

Order this document
 by TPUPN02/D

SEMICONDUCTOR

MOTOROLA

PROGRAMMING NOTE

Fast Quadrature Decode TPU Function (FQD)
by Jeff Wright

1 Functional Overview
The fast quadrature decode function is a TPU input function that uses two channels to decode a pair of
out-of-phase signals in order to increment or decrement a (position) counter. It is particularly useful for
decoding position and direction information from a slotted encoder in motion control systems, thus re-
placing expensive external solutions. Figure 1 shows a typical application.

Figure 1 Typical FQD Application

2 Detailed Description
The FQD function uses a pair of adjacent TPU channels to decode quadrature signals into a 16-bit
counter in parameter RAM (PRAM). The counter is updated when a valid transition is detected on either
one of the two inputs — full ‘4x’ resolution is derived from the encoder signals. The counter is incre-
mented or decremented depending on the lead/lag relationship of the two signals at the time of servicing
the transition. The user can read or write the counter at any time. The counter is free running, overflow-
ing to $0000 or underflowing to $FFFF depending on direction.

CASE B — CHANNEL X LAGGING CHANNEL X+1

SENSOR
B

INTERFACE

TPU CHANNEL X

TPU CHANNEL X+1

SLOTTED ENCODER

SENSOR
A

CASE A — CHANNEL X LEADING CHANNEL X+1

SENSOR
B

INTERFACE

TPU CHANNEL X

TPU CHANNEL X+1

SLOTTED ENCODER

SENSOR
A

TPU ENCODER BLOCK
© MOTOROLA INC, 1997

In systems where the counter may overflow or underflow, the user must ensure that the CPU reads the
counter periodically. Maximum period is $8000 counts at maximum signal frequency. Two’s comple-
ment arithmetic can then be used by the CPU to maintain position and direction information.

When initialized, the FQD function is configured so that the first edge on either channel results in a
counter update.

Since the two FQD channels, which must always be adjacent, operate differently, this note uses the
convention of referring to the channel with the lower channel number as the primary channel. The other
channel is referred to as the secondary channel.

The FQD function differs from the QDEC function in having both normal and fast modes of operation.
In operation, the CPU dynamically switches the FQD function between modes depending on the current
encoder speed.

2.1 Normal Mode

In normal mode, both quadrature signals are decoded by the TPU and the counter is updated by one
for each valid transition on either channel (see Figure 2). The counter is incremented or decremented
depending on the lead/lag relationship of the two signals at the time of transition service. See 9 Fast
Quadrature Decode Algorithm for a definition of the lead/lag test.

Figure 2 Normal Mode Operation

2.2 Fast Mode

In fast mode, only the primary channel is serviced. The counter is updated by four for each rising tran-
sition (see Figure 3). All falling transitions are ignored. In fast mode, the TPU can reliably decode at
more than quadruple the maximum count rate of normal mode. No direction decoding is done in fast
mode — the counter is updated in the same direction as when the last transition was serviced in normal
mode.

$0010

$0011

$0012

$0013

$0014

$0015

$0016

$0015

$0014 $0012

$0011

$0010

$000F

$000E

CHANNEL X
(PRIMARY)

CHANNEL X+1
(SECONDARY)

ENCODER DIRECTION CHANGE

$0013

POSITION_COUNT:

TPU WAVE1 TIM
 MOTOROLA TPU Programming Library
2 TPUPN02/D

Figure 3 Fast Mode Operation

FQD mode of operation can be changed at any time by the CPU via a host sequence bit on the primary
channel. Any requested change in operating mode takes effect when the next rising transition on the
primary channel is serviced.

No counts are lost when switching in and out of fast mode, although there is a four LSB uncertainty in
the counter while in fast mode, due to the ‘by 4’ update.

If application performance requires that fast mode be used, the CPU should start FQD in normal mode
and switch to fast mode when the derived speed (from periodic reads of the position counter) is above
a certain threshold. The function should run in fast mode until the speed falls below threshold, when the
CPU should switch back to normal mode. The speed threshold at which to switch modes is determined
by overall TPU system activity and must be evaluated for each application.

2.3 Time Stamp

In normal mode, the FQD function provides a time stamp referenced to TCR1 for every valid signal
edge. The host CPU can also request a current TCR1 value. These two features allow position and
speed interpolation by the host CPU between quadrature edges at very slow count rates.

2.4 Discrete Input/Transition Counter

A single channel programmed to run FQD can be used as a digital input pin with a transition counter.

