (CPR0)

$YFFE1E CHANNEL PRIORITY REGISTER 1 (CPR1)

$YFFE20 CHANNEL INTERRUPT STATUS REGISTER (CISR)

$YFFE22 LINK REGISTER (LR)

$YFFE24 SERVICE GRANT LATCH REGISTER (SGLR)

$YFFE26 DECODED CHANNEL NUMBER REGISTER (DCNR)

CIER — Channel Interrupt Enable Register $YFFE0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Enable

0 No interrupts

1 Interrupts enabled

CFSR[0:3] — Channel Function Select Registers $YFFE0C – $YFFE12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFS (CH 15, 11, 7, 3) CFS (CH 14, 10, 6, 2) CFS (CH 13, 9, 5, 1) CFS (CH 12, 8, 4, 0)
 MOTOROLA TPU Programming Library
6 TPUPN07/D

HSQR[0:1] — Host Sequence Registers $YFFE14 – $YFFE16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Operating Mode

00 No Parity

01 No Parity

10 Even Parity

11 Odd Parity

HSRR[1:0] — Host Service Request Registers $YFFE18 – $YFFE1A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Initialization

00 Not Used

01 Not Used

10 Transmit

11 Receive

CPR[1:0] — Channel Priority Registers $YFFE1C – $YFFE1E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH Channel Priority

00 Off

01 Low

10 Middle

11 High

CISR — Channel Interrupt Status Register $YFFE20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Status

0 No Interrupt

1 Interrupt Request
TPU Programming Library MOTOROLA
TPUPN07/D 7

6 Function Configuration

6.1 Transmitter Initialization
Set parameters:

Write the desired baud rate value to MATCH_RATE.
Write $8000 to TRANSMIT_DATA_REG, to set TDRE. TDRE is not initialized by the host service
request.
Write the number of bits per data word to DATA_SIZE. This number represents only the number of
data bits, and does not include start and stop bits or the parity bit.

Write the channel function select field. This value depends on the actual TPU code.
Set the host sequence bits to select the desired parity.
Clear any pending interrupt.
Set interrupt enable if required.
Issue host service request by writing %11 to the host service request field.
Write channel priority to start the function.
When initialization is complete, the interrupt status bit is set to indicate that TRANSMIT_DATA_REG is
empty.

6.2 Transmitting Data
Wait for TDRE or interrupt status bit to be set, indicating that TRANSMIT_DATA_REG is empty.
Clear the MSB of the data word.
If using the interrupt status bit, clear it before writing TRANSMIT_DATA_REG.
Write the data word to TRANSMIT_DATA_REG.

6.3 Receiver Initialization
Set parameters:

Write the desired baud rate value to MATCH_RATE.
Write the number of bits per data word to DATA_SIZE. This number represents only the number of
data bits, and does not include start and stop bits or the parity bit.

Write the channel function select field. This value depends on the actual TPU code.
Set the host sequence bits to select the desired parity.
Clear any pending interrupt.
Set interrupt enable if required.
Issue host service request by writing%10 to the host service request field.
Write channel priority to start the function.

6.4 Receiving Data
Wait for interrupt status bit to be set, indicating that RECEIVE_DATA_REG is full.
Read RECEIVE_DATA_REG.
Clear the interrupt status bit.
Check PE and FE bit status, using value read from the parameter. Do not read the parameter again for
error testing.

7 Performance and Use of Function

7.1 Performance

Like all TPU functions, the performance limit of the UART function in a given application depends on
the service time (latency) of other active TPU channels. This is due to the operational nature of the
scheduler. To calculate the maximum performance of the function the user must know the execution
time for the different states of the functions running at the same time. In general, the maximum service
latency for every mode of the UART function must be less than one bit time, which depends on the baud
rate. The function must be allowed this amount of time by the other running functions. For example, at
9600 baud the maximum latency of the UART function must be less than 104 µs.
 MOTOROLA TPU Programming Library
8 TPUPN07/D

NOTE: Execution times do not include the time slot transition time (TST = 10 or 14 CPU clocks)

7.1.1 Latency Examples

All examples assume that only the UART function is running. Examples are for absolute worst case,
e.g. all receivers receive a stop bit at the same time, since this is the longest state.