3 Function Code Size
Total TPU function code size determines what combination of functions can fit into a given ROM or em-
ulation memory microcode space. FQD function code size is:

38 µ instructions + 8 entries = 46 long words

CHANNEL X
(PRIMARY)

CHANNEL X+1
(SECONDARY)

POSITION_COUNT VALUE
IN NORMAL MODE:

EXAMPLE A — PRIMARY CHANNEL HSQ1

RESULTANT POSITION_COUNT:

EXAMPLE B — PRIMARY CHANNEL HSQ1

NOTE: Number in parenthesis indicates that transition is not serviced and position_count value remains constant.

RESULTANT POSITION_COUNT:

1

0

1

0

1

0

1

0

TPU WAVE2 TIM

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

10 11 12 13 14 15 (15) (15) 19 (19) (19) (19) 23 24 25 26 27 28 29 30

10 11 12 13 14 15 (15) (15) (15) 19 (19) (19) (19) 23 (23) (23) (23) 27 28 29 30

(15)
TPU Programming Library MOTOROLA
TPUPN02/D 3

4 Function Parameters
This section provides detailed descriptions of function parameters stored in channel parameter RAM.
Figure 4 shows TPU parameter RAM address mapping. shows the parameter RAM assignment used
by the function. In the diagrams, Y = M111, where M is the value of the module mapping bit (MM) in the
system integration module configuration register (Y = $7 or $F).

— = Not Implemented (reads as $00)

Figure 4 TPU Channel Parameter RAM CPU Address Map

Channel Base Parameter Address

Number Address 0 1 2 3 4 5 6 7

0 $YFFF## 00 02 04 06 08 0A — —

1 $YFFF## 10 12 14 16 18 1A — —

2 $YFFF## 20 22 24 26 28 2A — —

3 $YFFF## 30 32 34 36 38 3A — —

4 $YFFF## 40 42 44 46 48 4A — —

5 $YFFF## 50 52 54 56 58 5A — —

6 $YFFF## 60 62 64 66 68 6A — —

7 $YFFF## 70 72 74 76 78 7A — —

8 $YFFF## 80 82 84 86 88 8A — —

9 $YFFF## 90 92 94 96 98 9A — —

10 $YFFF## A0 A2 A4 A6 A8 AA — —

11 $YFFF## B0 B2 B4 B6 B8 BA — —

12 $YFFF## C0 C2 C4 C6 C8 CA — —

13 $YFFF## D0 D2 D4 D6 D8 DA — —

14 $YFFF## E0 E2 E4 E6 E8 EA EC EE

15 $YFFF## F0 F2 F4 F6 F8 FA FC FE
 MOTOROLA TPU Programming Library
4 TPUPN02/D

W = Channel number

Primary Channel RAM Assignment

W = Primary Channel number

Secondary Channel RAM Assignment

Figure 5 FQD Function Parameter RAM Assignment

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFFW0 EDGE_TIME

$YFFFW2 POSITION_COUNT

$YFFFW4 TCR1_VALUE

$YFFFW6 CHAN_PINSTATE

$YFFFW8 CORR_PINSTATE_ADDR

$YFFFWA EDGE_TIME_LSB_ADDR

$YFFFWC

$YFFFWE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$YFFF(W+1)0

$YFFF(W+1)2

$YFFF(W+1)4 TCR1_VALUE

$YFFF(W+1)6 CHAN_PINSTATE

$YFFF(W+1)8 CORR_PINSTATE_ADDR

$YFFF(W+1)A EDGE_TIME_LSB_ADDR

$YFFF(W+1)C

$YFFF(W+1)E

Parameter Write Access

Written by CPU

Written by TPU

Written by CPU and TPU

Unused parameters
TPU Programming Library MOTOROLA
TPUPN02/D 5

4.1 TCR1_VALUE

This 16 bit parameter is updated by the TPU to contain the latest value of the TCR1 internal counter.
TCR1_VALUE is updated on two occasions:

During initialization of the function.

During the service of a TCR1 read host service request issued by the host CPU.

This parameter can be used along with EDGE_TIME to perform position and speed interpolation at slow
count rates. TCR1_VALUE can reside in the parameter RAM of either or both FQD channels, but the
parameter is only updated for the channel that receives the host service request from the CPU. Since
the TPU must respond to the HSR before copying the TCR1 value to PRAM, the value obtained does
not exactly correspond to the TCR1 value at the time the HSR is issued. The difference depends on the
latency of the TPU and the prescaler value of TCR1. See 7 Performance and Use of Function for de-
tails.

4.2 CHAN_PINSTATE

These 16-bit parameters (one for each channel) are maintained by the TPU. Each parameter contains
a value that represents the logic level of the channel pin when the last valid transition was serviced. The
value $8000 is used to represent a pin high level, and $0000 to represent a pin low level. When an edge
is serviced, the new pin state is compared with the last pin state stored in CHAN_PINSTATE — if the
states are the same, then a valid transition has not occurred (noise) and the counter is not updated.

The CHAN_PINSTATE parameters are also used to determine the phase (lead/lag) relationship be-
tween the two FQD channels so that POSITION_COUNT is updated in the correct direction. To perform
this lead/lag test, the channel compares its new pin state with the CHAN_PINSTATE parameter of the
other FQD channel (obtained via CORR_PINSTATE_ADDR) and from the relationship takes the appro-
priate action. See 9 Fast Quadrature Decode Algorithm for an explanation of the lead/lag tests.

The CPU must not write CHAN_PINSTATE parameters while FQD is running, or an erroneous update
of POSITION_COUNT can occur.

4.3 CORR_PINSTATE_ADDR

These parameters (one for each channel) are initialized by the CPU to contain the address in PRAM of
the CHAN_PINSTATE parameter of the corresponding FQD channel. They are used to obtain the
CHAN_PINSTATE parameter of the corresponding channel for the lead/lag test. For example, if chan-
nels 0 and 1 are being used for FQD, the CORR_PINSTATE_ADDR of channel 0 should be $16 and
CORR_PINSTATE_ADDR of channel 1 should be $06. These parameters are written once prior to ini-
tialization and must not be changed while FQD is running.

4.4 EDGE_TIME_LSB_ADDR

These parameters (one for each channel) are initialized by the CPU to contain the address in PRAM of
the LSB (odd address) of the EDGE_TIME parameter. The EDGE_TIME_LSB_ADDR parameters of
both FQD channels must point to the same PRAM location for the FQD function to operate correctly.
This parameter is used to access both EDGE_TIME and POSITION_COUNT parameters. For example,
if channels 0 and 1 are being used for FQD and EDGE_TIME and POSITION_COUNT are chosen to
reside in channel 1, then the EDGE_TIME_LSB_ADDR of both channels 0 and 1 must be programmed
to $11. These parameters are written once prior to initialization and must not be changed while FQD is
running.
 MOTOROLA TPU Programming Library
6 TPUPN02/D

4.5 EDGE_TIME

This 16-bit parameter, which resides in the parameter RAM of only one FQD channel, is updated by the
TPU when a valid signal transition is serviced on either channel in normal mode only. It contains the
TCR1 value that was captured in hardware at the time of the signal transition — it thus provides a time
stamp for the host CPU.

EDGE_TIME can reside in the PRAM of either FQD channel, but must be in the same PRAM as
POSITION_COUNT, because both parameters are referenced by the EDGE_TIME_LSB_ADDR ad-
dress pointer. See 7 Performance and Use of Function for more details.

4.6 POSITION_COUNT

This 16-bit counter is the primary output of the FQD function. POSITION_COUNT resides in the param-
eter RAM of only one FQD channel. POSITION_COUNT can be read or written at any time by the CPU.
Normally, POSITION_COUNT is initialized by the CPU, then left to run as a free running counter.

POSITION_COUNT can reside in the PRAM of either FQD channel, but must be in the same PRAM as
EDGE_TIME, because both parameters are referenced by the EDGE_TIME_LSB_ADDR address
pointer.

4.7 HSQ0

Host sequence bit 0 is written by the CPU. HSQ0 is used by the TPU to determine whether the channel
being serviced is the primary or secondary channel. HSQ0 of the primary channel must be cleared and
HSQ0 of the secondary channel must be set. The primary channel is always the channel with the lower
channel number of the pair — if channels 3 and 4 are to run FQD, then channel 3 HSQ0 must equal 0
and channel 4 HSQ0 must equal one.

4.8 HSQ1

Host sequence bit 1 is written by the CPU. HSQ1 of the primary channel is used to select normal or fast
mode of operation. HSQ1 of the secondary channel is not used. If primary channel HSQ1 = 0, then nor-
mal mode is selected. If primary channel HSQ1 = 1, then fast mode is selected. Although the CPU can
write HSQ1 at any time to change modes, the function should always be started in normal mode.
TPU Programming Library MOTOROLA
TPUPN02/D 7

5 Host Interface to Function
This section provides information concerning the TPU host interface to the FQD function. Figure 6 is a
TPU address map. Detailed TPU register diagrams follow the figure. In Figure 6 and in the register
diagrams, Y = M111, where M is the value of the module mapping bit (MM) in the system integration
module configuration register (Y = $7 or $F).