When only transmitters are running, maximum baud rate for all channels combined is 360 kbaud. This
can be one transmitter with 360 kbaud, or nine with 38.4 kbaud, or any other combination.

When only receivers are running, maximum baud rate is 233 kbaud. This can be one receiver with 233
kbaud, or six with 38.4 kbaud, or any other combination.

When both receivers and transmitters are running, maximum baud rate is 142 kbaud. This can be one
pair running at 142 kbaud, or three pair at 38.4 kbaud, or seven pair at 19.2 kbaud, or any other com-
bination.

7.2 Differences from a Conventional UART

The UART function does not implement MODEM control signals like RTS, CTS, and CD.

The receiver does not provide an overrun bit that is set when a received data word is not read by the
CPU before a new data word arrives.

The transmitter does not provide an underrun bit.

The status bits are not cleared automatically by reading or writing the data registers.

The number of stop bits is fixed to one.

Table 1 UART Function State Timing

State Number and Name Max. CPU Clock Cycles RAM Accesses by TPU

S1 Init_Receiver 4 0

S2 Init_Transmitter 4 1

S3 Polling_TDRE
(Transmitter only)
TDRE = 1
TDRE = 0

16
22

7

S4 Sending_Data
(Transmitter only)
Transmit stop bit with parity
Transmit stop bit, no parity
Transmit parity
Transmit one data bit

12
20
32
28

8

S5 Receiving_Start_Bit
(Receiver only)
No parity selected
Parity selected

16
18

2

S6 Receiving_Data_Bit
(Receiver only)

Receive stop bit
Receive one data bit

44 + (2 ∗ (16 – DATA_SIZE))
20

8

TPU Programming Library MOTOROLA
TPUPN07/D 9

7.3 Limitations

To minimize TPU loading, the receiver does single sampling only. Each bit is sampled only once in the
middle of the bit time — any glitch on the receive data line may cause erroneous data. The receiver
does not detect idle line or break conditions, nor does the transmitter generate a break character.

Status bits must be handled by the CPU. These bits are set automatically by the TPU, but cannot be
cleared by the function. The bits must be cleared by the CPU. This may cause a problem when the in-
terrupt status bit is used to indicate that data has been received.

The interrupt status bit must be cleared by the CPU immediately before and after a read. The problem
arises if the UART function receives new data before both actions are complete.

If the status bit is cleared immediately before reading data, a new data word might arrive before the pre-
vious data is read. In this case, the new word would be read, then the status bit would be set again,
causing the word to be read a second time.

If the status bit is cleared immediately after data is read, a new data word might arrive before the status
bit is cleared. In this case, the new data is not read, because the interrupt status bit is not set again.

To avoid these problems, the read routine must respond to the interrupt status bit quickly. The routine
must execute completely before the function copies the received value from SHIFT_REGISTER to
RECEIVE_DATA_REG. For a 9600 baud receiver, the time to receive an 8-bit data word without parity
is about 1 ms. The read routine must respond to the interrupt status bit within this time.

8 Examples

8.1 Example A: Implementing a Receiver

8.1.1 Description

This example shows how to set up the UART function as a receiver, and how to service the incoming
data. The user must decide how to handle parity and framing errors.

8.1.2 Initialization

Sets up channel 0 as a receiver, with an 8-bit data word and no parity, using the variable BAUD to de-
termine baud rate. BAUD value is a function of baud rate, IMB clock frequency, and TPU prescaler set-
ting. The actual Baud rate is 9600. Received data is stored in RAM at addresses starting at $6000. The
value of the FUNCNUM variable is assigned during microcode assembly.