Figure 6 TPU Address Map

Address 15 8 7 0

$YFFE00 TPU MODULE CONFIGURATION REGISTER (TPUMCR)

$YFFE02 TEST CONFIGURATION REGISTER (TCR)

$YFFE04 DEVELOPMENT SUPPORT CONTROL REGISTER (DSCR)

$YFFE06 DEVELOPMENT SUPPORT STATUS REGISTER (DSSR)

$YFFE08 TPU INTERRUPT CONFIGURATION REGISTER (TICR)

$YFFE0A CHANNEL INTERRUPT ENABLE REGISTER (CIER)

$YFFE0C CHANNEL FUNCTION SELECTION REGISTER 0 (CFSR0)

$YFFE0E CHANNEL FUNCTION SELECTION REGISTER 1 (CFSR1)

$YFFE10 CHANNEL FUNCTION SELECTION REGISTER 2 (CFSR2)

$YFFE12 CHANNEL FUNCTION SELECTION REGISTER 3 (CFSR3)

$YFFE14 HOST SEQUENCE REGISTER 0 (HSQR0)

$YFFE16 HOST SEQUENCE REGISTER 1 (HSQR1)

$YFFE18 HOST SERVICE REQUEST REGISTER 0 (HSRR0)

$YFFE1A HOST SERVICE REQUEST REGISTER 1 (HSRR1)

$YFFE1C CHANNEL PRIORITY REGISTER 0 (CPR0)

$YFFE1E CHANNEL PRIORITY REGISTER 1 (CPR1)

$YFFE20 CHANNEL INTERRUPT STATUS REGISTER (CISR)

$YFFE22 LINK REGISTER (LR)

$YFFE24 SERVICE GRANT LATCH REGISTER (SGLR)

$YFFE26 DECODED CHANNEL NUMBER REGISTER (DCNR)

CIER — Channel Interrupt Enable Register $YFFE0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Enable

X Not used by this function

CFSR[0:3] — Channel Function Select Registers $YFFE0C – $YFFE12

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFS (CH 15, 11, 7, 3) CFS (CH 14, 10, 6, 2) CFS (CH 13, 9, 5, 1) CFS (CH 12, 8, 4, 0)

CFS[4:0] Function Number

XXXX FQD Function Number
(Assigned during microcode assembly)
 MOTOROLA TPU Programming Library
8 TPUPN02/D

HSQR[0:1] — Host Sequence Registers $YFFE14 – $YFFE16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Operating Mode

00 Primary Channel – Normal Mode

01 Secondary Channel – Normal Mode

10 Primary Channel – Fast Mode

11 Secondary Channel – Fast Mode

HSRR[1:0] — Host Service Request Registers $YFFE18 – $YFFE1A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Action

00 No Host Service (Reset Condition)

01 Not Used

10 Read TCR1

11 Initialize

CPR[1:0] — Channel Priority Registers $YFFE1C – $YFFE1E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15, 7 CH 14, 6 CH 13, 5 CH 12, 4 CH 11, 3 CH 10, 2 CH 9, 1 CH 8, 0

CH[15:0] Channel Priority

00 Disabled

01 Low

10 Middle

11 High

CISR — Channel Interrupt Status Register $YFFE20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

CH Interrupt Status

X Not used by this function
TPU Programming Library MOTOROLA
TPUPN02/D 9

6 Function Configuration
The CPU configures the FQD function as follows.

1. Disables the channels by clearing the two channel priority bits on each of the FQD channels
(not necessary from reset).

2. Selects the FQD function on both channels by writing the FQD function number to their function
select bits.

3. Initializes CORR_PINSTATE_ADDR and EDGE_TIME_LSB_ADDR in parameter RAM of both
channels.

4. Initializes POSITION_COUNT to the desired start value.
5. Selects one channel as the primary channel and the other as the secondary channel via HSQ0.
6. Selects normal mode of operation by ensuring that HSQ1 of the primary channel is cleared.
7. Issues an HSR type%11 to each channel to initialize the function.
8. Enables servicing by assigning H, M, or L priority to the channel priority bits. Both FQD chan-

nels must be assigned the same priority to ensure correct operation.

The TPU then executes the initialization state and starts decoding the two input signals.

NOTE
The CHAN_PINSTATE parameters must not be read by the CPU until after the
TPU has negated the HSR bits during initialization.

Fast/Normal mode switching is controlled by the CPU via host sequence bit 1 of the primary channel.

7 Performance and Use of Function

7.1 Performance

Like all TPU functions, the performance limit of the FQD function in a given application is dependent
upon the service time (latency) of other active TPU channels. This is due to the operational nature of
the scheduler. When a pair of FQD channels are being used in normal mode and no other TPU channels
are active, the minimum time between count edges on the two channels is 50 CPU clock cycles. This
is equivalent to a count rate of approximately 330 kcounts per second with a system clock speed of
16.78 MHz, or a count rate of approximately 420 kcounts per second with a system clock speed of 20.97
MHz. In fast mode, the minimum time between rising edges on the primary channel is 30 CPU clock
cycles. Since the counter is updated by four on each primary rising edge, this is equivalent to a count
rate of approximately 2.2 Mcounts per second with a system clock speed of 16.78 MHz, or a count rate
of approximately 2.8 Mcounts per second with a system clock speed of 20.97 MHz.