8.1.3 Listing
FUNCNUM EQU $000B ;Function Number for UART
BAUD EQU $01B2 ;9600 Baud Rate
MATCH_RATE EQU $FFFF02 ;Parameter RAM
RECEIVE_DATA EQU $FFFF04 ;Parameter RAM
DATA_SIZE EQU $FFFF06 ;Parameter RAM
TPUMCR EQU $FFFE00 ;TPU MODULE CONFIGURATION REGISTER
TICR EQU $FFFE08 ;TPU INTERRUPT CONFIGURATION REGISTER
CIER EQU $FFFE0A ;CHANNEL INTERRUPT ENABLE REGISTER
CFSR3 EQU $FFFE12 ;CHANNEL FUNCTION SELECT REGISTER 3
HSQR1 EQU $FFFE16 ;HOST SEQUENCE REGISTER 1
HSRR1 EQU $FFFE1A ;HOST SERVICE REQUEST REGISTER 1
CPR0 EQU $FFFE1C ;CHANNEL PRIORITY REGISTER 0
CPR1 EQU $FFFE1E ;CHANNEL PRIORITY REGISTER 1
CISR EQU $FFFE20 ;CHANNEL INTERRUPT STATUS REGISTER

ORG $0 ;Initialize the Reset Vectors
 MOTOROLA TPU Programming Library
10 TPUPN07/D

DW $0000 ;Set Stack Pointer at 3FFC
DW $3FFC
DW $0000 ;Set IP at $3000
DW $3000

INCLUDE 'ORG00008.ASM'
* This file initializes the interrupt and exception
* vectors ($00008 - $001FF). If an unplanned
* interrupt occurs, program flow will continue at
* the label “BDM” which must exist in the user's
* main program. This label should have a “BGND”
* instruction to return control back to the monitor.

ORG $3000 ;Start Program at $3000
INITSYS:

ORI.W #$2700,SR ;ensure supervisor mode, interrupts masked
MOVE.L #$00000,D0
MOVEC D0,VBR ;place VBR at $00000
MOVEA.L#$FFF000,A0 ;set A0 to point to start of SIM registers
MOVE.W D0,($A20,A0) ;turn COP (software watchdog) off
MOVEQ #$7F,D0 ;w=0, x=1, y=111111
MOVE.B D0,($A04,A0) ;system clock = 16.78MHz
LEA.L $3FFC,A7 ;Initialize Stack Pointer at $3FFC
LEA $6000,A0 ;Initialize A0 to Address $6000

***** Initialize TPU Register and Parameter RAM *****
INITIALIZE:

CLR.L (CPR0).L ;Ensure Priority Bits are Cleared to 0
MOVE.L #INT_SERVICE,($0100).L ;Address of Interrupt Routine
MOVE.W #$04CF,(TPUMCR).L ;TCR1 = Divide by 1, Int ARB ID = $F

;Prescaler Clock = Divide by 4
MOVE.W #$0540,(TICR).L ;Interrupt Level = 5, Vector Number = $40
MOVE.W #BAUD,(MATCH_RATE).L ;Set 9600 Baud Rate
MOVE.W #$0000,(RECEIVE_DATA).L ;Clear Receiver and Receive Flags
MOVE.W #$0008,(DATA_SIZE).L ;Set Data Size
ANDI.W #$FFFE,(CISR).L ;Clear Channel 0 Interrupt Flags
MOVE.W #$0001,(CIER).L ;Enable Channel 0 Interrupts
MOVE.W #FUNCNUM,(CFSR3).L ;Set Channel 0 to UART function
MOVE.W #$0000,(HSQR1).L ;Select No Parity
MOVE.W #$0002,(HSRR1).L ;Host Service Request Code for Receive
MOVE.W #$0003,(CPR1).L ;Select High Priority
ANDI.W #$F0FF,SR ;Set Interrupt Priority Mask Level to 0

***** Main Program *****
MAIN:

BRA MAIN ;branch back to main

***** Interrupts/Exceptions *****
INT_SERVICE:

ANDI.W #$FFFE,(CISR).L ;Clear Channel 0 Interrupt Flags
MOVE.W (RECEIVE_DATA).L,D0 ;Move Received Data to D0
ANDI.W #$00FF,D0 ;Data Register 0 has Received Byte
MOVE.B D0,(A0)+
RTE

BDM:
BGND ;exception vectors point here

;and put the user in background debug mode
TPU Programming Library MOTOROLA
TPUPN07/D 11

8.2 Example B: Implementing a Transmitter

8.2.1 Description

This example shows how to set up the UART function as a transmitter, and how to service the transmit
buffer.

8.2.2 Initialization

Sets up channel 1 as a transmitter, with an 8-bit data word and no parity, using the variable BAUD to
determine baud rate. BAUD value is a function of baud rate, IMB clock frequency, and TPU prescaler
setting. The actual Baud rate is 9600 using 4.1 MHz TCR1_Clock. The value of the FUNCNUM variable
is assigned during microcode assembly.

8.2.3 Listing
FUNCNUM EQU $00B0 ;Function Number for UART
BAUD EQU $01B2 ;9600 Baud Rate
MATCH_RATE1 EQU $FFFF12 ;Parameter RAM
TRANSMIT_DATA EQU $FFFF14 ;Parameter RAM
DATA_SIZE1 EQU $FFFF16 ;Parameter RAM
TPUMCR EQU $FFFE00 ;TPU MODULE CONFIGURATION REGISTER
TICR EQU $FFFE08 ;TPU INTERRUPT CONFIGURATION REGISTER
CIER EQU $FFFE0A ;CHANNEL INTERRUPT ENABLE REGISTER
CFSR3 EQU $FFFE12 ;CHANNEL FUNCTION SELECT REGISTER 3
HSQR1 EQU $FFFE16 ;HOST SEQUENCE REGISTER 1
HSRR1 EQU $FFFE1A ;HOST SERVICE REQUEST REGISTER 1
CPR0 EQU $FFFE1C ;CHANNEL PRIORITY REGISTER 0
CPR1 EQU $FFFE1E ;CHANNEL PRIORITY REGISTER 1
CISR EQU $FFFE20 ;CHANNEL INTERRUPT STATUS REGISTER

ORG $0 ;Initialize the Reset Vectors
DW $0000 ;Set Stack Pointer at 3FFC
DW $3FFC
DW $0000 ;Set IP at $3000
DW $3000

INCLUDE'ORG00008.ASM'
* This file initializes the interrupt and exception
* vectors ($00008 - $001FF). If an unplanned
* interrupt occurs, program flow will continue at
* the label “BDM” which must exist in the user's
* main program. This label should have a “BGND”
* instruction to return control back to the monitor.

ORG $3000 ;Start Program at $3000
INITSYS:

ORI.W #$2700,SR ;ensure supervisor mode, interrupts masked
MOVE.L #$00000,D0
MOVEC D0,VBR ;place VBR at $00000
MOVEA.L#$FFF000,A0 ;set A0 to point to start of SIM registers
MOVE.W D0,($A20,A0) ;turn COP (software watchdog) off
MOVEQ #$7F,D0 ;w=0, x=1, y=111111
MOVE.B D0,($A04,A0) ;system clock = 16.78MHz
LEA.L $3FFC,A7 ;Initialize Stack Pointer at $3FFC
LEA $6000,A0 ;Initialize A0 to Address $6000

***** Initialize TPU Register and Parameter RAM *****
INITIALIZE:

CLR.L (CPR0).L ;Ensure Priority Bits are Cleared to 0
 MOTOROLA TPU Programming Library
12 TPUPN07/D