NOTE: Execution times do not include the time slot transition time (TST = 10 or 14 CPU clocks)

When more TPU channels are active, performance is lessened — if two sets of encoder signals are
decoded using four channels, then the maximum count rate in each mode (with a 16.78 kHz bus) is lim-
ited to approximately 165 kcounts and 1.1 Mcounts respectively. Use of other functions, such as PWM,
also lessens performance.

Table 1 Fast Quadrature Decode Function — State Timing

State Number & Name Max CPU Clock Cycles RAM Accesses by TPU

S1 INIT_FQD 12 3

S2 READ_TCR1_FQD 2 1

S3 EDGE_NORM_FQD
Remain in Normal Mode
Switch to Fast Mode

36
40

8
8

S4 EDGE_FAST_FQD
Remain in Fast Mode
Switch to Normal Mode

16
26

4
5

 MOTOROLA TPU Programming Library
10 TPUPN02/D

Since the scheduler assures that worst-case latencies in any TPU application can be closely estimated,
it is recommended that the guidelines in the TPU Reference Manual (TPURM/AD) be used with the fig-
ures given in the fast quadrature decode state timing table to perform an analysis of any proposed ap-
plication that appears to approach the performance limits of the TPU. If the FQD function fails to meet
the system performance requirements, then the down/up counter (DUC) TPU function should be eval-
uated as an alternative.

7.2 Accuracy

Since the TPU takes time to respond to an input transition, there is always a 1 LSB uncertainty in a CPU
read of POSITION_COUNT in normal mode while the input signals are active. In fast mode, the uncer-
tainty increases to 4 LSB due to the ‘by 4’ update of POSITION_COUNT.

These uncertainties only apply while an external system such as a motor is active. After the system has
been brought to a stop with FQD in normal mode, and the last transition has been serviced,
POSITION_COUNT is accurate.

7.3 Noise Immunity

To a large extent, TPU hardware and the FQD function microcode protect the counter from erroneous
updates due to noise. All TPU input channels incorporate a digital filter which rejects pulses of less than
2 CPU clocks and guarantees to pass pulses of greater than 4 CPU clocks. In addition, when servicing
a transition in normal mode, the FQD function always checks the new pin state against the pin state
from the last service, and if they are equal then no action is taken. This protects against a noise pulse
that is long enough to get through the digital filter, but not long enough to last from the actual transition
time to the time that the TPU services the channel. In fast mode, where only rising edges are serviced,
no microcode noise immunity is provided.

Despite these precautions, there may be situations where noise on both channels simultaneously caus-
es erroneous updates of the counter. Under these conditions, it is recommended that additional external
protection, such as Schmitt trigger buffers or an additional filter stage, be added.

The following examples are intended to illustrate the extent of the noise immunity inherent in the TPU
itself and the FQD function.

CASE A: Short positive or negative pulses 2 CPU clocks or less in duration.

Result: Rejected by hardware filter on TPU input pins —no service requests.

FQD CHANNEL A

FQD CHANNEL B

POSITION_COUNT: NO CHANGE

TPU FQD1 TIM
TPU Programming Library MOTOROLA
TPUPN02/D 11

CASE B: Positive or negative pulses 4 CPU clocks or greater in duration, but less than TPU ser-
vice latency at the time of the pulse.

Result: One service request per pulse — rejected in software by pin state history test.

CASE C: Positive or negative pulses 4 CPU clocks or greater in duration and greater than TPU
service latency at the time of the pulse.

Result: Two service requests per pulse. Both edges are serviced and counted resulting in a net error of
zero on POSITION_COUNT.

Note that pulses of three CPU clocks in length may pass through the input filter — they can either be
case A or case B. Noise rejection cannot be guaranteed when case C noise exists simultaneously on
both channels. Only case A noise rejection is provided when running in fast mode.

7.4 Using FQD with Three-Signal Encoders

Many shaft encoders supply two quadrature signals plus an index signal that generates a pulse once
per revolution. This pulse usually has a fixed relationship to other system parameters and is used for
alignment during startup.

Three-signal encoders can be decoded when FQD is used in conjunction with the TPU function called
new input transition counter (NITC). FQD decodes the quadrature signals and the index pulse is fed to
the NITC channel. NITC allows any location in parameter RAM to be captured on a specified edge and
the value presented to the CPU. In this case, NITC would be configured to capture the
POSITION_COUNT parameter of FQD. The NITC channel should be run on a lower channel number
than the FQD primary channel, and assigned the same priority as the FQD channel.