MOVE.W #$8000,(TRANSMIT_DATA).L ;Set TDRE Bit
MOVE.W #BAUD,(MATCH_RATE1).L ;Set 9600 Baud Rate for Transmitter
MOVE.W #$0008,(DATA_SIZE1).L ;Set Data Size
MOVE.L #INT_TRANSMIT,($0104).L ;Address of Transmitter Interrupt

;Routine
MOVE.W #$04CF,(TPUMCR).L;TCR1 = Divide by 1, Int ARB ID = $F

;Prescaler Clock = Divide by 4
MOVE.W #$0540,(TICR).L ;Interrupt Level = 5, Vector Number = $40
ANDI.W #$FFFD,(CISR).L ;Clear Channel 1 Interrupt Flag
MOVE.W #$0002,(CIER).L ;Enable Channel 1 Interrupt
MOVE.W #FUNCNUM,(CFSR3).L ;Set Channel 1 to UART function
MOVE.W #$0000,(HSQR1).L ;Select No Parity
MOVE.W #$000C,(HSRR1).L ;Host Service Request Code for Transmit
MOVE.W #$000C,(CPR1).L ;Select High Priority
ANDI.W #$F0FF,SR ;Set Interrupt Priority Mask Level to 0
JSR SEND_FIRST ;Send First Byte

***** Main Program *****
MAIN:

BRA MAIN ;branch back to main

***** Subroutine *****
SEND_FIRST: ;Send First Byte

CLR.W D0 ;Whenever the User Write the Data to
* ;TRANSMIT_DATA_REGISTER, TDRE bit must

;be Cleared.
LEA STRING,A1 ;A1 points to the beginning of ASCII
MOVE.B (A1)+,D0 ;Get First Byte in String Pointed by A1
MOVE.W D0,(TRANSMIT_DATA).L ;Write the Data to Transmit Register
RTS

***** Interrupts/Exceptions *****
INT_TRANSMIT:

ANDI.W #$FFFD,(CISR).L ;Clear Channel 1 Interrupt Flag
CLR.W D0 ;Whenever the User Write the Data to

* ;TRANSMIT_DATA_REGISTER, TDRE bit must
* ;be Cleared.

MOVE.B (A1)+,D0 ;Get Next Byte in String Pointed by A1
BEQ STRING_DONE ;If Byte = 0, then End of String

TRANSMIT:
MOVE.W D0,(TRANSMIT_DATA).L ;Write the Data to Transmit Register
RTE

STRING_DONE: ;Reached the End of String
JSR SEND_FIRST ;Send First Byte
RTE

BDM:
BGND ;exception vectors point here

;and put the user in background debug
;mode

ORG $4000
STRING:

DB 'Asynchronous Serial Interface TPU function',0A,0D,00
TPU Programming Library MOTOROLA
TPUPN07/D 13

9 Function Algorithm
The following description is provided as a guide only, to aid understanding of the function. The exact
sequence of operations in microcode may be different from that shown, in order to optimize speed and
code size. TPU microcode source listings for all functions in the TPU function library can be downloaded
from the Motorola Freeware bulletin board. Refer to Using the TPU Function Library and TPU Emulation
Mode (TPUPN00/D) for detailed instructions on downloading and compiling microcode.

The UART function consists of six states, described below.

9.1 State 1: Init_Receiver

This state is entered as a result of a host service request type %10. It configures the channel for input
with TCR1 as timebase and ‘detect falling edge’ pin control. The channel is configured to wait for the
falling edge of the start bit.

9.2 State 2: Init_Transmitter

This state is entered as a result of a host service request type %11. It configures the channel for output
with TCR1 as timebase, sets the pin to high (idle state) and defines ‘no action’ pin control. It sets up a
match at (TCR1 + MATCH_RATE) which causes entry to state 3 (Polling_TDRE).

9.3 State 3: Polling_TDRE (Transmitter only)

This state is entered as a result of a match. It checks the TDRE bit. A new match is scheduled at (Event
time + MATCH_RATE). If TDRE is not set, the ‘no action’ option is used, otherwise ‘pin_low’ is selected
to generate the start bit. In this case RECEIVE_DATA_REG is copied to the SHIFT_REGISTER and
TDRE is set. An internal flag is set to enter state 4 instead of state 3 next time.

9.4 State 4: Sending_Data (Transmitter only)

This state is entered as a result of a match. A new match is scheduled at (Event time + MATCH_RATE).
The pin action is defined by the next bit to be sent out. After sending the stop bit, the internal flag is
cleared, to enter state 3 instead of state 4 next time.

9.5 State 5: Receiving_Start_Bit (Receiver only)

This state waits for the falling edge of a start bit. It is entered as a result of a falling edge transition. A
match is scheduled at (Event time + MATCH_RATE * 1.5) to be able to get the middle of the first bit.
Also an internal flag is set to enter state 6 instead of state 5 next time.

9.6 State 6: Receiving_Data_Bit (Receiver only)

This state is entered as a result of a match. The pin state is shifted into SHIFT_REGISTER. If this is not
the last bit, then a new match is scheduled at (Event time + MATCH_RATE), otherwise this bit (stop bit)
is checked as well as the parity (if selected). The data is copied to RECEIVE_DATA_REG and an inter-
rupt service request is made. The channel is again configured to wait for the next falling edge (next start
bit). The internal flag is cleared again to enter state 5 instead of state 6 next time.
 MOTOROLA TPU Programming Library
14 TPUPN07/D

TPU Programming Library MOTOROLA
TPUPN07/D 15

Motorola uitability
of its pro any and
all liabilit can and
do vary i ola does
not conv intended
for surgi create a
situation demnify
and hold ney fees
arising o rola was
negligen

ity/Affir-
mative A
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
 P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140
Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax is a trademark of Motorola, Inc.

 reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the s
ducts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
y, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications
n different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motor
ey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
cal implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
 where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall in
 Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attor
ut of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Moto
t regarding the design or manufacture of the part. M O T O R O L A and ! are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportun
ction Employer.

	1 Functional Overview
	2 Detailed Description
	3 Function Code Size
	4 Function Parameters
	Figure 1 TPU Channel Parameter RAM CPU Address Map...
	Figure 2 UART Function Parameter RAM Assignment
	4.1 RECEIVE_DATA_REG and TRANSMIT_DATA_REG
	4.2 TDRE
	4.3 PE and FE
	4.4 Receive Data Indicator
	4.5 MATCH_RATE
	4.6 DATA_SIZE
	4.7 PARITY_TEMP
	4.8 ACTUAL_BIT_COUNT
	4.9 SHIFT_REGISTER

	5 Host Interface to Function
	Figure 3 TPU Address Map

	6 Function Configuration
	6.1 Transmitter Initialization
	6.2 Transmitting Data
	6.3 Receiver Initialization
	6.4 Receiving Data

	7 Performance and Use of Function
	7.1 Performance
	Table 1 UART Function State Timing
	7.1.1 Latency Examples

	7.2 Differences from a Conventional UART
	7.3 Limitations

	8 Examples
	8.1 Example A: Implementing a Receiver
	8.1.1 Description
	8.1.2 Initialization
	8.1.3 Listing

	8.2 Example B: Implementing a Transmitter
	8.2.1 Description
	8.2.2 Initialization
	8.2.3 Listing

	9 Function Algorithm
	9.1 State 1: Init_Receiver
	9.2 State 2: Init_Transmitter
	9.3 State 3: Polling_TDRE (Transmitter only)
	9.4 State 4: Sending_Data (Transmitter only)
	9.5 State 5: Receiving_Start_Bit (Receiver only)
	9.6 State 6: Receiving_Data_Bit (Receiver only)