FQD CHANNEL A

FQD CHANNEL B

TPU FQD2 TIM

POSITION_COUNT:

SERVICE REQUEST GENERATED

CHANNEL SERVICE

N N N

TPU FQD3 TIM

N N – 1 N N + 1 N

FQD CHANNEL A

FQD CHANNEL B

POSITION_COUNT:

SERVICE REQUEST GENERATED

CHANNEL SERVICE
 MOTOROLA TPU Programming Library
12 TPUPN02/D

7.5 Using the Time Stamp Feature

The time stamp feature has been provided in normal mode to allow the CPU to perform speed and po-
sition interpolation at very slow encoder speeds. At low speeds, the number of transitions counted be-
tween CPU reads of POSITION_COUNT is too small to provide reliable information. Due to the
following restrictions, the time stamp feature should be used with care.

7.6 EDGE_TIME and POSITION_COUNT Coherency

The TPU cannot coherently update both the EDGE_TIME and POSITION_COUNT parameters during
the service of a transition. A CPU read of these two parameters may return values that do not correlate,
such as a new EDGE_TIME with an ‘old’ POSITION_COUNT value (EDGE_TIME is updated first).

This problem can be handled by performing multiple CPU reads of the two parameters with a delay be-
tween the reads. The delay must be greater than or equal to the worst-case time between the TPU writ-
ing EDGE_TIME and POSITION_COUNT of 14 CPU clocks. For example, the following CPU action
could be used.

GET_PARAM: Read EDGE_TIME & POSITION_COUNT
LOOP: Store EDGE_TIME in TEMP1 & POSITION_COUNT in TEMP2

Delay 14 CPU clocks
Read EDGE_TIME & POSITION_COUNT
If EDGE_TIME ≠ TEMP1 or POSITION_COUNT ≠ TEMP2 then

goto LOOP
Endif

VALID: TEMP1 and TEMP2 are coherent and valid.

7.7 TCR1 Timebase Read

To actually perform interpolation, the CPU must obtain valid EDGE_TIME and POSITION_COUNT pa-
rameters as described above, then read the TCR1 timebase at fixed intervals to calculate a new posi-
tion.

Since the CPU must issue an HSR to obtain the latest TCR1_VALUE, and since that HSR is subject to
normal TPU scheduling, there is an uncertainty in the returned TCR1_VALUE that is dependent upon
both TPU latency at the time of issuing the HSR and upon the selected prescaler value for TCR1.

In the best case (TPU idle at time of HSR issue) there is a delay equivalent to 16 CPU clocks between
the time the CPU writes the HSR bits and the time the TPU writes TCR1_VALUE and clears the HSR
bits.

7.8 Using FQD as a Discrete Input/Transition Counter

A single TPU channel programmed to run FQD can be used as a discrete input pin and transition
counter. To be used in this way, the FQD function must be in normal mode, with the channel pro-
grammed as a primary channel. The EDGE_TIME_LSB_ADDR parameter must point to the LSB of the
channel's own parameter 0 and the CORR_PINSTATE_ADDR parameter must point to the channel's
own CHAN_PINSTATE parameter. An HSR %11 should be issued to initialize the function.

When the FQD function is configured as described, CHAN_PINSTATE is updated as each transition is
serviced, and contains a value representing the latest pin level ($8000 = high, $0000 = low).
POSITION_COUNT holds the number of transitions on the pin (positive and negative).

An immediate update of CHAN_PINSTATE can be invoked at any time by issuing an HSR %11. The
CPU should not interpret the value of CHAN_PINSTATE until the TPU has completed the host service
request and the HSR bits have been negated.
TPU Programming Library MOTOROLA
TPUPN02/D 13

8 Fast Quadrature Decode Examples
The following examples show configuration of the fast quadrature decode function for both quadrature
decode and for operation as an input pin with transition counter. Each example includes a description
of the example, a diagram of the initial parameter RAM content, and the initial control bit settings.

8.1 Example A

Configure channels 1 and 2 to run FQD. The initial position should be $1000.

Disable channels 1 and 2 by clearing priority bits (CPR1[3:2] and CPR1[5:4]). Select FQD function by
programming the function select register of each channel. Configure parameter RAM of each channel
as shown below. Write HSQR1[3:2] = %00 (channel 1 primary) and HSQR1[5:4] = %01 (channel 2 sec-
ondary). Write HSRR1[3:2] and HSRR1[5:4] = %11 to initialize both channels and start quadrature de-
code. Write the priority bits of both channels to the same non-zero value.

POSITION_COUNT = $1000

The function now runs, decodes transitions on channel 1 or 2, and increments or decrements
POSITION_COUNT accordingly. The CPU can read or write POSITION_COUNT at any time. If fast
mode operation is required, it is controlled via HSQR1[1:0] (channel 1 is the primary channel).

Table 2 Channel 1 (Primary) Parameter RAM

15 8 0

$YFFF10 x x x x x x x x x x x x x x x x EDGE_TIME

$YFFF12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 POSITION_COUNT

$YFFF14 x x x x x x x x x x x x x x x x TCR1_VALUE

$YFFF16 x x x x x x x x x x x x x x x x CHAN_PINSTATE

$YFFF18 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 $26

$YFFF1A 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 $11

Table 3 Channel 2 (Secondary) Parameter RAM

15 8 0

$YFFF20 x x x x x x x x x x x x x x x x

$YFFF22 x x x x x x x x x x x x x x x x

$YFFF24 x x x x x x x x x x x x x x x x TCR1_VALUE

$YFFF26 x x x x x x x x x x x x x x x x CHAN_PINSTATE

$YFFF28 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 $16

$YFFF2A 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 $11
 MOTOROLA TPU Programming Library
14 TPUPN02/D

8.2 Example B

8.2.1 Description

Configure channel 12 to act as an input pin with a transition counter. Initialize the counter to zero.

8.2.2 Initialization

Disable channel 12 by clearing priority bits (CPR0[9:8]). Select FQD function by programming the func-
tion select register of channel 12. Configure channel 12 parameter RAM as shown below. Write
HSQR0[9:8] = %00 (primary channel). Write HSRR0[9:8] = %11 to channel 12 to initialize, read pin level
and start counting transitions. Write channel 12 priority bits to a non-zero value.

TRANS_COUNT (POSITION_COUNT) = $0000

The function now runs, detects transitions on channel 12, and increments the transition counter
(POSITION_COUNT) accordingly. On completion of the initialization HSR and any subsequent edge
service, the parameter CHAN_PINSTATE contains the latest level of the channel pin ($8000 for high,
$0000 for low). The CPU can read or write the transition counter at any time.

Note that the TCR1 read HSR can still be used when FQD is operating in this mode.

Table 4 Channel 12 Parameter RAM

15 8 0

$YFFFC0 x x x x x x x x x x x x x x x x EDGE_TIME

$YFFFC2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TRANS_COUNT

$YFFFC4 x x x x x x x x x x x x x x x x TCR1_VALUE

$YFFFC6 x x x x x x x x x x x x x x x x CHAN_PINSTATE

$YFFFC8 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 $C6

$YFFFCA 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 $C1
TPU Programming Library MOTOROLA
TPUPN02/D 15

9 Fast Quadrature Decode Algorithm
The following description is provided as a guide only, to aid understanding of the function. The exact
sequence of operations in microcode may be different to optimize speed and code size. TPU microcode
source listings for all functions in the TPU function library can be downloaded from the Motorola Free-
ware bulletin board. Refer to Using the TPU Function Library and TPU Emulation Mode (TPUPN00/D)
for detailed instructions on downloading and compiling microcode.

The fast quadrature decode function consists of four states, which operate as described below. For clar-
ity, reference is made to internal channel flags 0 and 1 in the following description. These are internal
TPU control bits that are not available to the user.

9.1 STATE1 — INIT_FQD

This state is entered as a result of a host service request type %11.

The channel is configured as an input with TCR1 as a timebase.
The pin is configured to detect any transition.
Transition service requests are enabled.
The current pin state is read.

If the pin is low
$0000 is stored in CHAN_PINSTATE

Else
$8000 is stored in CHAN_PINSTATE

Endif.
Flag 0 is negated to force normal mode of operation.
The current value of TCR1 is read and stored in TCR1_VALUE.
The state ends.

9.2 STATE2 — READ_TCR1_FQD

This state is entered as a result of a host service request type %10.

The current value of TCR1 is read and stored in TCR1_VALUE.
The state ends.

9.3 STATE3 — EDGE_NORM_FQD

This state is entered as a result of a transition on an FQD channel pin while internal channel flag 0 is
negated.

The channel pin state is read.

The transition latch cleared to enable detection of further edges.

If the new pin state = CHAN_PINSTATE
The state ends (noise).

Endif.
If the pin is low

$0000 is stored in CHAN_PINSTATE
Else

$8000 is stored in CHAN_PINSTATE
Endif.

The TCR1 value captured at the time of the edge is stored in EDGE_TIME.

Using this new pin state along with the pin state of the other FQD channel and host sequence bit 0 (pri-
mary or secondary channel), POSITION_COUNT is incremented or decremented by 1 according to the
lead/lag tests explained below.
 MOTOROLA TPU Programming Library
16 TPUPN02/D

If POSITION_COUNT is incremented,
assert internal channel flag 1

Else
negate internal channel flag 1

Endif.

When service resulted from a rising edge on the primary channel and host sequence bit 1 is asserted
then fast mode is entered as follows.

The secondary channel is disabled.
The primary channel is configured to detect rising edges only.
Internal channel flag 0 is asserted.

The state ends.

9.4 STATE4 — EDGE_FAST_FQD

This state is entered as a result of a rising transition on an FQD primary channel while internal channel
flag 0 is asserted.

The transition latch cleared to enable detection of further edges.
If internal channel flag 1 is asserted

POSITION_COUNT is incremented by 4
Else

POSITION_COUNT is decremented by 4
Endif.

When host sequence bit 1 is negated then normal mode is entered as follows.

The secondary channel is re-enabled and its CHAN_PINSTATE parameter corrected.
The primary channel is set to detect any edge.
Internal channel flag 0 is negated.

The state ends.
TPU Programming Library MOTOROLA
TPUPN02/D 17

9.5 Explanation of Lead/Lag Test

The lead/lag test is performed to determine the phase relationship of the two FQD signals and hence
whether to increment or decrement the parameter POSITION_COUNT. The CHAN_PINSTATE param-
eters of the two channels are added together and the resulting N bit is used along with the edge type
and channel type (primary or secondary — host sequence bit 0) to result in the following operation:

Table 5 Lead/Lag Test Results

Serviced Transition Test Description

Primary Rising If last secondary transition was falling, then primary channel is leading
secondary channel and POSITION_COUNT is incremented.

If last secondary transition was rising, then primary channel is lagging
secondary channel and POSITION_COUNT is decremented.

Primary Falling If last secondary transition was rising, then primary channel is leading
secondary channel and POSITION_COUNT is incremented.

If last secondary transition was falling, then primary channel is lagging
secondary channel and POSITION_COUNT is decremented.

Secondary Rising If last primary transition was rising, then primary channel is leading
secondary channel and POSITION_COUNT is incremented.

If last primary transition was falling, then primary channel is lagging
secondary channel and POSITION_COUNT is decremented.

Secondary Falling If last primary transition was falling, then primary channel is leading
secondary channel and POSITION_COUNT is incremented.

If last primary transition was rising, then primary channel is lagging
secondary channel and POSITION_COUNT is decremented.
 MOTOROLA TPU Programming Library
18 TPUPN02/D

NOTES
TPU Programming Library MOTOROLA
TPUPN02/D 19

Motorola uitability
of its pro any and
all liabilit can and
do vary i ola does
not conv intended
for surgi create a
situation demnify
and hold ney fees
arising o rola was
negligen ity/Affir-
mative A
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
 P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140
Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax is a trademark of Motorola, Inc.
M

 reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the s
ducts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
y, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications
n different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motor
ey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
cal implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
 where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall in
 Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attor
ut of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Moto
t regarding the design or manufacture of the part. M O T O R O L A and ! are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportun
ction Employer.

	1 Functional Overview
	Figure 1 Typical FQD Application

	2 Detailed Description
	2.1 Normal Mode
	Figure 2 Normal Mode Operation

	2.2 Fast Mode
	Figure 3 Fast Mode Operation

	2.3 Time Stamp
	2.4 Discrete Input/Transition Counter

	3 Function Code Size
	4 Function Parameters
	Figure 4 TPU Channel Parameter RAM CPU Address Map...
	Figure 5 FQD Function Parameter RAM Assignment
	4.1 TCR1_VALUE
	4.2 CHAN_PINSTATE
	4.3 CORR_PINSTATE_ADDR
	4.4 EDGE_TIME_LSB_ADDR
	4.5 EDGE_TIME
	4.6 POSITION_COUNT
	4.7 HSQ0
	4.8 HSQ1

	5 Host Interface to Function
	Figure 6 TPU Address Map

	6 Function Configuration
	7 Performance and Use of Function
	7.1 Performance
	Table 1 Fast Quadrature Decode Function — State Ti...

	7.2 Accuracy
	7.3 Noise Immunity
	7.4 Using FQD with Three-Signal Encoders
	7.5 Using the Time Stamp Feature
	7.6 EDGE_TIME and POSITION_COUNT Coherency
	7.7 TCR1 Timebase Read
	7.8 Using FQD as a Discrete Input/Transition Count...

	8 Fast Quadrature Decode Examples
	8.1 Example A
	Table 2 Channel 1 (Primary) Parameter RAM
	Table 3 Channel 2 (Secondary) Parameter RAM

	8.2 Example B
	8.2.1 Description
	8.2.2 Initialization
	Table 4 Channel 12 Parameter RAM

	9 Fast Quadrature Decode Algorithm
	9.1 STATE1 — INIT_FQD
	9.2 STATE2 — READ_TCR1_FQD
	9.3 STATE3 — EDGE_NORM_FQD
	9.4 STATE4 — EDGE_FAST_FQD
	9.5 Explanation of Lead/Lag Test
	Table 5 Lead/Lag Test Results

